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Abstract

First principles calculations of the energies and relaxation of unreconstructed
low-index surfaces, i.e. (001), (011) and (111) surfaces, in NiCoCr and NiFeX
(X = Cu, Co or Cr) equiatomic multi-principal element alloys (MPEAs) are
presented. The calculations were conducted for 12-layer slabs represented by
special quasi-random supercells using the projector augmented wave method
within the generalized gradient approximation. While experimental predictions
are unavailable for comparison, the calculated surface energies agree fairly well
with those from thermodynamic modeling and a bond-cutting model. In addi-
tion, the calculations unveil an important surface structure, namely, that the
topmost surface layer is in contraction except for the (001) surface of NiFeCr
alloy, the next layer below is in extension, and the bulk spacing is gradually
recovered from the subsequent layers down. Additionally, the surface contrac-
tion is the most pronounced on the (011) plane, being about 4%—10% relative
to the bulk spacings. The results presented here can provide an understand-
ing of surface-controlled phenomena such as corrosion, catalytic activities and
fracture properties in these equiatomic MPEAs.
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1. Introduction

Equiatomic multi-principal element alloys (MPEAS) [1, 2], where all constituent alloying ele-
ments have similar atom fraction are a special class of multicomponent alloy system. The
reported outstanding mechanical properties (e.g. high strength, hardness and fracture tough-
ness) of MPEAs over a wide range of temperatures [3] make them of particular interest for
many applications in the aerospace, defense and nuclear power industries. Additionally, the
compositional complexity of MPEAs has also lead to an increasing interest for corrosion
[4, 5] and catalytic [6, 7] applications; for example, thin films of MPEAs have been studied as
coating [8] and oxygen-reduction-reaction materials [6].

Surface energy, the excess free energy per unit area when a crystal is split along a specified
crystalline plane into two new surfaces [9, 10], is one of the crucial material constants for
understanding corrosion and catalytic activity as well as the fracture property of materials.
Additionally, multicomponent alloys can exhibit numerous configurations and types of surface
sites, and thus their surface energies may be different from those of their base metals. While
the surface energies of numerous elemental metals have been reported [11], those for MPEAs
are largely unknown with a few exceptions.

The surface energy is also fundamentally important in surface physics of materials. How-
ever, direct measurement of the surface energy through experiments is difficult, owing to the
fact that experiments are usually conducted at the melting temperature to measure surface
tension, which is then extrapolated to obtain the surface energy at zero temperature [12]. In
addition, accurate surface energies of specific crystalline facets cannot be directly determined
from such experiments. Therefore, theoretical calculation, which is much more accessible, has
been an important tool for determining the surface energies of solids.

First principles calculations based on the density functional theory (DFT) have been exten-
sively used to estimate the surface energies of elemental metals [10, 11], binary alloys [13], as
well as MPEAs [14—16] and compounds [17, 18]. Vitos et al [11] used the linear muffin-
tin orbital method within the full charge-density scheme (FCD-LMTO) to investigate the
anisotropy of surface energies and establish a database of low index surface energies for 60
elemental metals in the periodic table, while Singh-Miller and Marzari [10] used the projec-
tor augmented wave pseudopotential method within the generalized gradient approximation
(PAW-GGA) to study the relaxation, surface energies and work functions of low index surfaces
of some elemental metals. Holec and Mayrhofer [17] and Zhang and Wang [18] also used
the PAW-GGA method to calculate the surface energies of binary and ternary compounds.
For MPEAs, Osei-Agyemang and Balasubramanian [14] calculated the (001) surface energy
of a particular Mog 425 W 425Tag. 1 (TiZr)g 05 refractory high entropy alloy (RHEA) using DFT
calculations within the PAW-GGA scheme. Li et al [ 16] obtained the surface energies of all low-
index surfaces in the Hf—Nb-Ti—Zr—V-Ta—W RHEA system using DFT calculations based
on the FCD exact muffin-tin orbital method within the local-density approximation, but the
local lattice relaxation in these alloys cannot be reproduced with such a scheme.

In order to include the effects from lattice distortion in MPEAs, in the present work,
we employ the PAW-GGA scheme to predict the surface energies and relaxation of low-
index surfaces, i.e. (001), (011) and (111) surfaces, in ternary equiatomic MPEAs, i.e. NiCoCr,

2



Modelling Simul. Mater. Sci. Eng. 30 (2022) 025001 W Lietal

NiCoFe, NiFeCr and NiFeCu alloys. Furthermore, we directly calculate the surface tension
based on thermodynamics database and then extrapolate the calculated surface tension in the
liquid phase to estimate the surface energy in the solid phase for the alloys studied.

The rest of the paper is organized as follows. In section 2, first the simulation method used to
generate special quasi-random structure (SQS) simulation slabs with the interested orientations
is described, and then the details of the DFT calculations and thermodynamics modeling are
given. In section 3 the DFT predictions of the surface energies and surface relaxation of (001),
(011) and (111) crystalline planes in the alloys considered are presented and compared with
the surface energies predicted from thermodynamics modeling and the bond-cutting method
(BCM). Finally, the summary and conclusions are given in section 4.

2. Methodology

2.1. Generation of SQS simulation slabs with different orientations

For bulk property calculations for an ordered structure, DFT calculations would involve peri-
odic boundary conditions applied to a primitive or unit cell comprised of a few atoms. However,
the alloys in the present study are complexly concentrated and entirely disordered on the long
range, and for such random solid-solution alloys the notion of having periodic image atoms in a
primitive cell that is small enough for DFT calculations would not be valid. On the other hand,
a large supercell with a vast number of atoms would not be feasible due to the computational
cost associated with such a large supercell. Alternatively, the SQS supercell [19] with a small
unit cell consisting of dozens to hundreds of atoms, which has been successfully applied to
high entropy alloys [20—22], is more feasible for a given random solid solution alloy.

