
Horus: Persistent Security for Extended Persistence-Domain Memory Systems

Xijing Han
North Carolina State University

Raleigh, USA
xhan24@ncsu.edu

James Tuck
North Carolina State University

Raleigh, USA
jtuck@ncsu.edu

Amro Awad
North Carolina State University

Raleigh, USA
ajawad@ncsu.edu

Abstract—Persistent memory presents a great opportunity for
crash-consistent computing in large-scale computing systems.
The ability to recover data upon power outage or crash events
can significantly improve the availability of large-scale systems,
while improving the performance of persistent data applications
(e.g., database applications). However, persistent memory suffers
from high write latency and requires specific programming
model (e.g., Intel’s PMDK) to guarantee crash consistency, which
results in long latency to persist data. To mitigate these problems,
recent standards advocate for sufficient back-up power that can
flush the whole cache hierarchy to the persistent memory upon
detection of an outage, i.e., extending the persistence domain
to include the cache hierarchy.

In the secure NVM with extended persistent domain(EPD), in
addition to flushing the cache hierarchy, extra actions need to be
taken to protect the flushed cache data. These extra actions of
secure operation could cause significant burden on energy costs
and battery size. We demonstrate that naive implementations
could lead to significantly expanding the required power hold-
up budget (e.g., 10.3x more operations than EPD system
without secure memory support). The significant overhead
is caused by memory accesses of secure metadata. In this
paper, we present Horus, a novel EPD-aware secure memory
implementation. Horus reduces the overhead during draining
period of EPD system by reducing memory accesses of secure
metadata. Experiment result shows that Horus reduces the
draining time by 5x, compared with the naive baseline design.
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I. INTRODUCTION

The ability to retain data in main memory even after
power outage or crash events has been an ambitious goal,
mainly motivated by the ability to host persistent data
(e.g., filesystems) and high-performance crash-recoverable
applications. Such applications include key-value store work-
loads [18], analytical database workloads (i.e., large-scale in-
memory analytics) [26], transactional databases [31], graph
algorithms [29], etc. Persistent Memory (PM) generally
refers to memory that can retain its content after losing
power. Persistent memory can be realized in different ways
varying from solutions as expensive as sufficient battery to
flush the whole DRAM content to a flash storage, e.g., in
NVDIMM-N, to solutions that leverage the high-capacity and
persistence features of emerging non-volatile memories (e.g.,
Intel’s DCPMM and JEDEC’s NVDIMM-P standard). The
latter approach has generally received more interest due to its
low access latency, high-capacity exposed to the system, and

the reduced costs and area overheads for battery or back-up
power source (e.g., large capacitor). Major vendors developed
programming frameworks and software development kits for
writing persistent applications and workloads which can take
advantage of persistent memory [6], [17]. For instance, Intel’s
PMDK Library [17] allows programmers to write their own
persistent applications and algorithms that leverage PM to
enable seamless recovery from system crashes. However,
persistent applications need to ensure that their updates reach
the persistence domain before being considered durable; in its
simplest form, the persistence domain is merely the persistent
memory module itself. Thus, updates in the processor’s
volatile caches (or anywhere within the processor chip) could
be lost and hence need to be flushed to the persistent memory
explicitly by applications.

To guarantee crash consistency, persistent applications
explicitly flush durable updates from the volatile caches in the
processor chip to the persistent domain followed by a memory
fence instruction to force their ordering. The combined usage
of flush and fence instructions severely hurts the performance
if the persistent domain includes only non-volatile memory,
mainly due to its high write latency. Therefore in recent
processors, the persistence domain is extended to include
a battery-backed Write Pending Queue (WPQ) inside the
processor chip. When there is a power outage or crash,
WPQ entries are flushed to NVM using the power provided
by the battery/capacitor. This feature of extra power to
flush WPQ entries is called Asynchronous DRAM Refresh
(ADR). A new feature called enhanced Asynchronous DRAM
Refresh (eADR), with larger battery than ADR, further
extends the persistent domain to include the cache hierarchy
[14]. Hereinafter, we refer to systems that include such a
feature (including cache hierarchy in persistence domain)
by Extended Persistence Domain (EPD) memory systems.
EPD systems aim to improve programmability [1], [25], [30]
and enable persistent (i.e., crash recoverable) applications
with DRAM-like performance; persistent applications no
longer need to flush their persistent updates to the memory
controller, but instead it is sufficient to do the update while
ensuring cache durability [1].

As NVMs increase the attack window due to their data
remanence capabilities, and due to their expected deployment
in cloud systems and data centers, it is essential to enable their



usage in trusted execution environments. Fortunately, there
have been many recent proposals to enable security primitives
(i.e., memory encryption and integrity verification) with
emerging NVMs [3], [4], [11], [34], [37], [38]. A large body
of prior works [4], [11], [34], [37] focus on careful handling
of security metadata for persistent memory; specifically,
how to handle security metadata updates efficiently while
ensuring security [34], high-availability [37], [38], and crash
recoverability [3], [4], [37]. The main challenge of handling
security metadata persistently is that much of the updates
for security metadata occur in volatile metadata caches,
however their corresponding data update is persisted to the
memory and hence causes crash inconsistency between data
and security metadata upon a crash. Prior works efficiently
eliminate large percentage of the performance and write
overheads to ensure such consistency in traditional and
conventional persistence domain (power-backed write queue
through ADR) systems [3], [4], [7], [11], [33], [37].
The Problem: Unfortunately, none of the prior work con-
siders secure memory in systems with EPD (e.g., Intel’s
eADR support). The cost, area and complexity of the hold-
up power support required to back-up the cache hierarchy
heavily depends on the maximum number of operations
required upon detection of outage. There is an increasing
trend to minimize the carbon footprint in data centers [8],
which will significantly increase with more operations (hence
battery size) needed upon main power source outage. In
unprotected systems, i.e., no memory security support, such
number of operations will be dominated by those needed
writes for every dirty cache line in the cache hierarchy to the
memory. In other words, the backup power source should be
keeping the system on until all the (dirty) cache hierarchy
content is flushed to the persistent memory. Since platform
requirements account for the worst case, such budget should
be sufficient to flush all the cache hierarchy, i.e., assuming
all blocks in caches are dirty. However, for EPD systems
with memory security support, flushing the cache hierarchy
additionally include two parts: (1) security operations, that
could encounter extra accesses, for each memory write (i.e.,
cache line flushing), and (2) flushing the security metadata
cache content securely. Both (1) and (2) heavily depends on
the security metadata update scheme. However, we observe
that the worst case scenario for completing (1) and (2) can
cause 10.3x more memory operations compared to EPD
designed without memory security support.
The Challenge: Ensuring persistent security in EPD systems
is challenging due to the following reasons: (1) at run-time
we aim for a DRAM-like memory security performance,
which ignores security metadata persistence operations, e.g.,
uses lazy update scheme. However, we observe that even
using DRAM-optimized secure memory implementations that
are meant for non-persistent memories would still incur sig-
nificant increase in the number of memory accesses required
to drain the cache hierarchy, (2) with such implementations,

flushing security metadata cache becomes insufficient unless
we synchronize its content to update the integrity tree root.
Finally, the increase in NVM memory capacity would also
increase the number of levels, and hence increases the
worst case number of operations required for draining cache
hierarchy. Hence, ideally we need a solution that decouples
the required backup power budget from the memory capacity,
ensures high-performance memory security operations at run-
time, incurring minimal extra power requirement compared
to no security EPD systems, and ensures fast recovery of the
system upon power connectivity.

