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Abstract— Training accurate deep learning (DL) models
require large amounts of training data, significant work in
labeling the data, considerable computing resources, and sub-
stantial domain expertise. In short, they are expensive to develop.
Hence, protecting these models, which are valuable storehouses
of intellectual properties (IP), against model stealing/cloning
attacks is of paramount importance. Today’s mobile proces-
sors feature Neural Processing Units (NPUs) to accelerate the
execution of DL models. DL models executing on NPUs are
vulnerable to hyperparameter extraction via side-channel attacks
and model parameter theft via bus monitoring attacks. This
paper presents a novel solution to defend against DL IP theft in
NPUs during model distribution and deployment/execution via
lightweight, keyed model obfuscation scheme. Unauthorized use
of such models results in inaccurate classification. In addition,
we present an ideal end-to-end deep learning trusted system
composed of: 1) model distribution via hardware root-of-trust
and public-key cryptography infrastructure (PKI) and 2) model
execution via low-latency memory encryption. We demonstrate
that our proposed obfuscation solution achieves IP protection
objectives without requiring specialized training or sacrificing the
model’s accuracy. In addition, the proposed obfuscation mecha-
nism preserves the output class distribution while degrading the
model’s accuracy for unauthorized parties, covering any evidence
of a hacked model.

Index Terms— IP protection, model obfuscation, neural
processing unit, deep learning.

I. INTRODUCTION

IN RECENT years, Deep Neural Networks (DNNs) have
attracted considerable attention due to state-of-the-art

(SOTA) accuracy in tasks such as image classification, object
detection, and natural language processing (NLP) [1]–[3].

Manuscript received December 14, 2020; revised February 22, 2021;
accepted April 16, 2021. Date of publication April 28, 2021; date of current
version June 14, 2021. This work was supported in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance
Code 001 and in part by the National Council for Scientific and Technological
Development–Brazil (CNPq). This article was recommended by Guest Editor
K. Basu. (Corresponding author: Brunno F. Goldstein.)

Brunno F. Goldstein, Victor C. Ferreira, and Felipe M. G. França are with
the COPPE-System Engineering and Computer Science Program, Federal
University of Rio de Janeiro, Rio de Janeiro 21941-914, Brazil (e-mail:
bfgoldstein@cos.ufrj.br; vcruz@cos.ufrj.br; felipe@cos.ufrj.br).

Vinay C. Patil and Sandip Kundu are with the Department of Electrical
and Computer Engineering, University of Massachusetts Amherst, Amherst,
MA 01002 USA (e-mail: vcpatil@umass.edu; kundu@umass.edu).

Alexandre S. Nery is with the Department of Electrical Engineering, Uni-
versidade de Brasília (UnB), Brasília 70.910-900, Brazil (e-mail: alexandre.
nery@redes.unb.br).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JETCAS.2021.3076151.

Digital Object Identifier 10.1109/JETCAS.2021.3076151

A trained DNN model’s accuracy hinges on some predicates:
1) A large amount of data, which is the most valuable
and private asset, has to be collected and labeled. 2) High-
performance computing resources (GPUs, TPUs, and NPUs)
are required for days to weeks of training time, including mul-
tiple trials. 3) The training process depends on comprehensive
field experience to better fine-tune the hyperparameters of the
model. Therefore, DNN models are costly to create and serve
as valuable intellectual property (IP) storehouses, and it is
of utmost importance to defend them against stealing/cloning
attacks [4], [5].

While modern mobile devices have built-in neural process-
ing unit (NPU) in processor hardware which is capable of
executing highly complex DNN models, the learning process
still relies on cloud-based ML providers [6]. Thus, model
distribution and deployment present an attractive attack sur-
face. A man-in-the-middle attack can be executed without
authentication and encrypted transaction between the edge
device and the model providers. Similarly, a man-at-the-end
attack can be mounted if the end-device provides no defenses
during loading and execution time. Therefore, DNN IPs should
encompass an additional security layer tightly coupled to the
end-device to thwart unauthorized usage.

SOTA models, such as OpenAI NLP GPT [3], are reaching
new heights in numbers of model parameters (≈174 Billion on
the GPTv3). With the increasing push for accuracy, the model
sizes are growing across the application spectrum. Today’s
models for mobile edge devices are too large to fit into the
neural processing units (NPUs) cache, demanding off-chip
DRAM usage. Consequently, creating further opportunities for
various attacks such as memory bus monitoring or memory
probing [7]. To defend against such attacks, the memory con-
tent must be encrypted. Unfortunately, most memory encryp-
tion techniques add latency for memory access. Thus, we need
a low latency encryption solution. Further, memory addresses
reveal metadata about memory access patterns, which may be
used to infer model hyperparameters and memory activities.
Thus, there is a need to obfuscate memory access.

