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Abstract

The discovery and characterization of extrasolar planets using radial velocity (RV) measurements is limited by
noise sources from the surfaces of host stars. Current techniques to suppress stellar magnetic activity rely on
decorrelation using an activity indicator (e.g., strength of the Ca II lines, width of the cross-correlation function,
broadband photometry) or measurement of the RVs using only a subset of spectral lines that have been shown to be
insensitive to activity. Here, we combine the above techniques by constructing a high-signal-to-noise activity
indicator, the depth metric ( ) t , from the most activity-sensitive spectral lines using the “line-by-line” method of
Dumusque (2018). Analogous to photometric decorrelation of RVs or Gaussian progress regression modeling of
activity indices, time series modeling of ( ) t reduces the amplitude of magnetic activity in RV measurements; in
an αCenB RV time series from HARPS, the RV rms was reduced from 2.67 to 1.02 m s−1. ( ) t modeling enabled
us to characterize injected planetary signals as small as 1 m s−1. In terms of noise reduction and injected signal
recovery, ( ) t modeling outperforms activity mitigation via the selection of activity-insensitive spectral lines. For
Sun-like stars with activity signals on the m s−1 level, the depth metric independently tracks rotationally modulated
and multiyear stellar activity with a level of quality similar to that of the FWHM of the CCF and logRHK¢ . The depth
metric and its elaborations will be a powerful tool in the mitigation of stellar magnetic activity, particularly as a
means of connecting stellar activity to physical processes within host stars.

Unified Astronomy Thesaurus concepts: Exoplanet detection methods (489); Radial velocity (1332)

1. Introduction

The noise floor for the radial velocity (RV) detection of
extrasolar planets is set by a combination of three sources:
photon-limited uncertainties (σphoton), systematic errors in the
instrument (σsys), and stellar activity (σactivity). Unlike σphoton,
which depends on the signal-to-noise ratio of the spectrum, σsys
and σactivity both can have structured temporal dependence. For
an overview of the various physical processes that give rise to
RV noise, we refer the interested reader to the introduction
section of de Beurs et al. (2020). With improved resolution,
calibration, and stabilization, next-generation instruments, such
as the Keck Planet Finder (KPF; Gibson et al. 2016),
ESPRESSO (Mégevand et al. 2014), EXPRES (Jurgenson
et al. 2016), and NEID (Schwab et al. 2016), are significantly
lowering the σsys noise floor; KPF, a high-precision Doppler
spectrometer scheduled for first light in the summer of 2022 on
the Keck I telescope, is expected to achieve σsys= 30 cm s−1

and will achieve σphoton= 30 cm s−1 on a V=10.9 G2 star in
only 30min. While these advancements are significant, stellar
activity on the m s−1 level dominates over these small errors and
limits the RV detections of small planets. We investigated novel
stellar activity mitigation methods, with the goal of lowering the
σactivity noise floor in anticipation of KPF.

RV studies typically employ one of three methods of RV
measurement: cross-correlation using a synthetic template

(Baranne et al. 1996), maximum likelihood estimation to a
reference spectrum (Anglada-Escudé & Butler 2012), or forward
modeling (Butler et al. 1996). However, some spectral lines are
more sensitive to systematic instrumental errors (Dumusque
et al. 2015) and others are more sensitive to stellar magnetic
activity (Thompson et al. 2017; Dumusque 2018; Wise et al.
2018; Cretignier et al. 2020). These three methods introduce
noise into the derived RVs by treating all lines equally.
Stellar activity and instrumental noise are often statistically

accounted for through the addition of a time-independent white-
noise jitter term to the RV uncertainties (e.g., Wright 2005), or
detrended with an activity model, such as linear decorrelation
and Gaussian process (GP) regression (Haywood et al. 2014;
Rajpaul et al. 2015; Dai et al. 2017; Ahrer et al. 2021). Activity
models, whether parametric or nonparametric, commonly rely on
a handful of spectral lines, such as the Ca II H&K lines (logRHK¢ )
and Hα, or diagnostics from the cross-correlation function
(CCF), such as the full width at half maximum (FWHM) and the
bisector inverse slope (BIS), to track stellar activity (Saar et al.
1998; Kürster et al. 2003; Queloz et al. 2009). Alternatively,
Aigrain et al. (2012) used a spot model to track stellar activity
via the star’s photometric light curve. This method, known as
FF¢, has more recently been modified to use activity indicators in
place of photometric flux (Giguere et al. 2016).
Dumusque (2018) developed a novel approach to mitigating

stellar noise by considering the Doppler shift of each spectral
line independently; for HARPS spectra, “line-by-line” RV
measurement was shown to reach the same precision as
standard techniques. Dumusque (2018) also introduced the
“line selection method,” in which only spectral lines shown to
be activity-insensitive are considered for the RV measurement;
the line selection method achieves a factor of ∼1.5 reduction in
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the αCenB stellar noise. In a follow-up study, Cretignier et al.
(2020) found that the effect of stellar activity on a given line is
inversely proportional to the line’s depth (a proxy for physical
depth inside the stellar atmosphere). Cretignier et al. (2020)
then demonstrated that using the difference between the RVs of
deep and shallow spectral lines as an activity proxy (hereafter
referred to as the “formation depth method”) yields better than
a factor-of-two reduction in αCenB’s stellar activity amplitude.

In this paper, we develop a combination of the above line-by-
line and detrending techniques into the depth metric method. Prior
studies have demonstrated that, for a Sun-like star, more than
1000 spectral lines are highly correlated with stellar activity
(Dumusque 2018; Cretignier et al. 2020). We combine a
subpopulation of spectral lines shown to be activity-sensitive into
a high-signal-to-noise activity metric. Motivated by Wise et al.
(2018), we are particularly interested in the relationship between
observation-to-observation variations in line depth and stellar
activity; variable line depth has the benefit of being available at all
wavelengths, is computationally inexpensive, is translation-
invariant, and is a largely unexplored parameter space. Our depth
metric can be modeled using time series activity mitigation
techniques. The co-adding of orders of magnitude more lines than
traditional indices has the potential to greatly improve modeling
results (Giguere et al. 2016). To demonstrate the diagnostic power
of the depth metric, we conducted a comparative study between
linear decorrelation, FF¢, and GP models based on either the depth
metric, logRHK¢ , or the FWHM of the CCF; we also considered the
line selection and formation depth methods.

This paper is organized as follows. In Section 2, we describe
the HARPS observations used in our study. Section 3
summarizes our implementation of the line-by-line analysis
technique of Dumusque (2018) and develops our activity
index, the depth metric. Then in Section 4, we describe the
activity mitigation methods considered in our study, including
the line selection method of Dumusque (2018), the formation
depth method of Cretignier et al. (2020), our modified FF′
model, and our GP models. We applied these activity models to
HARPS observations of αCenB and HD 13808 in Section 5,
and summarize our conclusions in Section 6.