Accordingly, the goals of this paper are (1) define
the backup power budget requirements for encrypted and
integrity-verified EPD memory systems, (2) identify the
trade-offs for back up power budget, run-time performance
overheads, and recovery time (i.e., availability) for enabling
crash-consistent and secure EPD systems, and (3) introduce
novel mechanisms that reduce the overheads for ensuring
recoverability while requiring minimal increase of the backup
power budget of non-secure EPD systems. To this end, this
is the first work that investigates the impact of combining
extended persistence domain and secure memory, which both
are likely to be an integral part of future cloud systems
and data centers. To define the backup power requirements,
unlike traditional studies, we focus on the worst case scenario
number of operations (e.g., memory writes) required upon
the detection of a crash, and hence the amount of time the
processor needs to be up upon a detection of crash. Hence, in
our study we focus on optimizing the platform requirements
to reduce the costs and area of encrypted and integrity-verified
EPD memory systems, however without incurring run-time
performance overheads or significant increase in recovery
time.

In this paper, we propose a novel scheme, Horus, which
reduces the number of write and read requests of secure
metadata and avoids updating the regular merkle tree during
an EPD flush (i.e. the flush on crash of the EPD state). Horus
adopts a split approach for data flushed during crash, different
from the approach adopted during run time. It makes the
security operation during the crash independent of the regular
secure metadata, therefore, it avoids the memory requests
of regular secure metadata and avoids updating the regular
integrity tree. To evaluate Horus, we use Gem5 simulator [5],
an open-source cycle-level simulator, to simulate different
scenarios during EPD flush. Our simulation results show
that Horus can reduce the memory requests by 8x, reduces
the number of MAC calculations by 7.8x, and accordingly
reduces the overall system draining time by 5x.

The rest of the paper is organized as follows: Section II
provides a relevant background. Section III introduces the
motivation. Section IV describes the design details of Horus.
Section V shows the evaluation methodology and experiment
results. Section VI describes the related work. Section VII
concludes the paper.



II. BACKGROUND

In this section, we discuss the main concepts related to
secure persistent memory.

A. Extended Persistence Domain (EPD)

Persistent memory programming frameworks, e.g., Intel’s
PMDK [17], provides applications with an interface to persist
their data. In its most preliminary form, persistent memory is
restricted to actual NVM memory module itself, and hence
a persist operation would need to wait until the data is
flushed all the way to NVM. Unfortunately, this approach
suffers from two main limitations, (1) high performance
overhead due to the high write latency of NVM, hence slow
persist operations, and (2) asymmetry between global visi-
bility (typically starts from cache hierarchy) and persistence
domain boundaries, which complicates the programming and
concurrency models of persistent applications. To address
the high performance overheads, Intel processors include a
small buffer, namely Write Pending Queue (WPQ), inside the
processor-side memory controller as a part of the persistence
domain [13]. This is enabled through extra back-up power,
e.g., ultra-capacitor or residual power1. Thus, it is sufficient
to consider a flush/persist operation completed once the data
reaches that buffer.

Persistence Domain
Global Visibility

Core Cache Hierarchy WPQ NVM

Processor Chip

Figure 1. Extended Persistence Domain (EPD).

However, the asymmetry between the global visibility point
and the persistence point complicates the programming model
and concurrency in persistent applications [1], [14], [25], [30].
Hence, recent NVM systems can leverage a further enhanced
persistence domain, we dub as Extended Persistence Domain
(EPD), which includes the whole cache hierarchy in the
persistence domain. In other words, upon the detection of
a power outage, there is enough back-up power to flush
the content of cache hierarchy to the persistent memory. As
shown in Figure 1, such system merges the global visibility
and persistence domains. Intel refers to such feature as
Enhanced Asynchronous DRAM Refresh (eADR), and it
is expected to be a common feature in new servers. However,
the obvious limitation for such EPD systems is the extra

1This platform feature later became a requirement for persistent memory
platform, and is called Asynchronous DRAM Refresh (ADR).

power hold-up capabilities (e.g., batteries) required which
in turn increase the cost, area, and complexity of the power
supply. Existing eADR requires more than 10ms hold-up
time Power Supply Unit (PSU), which is expected to increase
with gigantic cache hierarchies. For instance, AMD’s recent
EPYC CPUs are expected to support 512MB L3 cache. Thus,
it is critical to incur the minimum number of operations upon
crash while preserving the appearance of a persistent cache
hierarchy.

B. Memory Encryption & Integrity Verification

In most trusted execution environments, e.g., Intel’s
Software Guard Extension (SGX) [15], two critical data
protections can be offered: (1) Data Confidentiality, and
(2) Data Integrity. Both integrity and confidentiality of data
have been emphasized as necessary protection measures for
secure execution environments. Hence, many prior studies
aim to optimize their performance and write overheads [4],
[9], [10], [11], [20], [21], [34], [35], [37], [38]. Below, we
briefly describe how these two primitives are commonly
implemented.
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Figure 2. (a) Counter Mode Encryption. (b) Counter Mode Decryption.

