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ABSTRACT: Nanoscopic dierences in ree volume result in pressure-dependent changes in ree energies which can thereore
impact olding/unolding stability o biomolecules. Although such eects are typically insignicant under ambient pressure
conditions, they are crucially important or deep ocean marine lie, where the hydraulic pressure can be on the kilobar scale. In this
work, single molecule FRET spectroscopy is used to study the eects o pressure on both the kinetics and overall thermodynamics
or olding/unolding o the manganese riboswitch. Detailed pressure-dependent analysis o the conormational kinetics allows one
to extract precision changes (σ ≲ 4−8 Å3) in ree volumes not only between the ully olded/unolded conormations but also with
respect to the olding transition state o the manganese riboswitch. This permits rst extraction o a novel “reversible work” ree
energy (PΔV) landscape, which reveals a monotonic increase in manganese riboswitch volume along the olding coordinate.
Furthermore, such a tool permits exploration o pressure-dependent eects on both Mn2+ binding and riboswitch olding, which
demonstrate that ligand attachment stabilizes the riboswitch under pressure by decreasing the volume increase upon olding (ΔΔV <
0). Such competition between ligand binding and pressure-induced denaturation dynamics could be o signicant evolutionary
advantage, compensating or a weakening in riboswitch tertiary structure with pressure-mediated ligand binding and promotion o
olding response.

I. INTRODUCTION
Structural transitions in biomolecules and the associated
reorganization o the surrounding water molecules lead to
nanoscopic changes in the overall solvent plus solute system
volume.1,2 As a result, conormational change in a biomolecule
is intrinsically pressure-dependent.3 Though such pressure
eects are oten negligible at ambient pressure (1 bar), these
eects can become quite signicant in marine biology due to
rapid increase in hydraulic pressure as a unction o ocean
depth (0.1 bar/m).4 Indeed, the average ocean depth already
corresponds to 350 bar pressure, with the deepest regions (e.g.,
the Challenger Deep) in excess o 1 kbar. As a result, marine
(micro)organisms can exhibit unique modes o biological
unction sculpted by evolution under high-pressure con-
ditions.5,6 It is thereore o particular biophysical interest to
explore pressure-dependent paradigms o biomolecular struc-

ture and unction to understand, at the molecular level,
bioadaptation o deep-sea organisms to pressure extremes.7

With a ew exceptions,8,9 proteins and nucleic acids are
known to thermodynamically unold/dehybridize with increas-
ing pressure.5,10−12 Pressure-induced denaturation implies that
the olded solute + solvent system eectively occupies more
space, resulting in a positive ree volume change (ΔV0 > 0)
upon olding. Such an increase in volume may seem initially
counterintuitive because one oten thinks o biomolecular
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olding tending toward a state o greater compaction. One
reason or such anomalous behavior is that these overall
volume changes are quite modest, with solvent-excluding
voids13−15 and/or reorganization o the solvation shell16−18

thought to be major contributors to the volume increase upon
olding. Interestingly, although pressure is known to
thermodynamically destabilize the equilibrium olding behavior
or nucleic acids and proteins, the kinetics o such eects has
remained ar less explored.19−21 Furthermore, because nucleic
acids conormations are oten highly dynamic,22 with
important biochemical pathways regulated by kinetic access
over a barrier to a unctionally new conormation (e.g.,
regulation o gene expression by co-transcriptional olding o
riboswitches),23−25 it is thereore o particular importance to
also explore the eects o pressure on transition state barriers
and the resulting olding kinetics.
Recently, high-pressure single-molecule uorescence reso-

nance energy transer (smFRET) studies o nucleic acid
olding kinetics have become experimentally accessible,
exploiting small glass capillaries as high-pressure sample cells
in conjunction with conocal single photon counting
uorescence measurements.11,26,27 In earlier work, pulsed
laser excitation through a microscope objective into solutions
at high pressure have been used to measure and record the
FRET energy transer efciency (EFRET) or single RNA
molecules diusing through the conocal volume region.
Though such studies have been limited to equilibrium
thermodynamics, they clearly demonstrated a systematic
decrease in EFRET (i.e., an increase in the unolding raction)
with increasing pressure. In the present work, we signicantly
expand these equilibrium high-pressure smFRET studies by
immobilizing single RNA constructs to the inside o a high-
pressure capillary cell and thereby extend observation times o
the uorescence trajectories to monitor olding/unolding
kinetics at the single molecule level.28 The resulting pressure-
dependent kinetic rate constant data now inorm on the ree
volume changes associated with (i) olded, (ii) unolded, and
(iii) transition state barrier conormations and thus provide
novel opportunities or detailed characterization o the
thermodynamic ree volume along the nucleic acid olding
coordinate.29

