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Abstract

Uncertainty estimates must be calibrated (i.e., ac-

curate) and sharp (i.e., informative) in order to be

useful. This has motivated a variety of methods

for recalibration, which use held-out data to turn

an uncalibrated model into a calibrated model.

However, the applicability of existing methods is

limited due to their assumption that the original

model is also a probabilistic model. We intro-

duce a versatile class of algorithms for recalibra-

tion in regression that we call modular confor-

mal calibration (MCC). This framework allows

one to transform any regression model into a cal-

ibrated probabilistic model. The modular design

of MCC allows us to make simple adjustments

to existing algorithms that enable well-behaved

distribution predictions. We also provide finite-

sample calibration guarantees for MCC algo-

rithms. Our framework recovers isotonic recali-

bration, conformal calibration, and conformal in-

terval prediction, implying that our theoretical re-

sults apply to those methods as well. Finally, we

conduct an empirical study of MCC on 17 regres-

sion datasets. Our results show that new algo-

rithms designed in our framework achieve near-

perfect calibration and improve sharpness rela-

tive to existing methods.

1. Introduction

Uncertainty estimates can inform human decisions (Pratt

et al., 1995; Berger, 2013), flag when an automated de-

cision system requires human review (Kang et al., 2021),

and serve as an internal component of automated systems.

For example, uncertainty informs treatment decisions in

medicine (Begoli et al., 2019) and supports safety in au-

tonomous navigation (Michelmore et al., 2018). In such

settings, the benefits of accounting for uncertainty hinge on
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our ability to produce calibrated uncertainty estimates—

e.g., of those events to which one assigns a probability of

90%, the events should indeed occur 90% of the time. A

model that is not calibrated can consistently make confident

predictions that are incorrect.

Many models, such as neural networks (Guo et al., 2017)

and Gaussian processes (Rasmussen, 2003; Tran et al.,

2019), achieve high accuracy but have poorly calibrated or

absent uncertainty estimates. In other cases, a pretrained

model is released for wide use and it is difficult to guaran-

tee that it will produce calibrated uncertainty estimates in

new settings (Zhao et al., 2021). This leads us to the ques-

tion: how can we safely deploy models with high predictive

value but poor or absent uncertainty estimates?

These challenges have motivated work on recalibration,

whereby a model with poor uncertainty estimates is trans-

formed into a probabilistic model that outputs calibrated

probabilities (Kuleshov et al., 2018; Vovk et al., 2020;

Niculescu-Mizil & Caruana, 2005; Chung et al., 2021). Re-

calibration methods are attractive because they require only

black-box access to a given model and can return well-

calibrated probabilistic predictions.

However, calibration is not the only goal of probabilistic

models. It is also important for a probabilistic model to pre-

dict sharp (i.e., low variance) distributions to convey more

information. Furthermore, recalibration methods need to

be data efficient to calibrate models in data poor regimes.

In this paper, we introduce modular conformal calibration

(MCC), a class of algorithms that unifies existing recali-

bration methods and gives well-behaved distribution pre-

dictions from any model. Our main contributions are:

1. We introduce modular conformal calibration, a class

of algorithms for recalibration in regression, which

can be applied to recalibrate almost any regression

model. MCC unifies isotonic calibration (Kuleshov

et al., 2018), conformal calibration (Vovk et al., 2020),

and conformal interval prediction (Vovk et al., 2005)

under a single theoretical framework, and additionally

leads to new algorithms.

2. We provide finite-sample calibration guarantees, show-

ing that MCC can achieve ǫ calibration error with

O(1/ǫ) samples. These results also apply to the afore-
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mentioned recalibration methods that MCC unifies.

3. We conduct an empirical study on 17 datasets to com-

pare the performance of recalibration methods in prac-

tice. We find that new algorithms within our framework

outperform existing methods in terms of both sharpness

and proper scoring rules.

2. Background

Given an input feature vector x ∈ X (e.g., a satellite im-

age), we want to predict a label y ∈ Y (e.g., the temperature

tomorrow). We consider regression problems where Y =
R. We assume there is a true distribution FXY over X ×Y ,

and we have access to n i.i.d. examples (Xi, Yi) ∼ FXY .

Given a feature vector x, our goal is to predict the con-

ditional distribution of Y given X = x, denoted FY |x.

A distribution predictor is a function H : X → F(Y)
that takes a feature vector x as input and returns H[x], a

cumulative distribution function (CDF) over Y . Note that

H[x] ∈ F(Y) is a function, intended to approximate FY |x

by mapping any input y ∈ Y to a value H[x](y) in [0, 1].

We consider a two-stage process to learn a distribution pre-

dictor from data. In the first stage, we train the base pre-

dictor f : X → R, which maps a feature vector x to a

prediction in a space R. The base predictor can be any

model (e.g., neural network, support vector machine) and

the prediction can be of any type; for example, f could give

a point prediction for the mean of FY |x (i.e., R = R) or f
could give an interval prediction that is likely to contain Y
(i.e., R = R

2). Alternatively, f could predict a Gaussian

distribution that approximates the distribution of the label

(i.e., R = F(Y)).

Regardless of the base predictor we choose, the second step

is to recalibrate the base predictor: we translate the base

predictor f into a calibrated distribution predictor H . We

construct H by fitting a wrapper function around f , mean-

ing that H[x] only depends on x via the prediction f(x).

We focus on the second stage, that of recalibration. For

those interested in which base predictors yield the best re-

calibrated predictors, see Section 6 for an empirical study.

Example 1 (Linear Regression). Consider a linear regres-

sion problem where Yi = β⊤Xi+ǫi forXi ∈ R
d, β ∈ R

d,

and ǫi ∈ R distributed i.i.d. with known CDF Fǫ. Imagine

we are given a base predictor f(x) = βTx that perfectly

predicts the mean of FY |x. Then we can construct a perfect

distribution predictor H[x] : Y → [0, 1] by defining:

H[x](y) := Fǫ(y − f(x)) = FY |x(y)

Note that the CDF prediction H[x] only depends on x
through the point prediction f(x), but still gives perfect

distribution predictions.

Calibration Optimally, the distribution predictor H will

output for each value x the true conditional CDF, H[x] =
FY |x, as in Example 1. However, many feature vectors

x only appear once in our data, making it impossible to

learn a perfect distribution predictor H from data with-

out additional assumptions (such as the assumptions of lin-

earity and i.i.d. noise in Example 1). Instead of making

additional assumptions, we instead aim for calibration, a

weaker property than perfect distribution prediction that

can be obtained in practice.