2. Observations

We considered two stars observed with the HARPS spectro-
graph: αCenB (HD128621) and HD 13808. With high observa-
tion cadence and significant activity signals, these targets offer a
valuable test bed for stellar activity mitigation methods. αCenB
presents a clear rotationally modulated stellar activity signal and
lacks a significant planetary signal, although several candidates
have been proposed (Dumusque et al. 2012; Demory et al. 2015).
Between 2008 February and 2011 July, αCenB was observed
with HARPS between 1 and 187 times a night (median of 35).
This campaign was designed to capture both long- and short-term
stellar activity variations in αCenB’s RVs (Dumusque et al.
2011). As part of a sample of bright stars with relatively low
levels of RV scatter, HD 13808 has been observed with HARPS
since 2003 using exposure times greater than 15minutes (Ahrer
et al. 2021). HD 13808 exhibits a multiyear stellar magnetic
activity cycle and hosts two recently confirmed Neptune-mass
planets, allowing for a test of our mitigation methods’ effects on
planet characterization.

We correct each observation for known systematics follow-
ing the prescriptions in Dumusque (2018) and Cretignier et al.
(2020). Here, we briefly describe the corrections. We first

divided the raw stellar spectrum by the blaze of the instrument.
The resulting pixel fluxes were then continuum normalized via
a rolling maximum, with a 10 Å window size. To account for
spectra with outlier continua, for each order index between 30
and 71 we fit the continuum (in the cross-dispersion direction)
with a linear function. For a given target, we then rejected all
spectra that had a single order’s slope >3σ from the mean slope
of that order. Each spectrum’s wavelength solution was
reconstructed from the 288 polynomial coefficients stored in
the spectrum’s header. The wavelength solution was then
Doppler shifted to correct for the barycentric Earth RV, which
we adopted from the HARPS data reduction software (DRS),
and was also Doppler shifted in accordance with the DRS-
reported instrumental drift.
For αCenB, we used the 2010 HARPS observations, over

which the canonical activity indices (logRHK¢ , Hα, FWHM, and
BIS) all present quasi-sinusoidal oscillations with periods near the
∼37 day rotation period (DeWarf et al. 2010). After rejecting all
observations with an airmass greater than 1.5, we fit the HARPS
reported RVs (stored in the header of each spectrum) using a
quadratic polynomial plus a sinusoid as a function of time; the
sinusoid component of the RV model tracks stellar activity, while
the quadratic component accounts for long-term variations
induced by αCenA. We then performed 3σ clipping on the
DRS RVs with respect to our polynomial–sinusoid model for five
iterations. The filtering process retained 908/1014 observations
spanning 80 days.
Following Cretignier et al. (2020), we corrected for the long-

term RV signal induced by αCenB’s binary companion by
subtracting the quadratic component of the above model from
the RVs. Via a least-squares regression, we found a sinusoid
period of 35.9 days, nearly identical to that reported by
Cretignier et al. (2020). Unless otherwise stated, these
corrected RVs are the ones used in our analyses.
For HD 13808, we considered all 11 yr of HARPS observa-

tions prior to the fiber change on the 1st of June 2015. After
filtering for outliers in the HARPS DRS RVs (5σ clipping for
two iterations), filtering for continuum outliers, and filtering
observations with an airmass greater than 1.5, we had 235/276
observations.

3. Line-by-line Analysis

As developed by Dumusque (2018), the line-by-line method
measures the RV of each spectral line independently using
template matching. By taking the weighted average over all
lines, the precise RV measurement for the entire spectrum can
be obtained. For a given star, the line-by-line method can be
broken down into three primary steps: first, construct a
reference spectrum; second, generate a spectral line list from
the reference spectrum or adopt a line list from a synthetic
template; third, conduct template matching for each spectral
line in each spectrum. Our implementation of the Dumusque
(2018) line-by-line method will be released for public use in
J. Siegel et al., 2022, in preparation.
We generated the reference spectrum for a given star by co-

adding the systematics-corrected spectra on a common
wavelength solution; the common wavelength solution is taken
to be that of the spectrum with the lowest barycentric Earth RV,
and linear interpolation was used to evaluate all spectra on this
common solution.
Next, we generated a catalog of absorption lines following

the methods detailed in Appendix A of Cretignier et al. (2020).
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Using a given star’s reference spectrum, absorption lines were
identified in terms of local minima and local maxima. For two
neighboring local maxima at λi,left and λi,right, with a local
minima between them at λi, we treated λi as the line’s center
and adopted a window width of ( )min ,i i i i,left ,rightl l l l- - .
We then rejected all lines where λi,left and λi,right were within
10 pixels of each other and demanded that the line’s depth
(defined below in Equation (4)) be greater than 0.05. For
αCenB and HD 13808, we identified a total of ∼7500 and
∼6500 lines, respectively, which reduced to ∼5500 and ∼5000
when overlap of spectral orders was taken into account. For
lines found in multiple spectral orders, we considered the
spectral order for which the line had the lowest mean RV
uncertainty, RVi j,sá ñ. Given the similar spectral types of αCenB
and HD 13808, we attribute the difference in the number of
detected lines for each star to the higher average signal-to-noise
ratio of αCenB’s spectra; for order 50, αCenB has an average
signal-to-noise ratio of 320, while HD 13808 has an average of
110. Consistent with this explanation, we found more shallow
spectral lines for αCenB than HD 13808; for αCenB, we
identified ∼200 spectral lines with di,reference< 0.1, while for
HD 13808, we identified only ∼100 such spectral lines.

The radial velocity RVi,j was measured by numerically
solving Equation (2) of Bouchy et al. (2001). For the ith line of
the jth spectrum,

( ) ( ) ( ) ( )S A S
S

, 1i j i
i

, ,reference
,reference⎡

⎣
⎤
⎦

l l
l

l
dl= +

¶
¶

where Si,j are the continuum normalized pixel flux values
within the line window, and Si,reference are the reference
spectrum flux values over the same interval. The reference
spectrum was evaluated on the wavelength solution of the jth
spectrum via cubic spline interpolation. RVi,j was then given by

( )c
RV . 2i j,

l
dl=

Uncertainty in RVi,j was inferred by propagating the uncer-
tainties in Aδλ and A from the least-squares fit,
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We also extracted the depth of each spectral line, defined as

( )
( )d

S

C
1

min
, 4i j

i j

i j
,

,

,
= -

where Ci,j is the continuum flux, defined as the average of the
leftmost and rightmost pixel fluxes in the line’s window;
Equation (4) describes the depth of a spectral line relative to the
local continuum, which is equivalent to the depth relative to the
continuum spectrum for isolated lines. For high-signal-to-noise
lines, greater precision may be achieved by inferring the
minimum flux by cubic spline interpolation; however, we
found native pixel sampling yields results nearly indistinguish-
able from those of cubic spline interpolation and avoids
potential instabilities for low-signal lines. Finally, we defined
the normalized depth parameter,

˜ ( )d d d , 5i j i j i, , ,reference=

where di,reference is the line’s depth in the reference spectrum
(effectively the line’s mean depth). Uncertainty in the depth

parameter was calculated via propagation of the flux
uncertainties.
Following our initial line-by-line analysis, we proceeded to

clean the data set of outlier measurements. Similar to the
sigma-clipping procedures of Dumusque (2018), for each
observation we performed a 4σ clipping procedure (with two
iterations) on RVi,j, RVi j,s , i j,