For an SQS supercell, the correlation functions of the first few nearest neighbor shells match
that of a target random alloy. Thereby we employed a Monte Carlo method, namely, the mcsgs
code within the alloy theoretic automated toolkit (ATAT) developed by van de Walle et al [23],
to generate the SQS supercells of the random solid solution alloys investigated. The pair corre-
lation functions of an SQS supercell match, with some constrains, that of a random alloy up to
the third-nearest neighbor [24]. To calculate the surface energies for special crystallographic
planes of a face-centred cubic (fcc) crystal, e.g. the {001}, {011} and {111} planes, cubic SQS
supercells with special crystallographic orientations need to be constructed, however, the SQS
cell generated through the mcsgqs code does not usually remain cubic if no additional opera-
tions are performed [25]. As such, it is necessary to control the orientation and shape of the
SQS supercell by specifying the appropriate lattice vectors and dimensions of the cell in the
rndstr.in and sqscell.out files of the ATAT, respectively.

Three fcc SQS supercells consisting of 12 layers of atoms with: {001} planes perpendic-
ular to x, y and z axes, respectively; {011} plane parallel to the x—y plane; and {111} plane
perpendicular to the z axis, are produced using the lattice vectors listed in table 1. In this case,
the three vectors in the sqscell.out file determine the dimensions in the x, y and z directions
of a cubic cell respectively. Meanwhile, to maintain the periodicity in the x, y and z directions
of the supercell, the dimensions in y and z directions should be multiples of a/v/2, \/mg
and v/3a, respectively for the three cells listed in table 1, where a is the mean lattice constant
of the alloy. It should be noted that the SQS for each alloy is not unique. Hence, to take the
effect of random distribution of atoms into consideration, five SQS supercells with different
random structures were constructed to represent every alloy and every surface studied here.
By comparing with calculations with a larger system and more independent SQS supercells,
(see appendix), the abovementioned system and supercell number were found to be sufficient
to eliminate significant effects due to system size and randomness.
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Table 1. Input control parameters for the 12-layer fcc SQS supercells having three dif-
ferent special crystallographic orientations. The lattice vectors and cell dimensions are
given in Cartesian coordinates in units of a, the lattice constant.

SQSy001} SQSqo11y SQSqi11y

Lattice vectors (0.0, 0.5, 0.5) (0.0, 0.7071, 0.0) (—0.3536, 0.6124, 0.0)
(0.5,0.0,0.5) (0.5, 0.3536, 0.3536) (0.3536, 0.6124, 0.0)
(0.5,0.5,0.0) (0.5,0.3536, —0.3536) (0.0, 0.4082, —0.5774)

Cell (2.0, 0.0, 0.0) (2.0, 0.0, 0.0) (1.414, 0.0, 0.0)
(x,y,2) (0.0, 2.0, 0.0) (0.0, 2.828, 0.0) (0.0, 2.449, 0.0)
Dimensions (0.0, 0.0, 6.0) (0.0, 0.0, 4.2426) (0.0, 0.0, 6.928)
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Figure 1. Schematic representations of the SQS slabs for a NiCoCr alloy with different
surfaces parallel to the: (a) {001}; (b) {O11}; and (c) {111} crystallographic planes.

The free surfaces were introduced by inserting a vacuum region next to the desired
crystallographic plane into the SQS supercell after complete ionic relaxation, thus forming
a crystal/vacuum slab in its periodic repetition, as shown schematically in figure 1. The thick-
ness of the vacuum region is 15 A to prevent unphysical interactions between two adjacent
replicated slabs, so that the surface behavior would mimic that in an infinitely thick vacuum
region [14]. In addition, choosing the slab of 12 atomic layers provides sufficient atomic layers
so that the top and bottom surface layers of atoms are well separated to minimize the internal
interactions between bulk and surface atoms.

2.2. DFT calculations

All DFT calculations here were performed using the Vienna ab initio simulation package
(VASP) [26, 27] with GPU-accelerated port [28, 29]. The interaction of core electrons and
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Figure 2. Convergence tests for the: (a) cutoff energies; and (b) k-points of the alloys
investigated.

nuclei was represented by PAW pseudo-potentials [30], and the exchange—correlation interac-
tion was described within GGA as simplified by the method of Perdew, Burke and Ernzerhof
[31]. Within VASP-GPU, a mixture of the Davidson-block iteration scheme and RMM-DIIS
algorithm was employed to conduct the electronic minimization, and the projection operators
were evaluated in real space, which were optimized automatically. Additionally, the precision
mode was set as ‘accurate’ throughout the calculations.

For the calculations involving alloys with multiple components, it is necessary to perform
convergence tests on the input parameters before bulk and surface calculations are conducted.
Thus, several calculations with different plane-wave cutoff energies and k-points using the SQS
supercells with 48 atoms to represent the bulk alloys were performed. As shown in figure 2,
the total energy calculated converges within 1 meV/atom [17, 32] beyond a cutoff energy
of 350 eV and five k-points. Consequently, the cutoff energy was taken as 350 eV through-
out the calculations, and Brillouin-zone integrations were performed using Gamma centered
Monkhorst—Pack [33] k-point meshing scheme, with the k-point sampling setto 5 x 5 x 5 and
5 x 5 x 1 for bulk and surface calculations respectively of the studied alloys.