This paper proposes deep learning (DL) IP protection
solutions for NPU edge devices to deal with the above
scenarios. We demonstrate that our proposed solutions achieve
IP protection objectives without requiring individualized train-
ing, a bane found in some previous model obfuscation
solutions [8], without sacrificing the model’s accuracy, and
without significant performance impact. Besides, the proposed
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obfuscation mechanism preserves the output class distribution
for unauthorized users while degrading the model’s accuracy,
rendering such users unaware of the defense being deployed.
Lastly, the proposed obfuscation technique proves to be a
secure layer of IP protection over brute force and genetic
algorithm based attacks.

The main contributions of the paper are as follows:
• Model Obfuscation. We propose a novel lightweight

model obfuscation technique that does not require a
specialized training process. We demonstrate that our
proposed obfuscation scheme can protect model IP while
providing output class distribution obliviousness over
three well-known neural networks: AlexNet, ResNet18,
and ResNet50. We also validate the security of the
proposed obfuscation scheme by performing a brute force
and a genetic algorithm based attacks.

• Secure model distribution. We envisage an end-to-end
deep learning trusted execution system, ranging from
secure model distribution via hardware root-of-trust and
public-key cryptography (PKC) to a protected edge device
deployment/execution via memory encryption of model
parameters. We do not claim any novel contribution in
this area, but showcase how a complete system can be
built with existing technologies to accomplish model
obfuscation goals without compromise.

The rest of the paper is structured as follows. Section II
briefly reviews DNN and neural model obfuscation back-
ground and defines the attack model for IP theft. In Section III
and Section IV, we introduce and evaluate the proposed
model obfuscation scheme over the IP theft attack model.
Section V presents an overview of the envisioned trusted
execution system, its threat model, and some discussion on
secure model distribution and memory encryption. Section VI
concludes the work.

II. BACKGROUND

This section will briefly address some necessary background
on Deep Neural Networks, model obfuscation, and the adver-
sary capabilities to mount a model exfiltration attack.

A. Deep Neural Networks

Deep Convolutional Neural Network (DCNN) is a sequence
of connected layers, where each layer is responsible for
performing a specific type of computation. Three main layer
types compose state-of-the-art DCNNs architectures: Convo-
lutional Layer, Pooling Layer, and Fully-Connected Layer.
Convolutional layers hold a set of learnable filters/weights
responsible for extracting the low and high-level features from
the input data. Non-linear activation functions are computed
at the end of each Convolutional layer to make their features
more expressive. Pooling layers are responsible for controlling
the model overfitting by reducing the input data spatial size.
Pooling also impacts the network’s required computation cost
since the number of parameters decreases accordingly with
the layer’s depth. Finally, Fully-Connected layers act as a
classifier, computing the class scores based on the features
extracted by the preceding layers.

DCNNs perform two main phases: Training and Inference.
Weights are first randomly initialized and start being adjusted
during the training phase (or learning phase) based on their
relevance for each input data/class. As input data flows into the
network, an error magnitude is calculated based on the distance
between the predicted class and ground-truth. The error is then
backpropagated so that each weight can be adjusted based
on its local and global relevance. The inference phase only
requires the forward step, where the input data flow into the
network to predict which class it belongs.

A massive amount of labeled input data, several training
iterations that run over weeks, and significant expertise to
fine-tune the model hyperparameters are required to achieve a
well-trained DCNN model. Therefore, protecting the model
structure and parameters/weights is imperative to keep it
secure from exfiltration attacks.

B. Neural Model Obfuscation

Neural model obfuscation is an additional security layer
to protect deep neural models from structure and parameter
piracy. It can be done in different ways, from a key-dependent
training process to cryptographic encryption schemes.

The first model obfuscation technique was proposed in
[9], where structural obfuscation by shallow and sequential
networks was employed. This process applies a joint training
phase using the original network and the obfuscated one as
a Teacher-Student approach to achieve an effective structural
obfuscation. However, whoever has access to the obfuscated
model, even a non-legitimate user, can still run it with no
penalties (such as accuracy degradation).

A key-dependent training obfuscation was proposed in [8]
where the model is protected by applying an enhanced back-
propagation algorithm during the training process. A set of
random neuron nodes are locked within a key defined by the
model provider. Only authorized parties possessing the correct
key are capable of unlocking the neurons and achieving the
correct model execution. This technique not only protects the
model during the distribution, but also during the end-device
deployment. A hardware root-of-trust is required to unlock
the model to only authorized end-users. Nevertheless, this
key-dependent training obfuscation approach does not provide
scalability since it requires model providers to re-train their
entire DCNN model portfolio.