Recall that for any random variable Y , the probability inte-

gral transform FY (Y ) obtained by evaluating the CDF with

random input Y follows a standard uniform distribution.

We should expect the same behavior from our predicted

CDFs; we should observe that H[X](Y ) also follows a

standard uniform distribution. For example, the observed

label should be greater than the predicted 95th percentile

for approximately 5% of examples.

Definition 1. Given a distribution predictor H : X →
F(Y), we say that H is calibrated if H[X](Y ) follows a

standard uniform distribution. Formally, H is calibrated if

Pr(H[X](Y ) ≤ p) = p, for all p ∈ [0, 1] (1)

Similarly, for a value ǫ ≥ 0, we say that H is ǫ-calibrated

if Equation (1) is only violated by at most ǫ:

Pr(H[X](Y ) ≤ p) ∈ p± ǫ, for all p ∈ [0, 1] (2)

Calibration is a necessary but not sufficient condition for

making good distribution predictions. Note that a distribu-

tion predictor H[x] = FY that ignores x and returns the

marginal cdf for Y will be calibrated, but not useful. Thus,

distribution predictions should be as sharp (i.e., highly con-

centrated) as possible, conditioned on being calibrated.

Related Work Post-hoc uncertainty quantification is an

active field of research. Platt scaling (Platt et al., 1999) and

isotonic regression (Niculescu-Mizil & Caruana, 2005) are

popular methods for recalibrating binary classifiers. Platt

scaling fits a logistic regression model to the scores given

by a model, and isotonic regression learns a nondecreasing

map from scores to the unit interval. Quantile regression

(Romano et al., 2019; Chung et al., 2020, e.g.,) simultane-

ously estimates multiple quantiles of the label distribution,

often via the pinball loss, which can then be combined to

construct calibrated distribution predictions.

Isotonic calibration (Kuleshov et al., 2018) is an effec-

tive strategy for recalibrating a base predictor that already

makes distribution predictions. Isotonic calibration com-

putes the empirical quantiles (i.e., f [Xi](Yi)) of a distribu-

tion predictor on the calibration dataset, and uses isotonic

regression to adjust the empirical quantiles so that they are
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long as we can define a compatible calibration score.

The only requirement is that f is not learned on the cal-

ibration dataset (X1, Y1), · · · , (Xn, Yn), but it could be

learned on any different dataset. In the previous exam-

ple, the base predictor is a point prediction function.

2. Calibration score. In the second step, we choose a

calibration score, which is any function ϕ : R × Y →
R that is monotonically strictly increasing in y. In the

previous example, the calibration score is the residue

ϕ(f(x), y) = y−f(x). Intuitively, the calibration score

should reflect how large y is relative to our prediction

f(x). We can then compute the calibration score for

each sample in the training set Si = ϕ(Xi, Yi); i =
1, · · · , n. For convenience of computing rankings, we

sort the scores into S(1) ≤ S(2) ≤ · · · ≤ S(n).

3. Interpolation algorithm. Finally we need a map from

the calibration score to the final CDF output. In exam-

ple 1 we constructed an interpolation map (the function

q) by mapping any score in (S(i−1), S(i)] to i/n. The in-

terpolation algorithm we use here is a very simple step

function. However, the resulting CDFs are not contin-

uous which may be inconvenient (e.g., if we want to

compute the log likelihood).

More generally we can use any interpolation algorithm: let

Q be the set of monotonically non-decreasing functions

R → [0, 1]. An interpolation algorithm is a map ψ : Rn →
Q. An interpolation algorithm maps the calibration scores

S1, . . . , Sn to a function q such that q(S1), . . . , q(Sn) are

approximately evenly spaced on the unit interval.

Definition 2. An interpolation function ψ : Rn → Q is

λ-accurate if for any distinct inputs (u1, u2, . . . , un) ∈ R
n

the function q = ψ(u1, u2, · · · , un) maps the i-th smallest

input u(i) close to i/(n+ 1):

q
(
u(i)

)
∈
i± λ

n+ 1
, for all i = 1, . . . , n (4)

If ψ is a randomized function, then the statement is quanti-

fied by almost surely.

If a λ-accurate interpolation algorithm is applied to cali-

bration scores computed on a held-out dataset, the function

q ◦ ϕ will be approximately calibrated on that dataset. We

can write the full process for making a CDF prediction as:

H[x](y) = q(ϕ(f(x), y))
︸ ︷︷ ︸

prediction for Pr(Y≤y|X=x)

(5)

This three step process of applying a base predictor f , cali-

bration score ϕ, and interpolation function q (learned by an

interpolation algorithm ψ) is detailed in Algorithm 1 and

illustrated in Figure 1. Now, we formalize the intuition that

H will be calibrated into a formal guarantee.

Theorem 1. For any base predictor f , calibration score

ϕ, and λ-accurate interpolation algorithm ψ such that the

random variable ϕ(f(X), Y ) is absolutely continuous, Al-

gorithm 1 is 1+λ
n+1 -calibrated.

See Appendix C for a proof of Theorem 1. Similar to con-

formal interval prediction, there is a rather mild regularity

assumption: ϕ(f(X), Y ) has to be absolutely continuous,

i.e. two i.i.d. samples (X1, Y1) and (X2, Y2) almost never

have the same score ϕ(f(X1), Y1) 6= ϕ(f(X2), Y2). In our

warm-up example in Section 3.1, this condition requires

that two samples (X1, Y1), (X2, Y2) almost never have ex-

actly the same residue Y1 − f(X1) 6= Y2 − f(X2).

4. Choosing a Recalibration Algorithm

In this section, we describe natural choices for the calibra-

tion score and interpolation algorithm, given different base

predictors. A main motivation for introducing the modu-

lar conformal calibration framework is to make it easy to

develop new recalibration procedures. Any pairing of the

calibration scores and interpolation algorithms described

in this section results in a recalibration algorithm with the

finite-sample calibration guarantee given by Theorem 1.

4.1. The Base Predictor

In some cases the base predictor will be fixed, such as when

fine-tuning a pretrained model to be calibrated in a new

setting. In other cases, we have end-to-end control of the

training process. In these cases, we must answer the ques-

tion: Which base predictor should I train to get the best

calibrated distribution predictor?