Confidentiality: To protect data confidentiality, counter-mode
encryption (CME) is generally used due to its security and
performance advantages over other schemes [23], [32]. In
CME, as shown in Figure 2 ,each data block is associated
with a counter that gets incremented each time the block
is written to memory. Rather than feeding the plaintext
into the encryption engine (e.g., AES), CME encrypts the
counter, concatenated with other information (e.g., address),
to generate a one-time pad (OTP) which is merely bit-
wise XOR’ed with the plaintext/ciphertext to complete the
encryption/decryption. In case of a write operation, the
corresponding counter will also be encrypted, and hence
ensures temporal uniqueness of the encryption pad. Moreover,
since the address is used along with counter value to
generate the OTP, spatial uniqueness is guaranteed as well,
i.e., similar value blocks in different locations appear as
different ciphertexts in memory. On the performance side,
caching counters in the processor chip can enable overlapping
the generation of OTP and fetching the ciphertext from
memory; note that only a simple one cycle XOR operation
is needed to complete the decryption once the OTP is ready.
Since each data block (i.e., cache block size data) has its
own counter, the storage overhead can be significant. The



counter should be sized to be large enough such that it
never overflows, otherwise the security of CME can be
compromised. Meanwhile, its size should be as small as
possible to minimize storage overheads.

The state-of-the-art schemes use a split-counter scheme
where a major counter (64 bits) is shared among 64 data
blocks and each has its own 7-bit minor counter. Thus, each
block will use the concatenation of the major and its minor
counter to form its own counter. Meanwhile, once a minor
counter overflows, the major counter is incremented and all
the 64 data blocks sharing the major counter are re-encrypted.
By using this scheme, a 64B counter block contains a 64-
bit major counter and 64 minor counters, hence covers the
counter information for a 4KB region. By caching counter
blocks near the memory controller, in what is called counter
cache, the spatial and temporal locality of counters can be
exploited.
Integrity Verification: One caveat when using CME is the
need to protect the integrity of the encryption counters, to
avoid counter replay/reuse attacks; CME strictly prohibits the
reuse of the same OTP (i.e., per-block counter) for encryption,
otherwise it can be easily compromised through known-
plaintext attacks [23], [32], [34]. However, since these overall
size of these counters relatively large to store on-chip, they are
stored off-chip. Hence, it is necessary to verify the integrity of
these counters upon fetching them from memory to complete
encryption/decryption. Similarly, the data integrity should
be protected against attempts to tamper with or replay the
content of the secure memory.

Processor  Boundary
Root

M ……

8 to 1 Hash

M M M M MM M M M M M M MM M M M M M M M MM M M M M M MM M……

M M M M M MM M M M M M M MM M M M M M M MM M…… ……

M M M M M MM M

Figure 3. Merkle Tree Structure

To protect the integrity, cryptographic hashes (i.e., message
authentication codes (MACs)) are generally used. However,
since these MACs need to be maintained per data block
to allow fast integrity verification, their total size becomes
prohibitive to maintain on-chip. Thus, MACs of data and
counters should be maintained off-chip, and hence the MACs
also need to be protected. Accordingly, to solve this issue,
integrity trees (also known as Merkle Tree (MT)) are
generally used. In integrity trees, hashes/MACs are calculated
over groups of lower-level MACs to form a tree that ends
with a single root value MAC. The root can be thought of
as the single hash/MAC value that reflects the content of the
whole memory, and is typically stored on-chip (in a persistent
register on-chip in case of persistent memory). Upon updating
a leaf (e.g., data or counter blocks), their corresponding path
and root are also updated. To do verification, each level can
be verified through its parent level (in case it is verified),
however, if the parent is off-chip, then it also needs to be

verified. Fortunately, eventually in worst case scenario where
all levels in the path are off-chip and hence need to be verified,
the root will be used to verify its children of interest, and then
its children will verify its children, etc., until the data/counter
block is verified. Figure 3 shows a sample Merkle Tree (MT).

Counter Data Blocks

BMT MACs
M M M M M M MM

D C Address

(a) (b)

Hash

Figure 4. Bonsai Merkle Tree.

Two major optimizations are commonly used to reduce
the overheads of MT. The first is based on the observation
that protecting the integrity of encryption counters through
integrity tree is sufficient to ensure freshness of data when
it is accompanied with MACs calculated over the ciphertext,
counter and address [23], as shown in Figure 4 (b). In other
words, the MT only covers the encryption counters, whereas
data blocks have MAC values that can be used to verify their
integrity and freshness, as shown in Figure 4 (a). Such a
scheme is called Bonsai Merkle Tree (BMT) [23] and is used
in nearly all recent works in secure memory [2], [3], [4],
[10], [11], [21], [24], [37], [38]. The second optimization is
having security metadata cache on-chip that holds the most
recently accessed and verified integrity tree nodes (including
counter blocks) and data MACs. By doing so, given the high
spatial locality of integrity tree nodes, the verification step
can be done quickly.

C. Integrity Tree Cache Update Scheme

In the presence of a metadata cache to hold recently
accessed integrity tree nodes, MT can be updated by using
eager or lazy update schemes. 1 Eager update scheme:
Each update on the leaf node triggers updating the whole
affected tree path up to and including the root. 2 Lazy
update scheme: A tree node is updated upon eviction of
its children from secure metadata cache. When a counter
block or an intermediate MT node is evicted, its immediate
parent node needs to be updated. In the case of a miss in
the secure metadata cache, the immediate parent node needs
to be fetched from memory and also the upper level nodes
on the affected path until the first hit in the secure metadata
cache to verify the integrity of the to-be-updated immediate
parent node. In general, lazy update scheme performs better
than eager update scheme since lazy update scheme reduces
the latency to update all levels of MT. However, the root
of MT in lazy update scheme is not always consistent with
the leaf nodes. Therefore, in secure NVMs, the root value
cannot be used to verify the integrity of leaf nodes after a
crash. To allow using lazy update scheme in secure NVMs,
an eagerly-updated small MT is applied over secure metadata



cache during run-time. After a crash, we can first recover the
secure metadata cache by using mechanisms such as Osiris
[34] and Anubis [37]. Later, use the root of the small MT
to verify its integrity.

D. Persistent Security

Security metadata state should be consistent with persistent
memory content upon a crash, otherwise secure and correct
recovery would fail. However, ensuring that the integrity
tree, corresponding MAC, and the corresponding encryption
counter, all are updated persistently (i.e., in memory) can
incur significant overheads. Such overheads stem from the
need to push all corresponding security updates to the
persistence domain atomically along with the data. When
such persistence domain is merely the memory module, or
even the module along with small processor-resident buffer
(e.g., WPQ), such metadata updates preceding the completion
of a persistent transaction can cause significant delays [11].
Similarly, these updates can lead to significant increase in the
number of memory writes (and hence premature wear-out).
Accordingly, large number of prior work focused on reducing
the number of persistent metadata updates to ensure crash
consistency [4], [20], [34], enabling fast recovery after a crash
[3], [37], reliability of security metadata [38], and ensuring
fast integrity tree updates and hence speed up persistent
transactions [10], [11].

