

1   **Room Temperature Slot-Die Coated Perovskite Layer Modified with sulfonyl- $\gamma$ -AApeptide**  
2   **for High Performance Perovskite Solar Devices**

3   *Seid Yimer Abate<sup>a,1</sup>, Ziqi Yang<sup>b,1</sup>, Surabhi Jha<sup>c</sup>, Guorong Ma<sup>c</sup>, Zhongliang Ouyang<sup>d</sup>, Haixin  
4   Zhang<sup>e</sup>, Shafi Muhammad<sup>a</sup>, Nihar Pradhan<sup>a</sup>, Xiaodan Gu<sup>c</sup>, Derek Patton<sup>c</sup>, Kun Wang<sup>e</sup> Dawen Li<sup>d</sup>,  
5   Jianfeng Cai<sup>b,\*</sup> and Qilin Dai<sup>a,\*</sup>*

6   <sup>a</sup> *Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson,  
7   MS, 39217, United States*

8   <sup>b</sup> *Department of Chemistry, University of South Florida, 4202 E Fowler Ave., Tampa, FL, USA*

9   <sup>c</sup> *School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices,  
10   The University of Southern Mississippi, Hattiesburg, MS, 39406, United States.*

11   <sup>d</sup> *Department of Electrical and Computer Engineering, Center for Materials for Information  
12   Technology, The University of Alabama, Tuscaloosa, AL 35487, United States*

13   <sup>e</sup> *Department of Physics and Astronomy, Department of Chemistry Mississippi State University,  
14   Mississippi State, MS 39762*

15   <sup>1</sup>*These authors contributed to the work equally*

16   *Corresponding authors: [jianfengcai@usf.edu](mailto:jianfengcai@usf.edu) and [qilin.dai@jsums.edu](mailto:qilin.dai@jsums.edu)*

17   *Abstract*

18   Perovskite solar cells (PSCs) exhibited remarkable progress for small aperture area cells, however,  
19   the performance of its counterpart, large aperture area cells, lags due to non-uniform and defective  
20   perovskite layers. Here, we fabricate reproducible large area homogeneous perovskite films at  
21   room temperature and without controlling humidity (up to 40% RH) with a slot die coater on a c-

22 TiO<sub>2</sub> layer deposited using a large area chemical bath. A new artificial peptide – sulfonyl- $\gamma$ -AA  
23 peptide (F-GLU-S) was employed to modify the slot-die coated perovskite surface, grain  
24 boundaries and electronic defects. The multi-functional F-GLU-S with carbonyl, carboxyl,  
25 sulfonyl, benzene, and chloro groups was capable of strongly interacting with the perovskite layer  
26 and repairing the uncoordinated Pb<sup>2+</sup> ions and halide vacancies. As a result, both the electron and  
27 hole densities of defects were significantly suppressed; consequently, the non-radiative  
28 recombination was effectively suppressed for the modified device which can be explicitly seen in  
29 the device performance where both V<sub>oc</sub> and FF of the modified device improved considerably.  
30 Therefore, F-GLU-S modified slot-die coated MAPbI<sub>3</sub> – based devices demonstrated outstanding  
31 performance of 21.44% PCE with a V<sub>oc</sub> of 1.13V, J<sub>sc</sub> of 24.64cm<sup>-2</sup>, and FF 76.99%. Moreover,  
32 passivation impeded the infiltration of moisture and oxygen due to its hydrophobic nature and  
33 defect repair potential. As a result, the modified device retained above 92% of its original PCE  
34 after 720 h in air (room temperature and 40-60% RH).