Specically, this work comprises detailed study o the eects
o high pressure on the olding/unolding kinetics o the
manganese riboswitch at the single molecule level. The olding
thermodynamics and kinetics o this riboswitch have been
studied previously both in ensemble and at the single molecule
level under ambient pressure (1 bar) conditions,30−33 with the
present work exploring pressure-dependent kinetics o ligand-
induced tertiary structure ormation or the rst time. O
particular signicance is rst experimental characterization o
the coupling between (i) pressure-dependent kinetic measure-
ments and (ii) the ligand binding event, which allows us to
obtain ree volume changes or accessing the transition state
associated with manganese riboswitch olding. Furthermore, in
the context o a simple Hill analysis,30 we can separate ligand
Mn2+ binding rom riboswitch olding events and thereby
obtain novel inormation about “reversible work” (PΔV)
contributions to the ree energy landscape along the conorma-
tional reaction path. These volume changes are revealed to be
sensitive to the hydration structure and ractional Mn2+
binding with the RNA, which oers additional insights into
the mechanism or ligand-induced RNA olding.

The organization o this paper is as ollows. The details o
sample preparation and high-pressure experiment setup are
illustrated in Section II. Section IIIA demonstrates high-
pressure eects on the riboswitch olding kinetics, or which
increasing pressure destabilizes the riboswitch by simulta-
neously decreasing (increasing) the olding (unolding) rate
constants. The eects o Mn2+ and Mg2+ cations on the
pressure-dependent olding are then presented in Sections IIIB
and IIIC, respectively, which reveal that cognate ligand Mn2+
(and not Mg2+) signicantly impacts changes in ree volume
(ΔV0

bind < 0). Specically, Mn2+ alters the volumetric
reversible work landscape or olding via binding o the
cognate ligand to (and subsequent compaction o) the
riboswitch rather than a more generic screening o anionic
repulsion due to divalent cations. Finally, we briey discuss in
Sections IVA and IVB the possible role o equilibrium vs
kinetic competition between Mn2+ and pressure-induced
changes in riboswitch volume on the evolutionary biology o
deep-sea organisms.

II. EXPERIMENT
IIA. Single-Molecule Fluorescent Construct Design

and Sample Preparation. From the crystal structure data
(PDB: 4Y1I),33 the ligand-bound olded conormation o the
manganese riboswitch consists o an RNA our-way junction
with the loop−loop interaction between P1 and P3 stems
stabilized by a Mn2+ cation (Figure 1A). In design o the

single-molecule FRET construct, the manganese riboswitch is
labeled with Cy3 and Cy5 at the distal ends o P1 and P3,
respectively, to probe the loop−loop docking/undocking that
is the major conormational response to Mn2+ association. The
single-molecule FRET construct o the riboswitch consists o
three RNA oligomers, labeled with Cy3, Cy5, and biotin. The
detailed RNA sequences and the labeling positions or these
oligomers can be ound in previous work.34 To assemble the
ternary RNA construct, the three oligomers are heat-annealed
at 90 °C, ollowed by purication via high-perormance liquid
chromatography (HPLC) methods. The doubly dye-labeled
and biotinylated product enables surace immobilization o the
RNA construct to achieve single-molecule uorescence
detection over a prolonged time window and thereby observe
a sequence o multiple olding/unolding events. Furthermore,