The Methfessel-Paxton scheme with a smearing width of 0.2 eV, and the tetrahedron
method with Bloechl corrections, were employed during the total energy calculations for
ionic relaxation and electronic static calculations, respectively. The convergence criteria were
taken to be 1 x 1074 eV and 0.02 eV A~! [14] for electronic self-consistent calculations and
ionic relaxations, respectively, throughout the calculations. Experiments and simulations have
shown that there is severe lattice distortion in MPEAs [34, 35]; therefore we performed com-
plete relaxation of the ionic positions with respect to both the volume and shape of the unit
cell [18, 32, 36] using a conjugate-gradient algorithm once the SQS supercell was generated.
During the surface energy calculation, conversely, we carried out selectively dynamic ionic
relaxation without any change to the volume and shape of the unit cell. Furthermore, consider-
ing the computational expense and the need to keep the interaction between adjacent surfaces
as small as possible, the surface relaxation was performed only on the top seven layers of
atoms of the slab, while the rest of the atoms were fixed at their bulk positions [14]. As shown
in the inset of figure 3, using NiCoCr alloy as an example, when the first three atomic layers
are relaxed, the total energies of the simulated slabs converge within 1 meV/atom. Addition-
ally, calculations with and without spin polarization were conducted to understand the effect
of magnetism on the bulk and surface properties of the alloys considered. For comparison we
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Figure 3. Convergence tests for different numbers of surface layers relaxed in NiCoCr
alloy.

also calculated the relaxation within the top four and six atomic layers for the NiCoCr alloy,
and the results are given in table A2.

2.3. Thermodynamic modeling

Theoretical calculations to estimate the surface energies of the alloys investigated were also
conducted using thermodynamic modeling. Tyson et al proposed a semi-theoretical approach
based on the surface tension in the liquid phase to estimate the surface energy in the solid phase
as follows [12]:

T,
mS
vsTv=a~7LT$+/ —dr. (1)

T
where vy, denotes the solid-vapor interfacial energy at temperature T, 7{{7 denotes the liquid-
vapor interfacial energy at melting point, Ssy is surface entropy as a function of temperature,
and A is the molar surface area given as:

A = N3V, (2)

where N is Avogadro’s number, V the molar volume, and c is 1.26, 1.78 and 1.09 for the { 100},

{110} and {111} planes respectively [37]. In equation (1), v is the ratio of the solid—liquid

interfacial energy and solid-vapor interfacial energy according to the following relationship:
L o

a=1+ "+

Ygb VSV 3)
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Jgb.
sV i

where (%)i is the ratio of the grain boundary energy and solid-vapor interfacial energy for the
constituent elemental metals.

Here 7yg;./7gb is 0.45 [38] for all constituent elemental metals, ygn/vsv = 1/3 > (52

2.3.1. Surface tension of ternary alloys. According to equation (1), the surface tensions in the
liquid phase, 71y, of the four alloys at the melting point must be computed first. Here, Butler’s
model, which has been extensively used to estimate the surface tension of binary and ternary
alloys [39, 40], is employed to calculate the surface tensions of the considered alloys. The
surface tension of ternary alloys in liquid phase is given by:

R T X; 1 ex,s s ex,b b
Y=t X—?+E{Gi (T. X)) — G (T, X))}, )
where R, T, 7y; and A; are gas constant, temperature, surface tension and molar surface area of
pure component i, respectively, the subscripts i and j refer to the constituent elements of the
alloy, and X¢ and X? are the molar fraction of component i in a surface and bulk composition,
respectively.

2.3.2. Partial excess Gibbs free energy. In equation (4), G;*(T, X}) and Gf""’ (T, Xﬁ?) are the
partial excess Gibbs free energy of component i in the surface and bulk composition, respec-
tively, both are functions of temperature and concentration of the other two components and
can be calculated with:

] G
G =Gy ot (5;—X)) X (5)
j=2

where i and j = 1, 2 or 3, equivalent to element A, B or C, d;; is the Kronecker’s delta, and
G p_c 1s the excess Gibbs free energy due to mixing of the A, B and C elements for a liquid
ternary alloy.

For partial excess Gibbs free energy of surface composition i, G;**, Tanaka and Tida [40]
proposed that G=** and G are proportional, i.e.

G (T.X5) = BG™ (T.X3) (6)

where [3 is the ratio between the two coordination numbers (CN5s) in the surface and bulk phase.
For fcc alloys [41], 3 is usually taken as 0.75 [40, 42], and since the alloys investigated in this
work are fcc crystals, the value of 0.75 was used in all the present thermodynamic calculations.

2.3.3. Excess Gibbs free energy of mixing based on the Muggianu model. With a subregular
solution model, the excess Gibbs free energy of a ternary alloy in the liquid phase, the G§* ;_ -
in equation (5), is described by the Muggianu model in the form of Redlich—Kister polynomials
[43] as:

GF oy o= ZX”X”ZL‘ X — (7)

i#j v=0

where i, j = A, B or C and i # j, Lj; is the interaction energy of the constituent binary subsys-
tems as listed in table 2, which depends only on temperature but not on concentration. As
ternary interactions are much smaller than binary interaction [42], in equation (7) the term
XX X0 Lapc is neglected.
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Table 2. Interaction parameters of the constituent binary subsystems, L.