An obvious choice is to learn a distribution predictor as the

base predictor then recalibrate if needed. However, there is

no guarantee that this will produce better results than learn-

ing a different type of base predictor (e.g., one of the pre-

diction types in Table 1) then recalibrating. In fact, in our

experiments we find that even when learners are of similar

power, distribution predictors are not necessarily the most

effective choice of base predictor (see Section 6).

4.2. The calibration score

In this section, we introduce calibration scores for a few

prediction types (see Table 1) to illustrate the role of the

calibration score. Intuitively, a good calibration score

should measure how large y is relative to the prediction.

Recall that the calibration score ϕ : R × Y → R can be

any function that is non-decreasing in y. A poor choice

of calibration score still guarantees calibration (see Theo-

rem 1), but can harm other metrics such as sharpness or

NLL. Additional calibration scores for quantile prediction

and ensemble prediction can be found in Appendix A.
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Prediction

Type

Output

Space (R)

Interpretation

Point R e.g. estimate of the mean.

Interval R
2 Interval is [f1(x), f2(x)].

Quantile R
K fk(x) predicts a quantile

αk ∈ (0, 1).
Distribution F(R) f [x] is a predicted CDF for y.

Ensemble R1×· · ·×RK Each fk is the prediction of a

model k.

Table 1: A collection of common prediction types.

Point Prediction A natural calibration score for point

predictors is the residue ϕresidue(x, y) = y − f(x).

Interval Prediction For interval predictors, a natural

choice for the calibration score is the residue divided by the

interval size ϕinterval(x, y) = (y− f1(x))/(f2(x)− f1(x)).
Intuitively, if y equals the predicted upper bound f2(x),
then the calibration score is 1; if y equals the lower bound

f1(x) then the calibration score is 0. The calibration scores

of all other y are linear interpolations of these two.

Distribution Prediction Given a distribution prediction,

i.e. a map f : X → F(Y) two natural choices for the

calibration score are

ϕcdf(x, y) = f [x](y)

ϕz-score(x, y) = (y −mean(f(x)))/std(f(x))

Numerical stability is a practical issue for ϕcdf. When y is

small or large, the calibration score may be the same for

different y due to rounding with finite numerical precision.

Empirically, ϕz-score has better numerical stability and often

better performance.

4.3. The Interpolation Algorithm

Lastly, we discuss the choice of interpolation algorithm.

We illustrate a simple linear interpolation algorithm, a

randomized interpolation algorithm with strong theoretical

guarantees, and a more complex approach using neural au-

toregressive flows. Recall that an interpolation algorithm

is a function ψ that maps a vector (u1, . . . , un) to a non-

decreasing function q such that q(u1), . . . , q(un) are ap-

proximately evenly spaced on the unit interval. Recall also

that we write u(i) to denote the i-th smallest input.

Naive Discretization As we discussed, the interpolation

algorithm in Example 1 is

qnaive(u) = i/n, if u ∈ [u(i), u(i+1)) (6)

While simple, the resulting CDF is not continuous, making

quantities such as the log-likelihood undefined. It is also

not 0-accurate (recall Definition 2). For better performance

we need more sophisticated interpolation algorithms.

Linear Linear interpolation is a simple way to get a con-

tinuous CDF function with a density.

qlinear(u) =
i+ (u− u(i))/(u(i+1) − u(i))

n+ 1

for u ∈ [u(i), u(i+1)). A piecewise linear CDF is differen-

tiable almost everywhere, so the log likelihood and density

function are well-defined almost everywhere. Linear inter-

polation can perfectly fit any monotonic sequence, and is

therefore 0-accurate.

Neural Autoregressive Flow (NAF) To achieve even

better smoothness properties, we can use a neural autore-

gressive flow (NAF), which is a class of deep neural net-

works that can universally approximate bounded continu-

ous monotonic functions (Huang et al., 2018). The bene-

fit of using a NAF is that the resulting CDF will be more

“smooth”. In fact, if we use a differentiable activation

function for the NAF network (such as sigmoid rather than

ReLU), then NAF represents smooth CDF functions that

are differentiable everywhere.

The short-coming is that NAF can only represent arbitrary

monotonic functions (and hence be a 0-accurate interpo-

lation algorithm) if the network is infinitely wide. In our

experiments, a network with 200 units is sufficient to push

the errors below numerical precision.

Random Finally there is an interpolation algorithm that

uses randomization, which would recover the algorithm in

(Vovk et al., 2020). Let U be uniform on [0, 1].

qrandom(u) = (i+ U)/(n+ 1) if u ∈ [u(i), u(i+1))

Compared to linear and NAF, random interpolation has

some shortcomings: the CDF is not continuous and the

standard deviation is undefined. However, random inter-

polation has an important theoretical advantage, in that it

guarantees that Algorithm 1 is 0-calibrated (i.e., perfectly

calibrated). In our experiments, this theoretical advantage

does not lead to lower calibration error in general, as all

methods have near zero ECE. A detailed comparison of the

interpolation algorithms in shown in Figure 3.

5. Towards Unifying Calibrated Regression

In this section, we show that modular conformal calibration

recovers popular methods for calibrated regression. This

implies that the calibration guarantees in this paper also ap-

ply to the methods discussed in this section. We also hope

to shed light on connections between previously distinct

streams of research.
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We first observe that isotonic calibration (Kuleshov et al.,

2018; Malik et al., 2019) is recovered by MCC.

Observation 1 (On Isotonic Calibration). Algorithm 1 in

(Kuleshov et al., 2018) is equivalent to Algorithm 1 in our

paper with a distribution base predictor, ϕcdf and qlinear.

Interestingly, this allows us to give new guarantees on the

performance of Algorithm 1 in (Kuleshov et al., 2018). In

particular, we can use Theorem 1 and conclude that Algo-

rithm 1 in (Kuleshov et al., 2018) is 1/(n + 1)-calibrated.

This result was not available in (Kuleshov et al., 2018).

Observation 2 (On Conformal Calibration). Algorithm 1

in Vovk et al. (2020) is equivalent to Algorithm 1 in our

paper with a distribution base predictor, ϕcdf and qrandom.

This makes it clear that conformal calibration and isotonic

calibration are tightly connected. The most significant dif-

ference between the two methods is that conformal cali-

bration uses a randomized interpolation algorithm. Ran-

domization gives better calibration guarantees at the cost

of worse behavior for the distribution predictions (e.g., the

predicted distributions are discontinuous so the log likeli-

hood is ill-defined).