Figure 1. Schematic o the high-pressure single-molecule FRET
experiment showing the instrument setup. (A) Cartoon representa-
tion o the manganese riboswitch construct in the Mn2+-bound olded
conormation where the loop−loop interaction between P1 and P3
stems is ormed. (B) High-pressure generating system coupling to the
capillary sample holder aligned with the microscope objective. The
reservoirs contain ethanol as the pressure transmitting uid
throughout the high-pressure tubing maniold.
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on the basis o a characteristic Forster length R0 ≈ 50 Å or the
Cy3−Cy5 FRET pair, the interdye distances in the olded
conormation can be predicted rom the manganese riboswitch
crystal structure to be 45 Å,33 which is in good agreement
(EFRET (45 Å) ≈ 0.65) with the high EFRET ≈ 0.60 state
observed. Conversely, when the manganese riboswitch unolds,
the distance between Cy3 and Cy5 increases, resulting in a
reduced and easily distinguished value o EFRET ≈ 0.15
consistent with R ≥ 67 Å.
The high-pressure sample cell is made rom a glass capillary

with a square cross section (75 μm/360 μm inner/outer
dimensions, Polymicro).27 Such small lateral dimensions
permit higher pressure (>2000 bar) operation, while the at
interior surace and wall thickness (143 μm) also allow the
capillary to unction as a conventional coverslip in standard
microscope imaging. To prepare the sample, one end o the
capillary is rst glued into a metal plug drilled with a 450 μm
diameter hole and coupled to the pressure system (Figure 1B).
Ater creating an optically transparent window by oxidizing
away a small 1 cm patch o the polymer coating, we immobilize
the RNA molecules on the inner surace o the capillary
through biotin−streptavidin interactions. To achieve this goal,
we continuously ow the ollowing solutions through the
capillary in succession: (1) 10 mg/mL bovine serum albumin
(BSA) with 10% biotinylation, (2) 200 μg/mL streptavidin
solution, and (3) ≈25 pM RNA construct. The exposure time
or each solution is ≈2 min, with pressure delivered through a
mechanical micropipet (Eppendor) to ush liquid through the
capillary.29 Beore any single molecule experiments, the
capillary is additionally ushed with an imaging buer
containing (1) 50 mM pH 7.5 HEPES buer, (2) enzymatic
oxygen scavenger cocktail (PCD/PCA/Trolox) to catalytically
remove oxygen,35 (3) 100 mM NaCl to provide background
salt, and (4) sufcient MgCl2/MnCl2 to achieve desired
divalent cation and cognate ligand concentrations. The ree
end o the capillary is then sealed with an oxy-propane torch,
while the metal plug end is dipped into silicon oil to create a
thin pressure transmitting meniscus and prevent sample
contamination.
IIB. High-Pressure Single-Molecule FRET Spectrosco-

py. Pressure control is achieved by a manually operated piston
screw pump (High Pressure Equipment), which can deliver
pressures up to 5 kbar through high-pressure stainless steel

tubing, with the entire maniold lled with ethanol as pressure
transmitting uid (Figure 1B).36 We take advantage o the
square cross section o the sample cell by taping it onto the
surace o a coverslip, which permits ready alignment o the
optical axis o the microscope objective axis with respect to the
capillary wall.29 The details o the conocal single molecule
FRET spectroscopy setup can be ound in previous work.37 To
initiate an experiment, the laser is ocused to a diraction
limited waist (ωx,y ≈ 260 μm) on the inner capillary surace,
with the search or single uorescent molecule constructs
conducted by raster scanning o the piezo stage. Tethering o
the construct to the capillary surace permits prolonged
diraction limited observation o Cy3/Cy5 uorescence rom
a single localized RNA, which in turn enables the collection o
long-lived (≈1 min) single molecule FRET trajectories at ≈4
kHz photon/s detection rates and limited by eventual
photobleaching.