2c of the Aδλ and A fit, d̃i j, , and d̃i j,s .
We then rejected all lines for which more than 1% of the
measurements were rejected by the above filters, and we
removed all lines within 48 pixels of a telluric line. Telluric
lines were identified using a sample TAPAS model spectrum
(Bertaux et al. 2014) for Keck Observatory (30° zenith).
Spectral regions in the vicinity of TAPAS features with a
normalized contamination depth of 1% or greater were rejected;
we found that adopting a 0.1% depth threshold or filtering all
lines in our line list with a central wavelength >5000 Å did
not yield RVs significantly different from our baseline 1%
threshold. Following Table C.1 of Cretignier et al. (2020), we
also rejected asymmetric absorption lines, because such lines
have been shown to be anticorrelated with stellar activity. After
applying these filters, we retained ∼1500 and ∼1100 lines for
αCenB and HD 13808, respectively. Greater than 400 lines
appear in both star’s line lists.
Using the cleaned data set, we next combined the line-by-

line information into bulk properties. For each observation, we
conducted a weighted average to derive the cumulative RV:

( )RV
RV 1

. 6j
i

i j

i

,

RV
2

RV
2

i j i j, ,

å å
s s

=

3.1. The Depth Metric

Wise et al. (2018) demonstrated that, for a subpopulation of
visually identified spectral lines, there is a strong correlation
between line depth and stellar activity as traced by the Ca II
H&K index. Here, we conducted a data-driven search for such
spectral lines. For a given stellar target, we calculated the
Pearson correlation coefficient  between the bulk RV, RVj,
and line depth di,j. As seen in Figure 1, both αCenB and
HD 13808 possess substantial subpopulations of activity-
sensitive lines. We used RVj to calculate each line’s activity
sensitivity, because standard activity indices (e.g., logRHK¢ and
FWHM of the CCF) have been shown to lag in time relative to
the RV signal (Collier Cameron et al. 2019). However,
planetary signals dilute the correlation between depth and the
activity contribution to measured RVs, potentially limiting the
scope of this approach; we discuss methods of selecting
activity-sensitive lines for stars with strong planetary signals in
Section 6.
To reflect our uncertainty in di,j and RVj, we conducted 1000

Monte Carlo trials for each line. For a given trial, we drew an
independent sample of depth and RV values, assuming
Gaussian uncertainties. A given line’s Pearson correlation
coefficient  was taken as the average over all 1000 trials.
For αCenB and HD 13808, the subpopulation of activity-

sensitive lines was defined as all lines satisfying  5<
th percentile of each star’s  distribution, i.e., only the most
activity-sensitive lines were used. As shown in Figure 2, these
adopted thresholds maximize each star’s stellar activity signal,
while still maintaining a significant population of spectral
lines;>60 lines for αCenB and>50 lines for HD 13808.
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Although line depth variations are reflected in each observa-
tion’s computed CCF, which includes thousands of lines, we
clearly see in Figure 2 that the signal is greatly amplified by
selecting an activity-sensitive subpopulation. The CCF-based
depth metric (CCF ( ) t ) was obtained by fitting each HARPS
DRS CCF to a Gaussian model with a constant continuum and
feeding the resulting depth time series into Equation (9)
(described below); inferring the depth of the CCF with cubic
spline interpolation, instead of the Gaussian model, yielded
negligible differences in CCF ( ) t for both αCenB and
HD 13808.

In Figure 3, we present the distributions of reference
spectrum line depth di,reference, central wavelength λi, and
symmetry score for the activity-sensitive lines alongside the
general population. For a given line, the symmetry score is
defined as the absolute difference between the leftmost and the
rightmost pixel fluxes in the line’s window, divided by the
mean of the leftmost and the rightmost pixel fluxes; a highly
symmetric line has a symmetry score near zero. For both
αCenB and HD 13808, the activity-sensitive population is
comprised mostly of deeper lines at longer wavelengths, with a
slight preference for symmetric lines. Since  is highly
dependent on d̃i j,sá ñ (see Figure 1), we also isolated the
subpopulation of lines with low d̃i j,sá ñ for each star. Although
the preference for deep lines is consistent with the preference
for small uncertainties in depth, the low d̃i j,sá ñ populations do

not significantly differ from the general population with regard
to central wavelength or symmetry. This preference for longer
wavelengths may reflect the higher density of lines at shorter
wavelengths (see Figure 4); line blending makes it difficult to
measure a given line’s activity signal.
Since a single spectral line possesses only a small amount of

information, we combined the activity-sensitive lines into the
depth metric. Adapting the formalism of Aigrain et al. (2012),
for a given star we calculated each spectrum’s weighted
average line depth over our selected subpopulation and rescaled
the resulting time series to introduce the depth metric ( ) t :

˜( )
˜

( )
˜ ˜

d t
d 1

, 7
i

i j

d i d

,

2 2
i j i j, ,

å ås s
=

˜ ˜ ( )˜d d , 8d0 max s= +

( )
˜( )
˜ ( ) t
d t

d
1 , 9

0
= -

where d̃max is the maximum depth metric of the ˜( )d t time
series and d̃s is the standard deviation of the time series. As
seen in Figure 5, the depth metric captures the stellar activity
cycles of αCenB and HD 13808. For comparison, we also
present the logRHK¢ and CCF FWHM activity indices for each
star; logRHK¢ was obtained by first calculating the index via

Figure 1. Both αCenB (left) and HD 13808 (right) possess clear subpopulations of activity-sensitive absorption lines (lines with (RVj vs. di,j) < 5th percentile of
each star’s (RVj vs. di,j) distribution are highlighted in red). For each star, we present the Pearson correlation coefficient  between RVj and line depth di,j against
each line’s mean uncertainty in scaled depth.

Figure 2. For both αCenB and HD 13808, selecting a subpopulation of activity-sensitive absorption lines better isolates the star’s stellar activity signal. We present
Lomb–Scargle periodograms of the depth metric(t) for αCenB (left) and HD 13808 (right) for two different spectral line subpopulations—(RVj vs. di,j) < 5th and
10th percentile of each star’s (RVj vs. di,j) distribution—as well as each star’s CCF-based depth metric CCF ( ) t and the FWHM of the CCF.
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Gomes da Silva et al. (2018) and rescaling the index by stellar
color following Noyes et al. (1984).