One common assumption of all prior works is the lack of
or a basic ADR support, hence a small buffer in the memory
controller is included in the persistence domain. Thus, much
of the efforts have been towards ensuring minimum work
before inserting data in the persistence domain. However, in
EPD systems, the insertion of data in the persistence domain
is directly in the critical path as it corresponds to every
write operation in the cache hierarchy (including L1 cache
updates); the whole cache hierarchy is assumed persistent.
Hence, the persistent security support is shifted towards
ensuring that flushing the content of the cache hierarchy
is done in a crash-consistent way with its corresponding
security metadata. Oblivious to the amount of back-up power
needed upon outage, one can safely assume that the cache
hierarchy contents can be protected (i.e., encrypted and
integrity-verifiable) and all security metadata updates can be
flushed. However, as we will show in the next section, the
amount of extra work needed to enable the aforementioned
solution can be prohibitive, especially with most data center
vendors aiming to minimize their carbon footprints and the
maintenance/deployment challenges for per-server batteries
[8].

III. MOTIVATION

In this section, we demonstrate the challenges for imple-
menting EPD systems with secure memory. As mentioned
earlier, memory encryption and integrity verification are
critical primitives in trusted execution environments. Such

protections aim to protect the content of the memory during
run-time and across crashes. In non-secure EPD memory
systems, the cache hierarchy is flushed line by line to the
memory, then the system is considered persisted and ready
to go off. In case of inclusive last-level cache (LLC), the
process can be simplified to flush all the dirty lines in LLC,
since the coherence protocol will bring in any more recent
version from upper-level caches. Hence, the EPD power hold-
up budget should be designed to be sufficient to drain the
maximum number of cache lines that can be dirty in the
cache hierarchy, which can be as large as the number of
cache lines in the LLC. Note that this can be significant
when gigantic caches are used, e.g., AMD EPYC’s 512MB
V-Cache.
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Figure 5. Draining the contents of cache hierarchy in secure EPD systems.

Similarly, in secure EPD memory systems, the contents of
the cache hierarchy need to be flushed upon the detection of
a power outage. However, each cache line needs to have its
integrity (including freshness) and confidentiality protected
all the time, including after power recovery. In its simplest
form, draining the contents of a secure EPD memory system
can be comprised of two steps: (1) draining the contents
of the cache hierarchy while performing encryption, MAC
calculation and integrity tree update on each cache line flush;
i.e., treat LLC flushes similar to run-time main memory
writes. Later, (2) flush/synchronize the security metadata
cache updates, e.g., integrity tree and counter caches, to the
persistent memory. Note that step (2) heavily depends on
whether a lazy update or eager update schemes are used. For
simplicity, let’s assume that step (2) takes negligible number
of operations compared to step (1). As shown in Figure 5,
draining the cache hierarchy lines consists of the following
steps for each eviction. 1 A cache line flushed from the
cache hierarchy arrives to the memory controller. 2 Some
time later, the memory controller needs to encrypt the line and
update the integrity tree (whether lazily or eagerly) to ensure
freshness protection, also updating the encryption counter and
the MAC written with data regardless of whether such updates
are done in the security metadata cache or also persisting
to memory. Note that to complete this step, there could be
memory accesses required to fetch the security metadata (e.g.,
counter blocks, BMT path, and/or MAC block) to complete



the protection. Even worse, fetching these metadata blocks to
the metadata cache can lead to evicting other (possibly dirty)
blocks from the metadata cache and cause additional memory
writes. We refer to this as Step 3 in the figure. Finally,
once the metadata needed to complete the protection of the
cache line are fetched and updated (whether in the cache or
persistently), the cache line can be written to memory (step
4 ).
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To better understand the performance implications of
providing security during flushing cache hierarchy, Figure
62 compares the number of memory accesses incurred by
flushing the cache hierarchy in a system without security,
with two systems with security (eager update scheme or lazy
update scheme for Merkle Tree). Note that even for merely
flushing the cache content securely, secure EPD memory
systems need 10.3x and 9.5x more memory accesses (hence
more power hold-up budget) when lazy and eager integrity
tree update schemes are used, respectively. We assume the
cache hierarchy content before crash was randomly filled
with sparse contents hence poor spatial locality in security
metadata cache. Note that since EPD systems need to be
designed with the worst case in mind, e.g., all cache lines
are dirty in LLC for the case of non-secure EPD, we also
need to consider the worst case for secure EPD and hence
accounting for different access patterns. While we do not
claim that randomly sparse cache hierarchy contents that are
all dirty is even the worst case yet, we have observed an
explosion in the required EPD power hold-up budget that is
sufficient to motivate the need for novel solutions to enable
secure EPD memory systems with reasonable backup power
requirements.

IV. HORUS DESIGN

In this section, we first describe our threat model. Later, we
describe a baseline support for secure EPD memory systems.

2See the methodology section for more information about the assumed
contents of the cache hierarchy upon crash. Note that EPD platform
requirements must account for the worst case.

After that, we discuss two different designs of Horus to
guarantee memory security when there is a crash, but with
minimal increase in EPD backup power requirements.

A. Threat Model

Our threat model is similar to state-of-the-art works in
secure NVM [3], [4], [10], [11], [21], [34], [37], [38]
. Specifically, the boundary of our trusted block is the
processor chip. We assume that attackers can mount external
attacks on the off-chip memory, such as bus-snooping attacks,
physical theft, memory scanning, memory replay and memory
spoofing. Side-channel attacks such as power-side channel
attacks, speculative loads attacks, memory timing attacks,
and access pattern leakage are beyond the scope of this work.

B. Baseline Secure EPD Systems

Since this is the first work to explore secure NVM in EPD
systems, we start with defining a baseline implementation.

In secure but non-EPD systems (i.e., extremely limited or
no backup power at all), the security metadata is updated in a
persistent and recoverable way upon each write to persistent
memory. To do so, schemes such as eager update (e.g., used
in Triad-NVM [4]) always update the root of the tree before
completing the data write. Hence, once the integrity tree
is rebuilt, the system is considered recovered and can be
verified using the up-to-date root on-chip. However, such a
scheme can lead to high recovery time due to rebuilding the
whole tree, and hence works such as Anubis [37] book-keeps
which parts need to be rebuilt. On the other hand, while
eager update is simpler to implement, lazy update scheme
is generally faster as it only updates the leaf nodes on each
write. Only upon the eviction of dirty nodes (including leaf
nodes) do the updates propagate to the parent which will
be placed in the cache and marked dirty. However, the lazy
update scheme leads to crash consistency issues since the
root will be stale upon system recovery. Prior works have
presented mechanisms to enable recovery with lazy update
scheme, however at the cost of extra complexity and memory
writes [3], [37].