III. RESULTS AND ANALYSIS
IIIA. Kinetic Origins o Manganese Riboswitch

Unolding at Increasing Pressure. Time-dependent EFRET
trajectories reveal that the manganese riboswitch actively
switches between low and high EFRET states (see sample FRET
traces in Figure 2) corresponding to unolded and olded
conormations.30 While the equilibrium constant Kold can be
readily obtained rom the total timing or olded vs unolded
events, even more valuable inormation about the olding
kinetics can be extracted rom the distribution o dwell times.
As shown in Figure 3, this dwell time distribution is well
approximated by a single-exponential decay, or which the
olding/unolding kinetics o the manganese riboswitch can be
described by rst-order rate constants kold and kunold. The
resulting dwell time analysis reveals a aster decay or the dwell
time distribution o the unolded state, i.e., kold > kunold under
ambient (1 bar) conditions. As external hydrostatic pressure
increases to 500 bar, however, the riboswitch spends
signicantly longer in the low EFRET (“denatured”) con-
ormation, as visually evident in Figure 2. Such pressure-
dependent denaturation is consistent with previous high-
pressure studies o both proteins5,12 and nucleic acids.10,11
Interestingly, however, the dwell time distributions in Figure 3
make evident that increasing pressure kinetically results in an
equilibrium preerence or the unolded Mn2+ riboswitch by

Figure 2. Sample uorescence traces and the resulting time trajectories o EFRET at (A) 1 bar and (B) 500 bar. The simulated traces in orange are
obtained rom hidden Markov modeling.
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both an increase in the unolding rate constant (kunold) and yet
also a simultaneous decrease in the olding rate constant (kold).
The pressure eects on the manganese riboswitch olding

equilibria can be summarized in the semilogarithm “van’t Ho”
plots o Kold vs pressure (Figure 4A), which specically reveal

a linear decrease in ln(Kold) as a unction o elevated pressure.
We can urther quantiy such a pressure dependence by the
simple thermodynamic relation3,5

K
P

V
RT

ln

T

fold
0

=ikjjjj y{zzzz (1)

which allows us to relate the slope in Figure 4A to the change
in ree volume upon olding. Least-squares ts to the data yield

ΔV0 = +88(4) mL/mol, with a positive sign clearly
corresponding to the manganese riboswitch occupying the
greater volume upon olding. The present high-pressure single-
molecule kinetic capabilities permit a urther interesting level
o detail by similar volumetric analysis applied to pressure-
dependence o the olding/unolding rate constants (Figure
4B). Specically, the activation ree volume ΔV‡

old/unold or
accessing the transition state barrier rom the olded/unolded
conormations can be obtained rom linear ts to an
“Arrhenius-like” volumetric expression5

k
P

V
RT

ln

T

fold/unfold fold/unfold=
‡ikjjjj y{zzzz (2)

where once again a positive volume change (ΔV‡
old = 49(4)

mL/mol) reveals that the transition state (TS) takes up more
volume than the ully unolded state (U). Conversely, the
corresponding volume change in the unolding direction is
negative (ΔV‡

unold = −37(3) mL/mol), which obviously
rationalizes the observed speed up in the unolding rate
constant kunold with pressure. These results can be simply
summarized as predicting a monotonic increase in the
manganese riboswitch ree volume along the olding
coordinate, with VU < VTS < VF, with uncertainties in these
volume changes at the σ ≲ 4−8 Å3 level.

IIIB. Mn2+ Efects on Pressure-Dependent Riboswitch
Folding. The manganese riboswitch responds conormation-
ally to its cognate ligand Mn2+ in the regulation o gene
expression, which naturally invites study o pressure-dependent
olding as a unction o ligand concentration.32 As evident in
Figure 5, increasing the cognate ligand Mn2+ concentration

promotes riboswitch olding (i.e., an increase in Keq) at each
pressure explored rom ambient to 1000 bar. Moreover, the
slopes o the van’t Ho plots are all negative (ΔV0 > 0),
correctly predicting pressure-induced denaturation or the
manganese riboswitch at all Mn2+ concentrations within a
physiologically relevant range. At a higher level o quantica-
tion, the van’t Ho slopes in Figure 5 are summarized in Table
1, or which the ΔV0 values exhibit a systematic decrease as a
unction o increasing Mn2+. Most importantly, this implies
that all positive ree volume changes or manganese riboswitch
olding/unolding are signicantly reduced by association with
the cognate ligand/Mn2+, a point to which we will return in
Section IV. Finally, we can apply a similar pressure- and Mn2+-
dependent analysis to the rate constants or manganese
riboswitch olding/unolding. As nicely summarized in Figures
6A,B, an increase in Mn2+ concentration systematically lowers

Figure 3. Sample dwell time distributions in semilogarithmic plots at
(A) 1 bar and (B) 500 bar. Data are t to a single-exponential decay
unction to obtain olding and unolding rate constants kold and kunold,
respectively.