35 Keywords: Slot-die coating,  $\gamma$ -AApeptide, defects, amino acid passivation, chemical bath  
36 deposited c-TiO<sub>2</sub>, perovskite powder

### 37 **Introduction**

38 The power conversion efficiency (PCE) of PSCs has increased dramatically in the last decade and  
39 a certified PCE of above 25% has been recorded for the small aperture area cells.<sup>1</sup> This progress  
40 demonstrates the potential of PSCs to be the next generation energy alternative. Now the primary  
41 task to commercialize PSCs is to design efficient scale up techniques to fabricate large area  
42 perovskite devices (modules) with equivalent PCE as a small aperture area cell. Currently, most  
43 of the devices with high PCE are small area cells and prepared by the commonly employed spin-  
44 coating.<sup>1-2</sup> However, spin-coating techniques do not deliver homogeneous films over large area

45 as the quality deteriorates with increasing substrate area and less favorable to prepare modules.<sup>3</sup>

46 The largest sub-module prepared by spin-coating of  $\text{MAPbI}_3$  delivered a maximum PCE of only

47 12.6%.<sup>4</sup> Therefore, alternative film processing techniques have been developed to realize

48 homogeneous perovskite films over large area including slot-die coating, blade-coating, bar-

49 coating, thermal deposition, ink-jet printing, and spray-coating.<sup>5-10</sup> Among all of these techniques,

50 the slot-die coating demonstrated higher yield and reproducibility due to the continuous and

51 uninterrupted precursor supply and precise control of coating parameters, respectively.<sup>11</sup>

52 Intriguingly, slot-die coating could directly integrate to the roll-to-roll and sheet-to-sheet process.<sup>12</sup>

53 With respect to demonstrating large area PSCs with slot-die coater, various perovskite inks were

54 slot-die coated to fabricate PSCs and modules. Ehsan Rezaee et al. slot-die coted  $\text{MAPbI}_3$  and the

55 device delivered a maximum PCE of 17.4% (aperture area=0.25cm<sup>2</sup>).<sup>13</sup> Similarly, slot-die coated

56  $\text{MAPbI}_3$  on ITO/SnO<sub>2</sub> exhibited 18% PCE (aperture area=0.06cm<sup>2</sup>).<sup>11</sup> Slot-die coated

57  $\text{Cs}_{0.05}\text{MA}_{0.4}\text{FA}_{0.55}\text{Pb}(\text{I}_{0.96}\text{Br}_{0.04})_3$  produced 19% PCE for small area cell.<sup>14</sup> Moreover, MAI free

58 slot-die coated  $\text{Cs}_{0.16}\text{FA}_{0.84}\text{Pb}(\text{I}_{0.88}\text{Br}_{0.12})_3$  demonstrated 18% PCE (aperture area= 0.09 cm<sup>2</sup>).<sup>15</sup>

59 However, the slot-die coating process is controlled by a machine, realizing homogeneous film

60 requires tedious optimizations to achieve uniform perovskite crystallinity and morphology over

61 large areas. In the slot-die coated perovskite, the homogeneity of the film is influenced by several

62 factors such as precursor viscosity, coating speed, perovskite flow rate, coating gap, coating

63 temperature, surface tension, meniscus stability, and post-annealing temperature. Moreover, the

64 uniformity of the bottom c-TiO<sub>2</sub> layer influenced the homogeneity of the slot-die coated perovskite.

65 Recently, scalable chemical bath deposition was employed to prepare large area SnO<sub>2</sub> electron

66 transport layer (ETL) on which mixed perovskite was slot-die-coated the device demonstrated 19.2%