Compared to standard activity indices, ( ) t has several
advantages. Unlike logRHK¢ and Hα, the depth metric covers a
wide range of wavelength space and should be accessible to
spectrometers spanning different wavelength regions. By likely

probing temperature changes on the stellar surface through
Zeeman splitting (Wise et al. 2018), the depth metric more
closely tracks the stellar surface than chromospheric indices.
Unlike diagnostics of the CCF, namely FWHM and BIS, the
depth metric only considers lines shown to be activity-
sensitive, more clearly isolating the stellar activity signal (see
Table 1). Table 1 reports the Pearson correlation coefficient
between the observed RVs and each activity index for αCenB
and HD 13808; of the activity indices we considered, the depth
metric has the strongest correlation with the measured RVs, for
both stars.
However, linear correlation is a useful, but imperfect,

standard for evaluating the quality of an activity index. The
diagnostic power of an activity index should be weighted by
considering both its application to RV detrending models and
its accessibility (e.g., photometry facilitates high-quality
activity tracking but is unavailable for the majority of RV
measurements). To determine the quality of the depth metric,
we conducted a comparative study of several activity indices
(FWHM of the CCF, logRHK¢ , and the depth metric) for a
variety of detrending models; see Section 5. In Section 6, we
discuss the accessibility of the depth metric and outline
potential use cases.

4. Stellar Activity Mitigation Methods

As instruments approach the precision level necessary to
detect an Earth twin, stellar activity can still generate m s−1

level noise and induce planet-like RV signatures. The line-
by-line technique has the potential to greatly reduce such
noise, since each spectral line responds differently to stellar
activity depending on the details of the line transition. Here,
we describe four stellar activity corrections: line selection
(Dumusque 2018), formation depth (Cretignier et al. 2020),

Figure 3. The spectral lines shown to be sensitive to stellar activity tend to be deeper and favor longer wavelengths. We present the cumulative distribution functions
of reference spectrum line depth (d̃i,reference), central wavelength (λi), and symmetry for all lines and two subpopulations—activity-sensitive and low mean depth
uncertainty—for αCenB (top row) and HD 13808 (bottom row).

Figure 4. The subpopulation of activity-sensitive spectral lines in comparison
with the entire population of spectral lines, for αCenB. The activity-sensitive
population is defined as all lines where (RVj vs. di,j) is less than the
5th percentile of αCenB’s (RVj vs. di,j) distribution. The activity-sensitive
lines are shown as red squares, while all other lines are shown as black circles.
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FF′ (Aigrain et al. 2012), and Gaussian progress (GP)
regression (Haywood et al. 2014). In Section 5, we conduct a
thorough comparison of these mitigation methods using
αCenB and HD 13808 HARPS observations.

4.1. Line Selection Method

Dumusque (2018) first demonstrated that, by selecting a
population of activity-insensitive lines, the RV scatter can be
reduced; in the case of αCenB, Dumusque (2018) achieved a
factor of ∼1.5 scatter reduction. For this initial investigation,
the subpopulation of activity-insensitive lines was selected
based on each line’s mean uncertainty in RVi,j and each line’s
Pearson correlation coefficient between RVi,j and RVj.
We selected our activity-insensitive set of lines through a

similar filter. For a given star, we calculated each line’s mean
correlation coefficient between RVi,j and RVj from 1000 Monte
Carlo trials. We then defined the activity-insensitive population
as all lines satisfying ∣ ∣ 0.1< and 50RVi j,sá ñ < m s−1.
Activity-corrected RVs were determined by recalculating RVj

using only these activity-insensitive lines.

4.2. Formation Depth Method

Utilizing the relationship between a line’s formation depth
and the magnitude of convective blueshift, Cretignier et al.
(2020) introduced a stellar activity correction based on
formation depth. For a population of activity-sensitive lines,
Cretignier et al. (2020) first demonstrated that the magnitude of
a given line’s sensitivity to activity is inversely proportional to

Figure 5. For both αCenB and HD 13808, the depth metric closely tracks the stellar activity signal. Here, we present time series of RVj compared with the depth
metric ( ) t , logRHK¢ , and FWHM of the CCF for αCenB (left) and HD 13808 (right). Due to the high cadence of observations, the αCenB data were binned to one
tenth of a day.

Table 1
Activity Index Correlation Comparison

RV log10RHK¢ FWHM ( ) t

αCenB
RV L 0.776 0.770 0.813

log10RHK¢ 0.776 L 0.974 0.979
FWHM 0.770 0.974 L 0.981

( ) t 0.813 0.979 0.981 L

HD 13808
RV L 0.369 0.310 0.446

log10RHK¢ 0.369 L 0.835 0.836
FWHM 0.310 0.835 L 0.681

( ) t 0.446 0.836 0.681 L

Note. For each star, we report the Pearson correlation coefficient  between
each activity index, as well as the correlation coefficient between each activity
index and the radial velocity measurements.
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that line’s depth in the reference spectrum (effectively the line’s
mean depth). A subpopulation of shallow activity-sensitive
lines thus show a greater RV scatter due to stellar activity than
a subpopulation of deep activity-sensitive lines. As a result, the
difference between the weighted average RV of the shallow
subpopulation (RVj,shallow) and the deep subpopulation
(RVj,deep) acts as an activity proxy. The stellar activity-
corrected RVs are then RVj− (RVj,shallow− RVj,deep).

Similar to the line selection method, there is considerable
flexibility, and likely great room for improvement, in defining
these subpopulations of lines. For αCenB, we defined the
population of active lines as those where the correlation
coefficient between RVj and RVi,j is greater than 0.2, and for
HD 13808 we adopted a threshold of 0.1. From this population
of active lines, we defined the shallow population as all lines
satisfying 0.1< di,reference< 0.4 and the deep population as
those satisfying di,reference> 0.6; these depth thresholds were
applied to both αCenB and HD 13808.

4.3. FF′ Method

The FF′ model, first described by Aigrain et al. (2012), uses
photometric flux and a spot model to predict the RV signal due
to stellar activity. For a normalized flux time series F(t), the FF′
model predicts the effects of both convective blueshift ΔRVc

and the rotation of a single spot ΔRVr,

( ) ( )F t V fRV , 10c
2 d kD =

( ) ( ) ( ) F t F t R fRV , 11rD = -

where Rå is the stellar radius, f is the relative flux drop for a
spot at the disk center, δV is the difference between the
convective blueshift in the unspotted photosphere and that
within the magnetized area, and κ is the ratio of the magnetized
area to the area of the spot. The combined prediction for the
stellar RV signal is

( ) ( )tFF RV RV. 12c r¢ = D + D

Giguere et al. (2016) introduced the HH′ method, which uses
the Hα index as a photometric proxy. Using the same model as
Aigrain et al. (2012), with the addition of two free parameters
to linearly scale Hα to flux and a smoothing term to
compensate for low cadence, Giguere et al. (2016) found the
HH′ method outperformed linear decorrelation but yielded a
factor of two more scatter than the FF′ model. Giguere et al.
(2016) postulated that the inclusion of more activity indicators
could improve the HH′ method.