In non-persistent main memory systems (e.g., DRAM-
based), either lazy or eager update schemes can be used
without the need for any extra work to ensure recoverability.
Secure EPD memory systems present an interesting design
point where we aim for recovery-oblivious performance at
run-time (due to sufficient power budget) but also need to
flush sufficient amount of information upon detection of a
crash to allow secure and consistent recovery.
Secure EPD Memory Systems: One possible design point
is to use recovery-oblivious secure memory implementation,
similar to those used with non-persistent memory. For
instance, merely a lazy update or eager update schemes
without any extra steps to ensure per write crash consistency.
As shown in Figure 7, during run-time the EPD system
can run with secure memory mode similar to non-persistent
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memory systems, i.e., recovery-oblivious, and hence minimal
performance overheads. However, once a crash is detected,
the EPD draining mode is triggered and an alternative power
supply will be engaged (e.g., battery or capacitor). The first
step is to write the contents of the cache hierarchy to memory
while still using the recovery-oblivious secure memory mode.
In other words, cache lines evicted from cache hierarchy will
be encrypted and integrity-verifiable, however their most-
recent security metadata might be not persisted yet (hence
crash inconsistency). Thus, to solve the issue, once the cache
hierarchy is flushed, the security metadata cache contents
need to be either synchronized and flushed to their locations
in memory or simply protected (e.g., using a small integrity
tree) and flushed to a reserved region in memory. Leveraging
EPD power, if eager update was used during run-time, then
just flushing the security metadata cache to their original
places will be sufficient. However, if lazy update scheme was
used during run-time, then one way would be to scan through
all metadata cache contents, bring their ancestor path (after
verification) and propagate the update all the way through
the root. However, this is costly, and hence an alternative
approach is to calculate a single hash value over the metadata
cache content, using a small integrity tree, similar to Anubis
[37]. Later, flush the metadata cache content to a reserved
region in memory. Upon recovery, the metadata content will
be restored from memory and verified.

Unfortunately, we observe that the step of flushing cache
hierarchy can significantly increase the EPD power hold-
up budget; as shown in Section III, it requires more than
10.3x and 9.5x additional memory accesses when recovery-
oblivious lazy and eager update schemes, respectively, are
used. Note that if the cache hierarchy is needlessly flushed
with recovery-awareness (e.g., Anubis [37]), then we would
incur even more memory accesses to flush the cache
hierarchy.

C. Horus

As discussed earlier, flushing the cache hierarchy while
operating the secure memory controller in run-time mode
can lead to significant increase in the number of memory
accesses and operations. We also notice that such massive
increase in the number of memory accesses results from

security metadata fetches and updates, especially when the
cache hierarchy before the crash was filled with dirty sparse
cache lines, hence maximize the number of misses in the
security metadata cache. Thus, our main design objective is
to minimize the maximum number of extra operations needed
upon flushing the cache hierarchy. Note that the power supply
requirements are defined based on the worst case number of
operations needed upon outage detection.

The first insight we leverage in Horus design is that in-
place flushing of cache hierarchy contents is what leads to
these extra accesses. Specifically, since flushed cache lines
are written to their memory locations, then we need to use
their address-specific metadata (e.g., BMT nodes, counters
and MACs). However, sparse contents of cache hierarchy
would naturally lead to many misses in such metadata.
On the other hand, in-place updates without updating or
using the respective (and verified) metadata would lead to
security vulnerabilities (e.g., reuse of counter value) and/or
functional errors due to the inability to discriminate which
memory content was protected with the main BMT and their
corresponding counters. Accordingly, we replace in-place
updates when flushing the cache hierarchy with flushing
the content to a small reserved region in memory which
can be protected by using separate security metadata (i.e.,
CHV Security Metadata). We refer to this region by cache
hierarchy vault (CHV), as shown in Figure 8. Note that in the
baseline secure EPD system we might need to fetch security
metadata from memory (in case of miss) since the counters
to be used for encryption must be verified for integrity (as
shown in Figure 8 part B). On the other hand, CHV’s security
metadata (shown in Figure 8 part C) is only written during
the flushing stage and only brought back upon recovery to
verify the contents. Later, in the next section, we will discuss
why such counters used for encrypting CHV do not need to
be integrity verified.

Our goal is to ensure that the flushed cache hierarchy
content to CHV is 1 protected in terms of confidentiality
and integrity, 2 such a protection is implemented using
much less number of operations compared to in-place
evictions/flushes, and 3 the flushed contents of the cache
hierarchy are recoverable (and verifiable as guaranteed by
1 ). The rest of this subsection describes how each one of

these goals is met through our Horus design.
1) Protecting Confidentiality and Integrity of CHV: The

CHV should exactly contain all dirty cache blocks in the
cache hierarchy at the time of the crash. Such a protection
needs to guarantee the following: 1 all dirty contents of the
cache hierarchy are flushed to CHV. This implies the need
for a mechanism to ensure that the number of blocks flushed
upon crash detection is exactly the same as those existing in
CHV. Otherwise, attackers can selectively omit new memory
updates (which was present in cache) and hence replay a
previous content. 2 ensure that the addresses of the flushed
cache blocks are also protected from tampering (including
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splicing attacks to swap the addresses of different cache
blocks flushed to CHV). Note that the confidentiality of the
addresses themselves is not protected since these in anyway
will be observed later in the memory bus; access pattern
leakage are beyond our threat model. However, their integrity
protection is a must. 3 the confidentiality and integrity of
the blocks written to memory. The cache blocks should
be encrypted in a way that hides any temporal or spatial
similarity between values as guaranteed during run-time. The
temporal leakage could happen through observing the same
ciphertext written for the same address or across different
addresses over time (including cache draining episodes).
In other words, we need to make sure that flushing the
exact same content before encryption of the same address or
other addresses even in different draining events will lead to
different ciphertext written to memory. Finally, the integrity
protection should ensure the cache blocks, as well as their
addresses, are integrity protected and cannot be replayed
from previous CHV contents of a previous draining process.
In other words, we need to ensure the freshness of the CHV
contents.