67 PCE (aperture area= 0.09 cm<sup>2</sup>).<sup>16</sup> The PCE of slot die coated PSCs are highly influenced by the

68 perovskite crystallinity and morphology. In general, the polycrystalline perovskite film contains  
69 high concentration of structural and electronic defects which impedes the device to attain the  
70 highest theoretically predicted PCE. These defects could be antisite, uncoordinated  $\text{Pb}^{2+}$ ,  
71 uncoordinated halide, cation vacancies, halide vacancies, and Pb clusters, or a mixture of these  
72 defects, which trigger non-radiative recombination resulting in substantial photogenerated carrier  
73 loss. Additionally, the defects could trigger undesirable hysteresis and may influence the charge  
74 transport and extraction which results in inferior performance. Furthermore, the defects at the  
75 surface and grain boundaries are a pathway to ion migration that causes series device degradation.  
76 Recently, 4-fluoro-phenethylammonium iodide (4-F-PEAI) and poly (9-vinylcarbazole) (PVK)  
77 were added in  $\text{FAPbI}_3$  and antisolvent solution, respectively to improve crystallinity, suppressed  
78 defects and trap sites, and repressed ion migration, as a result, the passivated device demonstrated  
79 21.6% PCE.<sup>17</sup> Therefore, it is necessary to passivate the slot-die coated perovskite film to suppress  
80 defects, enhance PCE, and extend the long-term stability of the devices.<sup>17-19</sup> In general, to  
81 fabricate efficient large area perovskite cells, it not only requires smooth, homogeneous, pinhole-  
82 free perovskite layers but also it needs a suppressed electronic defects as well. The defect density  
83 of slot-die coated perovskites can be suppressed by additive engineering of the perovskite  
84 precursor solution<sup>20</sup>, by post-surface passivation of the polycrystalline perovskite film,<sup>21</sup> or by  
85 modifying the interface of perovskite with electron or hole transporting layers.<sup>22</sup> Considering these  
86 approaches, recently few passivation molecules and additives were incorporated to modify the  
87 perovskite growth, crystallization, morphology, and defects. Minyong Du modified the surface of  
88 slot-die prepared  $\text{FA}_{0.91}\text{Cs}_{0.09}\text{PbI}_3$  by an ionic liquid  $[\text{M}_4\text{N}]\text{BF}_4$  to decrease the surface defect  
89 density and carrier recombination.<sup>21</sup> The crystal quality and morphology of slot-die coated  $\text{MAPbI}_3$   
90 was modified by added potassium thiocyanate (KSCN).<sup>20</sup> Similarly, 2-hydroxyethyl acrylate

91 (HEA) was added to  $\text{Cs}_{0.175}\text{FA}_{0.750}\text{MA}_{0.075}\text{Pb}(\text{I}_{0.880}\text{Br}_{0.120})_3$  to modify the perovskite growth and  
92 defects.<sup>23</sup> Moreover, nonvolatile Lewis base diphenyl sulfoxide (DPSO) was added to the MA-free  
93  $\text{FA}_{0.83}\text{Cs}_{0.17}\text{PbI}_{2.83}\text{Br}_{0.17}$  to slow the crystallization of perovskite during the slot-die coating  
94 process.<sup>24</sup> Likewise,  $\text{CsPbBr}_3$  and  $\text{KPb}_2\text{Br}_5$  were added to the  $\text{Cs}_{0.15}\text{FA}_{0.85}\text{Pb}(\text{I}_{0.83}\text{Br}_{0.17})_3$  ink to  
95 modify the perovskite crystallization.<sup>25</sup> Furthermore, Jinzhao Li et al. employed a strongly  
96 coordinating solvent, DMSO, with  $\text{MAPbI}_3$ , where the DMSO suppressed the intermediate phase  
97 formed during slot-die process and enhanced the perovskite morphology.<sup>18</sup>

98 Furthermore, various passivation molecules were established to passivate halide vacancies<sup>26-30</sup>,  
99 cation vacancies,<sup>27,31-34</sup> and both halide and cation vacancies of the perovskite film.<sup>18,35-44</sup> Recently,  
100 amino acid based molecules have received attention to passivate the perovskite layer and/or to  
101 modify the interface because of the amino acid structure comprises multi-functional groups such  
102 as carboxyl and amino, which can strongly interacted with the perovskite film to potentially  
103 passivate both positively and negatively charged defects.<sup>40,45-56</sup> Recently,  $\text{FA}_{0.65}\text{MA}_{0.35}\text{PbI}_{3-\delta}\text{Cl}_\delta$   
104 perovskite defects were substantially suppressed with a KKK-type M13. It was synthesized from  
105 lysine and wild virus and exhibited strong interaction with the perovskite; as a result, the defects  
106 significantly repressed and a PCE of 23.6% was achieved for spin-coated small aperture area  
107 device.<sup>51</sup> Similarly, p-aminobenzoic acid iodide (PABA·HI) was employed to modified  $\text{MAPbI}_3$   
108 defects where both the amino group and the carboxylic acid group in PABA·HI interacted with the  
109 Pb-I through hydrogen bonds and successfully passivated the trap density of states.<sup>45</sup> We recently  
110 developed a class of peptidomimetics – sulfonyl- $\gamma$ -AApeptide, which possess tremendous  
111 potential of chemodiversity, well-defined folding propensity, as well as remarkable stability.<sup>57-59</sup>  
112 Herein, we present the passivation of slot-die coated  $\text{MAPbI}_3$  layer with an amphiphilic sulfonyl-  
113  $\gamma$ -AApeptide - F-GLU-S. The sulfonyl- $\gamma$ -AApeptide was designed to bear both hydrophobic and