Using a modified FF′ framework, we applied the methods of
Aigrain et al. (2012) to the depth metric ( ) t , the FWHM of
the CCF, and logRHK¢ . Treating the relative amplitudes of the
spot rotation and convective blueshift effects as a free
parameter and allowing for a linear relationship between ( ) t
and flux, our modified FF′ RV prediction is

( ) ( ( ) ) ( )
( ( ) )

( )

 



 

t t t f

t f
t

FF

, 13

2

2 1

a b
g b

¢ = - +
+ +
+ +

where ( ) t is a normalized activity index time series (defined
analogously to Equation (9)), f is included to conveniently scale
α and γ, β is the zero point of the assumed linear relationship
between ( ) t and photometric flux, and C1 and C2 are an
arbitrary zero point and linear drift, respectively; following

Aigrain et al. (2012), we assumed f is given by

( ( )) ( ) 


f

tmin
, 140

0
=

-

where 0 is defined analogously to Equation (8).
To estimate ( ) t for low-cadence targets, we smoothed ( ) t

using a smoothing parameter σt. For the jth observation, the
smoothed j is the weighted average of the entire activity
metric time series, where the weights are assigned via a
Gaussian centered at tj (the time of the jth observation) with a
standard deviation of σt. The smoothed activity metric is fit
with a cubic spline and ( ) t is determined analytically. Our
modified FF′ model has six free parameters: α, β, γ, 1, 2, and
σt.

4.4. Gaussian Process Regression

Gaussian processes (GPs) model a stochastic process using a
parametric form for the covariance matrix. Prior studies have
modeled structured stellar noise in RVs using a quasi-periodic
kernel (Haywood et al. 2014; Dai et al. 2017; Ahrer et al.
2021). Following Haywood et al. (2014), we define a given
element of the covariance matrix as

( ) ( ∣ ∣ )

[ ] ( )

C
t t t t

exp
sin

2

, 15

n m
n m n m

n m

, 1
2

2

2
2

2
3

4
2

, RV
2

jitter
2

n

⎡

⎣
⎢

⎤

⎦
⎥h

h
p h

h

d s s

= -
-

-
-

+ +

where n and m index over the observations, η1 is the activity
amplitude, η2 is the correlation length scale, η3 is the period of
the covariance, η4 is the relative significance of the squared
exponential and periodic components, δn,m is the Kronecker
delta function, and σjitter is a white-noise jitter term.
The logarithmic likelihood function is

∣ ∣ ( ) C r C r
N

ln
2
log 2

1

2
log

1

2
, 16T 1p= - - - -

where N is the number of observations, C is the covariance
matrix, and r is the residual between the observed RVs and the
model RVs.
For a given star and activity index, we modeled the

structured stellar noise with a GP model conditioned on the
activity index. We first modeled the activity index with the
quasi-periodic GP kernel. For all activity indices, we adopted
Jeffreys priors on η1, η2, and σjitter. For η4, we adopted a
Gaussian prior of 0.5± 0.05 (Kosiarek & Crossfield 2020), and
for η3 we adopted a Gaussian prior centered on the star’s
rotation period. Through Markov Chain Monte Carlo (MCMC)
sampling, we generated posterior distributions for η1, η2, η3, η4,
and σjitter. Using the same GP kernel, we then modeled the
observed RVs. The priors for η2, η3, and η4 were set by the
posteriors of the activity index GP model. η1 and σjitter again
had Jeffreys priors. GP models were implemented via radvel
(Fulton et al. 2018) and emcee (Foreman-Mackey et al. 2013).

5. Model Comparison

As described in Section 4, we considered four primary
methods of mitigating stellar activity: line selection, formation
depth, FF¢, and GP regression. We conducted a systematic
exploration of these four models using HARPS observations of
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αCenB and HD 13808 and include linear decorrelation models
for comparison.

5.1. αCenB

We applied a series of activity mitigation methods to αCenB
HARPS observations from 2010. We constructed linear
decorrelation, FF¢, and GP models using the depth metric,
the FWHM of the CCF, and logRHK¢ . We also implemented two
line-by-line based activity mitigation methods: line selection
and formation depth.

To ensure our mitigation methods are suppressing stellar
activity while preserving Keplerian signals, we considered the
unmodified RV time series (for which there is no significant
planetary signal) and time series with injected planetary
signals. Signals were injected by Doppler shifting the
wavelength solutions of the stellar spectra in accordance with
the injected planet’s RV signature. We considered a five-day
planet on a circular orbit for three injection scenarios: K= 0.75,
1, and 2 m s−1.

With the exception of the GP models, we considered the
joint stellar activity and Keplerian model logarithmic likelihood
function,

( ∣ ) ( )

( ( ))
( )



t

ln RV ln 2

1

2

RV RV ,
. 17

j
j

N

j

N
j j

1
RV
2

jitter
2

1

2

RV
2

jitter
2

j

j

⎡

⎣
⎢

⎤

⎦
⎥

å

å

q p s s

q

s s

=- +

-
-

+

=

=

RV (tj, θ) are the joint activity and Keplerian RV predictions,
RVj are the observed values, RVjs are the observational
uncertainties, and σjitter is an additive “jitter” noise term. For
the GP kernels, we modeled the RVs using a joint activity–
Keplerian GP model conditioned on an activity index (see
Section 4.4).

The Keplerian parameters of a given planet were K (RV
semi-amplitude), P (orbital period), e (eccentricity), ω (argu-
ment of periastron), and T0 (time of transit). We adopted
uniform priors of 0<K< 10 m s−1, 0.95 · P0< P< 1.05 · P0

days (for some central orbital period P0), and 0< T0< P. We
fixed e= 0 and set P0= 5 days; for the null-injection case
(K= 0 m s−1), we froze the Keplerian component to K=
0 m s−1.

For the stellar activity model components, both the line
selection and formation depth methods had no free parameters,
the FF′ models each had six, the GP models had five, and the
linear decorrelation models had two. For the line selection and
formation depth methods, we adopted the spectral line
subpopulations outlined in Sections 4.1 and 4.2, respectively.
In principle, the thresholds used for defining these subpopula-
tions could be treated as free parameters, but we leave such
analysis to later work.

The joint activity–Keplerian models were optimized via
affine-invariant MCMC sampling using emcee (Foreman-
Mackey et al. 2013). For the FF′ and linear decorrelation
models, we adopted uniform priors for the activity model
parameters and employed 90 walkers for 10,000 iterations
each, where the first 2000 iterations were rejected as burn-in.
For the GP models, we adopted the priors described in
Section 4.4 and employed 50 walkers for 10,000 itera-
tions each.