Figure 4. Pressure-dependent manganese riboswitch olding (A)
equilibrium constant and (B) kinetics rate constant plots, where error
bars represent standard deviation o the mean. In analogy to Eyring
analysis o transition state barrier energies, the data are least-squares
t to a single-exponential unction to obtain quantitative volumetric
change inormation or ΔV0 and ΔV‡

old/unold. [Mn2+] = 15 μM;
[Mg2+] = 2 mM.

Figure 5. Pressure-dependent equilibrium constants (Kold) or the
riboswitch olding as a unction o increasing [Mn2+] in the presence
o physiological [Mg2+] = 2 mM.
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the negative slopes in an Arrhenius-like pressure plot or kold,
indicating a dierential decrease in transition state ree volume
(ΔΔV‡

old < 0) as a unction o added Mn2+. On the other
hand, the corresponding Arrhenius slopes in Figure 6B or the
unolding rate constants reveal no systematic response to Mn2+
concentration, indicating an approximately constant ΔΔV‡

unold
independent o Mn2+ over 0−50 μM. To urther quantiy the
Mn2+ eects on pressure-dependent response o the riboswitch,
the olding/unolding activation volumes (ΔV‡

old/unold)
calculated by eq 2 are summarized in Table 1, to which we
will return as an important point o discussion in Section IV.
IIIC. Mg2+ Efects on the Pressure-Dependent

Riboswitch Folding. The manganese riboswitch has two
cationic binding sites, one o which can bind with Mg2+ at
physiological levels (2 mM) and another that exclusively
responds to Mn2+ but with a much reduced afnity or Mg2+.
However, it has also been shown in previous single molecule
studies that Mg2+ can promote manganese riboswitch olding
with or without the cognate ligand.30 As a parallel thrust,
thereore, we have also explored Mg2+ and pressure-dependent
manganese riboswitch olding to compare the eects o

cognate ligand (Mn2+) vs divalent cation (Mg2+) under near-
physiological concentrations. As illustrated in the pressure
van’t Ho plot in Figure 7, the presence o Mg2+ at constant

Mn2+ also enhances the equilibrium stability or riboswitch
olding, though requiring 1000-old higher (i.e., mM vs μM)
concentrations. Interestingly, however, the slope o this van’t
Ho plot remains constant over an additional 4000 μM
increase in Mg2+ concentration, consistent with changes in ree
volume being insensitive to divalent Mg2+ (ΔΔV0 ≈ 0). This
contrasts with the unambiguously strong eects o Mn2+ on
pressure-dependent denaturation, conrming that riboswitch
olding contributions to ΔV0 > 0 are clearly both site- and
cation-dependent.
Similarly, we can also deconstruct these eects by pressure-

dependent investigation o the olding/unolding kinetics. As
illustrated in Figure 8, Mg2+-induced olding o the riboswitch
is clearly promoted at all pressures. It is interesting to note,

Table 1. ΔV0 and ΔV‡
fold/unfold Values as a Function of

Increasing Mn2+ a

[Mn2+]/ΔV
(μM)

ΔV0

(mL/mol)
ΔV‡

old
(mL/mol)

ΔV‡
unold

(mL/mol)

0 110 (4) 61(7) −44(4)
5 100(7 56(7) −39(4)
15 88(4) 49(4) −37(3)
50 79(3) 38(2) −41(3)

aThe reported uncertainties represent standard deviation o the mean
or triplicate studies.

Figure 6. Pressure-dependent rate constants (A) kold and (B) kunold
as a unction o increasing [Mn2+] in the presence o physiological
[Mg2+] = 2 mM.

Figure 7. Pressure-dependent equilibrium constant (Kold) data or
Mn2+-independent olding o the riboswitch at [Mg2+] = 2 mM (red)
and 6 mM (blue).