114 hydrophilic groups. Its “hydrophobic nature” occurs after the self-assembly process (passivation),  
115 i.e., after the hydrophilic carboxylic acid is combined with lead, the hydrophobic portion of the  
116 molecule is exposed to the outermost interface to help the perovskite resist water in the  
117 environment. Particularly, the molecule is comprised of benzene, carboxyl, carboxylic acid, amino,  
118 sulfonyl, and chloro functional groups which form strong interactions with the perovskite to  
119 significantly suppress both cationic and halide vacancies. As a result, the slot-die coated perovskite  
120 device exhibited a champion performance of 21.44% PCE. Moreover, F-GLU-S modified device  
121 exhibited excellent moisture stability compared to the control device. This study will open a new  
122 avenue in the synthesis of amino acid-based molecules to modify the perovskite films for decent  
123 PCE and stability.

124 **Experimental Section**

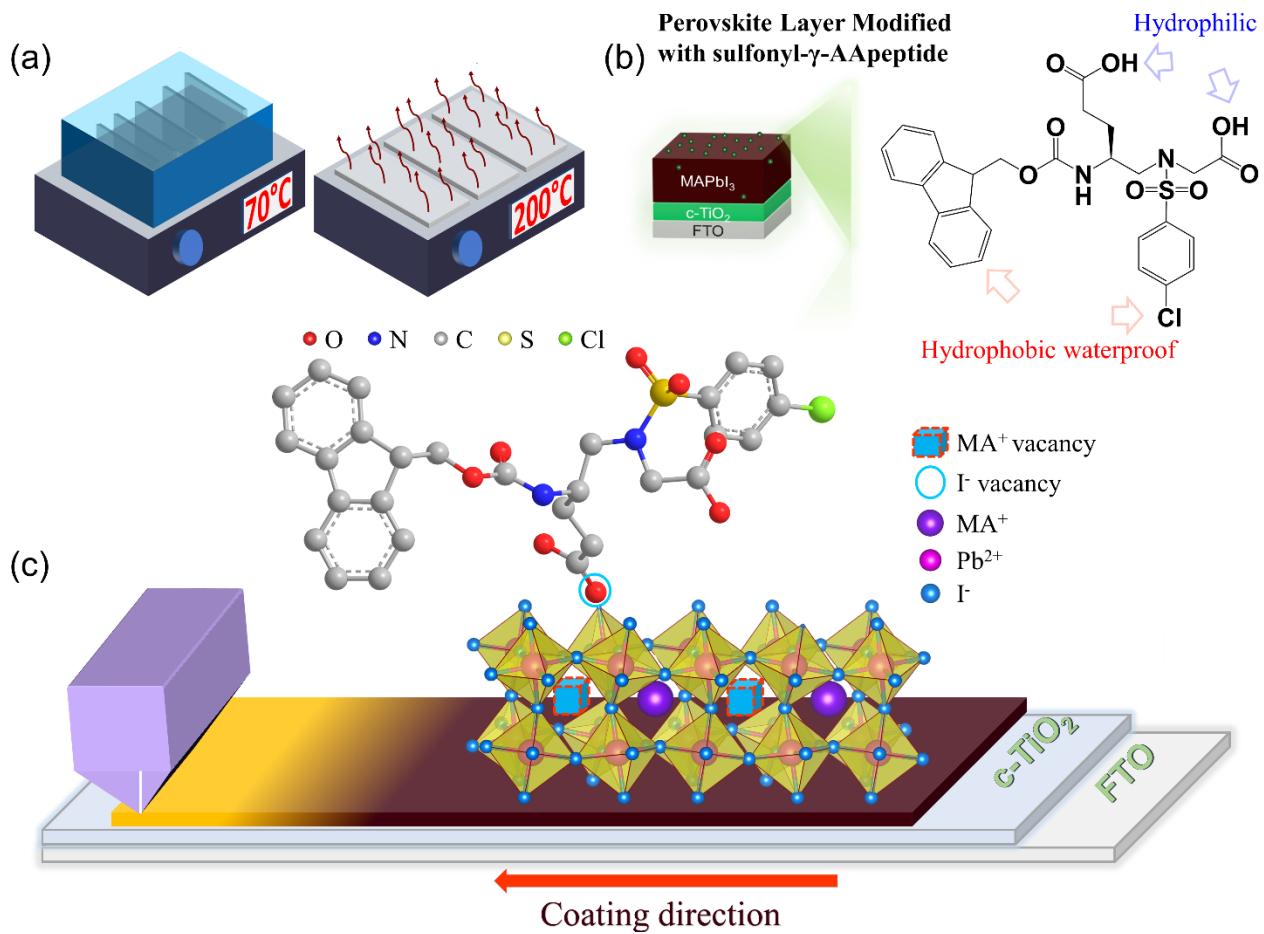
125 **Materials:** Fluorine tin oxide (FTO) substrates were purchased from Youxuan TECH, China.  
126  $\text{TiCl}_4$  bought from Alfa Aesar. Lead iodide ( $\text{PbI}_2$ ) was purchased from TCI. Methylammonium  
127 iodide (MAI) was purchased from Xi'an Polymer Light Technology Corporation (China). 2,2',7,7'-  
128 Tetrakis [N,N-di (4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD) and FK 209  
129  $\text{Co(III)}$  Li TFSI salt were purchased from Sigma-Aldrich. Lithium  
130 bis(trifluoromethanesulfonyl)imide (Li-TFSI) from TCI. 4-tert-butylpyridine (4-tBP) and were  
131 purchased from Accela. FK209 Co (III) Li-TFSI obtained from Greatcell materials. Poly[bis(4-  
132 phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) was obtained from Solaris Chem (Canada). [6,6]-  
133 phenyl C61-butyric acid methyl ester (PC<sub>61</sub>BM) were purchased from Sigma-Aldrich. N,N-  
134 Dimethylformamide (DMF), isopropanol (IPA), diethyl ether (EE), acetonitrile (ACN) and  
135 chlorobenzene (CB) were purchased from Sigma-Aldrich. Dimethyl sulfoxide (DMSO) and gold