To this end, the CHV area includes drained cache blocks
area, addresses of the drained cache blocks area, and security
metadata area that stores the metadata used to protect
the integrity and confidentiality of CHV. To provide such
protections, one straightforward way is to treat the CHV
areas to be protected as a miniature of the main memory, and
hence have encryption counters dedicated for each memory
block in the CHV area, and protect such counters using a
small integrity tree rather than the larger integrity tree used
for the main memory. Moreover, the protected CHV memory
blocks have MACs co-located with that are calculated over
the positional address in CHV, the encrypted memory block,
and its corresponding CHV address encryption counter. In
other words, a BMT style is used merely for protecting the
address and data blocks in CHV. Unfortunately, this scheme
requires fetching the CHV-address counters and verify them
through the CHV integrity tree before using them, otherwise
counter reuse with the same address could occur. Moreover,
another limitation is the small BMT fetch and update process
on each block flushing during the draining process.

Fortunately, we do not need to persist the CHV counters
and a tree to protect them. Specifically, we observe that

maintaining a monotonically increasing counter is sufficient
to ensure unique initialization vectors for each flush operation
upon draining. In particular, a persistent counter, always
kept inside the processor chip, is incremented after each
flush operation to memory. We refer to such a counter
by drain counter (DC). By additionally book-keeping the
latest number of drained blocks from the cache hierarchy
persistently, we can know what is the most recent counter
used for each flushed block. We refer to that register by
ephemeral drain counter (eDC). The eDC value is cleared
after each recovery of the system. By guaranteeing that
each flush uses a unique initialization vector, we close both
temporal and spatial leakage channels within a single draining
process and across multiple draining episodes. Also, since
the starting address of the CHV is fixed, we can relate each
block flushed in the CHV to its drain counter value (address
- CHV Base Address + DC - eDC).
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Figure 9. Simplified cache draining steps in Horus.

Figure 9 depicts the steps taken by Horus upon draining
the cache hierarchy. As shown in Step 1 , the LLC cache
controller (or firmware loaded upon power outage) will start
flushing the cache contents. Meanwhile, Horus encrypts these
blocks using counter-mode encryption where drain counter
used as initialization vector. In Step 2 , the address of each
block flushed is inserted to form a complete 64B block that
just contains addresses in order, i.e., 8 addresses (assuming
64-bit addresses). In Step 3 , MACs are calculated for each
encrypted block along with its address (also stored in the
address block) and the drain counter value used to encrypt



it. Similar to addresses, MACs are combined into a single
64B and written to memory as one block. Finally, as shown
in Step 4 , the encrypted data blocks, address block and
MAC block are written in order to the CHV. Note that in the
figure we only show three data blocks being flushed, however
these steps will repeat until all cache blocks are drained. For
simplicity, we omitted the CHV address calculation part from
the figure, however it can be simply calculated using the
starting address of the CHV and drain counter as discussed
earlier.

2) Write-Friendly and Optimized Protection of CHV: To
further optimize the cache draining process, we coalesce
the MACs calculated for multiple cache blocks (and address
blocks) into one MAC block before writing it to the CHV
security metadata region. Moreover, since the addresses of
cache blocks are smaller than the memory write granularity,
we coalesce multiple addresses into one block before writing
it to memory. Moreover, to reduce the number of MACs
need to be written for CHV integrity protection, instead
of book-keeping a MAC value per memory block, we can
do that for a coarser granularity. For instance, by merely
maintaining two 64B MAC registers, we can use the first
register to buffer 8 MAC values which once is full is used
to calculate one 8B MAC value that gets buffered in the
second register, before the first register is emptied. Once the
second register is full, i.e., has eight MAC values, it will
be written to memory as a single 64B block before being
emptied. In other words, even though not to the extent of
a full Merkle Tree, we hierarchically but efficiently (only
using two registers) build two levels of MACs but only store
the highest level to reduce the number of writes, as shown
in Figure 10.
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Figure 10. The Horus Double-Level MAC scheme for Horus

Our insight is that storing a MAC per memory block is
mainly used to optimize the run-time memory access by
avoiding over-fetching, since we do not need to bring neigh-
bouring blocks to complete update/verification. However, in
Horus, since it occurs only at draining time, we always have
the neighbouring cache contents to be written to CHV. Note
that neighbouring cache contents could be spatially far in
terms of original memory location, however in CHV they
are written contiguously. We dub this optimized scheme as
Horus Double-Level MAC (Horus-DLM). On the contrary,
we refer to the default scheme where a MAC is stored per
memory block with Horus Single-Level MAC (Horus-SLM).

3) Recovery of Flushed Cache Content: The recovery
process is straightforward. Upon power recovery, the contents

in CHV are read back by the processor, in a reversed
flush order, to recover the cache hierarchy. Data blocks
and their corresponding address and MAC blocks, are read
back together. The drain counter value used to encrypt each
data block can be derived from its position in CHV along
with the most recent value (after the crash) of the persistent
drain counter on-chip. Upon the decryption and integrity
verification of every data block drained to the CHV, we can
either place them back in the LLC in dirty state or write
them back to their original locations and update the main
integrity tree accordingly (i.e., treat them as normal run-time
writes). For simplicity, we opt for the first option that reads
them back to the LLC and marks each as dirty. We assume
the LLC cache controller will be aware that the system is in
recovery mode and hence treats any fill operations as dirty
blocks. However, if the cache is non-inclusive then to reduce
complexity the second option (i.e., fetch, verify then write to
memory using the main security metadata) may be used. Note
that commercial EPD systems, e.g, eADR, already support
flushing all caches in non-inclusive LLC systems, hence the
only difference in Horus will be the recovery step in case
we decide to place the flushed data blocks upon crash back
to the cache hierarchy.

4) Security Analysis: The confidentiality of data blocks
flushed to the CHV are guaranteed by ensuring a never
repeating drain counter value, and hence unique one-time
pads for counter mode encryption. Meanwhile, the integrity
of the data blocks and their corresponding address blocks
in the CHV can be verified using their MACs also stored
in the CHV. Specifically, since the MAC of each data block
is calculated using its address, the drain counter value used
to encrypt it, and the encrypted data block itself, we can
reproduce the MAC and compare it with the one inside the
CHV. Thus, if the address block has been tampered with
then the MAC generated using the tampered address will
mismatch with the stored MAC, and thus will be detected.
Similarly, if a data block has been tampered with, then the
MAC will also mismatch and hence will be detected. Finally,
if the attackers attempt to replay a previous CHV content or
splice/swap current contents of the CHV, then the MAC will
mismatch because the draining counter value used to protect
data written to that location in the CHV will be different
than the drain counter value used elsewhere.