Figure 8. Pressure-dependent analysis o the kinetic rate constants or
Mn2+ independent olding o the riboswitch: (A) kold and (B) kunold at
[Mg2+] = 2 mM (red) and 6 mM (blue).
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however, that such an eect occurs specically by a Mg2+-
dependent increase in kold, with kunold remaining mostly
unchangeda trend entirely consistent with Mg2+ eects
ound previously at ambient pressures.30,34 Similar to the
trends reported above or equilibrium stabilities (Kold), a 4000
μM increase in Mg2+ has no eect on slopes in Figure 8,
indicating no signicant Mg2+ impacts on the transition state
activation volumes rom either the olding or unolding
direction (ΔV‡

old and ΔV‡
unold). Simply summarized,

manganese riboswitch olding responds to much lower
concentrations o the cognate ligand Mn2+, with ree volume
changes (ΔV0 and ΔV‡

old) decreasing signicantly with Mn2+
but insensitive to Mg2+. As a result, one concludes that Mn2+
eects on ΔV0 and ΔV‡

old result primarily rom highly specic
associations o the riboswitch with the cognate ligand as
opposed to important but more generic divalent cation eects
with Mg2+.

IV. DISCUSSION
IVA. Mn2+ Association Reduces the Efective Volume

o the Riboswitch System. The impact o Mn2+ on reducing
both ΔV0 and ΔV‡

old has been demonstrated in Section IIIB
and shown to be a result o specic cognate ligand eects in
Section IIIC. Moreover, the Mn2+ eects on the ree volume
changes are most efcient at low concentration and gradually
saturate with increasing concentration (see Table 1). These
eatures are reminiscent o noncooperative binding o Mn2+ to
the riboswitch, as characterized extensively in previous
works.30,34 Specically, the riboswitch olding equilibrium
constant as a unction o Mn2+ is well described by a Hill
equation with apparent dissociation constant KD = 16(5) μM
and near-unity Hill coefcient o n = 1.0(3). This observation
motivates an intriguing analysis by which we use these Hill
parameters to convert Mn2+ concentration to the ractional
occupation ( f = 0.0−1.0) o the riboswitch by Mn2+, which in
turn allows us to generate ree volume changes as a unction o
occupation and as illustrated in Figure 9. Interestingly, while
ΔV0 and ΔV‡

old exhibit a pronounced linear decrease as a
unction o Mn2+ binding, ΔV‡

unold remains approximately
constant throughout the range o Mn2+ concentrations
explored. Clearly, any Mn2+ dependence in the overall ree

volume change (ΔV0) must be attributed to dierential
changes in volume between the unolded and transition state
conormations (ΔV‡

old), with Mn2+ association occurring
predominantly prior to the transition state barrier.
Furthermore, the linear dependence o ΔV0 on ligand

binding raction f allows us to estimate ΔV0 = 69(2) mL/mol
or olding o the ully Mn2+-bound riboswitch by simple
extrapolation to f = 1.0. Because the ree volume change ΔV0

or manganese riboswitch olding in the absence o Mn2+ is
known to be 110(4) mL/mol, we thus iner a large negative
change in ree volume or Mn2+ binding to the riboswitch
(ΔV0

bind ≈ −41(4) mL/mol), i.e., approximately 40% and
competitive with the overall ΔV0 or riboswitch olding. Thus,
one must conclude that Mn2+ association has a considerable
eect on the hydration structure o the binding site.38−40

Additionally, even though the manganese riboswitch is
destabilized with increasing pressure (ΔV0 > 0), association
o the cognate ligand/Mn2+ is avored by pressure increase
(ΔV0

bind < 0), which in turn can compete directly with
pressure-dependent denaturation eects on overall RNA
olding. One possibility is that such a Mn2+-dependent
reduction in ree volume is due to ligand lling in “voids”
ormed by the olded riboswitch13 or ion recruitment o a more
compact water structure in replacement o loosely packed
water molecules inside the conned binding pocket.41
Although more data will be needed to deconstruct pressure-
dependent ligand binding rom biomolecular olding behaviors,
the avorable pressure response to ligand association may
prove to be a universal eature o riboswitches as well as other
ligand-responsive biomolecules. This Mn2+ binding-induced
reduction in volume (ΔV0

bind < 0) is signicant and may be
essential to maintain ligand afnity as well as biochemical
unction or a riboswitch under pressure.
By way o specic example, the thermophilic bacterium T.