Secure cryptographic techniques can also be employed to
protect the model structure and parameters. Model providers
would encrypt the model before sending it to end-users. Only
authorized parties would be able to decrypt it and retrieve
the original model. However, this would incur a significant
overhead since the model should be decrypted on-the-fly to
assure that no side-channel attack would occur when loading
it from the main memory to a processing unit.

C. Attack Model

In this work, we consider a man-at-the-end (MATE) attack,
where the attacker has full access to an edge device capable
of running DCNN models with the support of a Neural
Processing Unit (NPU). The DCNN model is developed and
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Fig. 1. Output class distribution of HPNN framwork’s key-dependent
backpropagation [8] using LeNet-4 model over MNIST dataset.

distributed by a Model Provider, which securely distributes
its models (more details in Section V) to trusted parties.
By reverse-engineering the edge device, the attacker can access
the model’s topology and weights, but not the mapping key
(detailed in Sec. III). The attacker’s goal is to reuse the neural
network model privately or for illegal distribution. In this
case, the obfuscation scheme has to defend the model against
non-authorized users by decreasing its overall accuracy and
preventing the correct model’s execution. Moreover, obfusca-
tion has to prevent any information leakage, hiding from the
attacker that the current model has been locked.

III. PROPOSED MODEL OBFUSCATION

While training-based techniques provide strong obfuscation
of model parameters, it requires a significant amount of time
and computational resources, as model providers are required
to re-train their entire portfolio of DNN models from scratch,
for each user possessing their unique key. Therefore this
approach is not scalable.

Further, such a key-dependent backpropagation
algorithm [8] strongly disturbs the distribution of outputs,
as observed during our experiments and also illustrated in
Fig. 1. Change in output distribution may alert the user that
the model is compromised. The main goal is to preserve the
original output distribution while making the classification as
inaccurate as possible for wrong keys.

Our proposed obfuscation relies on the basic structure of
deep convolutional neural networks (DCNNs), the convolu-
tional filters, shown in Fig. 2.A. As mentioned in Section II-A,
a DCNN is composed of a stack of layers, where each
convolutional layer holds a set of filters which are responsible
for extracting the low and high-level features from the input
data. A filter’s parameters results from its local and global
relevance for each input data/class provided during the training
phase. Therefore, without the correct placement of the filters,
the network does not behave accordingly, reducing its overall
accuracy. We take advantage of this connectivity to provide a
robust and lightweight model obfuscation.

We obfuscate our model considering three possible
approaches: (a) full filter swaps, (b) row/column swaps, and
(c) hybrid swaps, as shown in Fig. 2.B. In the row/column
approach, we randomly select rows or columns from the
same filters within the same layer that are then swapped.

Fig. 2. (A) Convolutional Neural Network layer’s structure. (B) Model
obfuscation techniques (filter, row, column and hybrid swaps).

The full filters swap considers not only a single row or column,
but an entire filter to be swapped. The hybrid approach
considers both swap types mentioned above, mixing filters
and rows/columns swaps in the same obfuscation process. The
obfuscation can achieve high entropy by repeating the swap
process for all subsequent layers since the preceding layers’
error will be propagated and amplified. The difference between
each approach is the impact on the final overall accuracy and
the output class distribution. The amount of swaps coupled
with the selected structure dictates the obfuscation mode, from
stealth to a full defense. The model’s accuracy will drop at
a small percentage in the stealth mode, but the output class
distribution will be preserved, hiding any evidence that the
model has been successfully hacked. On the other hand, a full
defense obfuscation mode will drastically drop the overall
accuracy when under attack. However, after some output class
analysis, the attacker might know that the model is locked. It is
up to the model provider to choose the obfuscation mode.

Only end-users holding the mapping control key, generated
by model providers pre-processing obfuscation phase, can
unlock the model’s inference. Even if a potential attacker
owns the topology and parameters, the model will misbehave,
resulting in a performance drop. Furthermore, the proposed
swap-based obfuscation avoids re-training the whole model
from scratch, enabling fast generation of obfuscated models
with a unique mapping key for each end-user. Thus, this
solution is not only robust, but also scalable.

A. Implementation Overhead

Model providers are required to generate a mapping
key to implement the proposed model obfuscation scheme.
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The mapping key is responsible for storing the information
of whether a structure should be swapped or not. Therefore,
if we considering an n-bit key, one bit will represent one
swap, and the total of swaps will be tied to n and the
number of convolutional layers in the network (layers share
the same key). Additionally, model providers must generate a
file containing the information regarding which structure of a
layer demands to be swapped. The list of structures (pair of
indices) is strongly tied to the mapping key, so only part of
the indices’ pairs are swapped (bit key equals 1). Therefore,
the content of this file can be disclosed with no harm to the
obfuscation scheme. After applying the obfuscation scheme,
the model, the mapping key, and the indices file should be
delivered to an end-user trusted neural device (TND) for the
correct inference execution.