Subsystem L?f T mol™h L};Jmol™") References
Fe—Ni —18380 + 6.04T 9228 — 3.55T [43]
Cu-Fe 36088 — 2.33T 324.53 — 0.033T [43]
Cu-Ni 11760 + 1.084T —1672 [43]
Co-Cr —12008.6239 + 2.2019T —5836.4696 + 1.1402T [42]
Fe—Co —9312 ~1752 [44]
Fe—-Cr —5.257T —5419.8 [45]
Cr-Ni 318 — 7.33T 16941 — 6.37T [42]
Co-Ni 1331 0 [42]

2.3.4. Excess Gibbs free energy of mixing based on Chou’s model. Another model, known as
Chou’s general solution model, has also been proposed to cover the features of both symmetric
and asymmetric models [46, 47]. According to this model, the excess Gibbs free energy of a
ternary alloy in the liquid phase is given as:

n
Spc= ) XIXPY LX) - X7+ Qe DXY)' (8)
i#j v=0

where ¢;; is the similarity coefficient defined as:

Ni
Eijitj = ) 9
JiFE] i+, )
and then the deviation sum of squares 7, is calculated as:
o 1 0 0 2 1 1 1 2 10
N = = (L — L)+ 5= (Li; — L) ™ (10)

30 210
2.3.5. Surface concentration. To obtain the surface tension of the ternary alloys, the surface
composition, X}, in equation (4) needs to be calculated. Egry et al [48] proposed a simple
model, through defining an average metal in a quasi-binary system, to calculate the surface
concentration as:

b X

) 11
XD+ (1= XP) exp [Sa (vievi) /T] "

where exp [S4 (vi—vi) /T is the surface segregation factor, Sy = 1.09N'3V?/3/R, ~, is
the surface tension of the average metal j—k in the quasi-binary system, which is taken as
vk = 0.5(7; + ) in the present work.

3. Results and discussions

3.1 Bulk properties

Before investigating the surface energies, bulk properties including lattice constants, bulk mod-
uli and cohesive energies of the alloys (i.e. NiCoCr, NiCoFe, NiFeCr and NiFeCu) and their
constituent elemental metals were first calculated. The bulk properties of the constituent ele-
mental metals were first calculated, whereas Fe, Cr and Co metals with fcc lattice were also

8
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Table 3. Lattice constant (a), bulk modulus (B) and cohesive energy (E.q) of the con-
stitute elemental metals of the alloys considered here from DFT calculations, in compar-
ison with experiments and previous DFT calculations reported in literature. All present
calculations were performed with spin polarization. For the hcp lattice, c¢/a ratios are

listed.
a(A) B (GPa) Econ (eV/atom)

Pres. Prev. Expt. Pres. Prev. Expt. Pres. Prev. Expt.
Ni 3.515 3.506* 3.52° 195 194¢ 1854 4.84 4.78¢¢ 4.45
Cu 3.635 3.631% 3.61° 139 — 137° 3.49 3.50% 3.52f
Fe fcc 3.476 3.504% — 152 164% — 4.95 — —
Fe pec 2.833 2.832% 2.853¢ 178 1740 168° 5.11 4.89% 4.30
Crfec 3.609 — — 156 — — 5.11 — —
Cl.pee 2.835 2.855" 2.88° 260 255! 1914 5.51 4551 4.10°
Cofee 3.538 3.518% — 224 — — 5.17 5.48k
Copep 1.633 1.62% 207 — 191° 5.18 5.49° 4.39°

2Reference [50].
bReference [51].
“Reference [13].
dReference [52].
¢Reference [53].
fReference [54].
gReference [55].
hReference [56].
iReference [57].
iReference [58].
kReference [59].

calculated because all alloys in this study have an fcc lattice structure. The volume-energy
data were fitted with the third-order Birch—Murnaghan equation of state [49] to obtain the
lattice constants and bulk moduli, and the cohesive energies of the metals were calculated as
Econ = {N X Eyom — Epuic} /N, where Epy is the total bulk energy of a simulation cell con-
sisting of N identical atoms, and E,,y, denotes the total energy of a single isolated constituent
atom. Spin polarization was taken into consideration in the calculation for the elemental metals.
The results are summarized in table 3, which shows excellent agreement between the present
and previous calculations, as well as experimental values.

It is worth noting that the calculations for the lattice constants of MPEAs is significantly
different from that in elemental metals due to the severe distortion in MPEAsS, i.e. the lattice
constants are variable for MPEAs. Therefore, highly accurate prediction of the lattice constant
and bulk modulus of MPEAs is a significant challenge. Thus, to compute the bulk properties
of the alloys considered, SQS supercells were utilized, each consisting of 48 atoms. Initially,
for each alloy, an SQS supercell with an undistorted fcc lattice was constructed; then the lattice
constant of this supercell was varied within a range based on the mean of the lattice constants
of the constituent elements to calculate the corresponding total energy, then, the energy-lattice
constant data were fitted by the third-order Birch—Murnaghan equation of state to extract the
equilibrium lattice constant and bulk modulus of the alloy with an undistorted lattice. The
predicted values are listed in the fourth (Pris. M) and ninth columns of table 4, respectively.
Furthermore, in order to reproduce the lattice distortion in an MPEA, thorough energetic min-
imization was performed, i.e. the atomic positions as well as the volume and shape of the
supercell were allowed to change during the minimization, and the equilibrium lattice constant
of the distorted supercell was determined by averaging the second nearest neighbor distances

9
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(SNNDs); the results are shown in the second column (Dist. M) of table 4. In addition, to inves-
tigate the effect of magnetism, non-spin polarization calculations were also performed and the
results are listed in third column (Dist. NM) of table 4. It is seen that the predicted lattice con-
stant when including magnetism is larger than that without including magnetism, which agrees
well with the experimental and calculated values reported previously.

The binding or cohesive energy was also calculated as Econ = {D Eatom — Ebui} /N, Where
Eyvui is the total bulk energy of the simulation cell, with or without relaxation, and listed in
table 4. Based on the calculated cohesive energies of the constituent elemental metals and
the alloy under investigation, the enthalpy of mixing of the alloy was then computed from
AHpix = Econ — xaE%, — xgEB | — x ES,,, where x; are the molar fractions of the constituent
elements A, B and C. As shown in table 4, the enthalpy of mixing of NiFeCo and NiFeCu alloys
is nearly zero, while that of NiCoCr and NiFeCr alloys is positive, indicating that NiFeCo and
NiFeCu alloys are nearly ideal solutions, while clustering would occur for the NiCoCr and
NiFeCr alloys, which is consistent with experimental observations of NiCoCr [63].