5.1. Connection to Conformal Interval Prediction

Conformal prediction (Vovk et al., 2005; Shafer & Vovk,

2008; Romano et al., 2019) is a family of (provably) exact

interval forecasting algorithms (see, e.g., Proposition 1 in

Appendix C). Conformal interval prediction uses a proper

non-conformity score φ : X × Y → R, which is any

continuous function that is strictly unimodal in y (see Ap-

pendix B). Intuitively, the non-conformity score measures

how well the label y matches the input x. For example,

given a base point prediction function f : X → R the ab-

solute residue of the prediction φ(x, y) = |y − f(x)| is a

natural choice (Vovk et al., 2005). For a confidence level

c ∈ (0, 1), the conformal forecast is defined as

Ic(X∗) (7)

=

{

y ∈ Y |
1

n

n∑

i=1

1{φ(Xi, Yi) ≤ φ(X∗, y)} ≤ c

}

On the other hand, one can trivially construct a valid con-

fidence interval from a calibrated distribution predictor.

Consider the map ηc : F(Y) → R
2, which maps any CDF

into two numbers that represent a c-credible interval.

ηc : H[x] 7→ H[x]−1((1 + c)/2), H[x]−1((1− c)/2)

Intuitively, ηc returns an interval that has c probability un-

der the distribution H[x]. We then ask: Can modular con-

formal calibration yield comparable interval predictions to

conformal interval prediction? We answer this question in

the affirmative, both theoretically and empirically.

Theorem 2. For the conformal interval predictor Ic with

proper non-conformity score, there exists a calibration

score ϕ, such that the distribution predictor H given by

MCC with calibration score ϕ and any 0-exact interpola-

tion algorithm satisfies

H[X](U)−H[X](L) ∈ c±
1− c

n+ 1
a.s. (8)

where L,U are lower/upper bounds of the interval Ic(X).

See Appendix C for a proof. Theorem 2 states that the con-

formal prediction interval [L,U ] is also a c credible inter-

val (up to (1− c)/(n+1) error) of a distribution prediction

made by MCC. In other words, if we know the distribution

predicted by the appropriate MCC algorithm, then we can

construct the conformal prediction interval by taking a c
credible interval.

We only know that the conformal prediction interval is

some credible interval of the distribution prediction, but

we don’t know which credible interval (i.e., ηc may not be

the correct credible interval). We explore this complicat-

ing factor empirically: in particular, we will show that in

practice, the conformal interval predictor Ic and the credi-

ble interval ηc ◦ H[x] (with the calibration score ϕ that is

associated with the non-conformity score φ) have similar

performance (see Figure 2).

6. Empirical Study of Recalibration

Our framework introduces three decisions when choosing a

recalibration algorithm: the baseline predictor, the calibra-

tion score, and the interpolation algorithm. In this section,

we investigate how those choices affect performance. We

evaluate each combination of 8 base prediction types and 3

interpolation algorithms across 17 regression tasks with 16

random train/test splits per regression task. We also test all

of the calibration scores defined in Section 4.2. In total, we

train 7,344 calibrated distribution predictors and evaluate

each predictor across 4 metrics for a total of 29,376 model

evaluations. We summarize our experimental findings in

Table 2, Table 3, and Figure 2.

Datasets We compare MCC algorithms on 17 tabular

regression datasets. Most datasets come from the UCI

database (Dua & Graff, 2017). For each dataset we allo-

cate 60% of the data to learn the base predictor, 20% for

recalibration and 20% for testing.

Base Predictors We compare all five prediction types

considered in this paper (see Table 1). For each base pre-

dictor, we use a simple three layer neural network and op-

timize it with gradient descent. The different base predic-

tors only differ in the number of output dimensions, and

the learning objective (i.e. the learning objective should be
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STD 95% CI Width NLL CRPS

ZSCORE-NAF 0.442± 0.003 1.874± 0.037 0.297± 0.022 0.232± 0.002
ZSCORE-LINEAR 0.435± 0.003 1.766± 0.016 0.534± 0.021 0.232± 0.002
ZSCORE-RANDOM 0.438± 0.003 1.776± 0.016 N/A 0.232± 0.002
CDF-NAF 0.446± 0.005 1.723± 0.027 0.465± 0.144 0.245± 0.007
CDF-LINEAR* 0.562± 0.032 1.851± 0.033 0.433± 0.017 0.233± 0.002
CDF-RANDOM* 0.587± 0.058 1.851± 0.033 N/A 0.217± 0.000

Table 2: A comparison of calibration scores and interpolation algorithms when the base predictor is a distribution prediction

(* indicates an existing algorithm we compare against). Note that CDF-LINEAR corresponds to the isotonic recalibration

baseline and CDF-RANDOM corresponds to the conformal calibration baseline. Disaggregated experimental results are

shown in Appendix D.

STD 95% CI Width NLL CRPS

POINT 0.467± 0.006 1.927± 0.016 0.611± 0.017 0.242± 0.002
INTERVAL 0.830± 0.336 1.832± 0.034 −0.051± 0.025 0.256± 0.002
QUANTILE-2 0.449± 0.004 1.790± 0.019 −0.101± 0.019 0.228± 0.002
QUANTILE-4 0.439± 0.003 1.692± 0.016 −0.109± 0.027 0.226± 0.002
QUANTILE-7 0.434± 0.003 1.629± 0.015 −0.103± 0.021 0.226± 0.002
QUANTILE-10 0.432± 0.002 1.625± 0.012 −0.042± 0.032 0.226± 0.002
ENSEMBLE 0.491± 0.009 1.795± 0.021 0.384± 0.017 0.227± 0.002
DISTRIBUTION 0.562± 0.032 1.851± 0.033 0.433± 0.017 0.233± 0.002

Table 3: A comparison of base predictors. We find that quantile predictors outperform all other prediction types on both

sharpness metrics (STD, 95% CI Width) and proper scoring rules (NLL, CRPS).

a proper scoring rule for that prediction type). We try to

make the architectures and optimizers of the base predic-

tors as similar as possible across prediction types to iso-

late the impact of the choice of prediction type, calibra-

tion score, and interpolation algorithm, as opposed to the

strength of the base predictor. We compare the following

base prediction types:

For POINT predictors the output dimension is 1 and we min-

imize the L2 error. For QUANTILE predictors we use 2,

4, 7, 10 equally spaced quantiles (denoted in the plots as

quantile-2, quantile-4, quantile-7, quantile-10). For exam-

ple, for quantile-4 we predict the 1/8, 3/8, 5/8, 7/8 quan-

tiles. We optimize the neural network with the pinball loss.