B. Hardware Support

Modern NPUs, such as Google TPU, ARM Ethos, and
Samsung Exynos NPU [10]–[12], implement a systolic
array-based design. Weights and inputs are pre-loaded into
buffers, and subsequently, with each clock, they are fetched by
the processing elements (PEs), multiplied, and accumulated.
ARM Ethos [11] carries a weight decode unit responsible for
managing the DMA controller’s weight stream, decompressing
it on-the-fly (reordering, padding, and aligning into blocks),
and storing them into double-buffered registers to feed the
MAC engine. Samsung Exynos NPU [12] comprises two
data-staging units (DSUs) on each NPU core. Weight decom-
pressors units inside DSUs are responsible for decompressing
the weight stream and sending it to a proper dispatcher unit.
The dispatcher unit selects which weights should be dispatched
along with the feature maps into the MAC arrays. Google
TPU [10] handle the weights through a weight fetcher unit
that reads the stream of data from the DRAM, reorders it, and
makes it ready for the MxM unit to consume it.

A custom weight pre-loading step can enable the pro-
posed swap-based model obfuscation technique by leveraging
the current weight decoder/decompressor/fetcher unit design.
First, the mapping/control key is securely one-time loaded into
an NPU register (shared by layers). Then, as layer weights
are loaded, the decoder/decompressor/fetcher unit also fetches
pairs of indices regarding that layer. Without the correct
mapping key, the weight decoder unit will swap the wrong
structures and dispatch the wrong weights into the PEs, caus-
ing the model to misbehave. The custom placement creates
a walled garden ecosystem where only models from verified
parties can run on the trusted neural device (TND), closing
off the edge-device platform to unauthorized model execution.
As specific design details of Ethos’s weight decoder, Exynos
weight decompressor/dispatcher, and TPU weight fetcher are
not publicly available, we only describe this design principle
and not the detailed implementation.

IV. EVALUATION

To evaluate our proposed model obfuscation technique,
we selected three well-known CNN models with different
numbers of layers, filters per layer, and filter sizes. The models

Fig. 3. Effect of the key sizes for AlexNet, ResNet18 and ResNet50
top 1 accuracy under the three proposed model obfuscation techniques.

were pre-trained on the ImageNet ILSVRC-2012 dataset [13]
for the image classification task. All the experiments were
performed with PyTorch 1.6 framework on a workstation
equipped with dual Intel(R) Xeon(R) Gold 6246 CPUs @
3.30GHz, 256GB RAM and two NVIDIA Quadro RTX
8000 GPUs. To simulate the proposed obfuscation mechanism,
we generate a random mapping key that holds how filters,
rows, or columns should be swapped. This process is tightly
correlated to the model since the random mapping key gen-
erator needs prior knowledge about its structure (number of
layers, number of filters per layer, and filter size). After loading
the pre-trained model, we swap all structures based on the
mapping key and store it back into the disk. An adversary in
possession of the model’s parameters would run inference, but
with no evidence that the model has been locked.

A. Performance of Obfuscated Model

An obfuscated DCNN should behave in the following way:
provide high accuracy, when deployed into a trusted end-user
device with the correct key. Any attempt to run the locked
model by untrusted parties should be thwarted by dropping
the accuracy level by a wide margin. We performed a set
of experiments to analyze each structure swap’s robustness
and impact over the networks. We generate a random key
and, based on that information, we swap the filters, rows,
or columns within the same layer for each neural network.
We compare an unlocked DCNN version (Baseline) over three
locked DCNNs with different key sizes: 32, 64, and 128 bits.
It is clear in Fig. 3 that filter swaps have a more significant
impact on the model’s overall accuracy. When considering
only 32 bits for filter swaps, the accuracy drops by 21.68%,
16.96%, and 61.64% for AlexNet, ResNet18, and ResNet50.
As for row and column swaps, they have a negligible impact
(≤ 2%) on the accuracy for up to 64-bit key sizes. When
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TABLE I

PERTURBATION RATE ON MODELS OUTPUT DISTRIBUTION USING DIFFERENT TYPES OF OBFUSCATION MODE AND KEY SIZE

Fig. 4. Impact of model obfuscation techniques over AlexNet output class
distribution.

considering a 128-bit key size scenario, rows and columns
swap add up to a 10% drop in the overall accuracy.