maritima is ound in the vicinity o hydrothermal vents at the
bottom o the ocean.42 To adapt to such a high-pressure and
-temperature environment, the aptamer domain o the T.
maritima lysine riboswitch has evolved to contain signicantly
more GC interactions (38 vs 26 total GC pairs) than its B.
subtilis counterpart43,44 operating in a more ambient pressure/
temperature range.35 In clear contrast, however, the sequences
in the aptamer binding sites themselves remain highly
conserved between these two versions o the lysine
riboswitch.45 It thereore makes sense that binding between
the lysine ligand and aptamer region might be enhanced
(ΔV0

bind < 0) rather than weakened by pressure destabilization,
which in turn would help maintain appropriate riboswitch
conormation and biochemical unction under high-pressure
conditions.

IVB. Insight rom Free Volume Changes along the
Riboswitch Folding Coordinate. To summarize the
volumetric changes associated with manganese riboswitch
olding, we have plotted in Figure 10 the dierential ree
volumes (ΔV) or each o the unolded (U), transition (TS),
and olded (F) states. Even more instructively, these ΔV values
are each displayed or a series o three Mn2+ occupation
numbers ( f = 0, 0.5, and 1.0), with values or the ully ligand-
bound riboswitch obtained rom linear extrapolation (see
Figure 9) to f = 1 and all ree volumes reerenced to zero or
the unolded (U) conormation. From Figure 10, ree volume
changes or the manganese riboswitch increase monotonically
with respect to the olding coordinate, i.e., VU < VTS < VF.
Specically, such “staircase” structure conrms a sequential

Figure 9. Free volume changes (ΔV0 and ΔV‡
old/unold) along the

riboswitch olding coordinate, but plotted as a unction o ractional
binding o Mn2+ ( f = 0.0−1.0). The raction o Mn2+-bound
riboswitch is calculated rom the Mn2+ concentrations, based on
dissociation constant (KD = 16(5) μM) and Hill coefcient (n =
1.0(3)) obtained rom previous analysis or Mn2+-promoted olding o
the manganese riboswitch. The open circles represent the predicted
volume changes rom linear extrapolation to f = 1.0.
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increase in manganese riboswitch ree volume as it olds.
Furthermore, such structure is clearly responsible or the
simultaneous increase (and decrease) in kunold (and kold) as a
unction o applied hydrostatic pressure, respectively, as
reported in Section IIIA.
O particular relevance, however, is the act that the ree

volume increase upon olding (ΔV0 > 0) diminishes
signicantly (ΔV0

bind < 0) as a unction o additional Mn2+,
which necessarily implies that binding o Mn2+ to the aptamer
domain decreases the overall riboswitch system volume. As
mentioned above, such eects suggest that the cognate ligand
replaces a less compact water network in the binding site o the
manganese riboswitch.41 More quantitatively, the magnitudes
o the Mn2+-dependent staircase “steps” in Figure 10 indicate
that >50% o this “shrinkage” is already achieved by the
transition state barrier and thus dominated by regions o
olding coordinate space where the riboswitch is less
structured. By way o conrmation, crystallographic data or
the Mn2+-bound riboswitch binding pocket reveal that the
majority o phosphate ions octahedrally coordinated with Mn2+
(including the Mn2+-selective nitrogen in A41) arise rom
nucleotides in the P3 bulge (Figure 1A).33 From this
perspective, it is not surprising that Mn2+ would bind to P3
prior to subsequent olding o the riboswitch, or which any
loop−loop tertiary interactions between P1 and P3 stems are
still largely unormed. Indeed, previous single molecule kinetic
studies at Mg2+ ≈ 0 explicitly reveal the olding rate constant to
vanish at Mn2+ ≈ 0. Stated alternatively, this implies that Mn2+
promotes olding o the manganese riboswitch through an
induced t (IF) “bind-then-old” mechanism,30 consistent with
the binding/olding pathway postulated above and observed in
this work.46
As a more subtle observation, however, previous single