3.2. Local relaxations due to lattice distortion

To quantitatively characterize the local relaxation in the solid solutions of NiCoCr, NiCoFe,
NiFeCr and NiFeCu, the calculated SNNDs for each pair of atomic species in their relaxed
SQS supercells are shown in figures 4(a)—(d). In each alloy, the horizontal dashed line repre-
sents the mean lattice constant and the filled squares denote the mean SNND for each pair of
atomic species. It is shown that the SNND values for each pair of species exhibit a scattered
distribution, in which some SNNDs are larger than the mean lattice constant of the alloy while
others are smaller. For example, the mean SNND of Ni—Ni in the NiCoCr solid solution is
3.523 A, which is larger than the 3.515 A in the pure Ni. In contrast, the mean SNNDs of
Co—Co and Cr—Cr in the NiCoCr solid solution are 3.526 and 3.529 A, which are smaller than
the 3.538 and 3.609 A in pure fcc Co and fee Cr, respectively. As shown in table 5, similar
extension and contraction in like-atom SNNDs also occur in the other solid solutions except
for the case of the NiCoFe alloy, where all like-atom SNNDs exhibit extension. Although all
like-atom SNNDs in NiCoFe are in extension, the mean SNNDs for unlike-atoms in all alloys
studied here show larger or smaller values in comparison with the mean lattice constant of the
alloy, indicating that their lattices are all distorted with a variation in the bond length.

3.3. Surface energies from BCM

The simplest and the most intuitive estimate for the surface energy is that given in the BCM
[64, 65], i.e. the surface energy is the product of the bonding energy and the number of bonds
broken when a new surface is introduced. Within the tight-binding theory and second-moment
approximation the surface energy is proportional to the square root of the CNs as:

(1 Y%
Y= (1 - ﬁ) Ecoh, (12)

where Zg and Zg are the CNs of atoms on the topmost atomic layer and in the bulk lattice,
respectively. Within the quasi-chemical scheme only the first nearest neighbors are taken into
account to calculate the total energy of surface atoms in equation (12). However, Mezey and
Giber [66] noted that the contribution from the second nearest neighbors should be included,
and introduced the effective CNs Zg and Zj to replace Zs and Z in equation (12), the effective
CNis being the sum of the CN for the first nearest neighbors and half of the CN for the second
nearest neighbors. In the FCC structure, Zj is therefore 12 + 0.5 x 6 = 15, and the Z for the
(100), (110) and (111) surface is 10.5,9 and 10.5, respectively [66]. Here, we employ the BCM
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Table 4. The lattice constant (a), bulk modulus (B), cohesive energy (Econ), and mixing enthalpy (AH ) as predicted from the current DFT
calculations for the considered alloys. Available predictions in literature from experiments and previous DFT calculations are also listed for
comparison. ‘Dist.” and ‘Pris.” refer to the lattices with and without distortion, respectively, while ‘M’ and ‘NM’ denote the calculations with and
without spin polarization respectively.

a (A) B (GPa) E.on (eV/atom) AH ix (eV/atom)

Comp. Distt M Dist. NM  Pris. M Dist. M* Dist. NM* Pris. M* Expt. PrisM  Expt. Dist M Pris.M Dist. M Pris. M

NiCoCr 3.519 3.511 3.523 — 3.515 — 3.559° 210 187° 5.09 5.07 0.053 0.034
NiFeCo 3.541 3.464 3.497 3.547 3.468 3.552 3.557°¢ 195 177° 4.99 4.93 0.008 —0.059
NiFeCr 3.551 3.512 3.524 3.544 3.516 3.547 3.589°¢ 267 — 5.07 5.05 0.100 0.080
NiFeCu 3.583 3.530 3.588 — — — 3.5554 168 — 4.43 4.42 0.002 0.0003

2Reference [32].
bReference [60].
‘Reference [61].
dReference [62].
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Figure 4. SNND distributions for: (a) NiCoCr; (b) NiCoFe; (¢c) NiFeCr; and (d) NiFeCu
alloys.

Table 5. The SNNDs (A) of i—i atomic pairs in the different alloys considered. Positive
signs indicate bond extension, i.e. the SNND in a solid solution is larger than that in the
corresponding element, and vice versa.

Interaction type NiCoCr NiCoFe NiFeCr NiFeCu
Ni-Ni 3.523(+) 3.555(+) 3.539(+) 3.587(+)
Co—-Co 3.526(—) 3.554(+) — —
Cr-Cr 3.529(—) — 3.583(—) —
Fe-Fe — 3.535(+) 3.529(+) 3.579(+)
Cu—Cu — — — 3.564(—)

model based on effective CNs and the calculated cohesive energies as given in table 4 to esti-
mate the surface energies of the alloys considered. The results are listed in table 6 and shown
in figures 5(a)—(c) in which the four alloys are listed on the horizontal axis in an increasing
sequence based on their DFT-calculated surface energies, which is also the sequence of increas-
ing cohesive energy. It is observed that for all three (001), (011) and (111) surfaces, the surface
energy estimated from the BCM roughly follows an increasing trend with the cohesive energy
of the alloys considered here as listed in table 4. Moreover, in terms of the detailed quantities,
there is good agreement between the predictions from the BCM and the DFT calculations only
for the (001) surface of NiCoFe and NiFeCu alloy as shown in figure 5(a), (011) surfaces of
the NiFeCr and NiCoCr alloys as shown in figure 5(b), and (111) surface of the NiFeCu and
NiCoFe alloys as shown in figure 5(c). On the other hand, the poor agreement between the
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Table 6. Surface energies of the alloys investigated here as predicted from DFT calculations and estimated based on thermodynamics modeling
and BCM.