For the null-injection case, the corrected RVs for a selection
of mitigation methods are shown in Figure 6. Each method
shows a significant reduction in RV scatter and reduces the
amplitude of the stellar activity signal. In terms of rms, the FF′
and GP models perform the best. For all methods, the resulting
rms is considerably greater than the RV uncertainties. The bulk
line-by-line RV measurements have a mean binned (to one
tenth of a day) RV uncertainty of 0.18 m s−1. The line selection
and formation depth methods have mean binned uncertainties
of 0.33 m s−1 and 0.68 m s−1, respectively. These uncertainties
only consider the uncertainties in Aδλ and A from the least-
squares fits to each line. The DRS RVs have a mean binned RV
uncertainty of 0.18 m s−1.
To gauge the mitigation methods’ planet detection capabil-

ities, in Figure 7 we present the Lomb–Scargle periodograms of
the activity-corrected RVs for a selection of mitigation methods
under each injection case. To mimic a blind planet search, we
omit the Keplerian component and model the RVs using pure
activity models. Each correction method successfully recovers
the K= 2 m s−1 planet at a 1% false-alarm probability level, a
helpful but nonrigorous standard. However, only the FF′
models significantly recover the K= 1 m s−1 signal. While the
depth metric based FF′ model successfully recovers the
K= 0.75 m s−1 signal at a 1% false-alarm probability level,
the detection is only marginally better than the FWHM FF′
model. Without a Keplerian component, the GP-based models
had a strong tendency to absorb the injected planetary signals
into the activity component of the model. This is less conducive
to planet discovery than the other methods, which enhance the
injected planetary signal after removing activity (Figure 7).
Table 2 shows the residual rms and the recovered planet

parameters for each combination of mitigation method, activity
index, and injection scenario. In Figure 8, we compare the
recovered RV semi-amplitude for each mitigation method.
With the exception of the line selection and formation depth
methods, we find every mitigation method recovers the semi-
amplitude within approximately 1σ for each injection case and
constrains the orbital period to within 0.1 days. Between the GP
and FF′ models, the FF′ models consistently yield lower
uncertainties.
The FF′ models perform quite similarly across the three input

activity indices. The depth metric FF′ model yields marginally
lower uncertainties, σjitter, and rms than the FWHM- and
logRHK¢ -based FF′ models. For the GP models, we find no
significant dependence on the input activity index. Unlike the
FF′ and linear decorrelation methods, the GP models do not
directly detrend the RVs using an activity index. Instead, the
GP models are conditioned on the activity index by adopting
the posteriors of the activity index GP model as the priors of
the RV model.
With varying degrees of success, all mitigation methods

considered here reduce the rotationally modulated activity
signal in the αCenB time series. Evaluated on residual scatter
and signal recovery, we favor the FF′ and GP models over the
line selection, formation depth, and linear decorrelation
methods. For all activity models, the depth metric performs
as well as, or marginally better than, the FWHM of the CCF
and logRHK¢ .

5.2. Planet Characterization: HD 13808

Having validated that our models successfully track
rotationally modulated stellar activity, we next applied these
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models to a system with a multiyear magnetic activity cycle.
For this exploration, we considered HD 13808, which was
recently studied with several stellar activity mitigation
methods, including linear decorrelation, CCF FWHM-based
FF¢, harmonic activity modeling, and Gaussian processes
regression (Ahrer et al. 2021). That study confirmed the
presence of two exoplanets, HD 13808b and HD 13808c, with
orbital periods of 14.2 and 53.8 days and minimum masses of
11 and 10 M⊕.

We employed joint activity–Keplerian FF¢, line selection,
and formation depth models. These models only differ from
those considered in Section 5.1 by the addition of a second
Keplerian component. Free parameters in the models were

inferred via MCMC sampling with 90 walkers for 100,000
iterations each, where the first 20,000 iterations were rejected
as burn-in. We adopted uniform priors of 2< K< 10 m s−1,
0.95 · P0< P< 1.05 · P0 days (for some central orbital period
P0), ( )e3 log 010- < < , 0< ω< 2π, and 0< T0< P. For
HD 13808b and HD 13808c, we set P0 following the periods
reported by Ahrer et al. (2021).
Figure 9 shows the posterior distributions of the line

selection, formation depth, and depth metric based FF′ two-
planet models. The phase-folded RVs of HD 13808b and
HD 13808c for the depth metric FF′ two-planet model are
shown in Figure 10. The 16th, 50th, and 84th percentiles for
each model’s posteriors are reported in Table 3. Both the line

Figure 6. Each method successfully reduces the amplitude of αCenB’s stellar activity signal, with the depth metric based methods performing at least as well as the
FWHM of the CCF-based methods. We present the RVs of the 2010 HARPS αCenB observations under six different stellar activity mitigation methods, as well as the
uncorrected case. The mitigation methods are described in Section 4.
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selection and FF′ corrections achieve well-constrained poster-
iors and yield median parameter values in agreement with the
preferred model of Ahrer et al. (2021). On the other hand, the
formation depth method struggles to characterize the HD 13808
system. In addition to favoring high stellar jitter, the formation
depth model yields wide posteriors for the RV semi-amplitudes
and favors significantly higher eccentricities.

Although the line selection and depth metric based FF′
models both yield well-constrained posteriors, there are notable
differences between the two. Compared to the line selection
model, the FF′ method yields considerably narrower eccen-
tricity posteriors; the line selection model has a significant high

eccentricity skew for both HD 13808b and HD 13808c. More-
over, the two models are rather discrepant for the RV semi-
amplitude of HD 13808b and HD 13808c, with the line
selection model favoring lower amplitude solutions. A similar
trend was seen in Section 5.1.
For a quantitative assessment of each models’ relative

evidence, we considered the deviance information criterion
(DIC), the Bayesian information criterion (BIC), and the
Watanabe–Akaike information criterion (WAIC). Following
Gelman et al. (2013), we found information criterions relative
to the depth metric based FF′ two-planet model of ΔDIC= 90
and 490, ΔBIC= 40 and 440, and ΔWAIC= 70 and 460 for

Figure 7. In terms of signal recovery, the FF′ models outperform the line selection and formation depth methods. We present the Lomb–Scargle periodograms for the
HARPS αCenB observations under four stellar activity mitigation methods, as well as the uncorrected case; to mimic a blind planet search, we omit the Keplerian
component in the RV models. Each color corresponds to a different RV semi-amplitude of the injected five-day planet. The horizontal dashed line demarcates the 1%
false-alarm-probability level. RVs were binned to one tenth of a day.
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the line selection and formation depth two-planet models,
respectively. We thus found strong evidence that the formation
depth two-planet model is insufficient, and therefore we favor
the FF′ two-planet model over the line selection model.
However, greater exploration of all three methods is warranted,
as there is room for optimization of the line selection and
formation depth methods.

6. Conclusions

We introduced a high-signal-to-noise stellar activity indi-
cator, the depth metric ( ) t , which co-adds depth variations
across a set of spectral lines shown to be activity-sensitive.
Through line-by-line radial velocity analysis of HARPS
spectra, we identified >60 such lines for αCenB and>50

Table 2
αCenB Activity Mitigation and Signal Recovery

Correction Method rms Injection Case K P σjitter
(m s−1) (m s−1) (days) (m s−1)

No correction (line-by-line RVs) 2.67 L L L L
No correction (DRS RVs) 2.52 L L L L