This behavior occurs because, in a larger group of weights,
there is a higher probability of swapping relevant weights with
non-relevant ones [14]. Thus, we observe that filter swap is
the best way to achieve our obfuscation goals.

B. Information Leakage Analysis

If a defender considers accuracy as the only metric for
evaluating the obfuscation technique, one could say that the
filter swap is the right pick. However, swapping many relevant
weights and drastically reducing the accuracy results incurs
in considerable perturbation in the output class distribution.
In this case, by analyzing the outputs of sequential inferences
runs, a potential adversary can distinguish between a locked
or unlocked model.

To quantify the perturbation rate of each obfuscation
model scheme, we propose a new metric ( pr ) described by
Equation 1 which takes into account an optimal distribution
(optimal_counti ) for each class in the dataset and a bad
distribution (bad_counti ) that arises from a locked model
for all available classes in the dataset (N). Therefore, a high
pr means the proposed obfuscation scheme incurs a high
perturbation of the final distribution. Fig. 4 and TABLE I show
how the output class distribution of AlexNet behaves in the
previous DCNN performance experiment. The perturbation
is apparent when applying filter swap obfuscation, even for
the smallest key size ( pr > 22%). Row and column swap
obfuscation preserve the distribution (pr < 1.7%), with a
marginal prediction count increase for few outliers.

pr =
√∑N

i=0(optimal_counti − bad_counti )2

total_count
(1)

Considering that filter swap decreases accuracy at an accept-
able rate but harms the output distribution and that row/column

Fig. 5. Impact on models accuracy using different types of configurations
for hybrid row (H-Row) and hybrid column (H-Column) modes using 128-bit
key.

swaps provide a small degradation on the overall accuracy
while keeping the class distribution stable, how can we find
the balance between these two strategies? We propose a
hybrid obfuscation scheme by merging filter and row/column
swaps. Few filters are swapped, and the remaining key bits
are reserved for rows or columns swap. Fig. 5 and TABLE II
show the impact on accuracy and distribution of different
types of hybrid swap configurations. Reserving 20 bits of
the key for filter swap is sufficient to drop the accuracy at
substantial rates – 17.73%, 31.47%, and 35.38% for Hybrid
Row over AlexNet, ResNet18, and ResNet50 with 128-bit
key, while keeping most of the distribution perturbation at an
acceptable rate. As a merit of comparison, the key-dependent
backpropagation algorithm [8] illustrated in Fig. 1 incurs a
perturbation rate of 18% over a small four-layers deep network
(LeNet-4) evaluated with a ten-classes dataset (MNIST).

TABLE III shows the accuracy drop results for both hybrid
row and hybrid column approaches with 128-bit key on
AlexNet, ResNet18, and ResNet50. By reserving 20 bits of
the key for filter swap, we can preserve the output distribution
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TABLE II

PERTURBATION RATE ON MODELS OUTPUT DISTRIBUTION USING DIFFERENT TYPES OF CONFIGURATIONS FOR
HYBRID ROW AND HYBRID COLUMN MODES USING 128-BIT KEY

TABLE III

SUMMARY OF THE OBFUSCATION RESULTS OVER THE DCNN MODELS THAT COMPOSE THE BENCHMARK SET [1], [15], [16]. ACCURACY IS MEASURED

BASED ON TOP-1 ERROR ON IMAGENET [13] DATASET. THE RESULTS CONSIDER AN 128-BIT KEY FOR FILTERS, ROWS, AND COLUMNS SWAPS.
THE HYBRID MODE IS COMPOSED OF 20 FILTERS AND 108 ROWS/COLUMNS SWAPS

(up to 18.48% considering the Hybrid Row scheme) and
reduce the overall accuracy at acceptable rates (more than
35.38% in best cases), providing the best trade-off between
accuracy drop and perturbation. Increasing the reserved bit
keys for filter swap by more than twenty incurs a much higher
distribution perturbation, mainly because the first convolu-
tional layer is more sensitive and less redundant [17], and
a simple additional filter swap impacts the model’s overall
accuracy.

Model providers can make use of the perturbation metric
along with the accuracy drop in order to achieve an optimal (or
close to optimal) obfuscation scheme. Since the obfuscation
process comprises random selections of filters, rows, and
columns, an optimization process can deliver even better
results than the ones presented in TABLE III.

C. Security Analysis of Swap-Based Technique

A significant challenge for the proposed swap-based tech-
nique is to guarantee that even if the potential attacker
possesses the model structure, parameters, and list of swap
indices, it would not be possible to achieve the same accuracy
as trusted parties. To analyze the security properties of the
proposed approach, we mount two types of attacks on the
locked models in an effort to discover the correct key.