Ypem I m™?)

Yrie G m™?)

Yrrm I m?)

-2
YDFT-unrelaxed (J m )

YDFT-relaxed (J miz)

Comp. T (K) (001) (011) (111) (001) (O11) (111) (001) (O11) (111) (001) (O11)  (111)  (0O1) (O11)  (111)
NiCoCr 0 2000 2761 2.000 2486 2.503 2.001 2483 2499 1998 2.632 2650 2393 2552 2553 2231
NiFeCo 0 1.961 2707 1961 2528 2543 2035 2527 2543 2035 2208 2232 2099 2097 2066 2.059
NiFeCr 0 1.991 2748 1991 2473 2482 2012 2473 2481 2025 2619 2642 2463 2484 2525 2343
NiFeCu 0 1740 2401 1740 1735 1745 1444 1735 1746 1444 2023 2150 1757 1981 2059 1.673
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Figure 5. Surface energies for: (a) (001); (b) (011); and (c) (111) surfaces, of the alloys
investigated here as predicted from DFT calculations and estimated based on thermo-
dynamics modeling and BCM. The error bars in the DFT calculations represent the
variations in the predictions from different random SQS supercells for each alloy.

Table 7. The excess Gibbs free energy of mixing (Gf{: ch) and surface tension (v) of
the alloys considered as predicted by the Muggianu’s and Chou’s models, which are
denoted by subscripts M and C, respectively.

Comp. G p_cp Jmol™) G p_cc mol™h) vy @ m2) Yo T m™2)
NiCoCr —2.177 x 103 —2.419 x 103 1.866 1.869
NiFeCo —1.721 x 103 —1.753 x 10° 1.897 1.897
NiFeCr —3.389 x 10° —3.561 x 10° 1.812 1.812
NiFeCu 4233 x 103 4.294 x 103 1.236 1.235

BCM and the DFT calculations for all (011) surface energies can be explained by the absence
of surface relaxation in BCM. Additionally, magnetic effects are also not incorporated in BCM
[67], and repulsive forces are not included in the tight binding scheme. All of which can explain
the discrepancies between the BCM predictions and the DFT calculations.

3.4. Surface tensions obtained from thermodynamics

Before estimating the surface energies of the alloys in the solid phase (i.e. 0 K) according to
equation (1), the surface tensions at the melting point must be evaluated first. Thus, the excess
Gibbs free energy of mixing based on Muggianu’s and Chou’s models is first calculated using
equations (7) and (8), respectively, and the results from the two models are remarkably close as
shown in table 7. Then, the partial excess Gibbs free energies of the constituent elements of the
alloys are calculated based on equation (5), wherein the melting points of NiCoCr and NiFeCo
alloys are 1690 K and 1724 K respectively [60], and those of NiFeCu and NiFeCr alloys were
calculated from 721 = S~ ¢,(T,,,); [68], where (T,,); and c; are the melting point and concen-
tration of each constituent, and the surface concentrations, X;, in equation (4) are calculated
according to equation (11). Finally, the surface tensions of the alloys considered were cal-
culated using Butler’s model, i.e. based on equation (4) and the thermodynamic data for the
constituent elements listed in table 8. The predictions of the surface tensions of the alloys based
on the excess Gibbs free energy of mixing computed with the Muggianu and Chou models are
shown to be in excellent agreement with each other.

3.5. Estimate of the surface energies based on surface tension

The change of surface entropy with temperature is the primary contribution to the temperature
dependence of surface energies. Tyson and Miller [12] pointed out that the contributions of
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Table 8. Thermodynamic data for the constituent elements for use with the Butler’s

model.
Metal Tm* (K) Y Nm™) d;/dr 103 Nm~' K™) S4 (KmN™") Yen/VsvE
Ni 1728 1.838° 0.42° 4219¢ 0.38
Fe 1811 1.915¢ 0.397¢ 4510¢ 0.37
Cu 1358 1.3344 0.264 4528¢ 0.32
Co 1768 1.884° 0.37° 5000 0.36
Cr 2178 1.672° 0.20° 5000 0.42f

2Reference [69].
PReference [42].
‘Reference [39].
dReference [43].
¢Reference [12].
fReference [70].

both vibrational and configurational entropy should be considered for more accurate predic-
tion of surface energies at different temperatures. For metals, under the assumption of a linear
variation, the vibrational entropy varies from zero at 0 K to 0.8R at 0.27,, and the config-
urational entropy varies from zero at 0.57,, to R at T, [12]. Therefore, the second term of
equation (1), fTT’" SfTV dT, equals 0.97T,,R/A when T is zero K. The surface energies at 0 K of
low-index surfaces of the alloys estimated using equation (1) are summarized in table 6, which
fairly agree with those obtained from DFT calculations, although there are certain errors due
primarily to the fact that the magnetic contribution to Gibbs free energy is not included in the
theoretical estimation [67].