Line selection 1.29 L L L L
1.25 K = 0.75 m s−1 0.495 0.206

0.199
-
+ 5.1084 0.0619

0.0527
-
+ 1.375 0.094

0.103
-
+

1.26 K = 1 m s−1 0.677 0.207
0.204

-
+ 5.1083 0.0492

0.0430
-
+ 1.437 0.098

0.110
-
+

1.16 K = 2 m s−1 1.281 0.179
0.177

-
+ 5.0390 0.0235

0.0237
-
+ 1.285 0.091

0.095
-
+

Formation depth 1.59 L L L L
1.78 K = 0.75 m s−1 0.648 0.267

0.258
-
+ 5.1025 0.0539

0.0489
-
+ 1.654 0.126

0.132
-
+

1.63 K = 1 m s−1 0.854 0.228
0.229

-
+ 5.0347 0.0337

0.0385
-
+ 1.450 0.117

0.129
-
+

1.64 K = 2 m s−1 1.374 0.232
0.230

-
+ 5.0637 0.0293

0.0299
-
+ 1.500 0.116

0.132
-
+

Linear decorrelation (logRHK¢ ) 1.67 L L L L
1.64 K = 0.75 m s−1 0.888 0.235

0.231
-
+ 5.0727 0.0425

0.0472
-
+ 1.682 0.109

0.121
-
+

1.60 K = 1 m s−1 1.071 0.225
0.217

-
+ 5.0562 0.0351

0.0370
-
+ 1.637 0.104

0.115
-
+

1.61 K = 2 m s−1 2.081 0.223
0.228

-
+ 5.0250 0.0174

0.0181
-
+ 1.649 0.105

0.118
-
+

Linear decorrelation (FWHM of the CCF) 1.89 L L L L
1.82 K = 0.75 m s−1 0.970 0.248

0.251
-
+ 5.0505 0.0393

0.0442
-
+ 1.838 0.110

0.098
-
+

1.69 K = 1 m s−1 1.165 0.235
0.236

-
+ 5.0410 0.0309

0.0351
-
+ 1.725 0.111

0.123
-
+

1.68 K = 2 m s−1 2.175 0.231
0.222

-
+ 5.0202 0.0172

0.0177
-
+ 1.716 0.110

0.115
-
+

Linear decorrelation (depth metric) 1.54 L L L L
1.49 K = 0.75 m s−1 0.922 0.206

0.203
-
+ 5.0529 0.0372

0.0415
-
+ 1.520 0.099

0.113
-
+

1.47 K = 1 m s−1 1.123 0.207
0.202

-
+ 5.0438 0.0293

0.0304
-
+ 1.498 0.098

0.108
-
+

1.53 K = 2 m s−1 2.075 0.212
0.212

-
+ 5.0193 0.0169

0.0174
-
+ 1.560 0.099

0.114
-
+

FF′ (logRHK¢ ) 1.40 L L L L
1.38 K = 0.75 m s−1 0.859 0.196

0.213
-
+ 5.0900 0.0429

0.0419
-
+ 1.419 0.097

0.109
-
+

1.41 K = 1 m s−1 1.034 0.201
0.214

-
+ 5.0697 0.0332

0.0342
-
+ 1.458 0.099

0.111
-
+

1.37 K = 2 m s−1 2.025 0.191
0.197

-
+ 5.0340 0.0168

0.0162
-
+ 1.414 0.092

0.106
-
+

FF′ (FWHM of the CCF) 1.37 L L L L
1.29 K = 0.75 m s−1 0.845 0.186

0.184
-
+ 5.0784 0.0416

0.0417
-
+ 1.333 0.096

0.101
-
+

1.28 K = 1 m s−1 1.110 0.206
0.193

-
+ 5.0596 0.0294

0.0286
-
+ 1.324 0.087

0.103
-
+

1.28 K = 2 m s−1 2.064 0.187
0.183

-
+ 5.0288 0.0150

0.0162
-
+ 1.324 0.088

0.102
-
+

FF′ (depth metric) 1.18 L L L L
1.20 K = 0.75 m s−1 0.848 0.169

0.167
-
+ 5.0521 0.0330

0.0367
-
+ 1.227 0.082

0.091
-
+

1.22 K = 1 m s−1 1.044 0.166
0.168

-
+ 5.0467 0.0275

0.0279
-
+ 1.247 0.082

0.091
-
+

1.23 K = 2 m s−1 1.996 0.181
0.172

-
+ 5.0216 0.0142

0.0147
-
+ 1.264 0.084

0.097
-
+

GP (logRHK¢ ) 1.02 L L L L
1.40 K = 0.75 m s−1 0.898 0.204

0.183
-
+ 5.0468 0.0007

0.0002
-
+ 1.048 0.089

0.113
-
+

1.14 K = 1 m s−1 1.052 0.183
0.188

-
+ 5.0468 0.0003

0.0001
-
+ 1.048 0.095

0.115
-
+

1.61 K = 2 m s−1 1.521 0.346
0.364

-
+ 5.0172 0.0001

0.0001
-
+ 1.074 0.106

0.124
-
+

GP (FWHM of the CCF) 1.03 L L L L
1.39 K = 0.75 m s−1 0.900 0.182

0.152
-
+ 5.0487 0.0005

0.0003
-
+ 1.053 0.099

0.103
-
+

1.06 K = 1 m s−1 1.037 0.168
0.185

-
+ 5.0486 0.0004

0.0001
-
+ 1.044 0.081

0.106
-
+

2.22 K = 2 m s−1 1.693 0.433
0.318

-
+ 5.0172 0.0001

0.0001
-
+ 1.065 0.108

0.120
-
+

GP (depth metric) 1.02 L L L L
1.23 K = 0.75 m s−1 0.891 0.214

0.181
-
+ 5.0468 0.0006

0.0004
-
+ 1.072 0.106

0.109
-
+

0.97 K = 1 m s−1 1.076 0.184
0.176

-
+ 5.0468 0.0002

0.0002
-
+ 1.038 0.092

0.105
-
+

1.45 K = 2 m s−1 1.654 0.489
0.357

-
+ 5.0171 0.0001

0.0001
-
+ 1.089 0.121

0.132
-
+

Note. We report the 16th, 50th, and 84th percentiles of the posteriors.
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lines for HD 13808. This novel activity indicator has the benefit
of being self-contained, computationally inexpensive, and
translation-invariant. Unlike chromospheric indices, such as
logRHK¢ , this metric does not require coverage of a particular
part of the spectrum. Wise et al. (2018) also postulated that
spectral line depth variations are tied to Zeeman splitting from
star spots, potentially making the depth metric a more direct
probe of the stellar surface; however, the connection between
spectral line distortions and physical processes within a host
star remains poorly understood and warrants further study.