For INTERVAL predictors we use the same setup as (Ro-

mano et al., 2019) which is equivalent to quantile regres-

sion with 5%, 95% quantiles. For DISTRIBUTION predic-

tors the output of the neural network is 2 dimensions, and

we interpret the two dimension as the mean / standard devi-

ation of a Gaussian. We optimize the neural network with

the negative log likelihood. For ENSEMBLE predictors we

use the setup in (Lakshminarayanan et al., 2017) and learn

an ensemble of Gaussian distribution predictors.

Metrics We compare five measurements of prediction

quality. NLL is the negative log likelihood of the label

under the predicted distribution. CRPS is the continuous

ranked probability score (Hersbach, 2000). Compared to

NLL, CRPS is well-defined even for distributions that do

not have a density, while NLL is undefined for such dis-

tributions. STD is the standard deviation of the predicted

distribution, a smaller std corresponds to improved sharp-

ness and is generally preferred (all else held equal). 95%

CI Width is the size of centered 95% credible intervals

given by each distribution prediction A smaller interval is

better (assuming all else are equal). ECE is the expected

calibration error (Kuleshov et al., 2018); we use debiased

ECE which should be zero if the predictions are perfectly

calibrated.

Results We find that different recalibration algorithms

perform optimally according to different metrics. This sup-

ports the need for flexible design frameworks that apply

broadly and can be adjusted to the needs of a particular

problem. In general, we find that quantile predictors are

very effective base predictors that, perhaps surprisingly,

tended to outperform distribution base predictors in our ex-

periments. The findings of our experiments are summa-

rized in Table 3, Table 2 and Figure 2.

On the choice of base predictor We find that all base

prediction types can be recalibrated to give models with
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calibrated. As a consequence, we believe that further de-

veloping principled and adaptive techniques for choosing

between these recalibration algorithms is a promising di-

rection for future work.
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Proof of Proposition 1 .

Pr[Y ∈ Ic(X)] = Pr

[
1

n
#{i | φ(Xi, Yi) ≤ φ(X, y)} ≤ c

]

= E

[

Pr

[
1

n
#{i | φ(Xi, Yi) ≤ φ(X,Y )} ≤ c | *Z1, · · · , Zn, (X,Y )+

]]

=
⌊nc⌋

n
>
nc− 1

n
= c−

1

n

where Zi = (Xi, Yi).

Theorem 1. For any base predictor f , calibration score ϕ, and λ-accurate interpolation algorithm ψ such that the random

variable ϕ(f(X), Y ) is absolutely continuous, Algorithm 1 is 1+λ
n+1 -calibrated.

Proof of Theorem 1. By our assumption of absolute continuity, almost surely we have a′1 6= a′2 6= · · · 6= a′T 6= ϕ(X∗, Y ).
For notation convenience we also let at = −∞ if t < 1 and at = +∞ if t > T .

By the assumption t− lambda
T+1 < q(a′t) <

t+λ
T+1 , if q(a) ≥ t+λ

T+1 then q(a) > q(a′t), which by monotonicity implies that

a > a′t, i.e.

if q(a) ≥
t+ λ

T + 1
then a > a′t (9)

similarly

if q(a) ≤
t− λ

T + 1
then a < a′t (10)

Pr[H[X∗](Y ) ≤ c] := Pr[q(ϕ(X∗, Y )) ≤ c] Definition

≤ Pr

[

q(ϕ(X∗, Y )) ≤
⌈cT + c+ λ⌉ − λ

T + 1

]

[i]

≤ Pr
[

ϕ(X∗, Y ) < a′⌈cT+c+λ⌉

]

[i] + Eq.(10)

= E

[

Pr
[

ϕ(X∗, Y ) < a′⌈cT+c+λ⌉ | *Z1, · · · , ZT , (X
∗, Y )+

]]

Tower

≤ ⌈cT + c+ λ⌉/(T + 1) Symmetry

Where explanation [i] is based on the property ”A =⇒ B then Pr[A] ≤ Pr[B]”; the last inequality is usually an equality

except when c ≈ 1 then the upper bound will be greater than 1. Similarly we have

Pr[H[X∗](Y ) ≤ c] := 1− Pr[q(ϕ(X∗, Y )) > c] Definition

≥ 1− Pr

[

q(ϕ(X∗, Y )) ≥
⌊cT + c− λ⌋+ λ

T + 1

]

[i]

≥ 1− Pr
[

ϕ(X∗, Y ) > a′⌊cT+c−λ⌋

]

[i] + Eq.(9)

= 1− E

[

Pr
[

ϕ(X∗, Y ) > a′⌊cT+c−λ⌋ | *Z1, · · · , ZT , (X
∗, Y )+

]]

Tower

= E

[

1− Pr
[

ϕ(X∗, Y ) > a′⌊cT+c−λ⌋ | *Z1, · · · , ZT , (X
∗, Y )+

]]

Linear

= E

[

Pr
[

ϕ(X∗, Y ) ≤ a′⌊cT+c−λ⌋ | *Z1, · · · , ZT , (X
∗, Y )+

]]

Linear

≥ ⌊cT + c− λ⌋/(T + 1) Symmetry
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First of all, observe that because A is continuous, we must |ϕX∗(U)| = |ϕX∗(L)|. This intuition is illustrated in Figure 4.

Therefore

{#t | |ϕXt
(Yt)| ≤ |ϕX∗(L)|} = {#t | |ϕXt

(Yt)| ≤ |ϕX∗(U)|}

= {#t | ϕX∗(L) ≤ ϕXt
(Yt) ≤ ϕX∗(U)}

Second we wish to prove that

cT ≤ #{t | |ϕXt
(Yt)| ≤ |ϕX∗(U)|} ≤ cT + 1

This is because if #{t | |ϕXt
(Yt)| ≤ |ϕX∗(U)|} < cT then because of continuity of φ, almost surely choosing U ′ = U+κ

for sufficiently small κ > 0 still satisfies #{t | |ϕXt
(Yt)| ≤ |ϕX∗(U ′)|} < cT , therefore U ′ ∈ (L,U) but U ′ > U , which

is a contradiction.