3.6. Surface energies from DFT calculations

As stated in section 1, the experimental measurement of surface energy of a solid is difficult
and inaccurate, whereas DFT calculation has been a powerful approach to determine physical
properties of solids, such as surface energies [11]. Ultrathin slab calculation is the most popular
method to extract the surface energy of a given material [71]. However, in terms of accuracy,
the quantum-size effect (QSE) [72] as a consequence of the difference of the k-meshing grids
between the bulk and slab Brillouin-zones is an inevitable challenge for the surface energy
calculation of alloys. Boettger [72] has proposed the linear fitting method to evaluate the bulk
energy so as to eliminate the oscillation arising from the QSE of the calculated surface energies.
Nevertheless, the energy difference of adjacent atomic layers is not constant in SQS supercells
due to the random distribution of different atoms. Therefore, in the present work, the linear
fitting method is no longer feasible, and two different DFT calculations are required to respec-
tively evaluate the energies of the slab and the corresponding bulk lattice and the surface energy
is then calculated from:

_ Es — Epuk
2A ’

where E and Ey,x are the total energies of the slab and the corresponding bulk SQS supercells,
respectively, and A is the area of the plane of interest in the SQS supercell.

The energies for both the relaxed and unrelaxed surfaces without reconstruction in the
alloys considered from DFT calculations are listed in table 6 and shown in figure 5. It can
be observed that the surface energy increases in sequence of NiFeCu, NiCoFe, NiFeCr, and
NiCoCr alloys for the (001) and (011) surfaces as shown in figures 5(a) and (b) respectively,
whereas it increases in the sequence of NiFeCu, NiCoFe, NiCoCr and NiFeCr for the (111)

Vs (13)
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Table 9. Surface relaxation of the top-four interlayer spacings, Ad,,, Adys, Adsy, and Adys(%) of the low-index surfaces in the alloys

considered. The positive signs indicate expansion and negative signs contraction.

NiCoCr NiCoFe NiFeCr NiFeCu
(001) (011) (111) (001) 011) (111) (001) 011) (111) (001) 011) (111)
Adi» —1.79 —8.60 —1.07 —2.99 —114 —1.55 1.83 —9.15 —1.03 —1.18 —3.93 —1.00
Ad»s 1.21 2.29 0.68 1.28 4.22 0.67 0.74 2.55 0.48 0.86 1.56 0.44
Adsy —0.28 1.77 0.31 —0.01 0.88 0.01 —0.36 1.60 0.12 —0.16 0.66 0.17
Adas —-0.13 -0.33 0.71 1.02 —0.11 0.84 —-0.50 —0.46 0.16 -0.39 -0.31 0.54
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Figure 6. Surface relaxation of the top four interlayer spacings: (a) Adz;(b) Adys;
(c) Adsy; and (d) Adys, of the low-index surfaces in the alloys considered.

surfaces as shown in figure 5(c). The increasing trend is in good agreement with that from
the BCM based on cohesive energies as discussed earlier, and the small deviation can be
attributed to random effects because of the close cohesive energies for the NiFeCo, NiFeCr and
NiCoCr alloys. The energy differences between unrelaxed and relaxed slabs, or equivalently,
the energy differences between the halved theoretical cleavage energies and surface energies,
are within about 10% with respect to the unrelaxed energies for all surfaces of the alloys
considered.

3.7 Multilayer surface relaxation

Surface relaxation, as a consequence of charge redistribution when a new surface is created,
is a vital characteristic of metallic surfaces. Here, we extract the average positions, due to the
lattice distortion, as shown in figure 4, of the top seven layers of atoms in the direction of the
slab thickness, and then calculate the relative changes in the interlayer spacings with respect
to the bulk-like interlayer spacings as:
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Table 10. Peak values of ELF of the four alloys.

NiCoCr NiCoFe NiFeCr NiFeCu

100620 (2202) 0€ Bu3 *198 “Jere\ “|nwis Buljjepoy

Surf.  Bulk mag. Slab mag. Slab nonmag. Bulk mag. Slab mag. Slab nonmag. Bulk mag. Slab mag. Slab nonmag. Bulk mag. Slab mag. Slab nonmag.

(001) 0.36 0.36 0.57 0.29 0.32 0.42 0.39 0.39 0.57 0.16 0.16 0.43
(011) 0.33 0.38 0.68 0.31 0.20 0.51 0.37 0.38 0.59 0.16 0.16 0.49
(111) 0.38 0.38 0.64 0.23 0.33 0.48 0.42 0.45 0.61 0.16 0.16 0.44
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Figure 7. Two-dimensional ELF of the planes normal to the surfaces of interest for the
alloys considered. The ‘mag.” and ‘nonmag.” denote the calculations with and without
spin.

g “jbulk
Ag, = i 9
y gbulk >

ty

(15)

where d;; and " represent the average interlayer spacing between the ith and jth layers in a
slab and in the bulk respectively.

The results of the interlayer relaxation for the top five layers are summarized in table 9 and
shown in figure 6. It is observed that all topmost interlayer relaxation, Adj,, is in an inward
contraction except for the (001) surface of NiFeCr alloy, while the second interlayer relaxation,
Ad,s, is in outward expansion. Moreover, the extent of the interlayer relaxation on the (011)
surfaces for the top-three interlayers of all the alloys considered is the most pronounced, as
shown in figures 6(a)—(c). This is consistent with the prediction of the Finnis—Heine model
[9], i.e. the smoothing effect is more remarkable for rougher surfaces, particularly for the
topmost interlayer, which exhibits a contraction of about 4%—10% for the (011) surfaces.
Specifically, the relaxation of the first and second interlayers in NiCoFe alloy is particularly
significant as shown in figures 6(a) and (d). The relaxation of the top four interlayers on the
(111) surfaces is very close for all the alloys as shown in figures 6(a)—(d). It is clear that the
extent of interlayer relaxation gradually decays from the topmost interlayer into the interior
of the slab for these alloys, as shown in table 9 and figure 6. The relaxation of the third and
fourth interlayers, Ads4 and Adys, fluctuates around zero as shown in table 9, while that of
the fifth and sixth interlayers, Adss and Adg; which is not listed in table 9, is zero in our
calculation, indicating that below the sixth atomic layer the interlayer spacings become
bulk-like.