136 bar (Au 99.998%) were purchased from Alfa Aesar. F-GLU-S synthesized in our lab. All  
137 chemicals were used as received without further treatment.

138 **Device fabrication:** The FTO substrate cleaned according to literature.<sup>60</sup> The c-TiO<sub>2</sub> prepared by  
139 water bath technique where UV-Ozone treated 10×10cm<sup>2</sup> FTO substrate was immersed in iced  
140 aqueous TiCl<sub>4</sub> solution at 70°C for 45 min. The thickness of the c-TiO<sub>2</sub> layer controlled by  
141 immersion time. Next, the substrate rinsed with copious amount of water and ethanol to remove  
142 the physiosorbed particles, subsequently, the substrate annealed at 200°C for 30min.

143 The slot die perovskite ink is prepared as follows by modifying literature report.<sup>61</sup> Firstly, we  
144 synthesized MAPbI<sub>3</sub> powder in air (fume hood) at room temperature and without controlling  
145 humidity. 1.28g of MAI added into 28mL acetonitrile (ACN) and stirred for 10 min. Then, 3.69g  
146 of PbI<sub>2</sub> added to the MAI solution, at this stage spontaneous black perovskite was formed. To  
147 ensure the complete perovskite formation the stirring continues for 2h. Then, the perovskite  
148 powder filtered and washed with ACN and EE until the supernatant became colorless immediately  
149 followed dried the powder in vacuum oven at 70°C for 2h. Secondly, the perovskite ink was  
150 prepared by reacting 3g of the synthesized MAPbI<sub>3</sub> black powder to 10 mL of methylamine (MA)  
151 gas for 4h in sealed container, where the MA gas diffused to the perovskite powder and formed  
152 yellow viscous perovskite ink. To facilitate the reaction, we stirred both the perovskite powder and  
153 MA gas solution at slow speed. Lastly, the slot-die MAPbI<sub>3</sub> precursor solution is prepared by  
154 mixing the viscous perovskite ink and acetonitrile (1:1 v/v).