We then conducted a comparative activity mitigation study.
We considered linear decorrelation, FF¢, and GP regression
models using three separate activity indices (the depth metric

( ) t , FWHM of the CCF, and logRHK¢ ), as well as two line-by-
line activity mitigation techniques, namely line selection
(Dumusque 2018) and formation depth (Cretignier et al.
2020). We found the ( ) t -based FF′ and GP models
outperformed the linear decorrelation and line-by-line methods
and reached the quality of the FWHM- and logRHK¢ -based FF′
and GP models. The depth metric based FF′ model successfully
reduced the αCenB RV rms from 2.67 to 1.18 m s−1 and

accurately characterized a five-day K= 1 m s−1 injected signal;
the depth metric based GP model yielded a rms of 1.02 m s−1.
Having proven it to be a powerful tool for mitigating the

rotationally modulated activity signal of αCenB, we next
applied the depth metric to HARPS observations of HD 13808.
This system presents a clear multiyear stellar activity cycle and
hosts two confirmed exoplanets. Between the line selection,
formation depth, and ( ) t FF′ models, only the line selection
and FF′ two-planet models yielded well-constrained posteriors
for HD 13808b and HD 13808c; these models generally agree
with the preferred model of Ahrer et al. (2021). The deviance
information criterion, the BIC, and the Watanabe–Akaike
information criterion all significantly favor the depth metric
based FF′ model.
We anticipate the depth metric will facilitate high-precision

stellar activity tracking for a variety of applications. In the
future, the depth metric has the potential for an exciting range
of applications and elaborations. Below, we briefly describe
several potential avenues for future research.
For Sun-like stars with activity signals on the m s−1 level,

the depth metric has been shown to successfully track stellar
activity with a level of quality similar to that provided by the

Figure 8. For a range of activity mitigation models, the depth metric performs at least as well as FWHM of the CCF and logRHK¢ . We present the recovered RV semi-
amplitude K (m s−1) and residual rms (m s−1) for each combination of mitigation method, activity index, and injection scenario. Top panel: the recovered RV semi-
amplitude for the K = 0.75, 1, and 2 m s−1 injection cases are shown in blue, green, and purple, respectively. The injected RV semi-amplitudes are shown as dashed
horizontal lines. Bottom panel: the residual rms for each injection case. The rms for the null-injection case is shown in gray. The rms of the uncorrected line-by-line
RVs and the DRS RVs are shown as solid and dashed horizontal lines, respectively.
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FWHM of the CCF and logRHK¢ . Since the depth metric can be
derived independently from these commonly used indices, it
offers an additional dimension for detrending models and
provides a valuable cross-check in cases of contentious
detections; applying the depth metric alongside existing
activity indices should yield more robust activity tracking
and false-positive flagging. For stars with relatively weak
activity signals, the co-adding of activity-sensitive spectral
lines should instill the depth metric with higher signal-to-noise
than existing indices, which may be dominated by white noise
for low-activity stars; however, applying the depth metric to

such stars may require modifications to the methods presented
in Section 3; see below for discussion.
Presently, the depth metric method relies on the identifica-

tion of activity-sensitive spectral lines through Pearson
correlation coefficient analysis. However, this analysis relies
on a long observing baseline and a moderate- to high-amplitude
stellar activity signal; this is particularly true when planets are
present. Since these restrictions do not apply to most
commonly used activity indicators (e.g., FWHM of the CCF
and logRHK¢ ), addressing these limitations is key to making the
depth metric a scalable and accessible activity indicator. To

Figure 9. The depth metric based FF′ model yields well-constrained posteriors for HD 13808b and HD 13808c. We present the corner plot of the activity-corrected
two-planet model posteriors for RV semi-amplitudes (K ), orbital periods (P), eccentricities (e), and “jitter” (σjitter). The posteriors for the line selection model are
shown in green, the formation depth posteriors are shown in orange, and the depth metric based FF′ posteriors are shown in blue.
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facilitate the application of the depth metric method to all stars,
regardless of observational cadence or activity level, a catalog
of lines shown to be sensitive to stellar activity for a given
stellar type should be generated. Such a catalog could also
extend into the far red using data from MAROON-X, NEID,

ESPRESSO, and KPF. For a given star, a set of activity-
sensitive spectral lines could be interpolated from such a
catalog. Alternatively, if a star hosts a planetary system,
activity-sensitive spectral lines could be identified by con-
straining the activity sensitivity of each spectral line simulta-
neously with the planets’ parameters.
The depth metric method and the broader Dumusque (2018)

and Cretignier et al. (2020) methods only consider isolated
spectral lines. This poses a considerable challenge when
applying the line-by-line technique to stellar types dominated
by blended lines (e.g., M dwarfs). Future modifications to the
line-by-line method that consider blended lines would expand
the stellar types accessible to line-by-line analysis.
Finally, solar line-by-line measurements, specifically ( ) t ,

should be mapped to independently derived solar observables
that directly trace activity processes (Haywood et al. 2020).
Such studies would help constrain the relation between
magnetic fields and granulation on the stellar surface to RV
variations.
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Table 3
HD 13808 Two-planet Model Posteriors

Correction Method HD 13808b HD 13808c

Line Selection
K (m s−1) 2.700 0.370

0.384
-
+ 2.265 0.187

0.299
-
+

P (days) 14.184 0.004
0.006

-
+ 53.724 0.053

0.069
-
+

e 0.292 0.141
0.135

-
+ 0.192 0.134

0.198
-
+

ω (rad) 2.898 0.522
0.454

-
+ 4.296 1.732

1.018
-
+

T0 (days) 4.673 1.005
1.852

-
+ 40.434 4.450

3.604
-
+

( )M isin (M⊕) 8.155 1.151
1.108

-
+ 10.850 0.866

1.332
-
+

σjitter (m s−1) 2.845 0.19
0.208

-
+ L

Formation Depth
K (m s−1) 2.906 0.637

1.050
-
+ 3.003 0.650

0.880
-
+

P (days) 14.190 0.014
0.023

-
+ 53.762 0.086

0.101
-
+

e 0.510 0.341
0.295

-
+ 0.358 0.237

0.290
-
+

ω (rad) 3.499 1.954
1.294

-
+ 4.278 1.576

0.823
-
+

T0 (days) 7.456 4.569
3.568

-
+ 47.358 13.427

4.377
-
+

( )M isin (M⊕) 7.531 1.763
2.117

-
+ 13.224 2.798

3.318
-
+

σjitter (m s−1) 4.229 0.636
0.633

-
+ L

FF′ (depth metric)
K (m s−1) 3.872 0.298

0.301
-
+ 2.552 0.268

0.293
-
+

P (days) 14.179 0.003
0.003

-
+ 53.869 0.059

0.066
-
+

e 0.057 0.040
0.061

-
+ 0.122 0.086

0.138
-
+

ω (rad) 4.159 2.090
1.320

-
+ 2.120 1.263

2.000
-
+

T0 (days) 6.718 0.573
0.573

-
+ 33.345 3.670

3.371
-
+

( )M isin (M⊕) 12.288 0.953
0.958

-
+ 12.468 1.292

1.372
-
+

σjitter (m s−1) 2.619 0.143
0.154

-
+ L

Ahrer et al. (2021)
K (m s−1) 3.67 ± 0.22 2.18 0.20

0.22
-
+

P (days) 14.1815 ± 0.0015 53.753 0.082
0.050

-
+

e 0.071 0.047
0.027

-
+ 0.156 0.061

0.050
-
+

( )M isin (M⊕) 11.2 0.66
1.2

-
+ 9.96 0.96

1.8
-
+

Note.We report the 16th, 50th, and 84th percentiles of the posteriors. T0 values
are relative to BJD = 2452985.6179. For comparison, we also present the
maximum a posteriori (MAP) values from the preferred model of Ahrer et al.
(2021).
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