1) Brute-Force Attack: The first type of attack is a
brute-force mode with random walks. First, we lock the model
with the swap-based obfuscation technique using a 128-bit
key. Then, we randomly generate an initial key, which results

in some accuracy. We then perform a random walk over the
individual bits of the initial key, flipping one at a time and
checking the new accuracy with a known test set. If the
accuracy goes up, we keep the new bit and remove the index
from the random search. If the accuracy does not improve,
the bit key is reverted, and we perform random walks over
the remaining indices. This process is repeated until hitting
the accuracy target or after the expiry of some number of
iterations (1 000 in this case). A secure technique must not
allow the attack to reach the target accuracy by random walk
over the key. Further, a secure model should keep the accuracy
far from the target by an acceptable margin.

Fig. 6 shows the success potential of the attack on a 128-bit
key for each network during 1 000 trials. Each trial corre-
sponds to a random walk step, where one of the key’s bit
is flipped, and a full prediction over the Imagenet validation
set is performed. The three models are capable of sustaining
a substantial accuracy drop when applying the filters swap
approach. With only 20 bits for filter swaps out of 128,
the hybrid row approach maintains the accuracy drop with
up to 8.8% for ResNet18.

The models begin at a low accuracy level due to the random
generation of the start point key. The accuracy rises after a set
of trials, but at some point, it gets stagnant, not exceeding
a specific threshold. This phenomenon happens due to the
non-uniqueness of the swaps. During the filter and hybrid
mode’s obfuscation process, the first filter is swapped consider-
ing all the available filters/rows/columns in the particular layer.
However, the remaining swaps might choose one of the filters
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Fig. 6. Security analysis of the swap-based obfuscation technique using filter
(Filter-128k) and hybrid row (H-Row-128k) modes with 128-bit key against
brute-force attack.

from the previous swaps, creating a relation between the bit
keys. With that approach, the Model Provider can determine
a specific order in which the bit keys should be flipped to
achieve the parameters’ correct placement.

2) Genetic Algorithm Attack: The second experiment is
a genetic algorithm (GA) based attack, which consists of a
genomes population representing possible keys to unlock the
model. The genomes are evaluated with a fitness function,
consisting of a full prediction over the Imagenet validation
set. The resulting accuracy expresses how well a genome per-
formed over the locked model. After generating and evaluating
the initial population, an iterative process called generation
starts. During each generation, genomes are ranked based
on the fitness function. The most relevant ones are ran-
domly selected to combine their genetic information (key bits)
through a crossover function. These genome pairs exchange
part of their information, generating a new pair of genomes,
denominated offsprings. Then, both offsprings suffer mutation
where a single or multiple bits can be flipped. Lastly, a new
generation starts by evaluating the new genomes population.

The GA-based attack requires a set of parameters to con-
verge appropriately. Population size, number of generations,
crossover function, crossover rate, and mutation rate dictates
how the GA will behave and is tightly coupled to the problem.
Fine-tuning these parameters requires several combinations
and runs, demanding a humongous amount of time and com-
putational resources, mainly if the fitness function comprises
a thousand DNN inferences. The search for an optimal set of

Fig. 7. Security analysis of the swap-based obfuscation technique using filter
(Filter-128k) and hybrid row (H-Row-128k) modes with 128-bit key against
GA-based attack.

parameters is out of the scope of this work. Due to this fact,
we keep the parameters with the following values:

• Genome size: 128
• Population size: 10
• Number of Generations: 200
• Crossover function: Single-point Crossover
• Crossover rate: 0.9
• Mutation rate: 0.5

Fig. 7 shows the success potential of the GA-based attack
on a 128-bit key for each network over 200 generations. Each
point in the plot corresponds to the top-1 genome accuracy of
a generation. Like the brute-force attack, the three models can
sustain a substantial accuracy drop when applying the filter
swap approach. The hybrid-row mode with 20 bits for filter
swaps can maintain a slight margin of 4% accuracy drop for
AlexNet after 2 million inference trials.1

Note that we decided to run the experiment predictions on
the whole validation dataset for simplicity of coding. In a
real scenario, a potential attacker would not have this amount
of data. Instead, the attacker would have to make several
predictions using a small fraction of the dataset (<10%).
Therefore, this experiment considers an unusual case, where
the attacker is assumed to possess the same amount of data
as the Model Provider. Thus, we demonstrate that seeking
monotonic accuracy improvement via random walk or using

1# trials = 200 generations × 10 genomes × 1,000 images.
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TABLE IV

DCNNS TOP-1 ACCURACY UNDER MODEL COMPRESSION. PRUNING (P)
REMOVES MORE THAN 59% OF THE PARAMETERS BY ADDING

LESS THAN 1% ERROR ON ACCURACY

GA will not uncover the key in the proposed obfuscation
approach.