155 The perovskite was slot-die coated by infinityPV RLC in air glovebox up to 40% RH. The  
156 perovskite film and device didn't exhibit significant difference when the humidity is 10%-40%,  
157 however, for above 40% RH the device showed poorer performance. To reduce the humidity in  
158 the air glovebox to the desired humidity (in our experiment 30 % RH), we blew dry air. Then, the

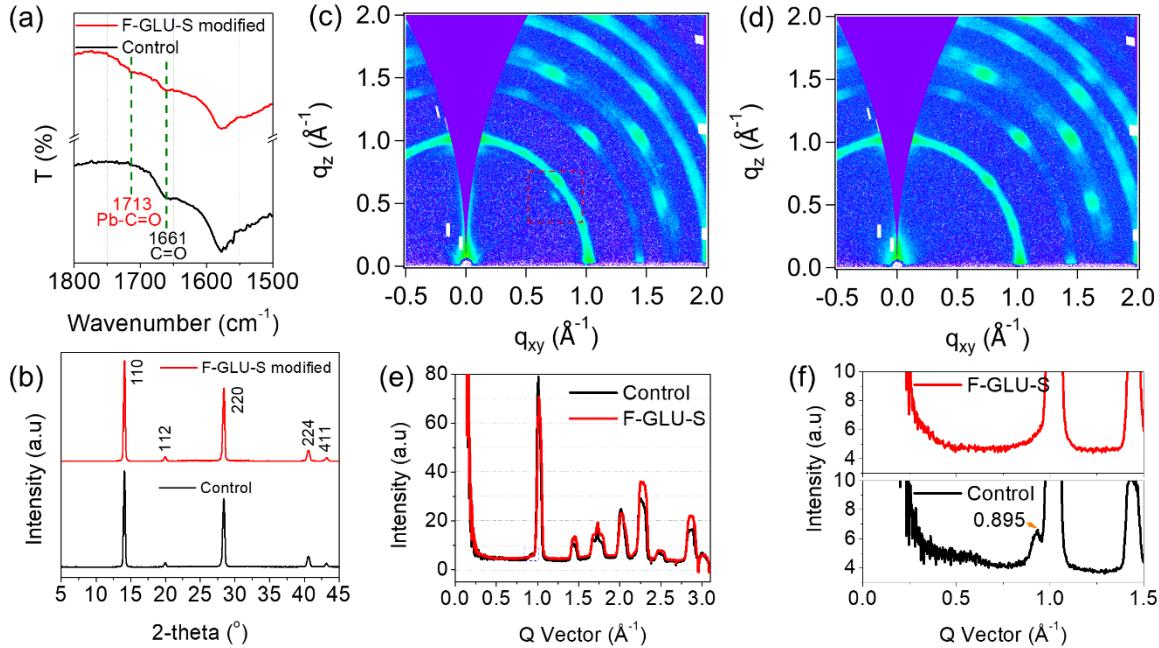

159 perovskite was slot-die coated on large area c-TiO<sub>2</sub> at a coating speed of 0.07m min<sup>-1</sup> with a  
160 perovskite flow rate of 0.07ml min<sup>-1</sup> at a coating gap of 100  $\mu$ m at room temperature. Then, the  
161 perovskite film annealed at 100°C for 10min. To test the influence of surface passivation on device  
162 performance we cut the large area perovskite layer to 1.5×1.5cm<sup>-2</sup> size. After that, the passivation  
163 layer prepared by spun-coat 2mM F-GLU-S in 2-propanol at 4000rpm for 30s. The modified  
164 perovskite film then annealed at 70°C for 10min. Once the passivated layer cooled down, spiro-  
165 OMeTAD hole-transport layer is prepared following literature.<sup>62</sup> Finally, 80nm Au layer prepared  
166 by thermal deposition.