If on the other hand, #{t | |ϕXt
(Yt)| ≤ |ϕX∗(U)|} > cT + 1, then let U ′ = U − κ for sufficiently small κ > 0 we have

#{t | |ϕXt
(Yt)| ≤ |ϕX∗(U)|} > cT . This means that U ′ 6∈ (L,U) but U ′ < U , which is a contradiction.

We observe that there are two possibilities, these two situations are illustrated in Figure 4: situation 1. there exists a t such

that ϕXt
(Yt) = ϕX∗(U); situation 2. there exists a t such that ϕXt

(Yt) = ϕX∗(L).

We first consider situation 1. Denote D = #{t, ϕX∗(L) < ϕXt
(Yt) ≤ ϕX∗(U)} and B = #{t, ϕXt

(Yt) ≤ ϕX∗(L)}.

We know that cT ≤ D < cT + 1. Then by the assumption that the interpolation algorithm is 0-exact we have

H[X∗](U) =
D +B + 1

T + 1
, H[X](L) ∈

[
B + 1

T + 1
,
B + 2

T + 1

)

So their difference is bounded by

D − 1

T + 1
< H[X∗](U)−H[X∗](L) ≤

D

T + 1
(12)

cT − 1

T + 1
< H[X∗](U)−H[X∗](L) <

cT + 1

T + 1

Therefore

H[X∗](U)−H[X∗](L)− c ≤
cT + 1

T + 1
− c =

1− c

T + 1

c−H[X∗](U)−H[X∗](L) ≥ c−
cT − 1

T + 1
=

c− 1

T + 1

Combined we have

H[X](U)−H[X](L) ∈ c±
|1− c|

T + 1

Now we consider situation 2. Denote D′ = #{t, ϕX∗(L) ≤ ϕXt
(Yt) < ϕX∗(U)} and B′ = #{t, ϕXt

(Yt) < ϕX∗(L)}.

Again we know that cT ≤ D′ < cT + 1. Then by the assumption that the interpolation algorithm is 0-exact we have

H[X∗](U) ∈

[
D′ +B′ + 1

T + 1
,
D′ +B′ + 2

T + 1

)

, H[X∗](L) =
B′ + 2

T + 1

So their difference is bounded by

D′ − 1

T + 1
< H[X∗](U)−H[X∗](L) ≤

D′

T + 1
(13)

This is identical to Eq.(12) so the rest of the proof will follow identically.

D. Additional Experimental Results



Modular Conformal Calibration

STD 95% CI Width NLL CRPS ECE

blog ZSCORE-NAF 0.553 ± 0.006 2.737 ± 0.151 0.178 ± 0.039 0.287 ± 0.003 0.002 ± 0.001
CDF-LINEAR 1.380 ± 0.513 3.074 ± 0.475 0.064 ± 0.062 0.289 ± 0.002 0.001 ± 0.001

CDF-NAF 0.592 ± 0.061 2.027 ± 0.201 0.944 ± 1.229 0.328 ± 0.049 0.039 ± 0.028
ZSCORE-RANDOM 0.567 ± 0.007 2.657 ± 0.101 4.087 ± 0.102 0.288 ± 0.003 0.002 ± 0.001
CDF-RANDOM 1.381 ± 0.513 3.074 ± 0.475 4.069 ± 0.096 0.289 ± 0.002 0.001 ± 0.001

ZSCORE-LINEAR 0.567 ± 0.007 2.657 ± 0.101 0.321 ± 0.040 0.288 ± 0.003 0.002 ± 0.001

boston ZSCORE-NAF 0.337 ± 0.019 1.589 ± 0.195 0.467 ± 0.117 0.173 ± 0.012 0.009 ± 0.010

CDF-LINEAR 0.372 ± 0.031 1.527 ± 0.118 0.642 ± 0.075 0.173 ± 0.012 0.009 ± 0.009

CDF-NAF 0.357 ± 0.025 1.539 ± 0.124 0.363 ± 0.070 0.174 ± 0.012 0.009 ± 0.010

ZSCORE-RANDOM 0.335 ± 0.018 1.520 ± 0.121 13.622 ± 0.094 0.173 ± 0.012 0.009 ± 0.009

CDF-RANDOM N/A 1.532 ± 0.121 13.588 ± 0.114 N/A 0.009 ± 0.009

ZSCORE-LINEAR 0.331 ± 0.017 1.449 ± 0.111 0.674 ± 0.068 0.173 ± 0.012 0.009 ± 0.009

concrete ZSCORE-NAF 0.325 ± 0.017 1.402 ± 0.186 0.325 ± 0.066 0.163 ± 0.007 0.005 ± 0.005

CDF-LINEAR 0.317 ± 0.016 1.287 ± 0.086 0.576 ± 0.054 0.163 ± 0.007 0.005 ± 0.005

CDF-NAF 0.312 ± 0.016 1.354 ± 0.078 0.251 ± 0.051 0.163 ± 0.007 0.005 ± 0.006

ZSCORE-RANDOM 0.310 ± 0.014 1.287 ± 0.087 13.206 ± 0.090 0.163 ± 0.007 0.005 ± 0.005

CDF-RANDOM N/A 1.288 ± 0.086 13.212 ± 0.100 N/A 0.005 ± 0.005

ZSCORE-LINEAR 0.309 ± 0.014 1.279 ± 0.084 0.593 ± 0.057 0.163 ± 0.007 0.005 ± 0.005

crime ZSCORE-NAF 0.498 ± 0.013 2.062 ± 0.084 1.764 ± 0.123 0.309 ± 0.008 0.010 ± 0.006
CDF-LINEAR 0.644 ± 0.029 2.406 ± 0.066 1.077 ± 0.057 0.308 ± 0.007 0.006 ± 0.006

CDF-NAF 0.570 ± 0.014 2.161 ± 0.053 0.814 ± 0.067 0.311 ± 0.007 0.006 ± 0.006

ZSCORE-RANDOM 0.487 ± 0.011 1.900 ± 0.036 13.308 ± 0.071 0.308 ± 0.008 0.006 ± 0.006

CDF-RANDOM N/A 2.406 ± 0.066 13.274 ± 0.054 N/A 0.006 ± 0.006

ZSCORE-LINEAR 0.487 ± 0.011 1.900 ± 0.036 1.901 ± 0.130 0.308 ± 0.008 0.006 ± 0.006

energy ZSCORE-NAF 0.174 ± 0.013 0.652 ± 0.043 −0.394 ± 0.097 0.099 ± 0.008 0.010 ± 0.006