D. Security Enhancements With Pruned Models

A considerable number of the parameters of a DCNNs
have little or no impact on the final accuracy of a trained
network [18]. Pruning is a compression technique to avoid
unnecessary computation and storage by removing these
non-relevant weights through an iterative process [19]. Since
the swap-based obfuscation heavily relies on the selected
weights, pruning should significantly impact the proposed
technique’s performance.

Fig. 8 show the secure potential of 64-bit and 128-bit
keys filters swaps over pruned and dense models (details
in TABLE IV) against the brute-force attack performed in
Section IV-C.1. Pruned models outperform the original ones
(dense), especially with 128-bit key size over ResNet18 and
ResNet50. Therefore, pruning can be a potential way to
enhance swap-based obfuscation security.

V. SYSTEM OVERVIEW

Distributing a keyed obfuscation model presents a challenge
of secure key and model distribution. This section show-
cases an end-to-end deep learning trusted system, ranging
from secure model distribution to protected model deploy-
ment/execution on trusted edge devices. We consider the
proposed swap-based obfuscation technique as an additional
security layer on top of well-known defense mechanisms that
provide secure key distribution.

The overview of an ideal end-to-end deep learning trusted
execution system is presented in Fig. 9. The system considers
two main parties: model providers and end-users. Model
providers develop, train, and commodify high-accuracy deep
learning models. They invest in creating labeled data from
multiple sources and in high-performance computing systems
for model training. End-users are trusted neural device (TND)
holders aiming to run inference applications bought from
model providers. The TND has native hardware support for
relevant security functions and primitives in the form of a
hardware security module (HSM), execution of swap-based
obfuscated models within the neural processing unit (NPU),
and additional DRAM protection via memory encryption.

Fig. 8. Security analysis of the swap-based obfuscation scheme over
Dense (D) and Pruned (P) models of AlexNet, ResNet18, and ResNet50 using
64-bit and 128-bit keys against brute-force attack.

A. Secure Model Distribution

The first goal for the model provider is to securely distribute
their valuable IP to end-users over an untrusted channel to
prevent theft while transmission.

The step-by-step protocol for secure model distribution,
as illustrated in Fig. 9, is as follows:

1) End-user makes a purchase request for a model from
a model provider/vendor and provides their public key,
P Kuser , to the vendor. The public key is generated by
the HSM in the TND;

2) The model provider receives the request and the end-
user’s public key. An obfuscated inference model is
generated with a random mapping key, K eyobf uscate;

3) The model provider/vendor encrypts the obfuscated
model with a end-user specific symmetric key,
K eyvendor . The symmetric key and the obfuscation key,
K eyobf uscate, are both encrypted by the vendor using
the end-user’s public key, P Kuser , before transmission;

4) The encrypted model and the encrypted keys are trans-
ferred to the end-user TND.

For this work, we assume that elliptic-curve cryptography
(ECC) is used to realize the public-key cryptography (PKC).
Secure key exchange is performed using the elliptic-curve
Diffie–Hellman (ECDH) protocol [20]. We also assume that
the HSM generates a 192-bit private key using physically
unclonable functions (PUFs). This key is not used for any
other purpose besides enabling PKC using ECC. Current best
192-bit ECC hardware implementation in literature requires
83K gates [21]. Since the ECC module is only used for
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Fig. 9. Overview of secure model distribution.

key exchange during the infrequent secure model distribution,
the throughput need not to be high.

B. Memory Encryption

In this section, we will discuss the need for memory encryp-
tion of the neural network model during usage in real-time
applications and explore the various considerations that need to
be taken into account to implement reliable encryption under
varying system constraints.

Securing the distribution of machine learning models
ensures that valuable IP can be stored safely in non-volatile
storage. When needed, the model parameters are loaded
on-chip and decrypted to be used by the neural network
accelerator. However, for many modern applications, the size
of a machine learning model is quite significant and the model
cannot be completely contained within the on-chip cache. For
example, ResNet50 has over 23 million weight parameters and
the total size of the trained model is ≈98 MB [22]. Even if
we optimized the weights by lowering the precision to reduce
the total space requirement for the model, we still need to
account for the storage of input data, temporary values and
programming instructions. Furthermore, the TND may run
multiple concurrent applications, which increases the space
requirements even further. Typically, total on-chip cache sizes
are in the 10’s of megabytes with even dedicated neural
network processing application platforms such as Tesla’s
self-driving chip having just 32MB SRAM memory [23].
Hence, the model and associated data will need to be stored
in an intermediate off-chip memory, like DRAM, and only the
required parameters may be accessed as needed.