167 **Film and device characterizations:** The perovskite and modified perovskite films were  
168 characterized by FT-IR, XRD, 2D-GIWAXS, XPS, UV-Vis, SEM, AFM, PL, TRPL, I-V, EQE,  
169 and EIS using the instruments described in reference.<sup>62</sup>

## 170 **Results and discussion**

171 First, we prepared homogenous large area c-TiO<sub>2</sub> by a chemical bath method (CBM) at low  
172 temperature. To fabricate efficient large area n-i-p PSCs, the electron transport layer (ETL) should  
173 be homogenous and pinhole free – if not the electron extraction and transport are negatively  
174 influenced.<sup>16,60</sup> Recently, Iwan Zimmermann et al. demonstrated the preparation of large area SnO<sub>2</sub>  
175 by CBM.<sup>16</sup> Here, as illustrated in Scheme 1a, we prepared uniform and pinhole free large area  
176 (10×10cm<sup>2</sup>) c-TiO<sub>2</sub> from iced aqueous TiCl<sub>4</sub> solution. The UV-ozone cleaned FTO substrate was  
177 immersed in the solution for 45 min at 70 °C. Subsequently, the substrates were rinsed with DI  
178 water and ethanol followed by annealing at 200 °C for 30 min where ~40 nm smooth c-TiO<sub>2</sub> was  
179 achieved. The thickness of c-TiO<sub>2</sub> was controlled by immersion time and concentration. Next, the  
180 perovskite film was slot-die coated on the large area UV-ozone cleaned c-TiO<sub>2</sub> layer. The  
181 perovskite solution preparation and slot-die coating parameters are briefly explained in

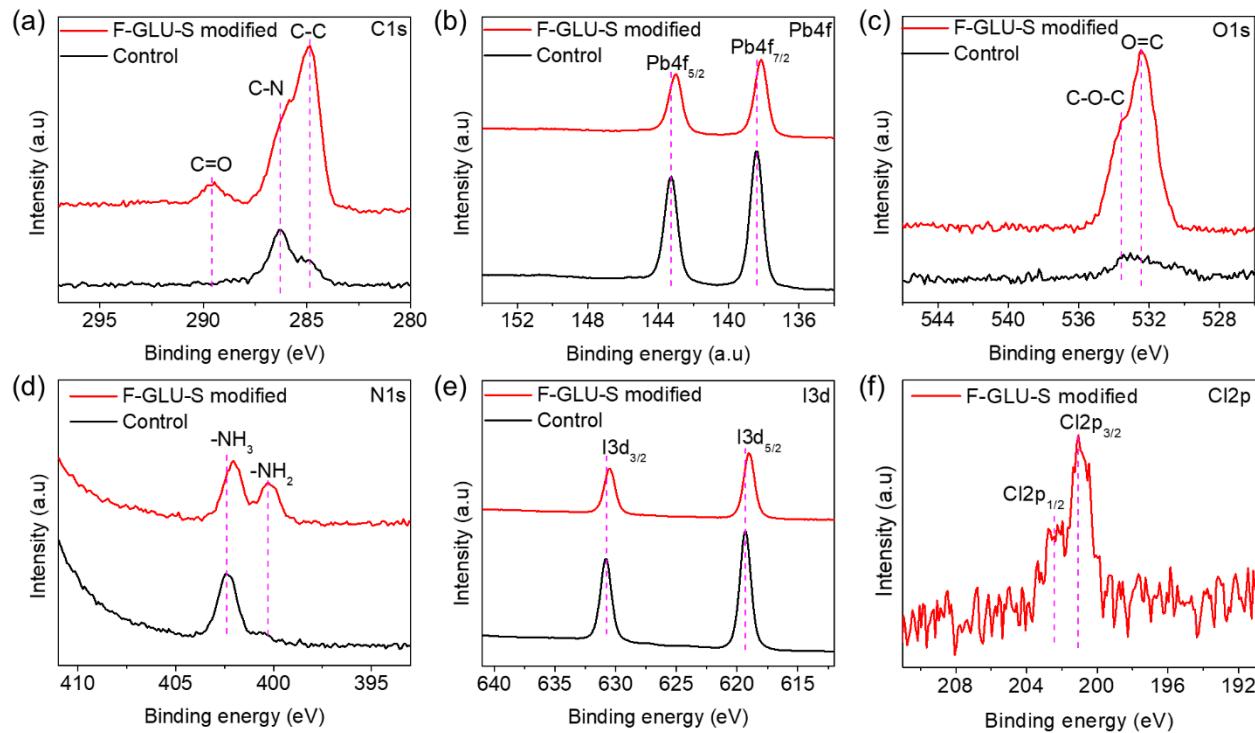
182 experimental section. The slot-die prepared large area ( $10 \times 10 \text{ cm}^2$ ) perovskite film morphology  
183 and crystallinity are primary influenced by the type of solvent employed to prepare perovskite  
184 precursor solution as it controls the film coating and drying process. Here we employed the high  
185 vapor pressure and low evaporation temperature acetonitrile-based perovskite precursor solution  
186 to achieve a homogenous perovskite layer by slot-die coating at room coating temperature (21-  
187 24 °C). The flow rate, coating gap, and coating speed thoroughly were optimized to get  
188 homogenous perovskite layers. A narrow coating gap ( $\sim 100 \mu\text{m}$ ) and low coating speed of  $0.07 \text{ m}$   
189  $\text{min}^{-1}$  delivered highly smooth and crystalline perovskite layer. Subsequently, we modified the  
190 slot-die coated perovskite by spin-coating 2mM  $\gamma$ -AA peptide F-GLU-S in 2-propanol. The post  
191 surface passivated slot-die coated perovskite layer and F-GLU-S molecule are illustrated in  
192 Scheme 1b. The amphiphilic sulfonyl- $\gamma$ -AA peptide was designed to bear both hydrophobic and  
193 hydrophilic groups. Its “hydrophobic nature” occurred after self-assemble process (passivation);  
194 after the hydrophilic carboxylic acid is combined with lead, the hydrophobic portion of the  
195 molecule will be exposed to the outside to help the perovskite resist water in the environment.  
196 Particularly, F-GLU-S is comprised of carbonyl, carboxyl, amino, sulphonyl and chloro groups,  
197 which are expected to have strong interactions with the perovskite to modify defects. The -COOH  
198 and NH of the F-GLU-S interacted with the Pb-I perovskite framework through hydrogen bonding  
199 and suppressed anionic and cationic defects, respectively.<sup>40,45</sup> Moreover, the C=O of the F-GLU-  
200 S coordinated with the uncoordinated  $\text{Pb}^{2+}$  ions, as a result, F-GLU-S could effectively passivate  
201 both anionic and cationic defects. The interaction of F-GLU-S and slot-die coated  $\text{MAPbI}_3$  is  
202 illustrated in Scheme 1c.