D. Hardware Cost of Horus

In this section, we describes the hardware required by
Horus. Horus leverages the existing secure memory sup-
port(AES, MAC) engines and secure metadata caches which
are used during run-time, instead, Horus uses them during
draining time. In addition, Horus needs some extra registers:
two registers for DC and eDC (with simple ALU logic to
increment the counter), one register for coalescing addresses,
one register for coalescing MACs(two registers in the case
of Horus Double-Level MAC shceme). In addition, Horus



requires reserving a small region of NVM to be used as CHV.
The area of CHV is nearly proportional to the cache size,
SizeCHV = 1.25×Sizecache +1.125×Sizemetadata cache in the
case of Horus-SLM.

V. EVALUATION

A. Simulation Setup

Table I
SIMULATION CONFIGURATION PARAMETERS

Processor
Core Single Core, X86, OoO, 4GHz
L1 Cache 2 cycles, 64KB,2-Way
L2 Cache 20 Cycles, 2MB, 8-Way
Inclusive LLC 32 Cycles, 16MB, 16-Way

DDR based PCM Memory
Size 32 GB
Access Latency read latency 150ns. write latency 500ns.

Secure Memory Parameters
AES Latency 40 Cycles
Single Hash Latency 160 Cycles
Integrity Tree a 10-level 8-ary Merkle Tree over NVM;

a 5-level 8-ary Merkle Tree over secure cache
Counter cache size 256kB; 8-Way
MAC cache size 512kB; 8-Way
Merkle Tree cache size 256kB; 8-Way

To evaluate the performance of Horus, we use a cycle-
level simulator, GEM5 [5]. As illustrated on Table I, we
simulate a single X86 core with 32GB DDR-based PCM.
In Horus, the draining time is independent of the spatial
relationships between the blocks in the cache hierarchy
upon crash; however for the baseline, as also shown in the
Section III, it heavily depends on the spatial relationship
between evictions as this highly impacts the behavior of the
integrity tree cache. Since EPD battery requirements depend
on the worst case, we assume a cache hierarchy content with
extremely poor spatial adjacency between blocks. Specifically,
we fill the cache hierarchy with cache blocks that are at
least 16KB distant in their physical addresses; the 16KB
was derived by dividing the simulated memory size by total
size of cache hierarchy. While we do not claim that this
is even the worst case, given the idiosyncratic behavior of
the lazy update scheme with certain cache configurations, it
is sufficient to demonstrate the high battery demands for a
naive implementation of secure EPD systems. Meanwhile,
Horus does not use integrity tree to drain the cache hierarchy
and, hence, is oblivious to its upon-crash contents’ spatial
characteristics.

For evaluation, we compare the following four schemes:
a baseline lazy update scheme (Base-LU), baseline eager
update scheme (Base-EU), Horus with single-level MAC
(Horus-SLM), and Horus with double-level MAC (Horus-
DLM).

B. Overall Performance

The major components of the computing system, e.g.,
processor chip and memory modules, must be powered on

until the system securely drains its cache hierarchy contents.
Thus, a conservative proxy of the battery requirements in
EPD systems is how long the system needs to stay powered
on upon crash detection, hence using the alternative power
source. Accordingly, we simulate the execution time starting
from the detection of possible outage until the whole cache
hierarchy is drain (including security metadata cache). Figure
11 shows the difference in execution time to drain the system.
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Figure 11. Normalized number of cycles

As shown in the figure, both baselines using eager and
lazy update schemes take 5.1x and 4.5x, respectively, longer
time to drain the system compared to both Horus schemes.
Accordingly, we expect Horus schemes to reduce the battery
requirements for secure EPD systems by orders of roughly
4x-5x. Note that the ability to enable commercial EPD
support, even without secure memory, is heavily restricted
by the power supply power hold-up time capabilities. For
instance, Intel’s eADR cannot be enabled on systems with
less than 10ms power hold-up time [16]. Thus, reducing
the hold-up time requirement for secure EPD systems by
such significant amount will enable wider adoption of secure
memory in future EPD systems. As also shown in the figure,
Horus schemes reduces the draining time from 8.6x more
time, hence 8.6x higher power hold-up time, to merely 1.7x
compared to non-secure EPD system. As expected, the Base-
EU takes the longest time to drain due to the large number of
MAC operations and memory accesses (to fetch and update
a whole integrity tree path on each write request).

C. Write Operations

To better understand the draining time reduction using
Horus, Figure 12 shows the total number of memory write
operations required for each scheme with a breakdown of the
type of write request needed. We can observe that the majority
of memory writes in the baseline are due to evictions of
integrity tree metadata blocks due to security operations upon
draining cache hierarchy. Both Base-EU and Base-LU use
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Figure 12. Breakdown of memory writes in different designs.

the main integrity tree upon draining cache, and hence poor
spatial locality cache hierarchy contents can lead to massive
number of misses in the BMT cache. We can also observe
that, as expected, Horus-SLM incurs 8x smaller number
of CHV MACs due to its coarser granularity protection.
Also, a key observation from the figure is that flushing the
metadata cache contents, once the cache hierarchy is drained,
is negligible in all schemes. The reason is that the amount
of metadata cache dirty evictions when draining the cache
hierarchy is more dominant (in case of Base-LU and Base-
EU), however even without such extra writes the number of
cache blocks in LLC is much larger than metadata blocks.
Thus, even in Horus, we can see that the number of metadata
block flushes is negligible.

D. MAC Calculations

Another source of overhead during the system draining
stage is the MAC calculations needed for authenticating the
flushed contents. Figure 13 shows the breakdown of the
number of MAC calculations needed for each scheme.
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Figure 13. Breakdown of MAC calculations in different designs

As shown in the figure, the eager update baseline (Base-
EU) consumes the largest number of MAC calculations.
The largest portion of MAC calculations in Base-EU is for
updating the integrity tree (the second bar). On the other
hand, since the integrity tree is eagerly updated, there is
no need for any MAC calculations to protect the integrity
tree (the fourth bar), but just merely flushing its content;
the tree root is already up-to-date. On the other hand, for
Base-LU, the largest contributor for MAC calculations is
those used for verification, e.g., MAC to verify the counters
and integrity tree nodes. Meanwhile, we can see that for
both Horus schemes the most dominant MAC calculations
are for the MACs to protect the flushed data blocks from
cache hierarchy. Finally, we can observe that Horus-DLM
consumes a 1.125x more MACs than that of Horus-SLM,
mainly because of calculating a second level MAC to reduce
the number of MAC writes.

E. Sensitivity to Cache Size
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Figure 14. Normalized memory requests required in different Last-Level-
Cache sizes of 8MB, 16MB and 32MB

In this section, we show the performance overhead of
Horus on variable Last-Level-Cache sizes of 8MB, 16MB
and 32MB. Figure 14 and Figure 15 shows the number
of memory requests and MAC calculations normalized to
Base-LU with corresponding LLC size. With LLC size of
8MB, 16MB and 32MB, both Horus schemes achieve at
least 7.0x and 5.8x reduction in memory requests and MAC
calculations, respectively, compared to Base-LU design.