-efficiency CDF-LINEAR 0.168 ± 0.010 0.668 ± 0.040 0.027 ± 0.108 0.099 ± 0.008 0.010 ± 0.006

CDF-NAF 0.168 ± 0.010 0.681 ± 0.039 −0.342 ± 0.101 0.099 ± 0.008 0.010 ± 0.006

ZSCORE-RANDOM 0.180 ± 0.010 0.667 ± 0.040 13.253 ± 0.130 0.099 ± 0.008 0.010 ± 0.006

CDF-RANDOM N/A 0.668 ± 0.040 13.252 ± 0.125 N/A 0.010 ± 0.006

ZSCORE-LINEAR 0.172 ± 0.011 0.666 ± 0.040 0.003 ± 0.107 0.099 ± 0.008 0.010 ± 0.006

fb-comment1 ZSCORE-NAF 0.376 ± 0.009 1.459 ± 0.028 0.066 ± 0.015 0.210 ± 0.001 0.002 ± 0.001

CDF-LINEAR 0.880 ± 0.119 1.692 ± 0.034 0.120 ± 0.017 0.210 ± 0.001 0.002 ± 0.001

CDF-NAF 0.344 ± 0.054 1.156 ± 0.195 2.841 ± 2.106 0.288 ± 0.075 0.091 ± 0.046
ZSCORE-RANDOM 0.397 ± 0.004 1.692 ± 0.034 5.196 ± 0.030 0.210 ± 0.001 0.002 ± 0.001

CDF-RANDOM 0.880 ± 0.119 1.692 ± 0.034 5.220 ± 0.029 0.210 ± 0.001 0.002 ± 0.001

ZSCORE-LINEAR 0.397 ± 0.004 1.692 ± 0.034 0.261 ± 0.015 0.210 ± 0.001 0.002 ± 0.001

fb-comment2 ZSCORE-NAF 0.368 ± 0.010 1.423 ± 0.021 0.053 ± 0.025 0.207 ± 0.002 0.001 ± 0.001

CDF-LINEAR 0.459 ± 0.017 1.573 ± 0.016 0.118 ± 0.027 0.207 ± 0.002 0.001 ± 0.001

CDF-NAF 0.347 ± 0.035 1.294 ± 0.171 N/A 0.273 ± 0.083 N/A

ZSCORE-RANDOM 0.386 ± 0.004 1.573 ± 0.016 3.739 ± 0.031 0.207 ± 0.002 0.001 ± 0.001

CDF-RANDOM 0.459 ± 0.017 1.573 ± 0.016 3.731 ± 0.037 0.207 ± 0.002 0.001 ± 0.001

ZSCORE-LINEAR 0.386 ± 0.004 1.573 ± 0.016 0.194 ± 0.023 0.207 ± 0.002 0.001 ± 0.001

forest-fires ZSCORE-NAF 1.167 ± 0.043 4.697 ± 0.214 1.959 ± 0.137 0.601 ± 0.023 0.018 ± 0.008
CDF-LINEAR 1.285 ± 0.162 4.874 ± 0.380 1.964 ± 0.086 0.601 ± 0.022 0.017 ± 0.008

CDF-NAF 1.219 ± 0.078 4.801 ± 0.339 1.637 ± 0.087 0.607 ± 0.023 0.017 ± 0.008

ZSCORE-RANDOM 1.156 ± 0.041 4.529 ± 0.185 13.648 ± 0.102 0.601 ± 0.023 0.017 ± 0.008

CDF-RANDOM N/A 4.862 ± 0.381 13.659 ± 0.099 N/A 0.017 ± 0.008

ZSCORE-LINEAR 1.147 ± 0.043 4.455 ± 0.219 2.121 ± 0.124 0.601 ± 0.023 0.017 ± 0.008

kin8nm ZSCORE-NAF 0.300 ± 0.006 1.107 ± 0.016 0.127 ± 0.012 0.152 ± 0.002 0.003 ± 0.002

CDF-LINEAR 0.281 ± 0.003 1.121 ± 0.013 0.490 ± 0.015 0.152 ± 0.002 0.003 ± 0.002

CDF-NAF 0.281 ± 0.003 1.149 ± 0.015 0.112 ± 0.014 0.152 ± 0.002 0.003 ± 0.002

ZSCORE-RANDOM 0.281 ± 0.003 1.121 ± 0.013 11.279 ± 0.090 0.152 ± 0.002 0.003 ± 0.002

CDF-RANDOM 0.281 ± 0.003 1.121 ± 0.013 11.291 ± 0.073 0.152 ± 0.002 0.003 ± 0.002

ZSCORE-LINEAR 0.281 ± 0.003 1.121 ± 0.013 0.486 ± 0.014 0.152 ± 0.002 0.003 ± 0.002

Table 4: Experimental results for individual datasets.
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STD 95% CI Width NLL CRPS ECE

medical ZSCORE-NAF 0.935 ± 0.008 4.465 ± 0.064 1.548 ± 0.015 0.463 ± 0.002 0.003 ± 0.001
-expenditure CDF-LINEAR 0.963 ± 0.009 3.648 ± 0.037 1.643 ± 0.009 0.462 ± 0.002 0.002 ± 0.001

CDF-NAF 0.928 ± 0.010 3.616 ± 0.110 1.381 ± 0.057 0.465 ± 0.002 0.005 ± 0.004
ZSCORE-RANDOM 0.893 ± 0.004 3.648 ± 0.037 10.869 ± 0.041 0.462 ± 0.002 0.002 ± 0.001

CDF-RANDOM 0.963 ± 0.009 3.648 ± 0.037 10.866 ± 0.034 0.462 ± 0.002 0.002 ± 0.001

ZSCORE-LINEAR 0.893 ± 0.004 3.648 ± 0.037 1.818 ± 0.015 0.462 ± 0.002 0.002 ± 0.001

mpg ZSCORE-NAF 0.396 ± 0.021 1.832 ± 0.186 0.555 ± 0.114 0.186 ± 0.011 0.019 ± 0.013

CDF-LINEAR 0.392 ± 0.030 1.554 ± 0.110 0.821 ± 0.099 0.186 ± 0.011 0.020 ± 0.013
CDF-NAF 0.383 ± 0.026 1.652 ± 0.138 0.551 ± 0.084 0.187 ± 0.011 0.019 ± 0.013