To gain further insights into the surface relaxation, the electron localization function (ELF)
[73], which is associated with the total electron density and can be used to identify the nature
of bonding in solids, such as the type and strength of bonds [74, 75], was evaluated. ELF values
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can be between 0 to 1, where values of 0, 0.5 and 1 correspond to completely delocalized state,
free electron-gas-like behavior, and perfect localization bonding, respectively [73]. Table 10
summaries the ELF peak values for all alloys and figure 7 compares the 2D ELF on the planes
normal to the surfaces of interest of the bulk lattice and relaxed slabs. In the case of the bulk
lattices in figure 7, the ELF basins are extended with the nonuniform localization rather than
with the uniform localization as in pure metals, which is a consequence of the interaction
between atoms with different valence electrons. When free surfaces are introduced, the local
ELF values of surface atoms are close to zero for the rougher (001) and (111) surfaces and
consequently, the localization regions exhibit serrations; however, the ELF values on (011)
surfaces exhibit a pronounced smoothness. It demonstrates quantitatively that the smoothing
effect is mainly responsible for the fact that the surface relaxation on (011) plane is the largest
among the low-index surfaces studied, as shown in table 9.

Moreover, ELF analysis was carried out to obtain further insight into the magnetism effect
on the surface relaxation. For the bulk lattice and relaxed slabs of these alloys, the ELF values
with spin polarization considered are within about 0.2-0.4, as listed in table 10, indicating
characteristics of metallic bonds. Without consideration of spin polarization, the ELF values for
surface relaxation become larger than those with magnetism effect considered. For NiCoCr and
NiFeCer, their peak ELF values are larger than 0.5, implying that valence electrons are localized
in the solution as shown as in figure 7, and the bonding tends to be covalent. The change in the
ELF values implies that magnetic moments render the type of electron interaction toward the
metallic bond character. Therefore, the energies of the slabs with spin polarization considered
are smaller than those without including magnetic moment contributions. In other words, the
energies of the slabs are further decreased due to a decrease of d-electrons contribution caused
by spin polarization during surface relaxation.

4. Conclusions

In the absence of direct experimental measurements, we have calculated the energies and
relaxation of nonreconstructed low-index surfaces, i.e. (001), (011) and (111), in equiatomic
multi-principal element fcc alloys NiCoCr and NiFeX (X = Cu, Co or Cr) using first prin-
ciples calculations within the DFT scheme. Although the results are evidently not in perfect
agreement with those obtained from theoretical estimates based on thermodynamics modeling
and BCM, the trends from both methods are qualitatively consistent. With respect to surface
relaxation the results show that the topmost and second interlayer spacings are in contraction,
except for the (001) surface of NiFeCr alloy, and in expansion respectively, and the relaxation
extent between the third and fourth interlayer spacings oscillates approximately around zero
while the fifth interlayer recovers to the bulk spacing. The surface contraction on (011) plane is
the most pronounced, in consistence with the smoothing effect based on d-bonding contribu-
tions for transition metals. Magnetism plays a crucial role in surface relaxation, by rendering
the electron interaction toward the metallic bond character when spin polarization is taken into
consideration.
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Table A1. Energy (in J m~2) and relaxation (in %) of the (001) surface in the NiCoCr
alloy. M1 and M2 represent the cases of five independent supercells with 96 atoms and
ten independent supercells with 144 atoms, respectively.

Model YDET-(100) Ady Ady Ad3y Adys
M1 2.552(40.08) —1.79 1.21 —0.28 —0.13
M2 2.543(+0.06) —1.76 1.09 0.13 0.55
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Appendix. Convergence tests for system size and randomness

We repeated the calculations for the (001) surface in NiCoCr alloy with more atoms (i.e. 144
in total and 12 per layer) and independent random models (ten independent SQS supercells).
The results, shown in table A1, confirm that our initial setting of five independent supercells
with 96 atoms each is sufficient to reproduce the surface properties of the alloy.

We also repeated the calculations for the surface relaxation within the top four and six
atomic layers for the NiCoCr alloy as shown in table A2, where the fifth interlayer spacing
(Adse) is found to be equal to the bulk spacing thus indicating no relaxation has occurred. The
results therefore indicate that the size of the calculation used in the main text is large enough
to guarantee that boundary effects are minimal. Besides, for the (100) surface in NiFeCr, we
also performed similar convergence tests for the surface relaxation as those in table A1, where
the relaxation within the top four, six and seven atomic layers was calculated; we found that
all the first interlayer spacings are in expansion.
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Table A2. Surface relaxation (in %) of the top four interlayer spacings, Ad,Adys, Adsy and Adys (%), of low-index surfaces in NiCoCr, and the
(100) surface in NiFeCr. Adsq and Adg; are both zero for the relaxation with seven atomic layers involved.

NiCoCr(4 layer_relax.) NiCoCr(6 layer_relax.) NiCoCr(7 layer_relax.) NiFeCr
(001) O11) (111) (001) (011) (111) (001) O11) (111) (001/4) (001/6) (001/7))
Ady —1.72 —8.10 —1.13 —1.70 —8.45 —0.66 —1.79 —8.60 —1.07 1.02 0.75 1.83
Adys 1.17 2.11 0.58 1.23 2.31 0.53 1.21 2.29 0.68 1.11 1.26 0.74
Adsy —0.21 1.49 0.33 0.04 1.00 0.85 —0.28 1.77 0.31 —0.13 —-0.23 —0.36
Adys \ \ \ 0 —0.01 —0.11 —0.13 —0.33 0.71 \ —0.07 —0.50
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