F. Estimation of Recovery Time

In this section, we calculate the recovery time of Horus-
SLM and Horus-DLM with varied LLC size from 8MB to
128MB. In Horus, the dominant parts of the recovery process
are reading back the CHV content, integrity verification and
data decryption. Figure 16 shows the recovery time of Horus-
SLM and Horus-DLM. The parameters we use to estimate
the recovery time are from Table I. We can observe that even
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for LLC caches as large as 128MB, the recovery time of
Horus-SLM and Horus-DLM is extremely small (0.51s and
0.48s, respectively). Hence, we believe that Horus can be
used even in systems with very high availability requirements.
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Figure 16. Recovery time of Horus-SLM and Horus-DLM.

G. Estimation of Energy Costs and Battery Size

In this section, we evaluate the impact of Horus on energy
cost during draining and the needed battery size. In eADR
systems, once a power outage is detected a SMI interrupt
will be signaled and a special code will be executed in
the processor to flush the caches. Therefore, the processor
needs to stay powered on during the whole cache hierarchy
draining process. In our energy model, energy cost during
draining mainly comes from 4 aspects: processor energy,
NVM write operations, NVM read operations and secure
operations. We use McPAT [19] to model the processor
energy required during draining. We assume single NVM

write and read operation takes the energy of 531.8nJ and
5.5nJ respectively [12]. Energy cost for secure operations is
minimal, compared with the other three aspects, therefore
it is not included in our estimation. Table II categorizes the
energy cost of the four designs. As shown in the table, energy
cost during draining is dominated by processor energy, which
is largely affected by draining time. Energy cost of Base-LU
and Base-EU is 4.5x and 5.1x, respectively, higher than both
Horus schemes. Such required energy is closely similar to
the draining time, because energy costs during draining is
dominated by processor energy, which is mostly affected by
draining time.

We use the energy cost in Table II to estimate needed
battery size. Different battery technologies have different
energy densities. In this paper, we estimate two energy
sources: super capacitors(SuperCap) and lithium thin-film
batteries(Li-thin), using similar approaches as those used
in BBB [1]. The energy density for SuperCap and Li-thin
is 10−4Whcm−3 and 10−2Whcm−3 respectively. Table III
shows the battery size needed for the four designs using
SuperCap and Li-thin. For both of the battery technologies,
Horus reduces the battery size by at least 4.4x, compared
with baseline design.

Table II
ESTIMATION OF ENERGY COSTS OF DIFFERENT OPERATIONS DURING

DRAINING

Base-LU Base-EU Horus-SLM Horus-DLM
Processor Energy(J) 10.21 11.54 2.25 2.20
NVM write operations(J) 0.84 0.83 0.2 0.18
NVM read operations(J) 0.008 0.007 0 0
Total(J) 11.07 12.39 2.45 2.38

Table III
ESTIMATION OF BATTERY SIZE NEEDED FOR DRAINING

Base-LU Base-EU Horus-SLM Horus-DLM
SuperCap (cm3) 30.7 34.4 6.8 6.6
Li-thin (cm3) 0.31 0.34 0.07 0.07

VI. RELATED WORK

In this section, we will discuss the related prior work on
NVM system with battery-backed on-chip components and
non-volatile caches (NVCaches). We will also discuss prior
work on how secure NVM system adapts to system with
on-chip persistent domain.
NVM system with battery-backed on-chip resources: On-
chip persistent domain is achieved by providing battery-
backed on-chip components to flush the data to NVM during
crash. For example, with battery-backed WPQ in memory
controller (ADR solution [13]), persistent domain is extended
to WPQ. With the entire cache hierarchy backed with
battery(eADR solution [14]), persistent domain is extended
to the cache hierarchy. BBB [1] proposed a battery-backed



buffer attached with the L1 cache to hold the persistent data.
Data in the battery-backed buffer is flushed to NVM when
there is a crash. BBB extends the on-chip persistent domain
to the same point as the eADR solution with smaller battery
size. Unfortunately, none of the prior works addressed how
secure memory can be implemented in such systems.
NVM system with NVCaches: Instead of using battery-
backed cache, some work proposes using non-volatile cache
(NVCache) [22], [28], [36]. However, NVM technologies that
are suitable for cache usage, e.g., Spin-Torque Transfer RAM
(STT-RAM), have limited retention time that can vary from
seconds to hours depending on other area/performance trade-
offs [27]. Thus, the majority of studies use it as regular cache
without any persistence guarantees. Horus on the other hand
aims to enable extending the persistence domain leveraging
minimal back-up power.
Secure NVM system with on-chip persistent domain:
Some works [10], [11] have researched how secure NVM
system adapts to system with on-chip persistent domain.
Dolos [11] assumes a secure NVM system with battery-
backed WPQ. It proposes a Minor-Security-Unit to protect
the WPQ to allow immediately flushing the WPQ content
when there is a crash and also avoid causing large overhead
on the performance of persistent application. Bonsai Merkle
Forests [10] propose an on-chip non-volatile secure metadata
cache for the integrity tree nodes. The single integrity tree
is divided into small integrity trees by storing the roots of
the small integrity trees in the non-volatile secure metadata
cache to speedup updating the integrity tree. None of these
prior works explore secure NVMs with on-chip persistent
domain including battery-backed cache hierarchy. Unlike the
prior works, Horus explores and provides solutions for how
to protect the cache hierarchy when the battery-backed cache
hierarchy is flushed to NVM during crash. Moreover, this is
the first work that identifies the significant increase in the
maximum amount of operations that need to be guaranteed
power to securely flush the cache hierarchy.

VII. CONCLUSION

In conclusion, this is the first paper to observe that
significant increase in number of memory operations, and
hence draining time, for secure EPD systems. To mitigate the
impact of such increase on the complexity and capabilities
of power supplies required in future computing systems, we
presented novel mechanisms to enable secure memory in
EPD systems with reasonable increase in power hold-up
time. Specifically, proposed Horus, which could effectively
reduce the number of memory operations by at least 8x,
and number of MAC calculations by 7.8x, compared to a
baseline secure memory (using lazy update scheme). With
these reductions, the draining time, and hence power hold-up
time requirements, is reduced by 5x compared to the baseline
secure memory scheme. Accordingly, Horus significantly

reduces the required increase in power hold-up time for
secure EPD systems.
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