ZSCORE-RANDOM 0.380 ± 0.018 1.545 ± 0.109 13.696 ± 0.073 0.186 ± 0.011 0.020 ± 0.013
CDF-RANDOM N/A 1.546 ± 0.110 13.651 ± 0.092 N/A 0.020 ± 0.013
ZSCORE-LINEAR 0.377 ± 0.018 1.538 ± 0.108 0.756 ± 0.096 0.186 ± 0.011 0.019 ± 0.013

naval ZSCORE-NAF 0.041 ± 0.002 0.165 ± 0.008 −1.904 ± 0.036 0.025 ± 0.001 0.002 ± 0.001

CDF-LINEAR 0.042 ± 0.002 0.162 ± 0.007 −1.716 ± 0.029 0.025 ± 0.001 0.002 ± 0.001

CDF-NAF 0.042 ± 0.002 0.173 ± 0.008 −1.915 ± 0.027 0.025 ± 0.001 0.002 ± 0.001

ZSCORE-RANDOM 0.042 ± 0.002 0.162 ± 0.007 1.355 ± 0.125 0.025 ± 0.001 0.002 ± 0.001

CDF-RANDOM 0.042 ± 0.002 0.162 ± 0.007 1.330 ± 0.114 0.025 ± 0.001 0.002 ± 0.001

ZSCORE-LINEAR 0.042 ± 0.002 0.162 ± 0.007 −1.717 ± 0.029 0.025 ± 0.001 0.002 ± 0.001

power-plant ZSCORE-NAF 0.218 ± 0.003 0.845 ± 0.007 −0.104 ± 0.010 0.120 ± 0.001 0.003 ± 0.002

CDF-LINEAR 0.225 ± 0.003 0.854 ± 0.009 0.244 ± 0.011 0.120 ± 0.001 0.003 ± 0.002

CDF-NAF 0.224 ± 0.003 0.886 ± 0.011 −0.101 ± 0.010 0.121 ± 0.001 0.003 ± 0.002

ZSCORE-RANDOM 0.219 ± 0.002 0.854 ± 0.009 10.208 ± 0.074 0.120 ± 0.001 0.003 ± 0.002

CDF-RANDOM 0.225 ± 0.003 0.854 ± 0.009 10.208 ± 0.067 0.120 ± 0.001 0.003 ± 0.002

ZSCORE-LINEAR 0.218 ± 0.002 0.854 ± 0.009 0.251 ± 0.011 0.120 ± 0.001 0.003 ± 0.002

protein ZSCORE-NAF 0.622 ± 0.011 2.246 ± 0.027 0.765 ± 0.019 0.339 ± 0.003 0.001 ± 0.001

CDF-LINEAR 0.709 ± 0.020 2.333 ± 0.024 0.960 ± 0.018 0.339 ± 0.003 0.001 ± 0.001

CDF-NAF 0.617 ± 0.007 2.138 ± 0.072 0.968 ± 0.048 0.341 ± 0.003 0.015 ± 0.006
ZSCORE-RANDOM 0.627 ± 0.006 2.333 ± 0.024 7.366 ± 0.072 0.339 ± 0.003 0.001 ± 0.001

CDF-RANDOM 0.709 ± 0.020 2.333 ± 0.024 7.393 ± 0.073 0.339 ± 0.003 0.001 ± 0.001

ZSCORE-LINEAR 0.627 ± 0.006 2.333 ± 0.024 0.995 ± 0.017 0.339 ± 0.003 0.001 ± 0.001

super ZSCORE-NAF 0.307 ± 0.005 1.140 ± 0.016 −0.246 ± 0.016 0.149 ± 0.002 0.003 ± 0.002

-conductivity CDF-LINEAR 0.343 ± 0.017 1.179 ± 0.016 −0.052 ± 0.013 0.149 ± 0.002 0.003 ± 0.002

CDF-NAF 0.294 ± 0.005 1.089 ± 0.061 0.046 ± 0.074 0.153 ± 0.002 0.019 ± 0.008
ZSCORE-RANDOM 0.300 ± 0.004 1.180 ± 0.016 6.119 ± 0.070 0.149 ± 0.002 0.003 ± 0.002

CDF-RANDOM 0.343 ± 0.017 1.179 ± 0.016 6.126 ± 0.066 0.149 ± 0.002 0.003 ± 0.002

ZSCORE-LINEAR 0.300 ± 0.004 1.180 ± 0.016 −0.006 ± 0.017 0.149 ± 0.002 0.003 ± 0.002

wine ZSCORE-NAF 0.830 ± 0.021 3.794 ± 0.323 1.376 ± 0.066 0.427 ± 0.012 0.013 ± 0.007

CDF-LINEAR 1.031 ± 0.258 3.256 ± 0.135 1.513 ± 0.046 0.427 ± 0.012 0.013 ± 0.007

CDF-NAF 0.844 ± 0.038 3.308 ± 0.181 1.341 ± 0.185 0.433 ± 0.011 0.015 ± 0.007
ZSCORE-RANDOM 0.791 ± 0.020 3.256 ± 0.136 12.452 ± 0.122 0.427 ± 0.012 0.013 ± 0.007

CDF-RANDOM N/A 3.256 ± 0.136 12.436 ± 0.101 N/A 0.013 ± 0.007

ZSCORE-LINEAR 0.789 ± 0.020 3.253 ± 0.132 1.589 ± 0.055 0.427 ± 0.012 0.013 ± 0.007

yacht ZSCORE-NAF 0.066 ± 0.007 0.249 ± 0.028 −1.484 ± 0.180 0.042 ± 0.007 0.015 ± 0.011

CDF-LINEAR 0.066 ± 0.007 0.266 ± 0.040 −1.134 ± 0.171 0.042 ± 0.007 0.016 ± 0.011
CDF-NAF 0.066 ± 0.007 0.260 ± 0.037 −1.470 ± 0.178 0.042 ± 0.007 0.015 ± 0.011

ZSCORE-RANDOM 0.098 ± 0.006 0.266 ± 0.039 12.958 ± 0.316 0.042 ± 0.007 0.016 ± 0.011
CDF-RANDOM N/A 0.267 ± 0.041 12.996 ± 0.323 N/A 0.016 ± 0.011
ZSCORE-LINEAR 0.068 ± 0.009 0.259 ± 0.037 −1.163 ± 0.176 0.042 ± 0.007 0.016 ± 0.011

Table 5: Experimental results for individual datasets.
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