molecule kinetic studies also provided evidence or a Mg2+-
promoted switch rom an induced t (IF) to a conormational
selection (CS) “old-then-bind” riboswitch olding mecha-
nism.30,34 Specically, addition o Mg2+ at physiological levels
(2 mM) allows Mn2+ to bind with a 7-old higher afnity,
which was attributed to “preorganization” o the P3 bulge
structure prior to tertiary olding o the P1 and P3 domains,
i.e., consistent with a conormational selection (CS) “old-
then-bind” pathway. Interestingly, or such an alternative CS
pathway, binding o the Mn2+ ligand might be expected to

occur in later stages o olding,31 which would seem to
contradict the results in the paragraph above. By way o
resolution, however, we note that IF and CS olding pathways
are no longer mutually exclusive in the presence o Mg2+.47,48

Indeed, these kinetic studies could not rule out parallel
contributions rom an IF “bind-then-old” olding pathway30

but simply revealed that kinetics o riboswitch olding in the
presence o Mg2+ to be insensitive to prebinding o Mn2+.
Specically, the previous kinetic investigation o kunold in the
presence o Mg2+ revealed riboswitch unolding to occur rom
both Mn2+-bound ( f = 1) and Mn2+-ree ( f = 0) olded
conormations, with the latter now completely consistent with
a parallel CS mechanism.30,49 By way o conrmation, one
would expect the Mn2+ binding step required or an IF olding
mechanism to primarily impact the ree energy landscape
region between the unolded and the transition states, as
indeed evident in Figure 10. Simply summarized, pressure-
dependent characterization o ree volume changes comple-
ments and extends the previous work by identiying the
presence o an additional IF bind-then-old pathway or
riboswitch olding in the presence oMg2+. In conjunction with
demonstration in these studies o remarkable sensitivity to
cation association and change in hydration,29,36,50,51 such high-
pressure characterization studies at the single molecule level
(and particularly pressure-dependent single molecule kinetics)
look well poised to improve our understanding o complex
olding mechanisms by providing new and complementary
inormation via “reversible work” PΔV ree energy suraces.

V. SUMMARY AND CONCLUSIONS
In this work, we have demonstrated the ability to couple single
molecule FRET kinetic measurements with tunable high-
pressure capillary cell conditions to obtain detailed character-
ization o ree volumes or olding o the manganese
riboswitch. On the basis o direct measurement o the
pressure-dependent olding/unolding rate constants, the
pressure-induced denaturation o the riboswitch has been
unambiguously shown to arise rom a simultaneous decrease
(increase) in kold (kunold), respectively, as a unction o
increasing pressure and urthermore signaling a sequential,
monotonic increase in ree volume or the manganese
riboswitch along olding coordinate (VU < VTS < VF).
Moreover, a series o pressure-dependent studies indicate
that increase in the cognate ligand Mn2+ lowers this ree
volume change upon olding (i.e., “shrinks” the riboswitch,
ΔV0

bind < 0), particularly between unolded and transition state
conormations. Such a negative change in ree volume (ΔV0

bind
< 0) necessarily implies pressure-promoted binding o the
cognate ligand, which would compete with pressure-induced
destabilization o riboswitch olding (ΔV0 > 0) and in turn may
help mitigate pressure-induced denaturation eects in the
biology o deep-sea microorganisms. The study provides a
novel reversible work “volumetric” characterization o the ree
energy olding landscape along riboswitch olding coordinate,
which highlights the signicance o pre-transition-state eects
due to Mn2+. Finally, these new volumetric data provide
inormation complementary to our previous kinetic analysis
studies under ambient pressure conditions, indicating the
parallel presence o both induced t (“bind-then-old”) and
conormational selection (“old-then-bind”) components or
olding o the manganese riboswitch.

Figure 10. Plot o dierential ree volume changes (ΔV) along the
riboswitch olding coordinate or a variety o Mn2+ conditions, with
“staircase-like” structures clearly indicating a monotonic increase in
volume at each olding stage. Especially noteworthy is the color-coded
parsing o these volume changes with respect to Mn2+ binding
raction, which reveal that >50% o this increase in riboswitch volume
is achieved by the time the transition state is ormed. Dierential
volumes are reerenced to the unolded state U at each .
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