1) Attack Overview: If the partial model off-loaded to
memory is unencrypted, then the attacker can target the
memory using a range of physical side-channel, probing or
invasive attacks [24]. The introduction of faster non-volatile
memory technology such as 3D XPoint to supplement DRAMs
further exacerbates the problem as the stored data is persis-
tent. The attacker’s goal is to retrieve the weight parameters
and architectural information of the neural network model.
In this work, our goal for exploring memory encryption is
to protect the weight parameters when they are stored in
memory. Protection of model architecture is achieved using
model obfuscation, as detailed in Section III.

2) System Overview: A memory encryption system is illus-
trated in Fig. 10. The basic operation is detailed below.

• When a neural network application is invoked,
the encrypted model, including the authentication

Fig. 10. Illustration of memory encryption system.

data (digest), provided by the vendor is loaded onto the
DRAM memory.

• The encrypted model is loaded onto the TND as
needed and decrypted first using the vendor-supplied key,
K eyvendor , by the HSM. Authentication data or digest
supplied with the model is used to verify the model.

• During execution, the model parameters that need to
be off-loaded to memory, due to cache overflow, are
encrypted with a temporary key, keyi , generated by the
HSM. We assume a minimum key length of 128 bits.
This key is never exposed outside the TND and is only
accessible to the HSM. Multiple such keys may be
generated and used during the program execution.

• When the model parameters are loaded back from the
memory, the key, keyi , is used to decrypt them.

If the memory data is lost due to power loss, then the
original secure model in the storage can be used to restart
the application.

3) Resource Considerations: To implement memory
encryption reliably and as ubiquitously as possible, we need
to take into account the variability in the available resources
across different platforms. Platforms with high resource
availability, such as Tesla’s FSD [23], can be assumed to
have a large cache, high speed memory bus and larger area
available to implement HSM features, including dedicated
secure storage. Power consumption is also not considered
a limiting factor. In contrast, low resource platforms are
assumed to have a lower cache size, no secure HSM
storage and limited power budget. In both cases, throughput
is the primary target and will influence the hardware
implementation considerations for the encryption cipher. High
resource platforms are more likely to run multiple neural
network applications and the size of the models can be quite
large, requiring frequent memory accesses. For low resource
platforms, the limited cache means that only small portions
of the model can be loaded at a time and hence, there will be
frequent transfer of data between TND and memory.
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4) Key Generation: The HSM needs to have minimum
capabilities such as support for public-key cryptography
(PKC), an encryption cipher implementation and physically
unclonable functions (PUFs) to obtain the private key(s).
High resource platforms may additionally implement a robust
true random number generator (TRNG) for generating the
intermediate keys (keyi ), while low resource platforms may
only depend on the utilization of PUFs to obtain additional
keys.

5) Performance Considerations: To enable seamless
execution of the inference application while using the
memory encryption scheme, it is vital to retrieve the
encrypted model parameters from memory and decrypt
them for use to prevent stalling the application. Model
parameter encryption can be done more slowly as it has
no effect on inference. However, the primary bottleneck for
memory encryption is the >80Gbps read/write bandwidth
obtained by modern DDR4 and LPDDR4 memories [25].
The GCM mode of operation of AES cipher has been
adopted for its performance over other modes. The most
efficient implementation can achieve ≈150Gbps, but has
a large area cost [26]. Hence, it is only suitable for high
resource platforms. For low resource platforms, lightweight
block cipher such as PRINCE are more suitable due to its
14 − 16× smaller size compared to AES [27]. It is possible
to use the fact that model execution sequence is usually
fixed to ensure that the parameters that are required from
the DRAM memory in the near-future are pre-loaded and
decrypted to ensure they are ready for use.

VI. CONCLUSION

In this paper, we presented a deep-learning IP protection
solution for NPU edge devices. Our solutions encompass a
novel, lightweight, scalable model obfuscation technique that
does not require a specialized training process. The proposed
obfuscation technique can hide the original network’s internal
structure by swapping rows, columns, and full filters based
on a secret mapping key. We demonstrate the effectiveness of
our approach across different DNN architectures. Moreover,
we verify that our hybrid scheme avoids information leakage
by preserving the output class distribution. The swap-based
obfuscation technique is the only solution known to date that
is scalable and does not require retraining for secret key
changes. Further, the solution allows model updates by the
model provider without requiring any additional features.

Lastly, we described an end-to-end deep learning trusted
execution system, ranging from secure model distribution via
hardware root-of-trust and public-key cryptography infrastruc-
ture (PKI) to protected model deployment/execution on trusted
edge devices via low-latency memory encryption solution for
real-time DNN execution. This showcases working of the
entire system.
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