203  
204 Scheme 1. Schematic illustration of (a)  $\text{c-TiO}_2$  preparation by chemical bath method,  
205 film passivation by F-GLU-S and molecular structure of F-GLU-S, and (c) interaction of F-GLU-  
206 S with  $\text{MAPbI}_3$  perovskite.

207 To understand the interaction between F-GLU-S and slot-die coated perovskite, we first  
208 investigated with Fourier transform infrared spectroscopy (FTIR). The FTIR peak at  $1661\text{ cm}^{-1}$  is  
209 assigned for  $\text{C}=\text{O}$  of the F-GLU-S; this peak is significantly shifted to  $1713\text{ cm}^{-1}$  when employed  
210 as a passivation layer clearly demonstrating the  $\text{C}=\text{O}$  coordinated with the uncoordinated  $\text{Pb}^{2+}$  ions  
211 and modified the perovskite defects (Figure 1a). The FTIR of the control, F-GLU-S modified  
212 perovskite, and F-GLU-S powder is provided in Figure S1, where the incorporation of F-GLU-S  
213 is further verified with the presence of additional peaks at from  $620\text{--}1500\text{ cm}^{-1}$ . Then, we recorded

214 the XRD of the control and F-GLU-S modified slot-die coated perovskite films in which both films  
215 exhibited very sharp peaks at (110), (220) and (224) without any significant difference (Figure 1b).  
216 To further understand the crystallinity and phase of the control and F-GLU-S modified slot-died  
217 coated perovskite films, we record 2D grazing incidence wide angle x-ray spectroscopy (2D-  
218 GIWAXS) where we found that the slot-die coated perovskite exhibited extraordinary crystallinity  
219 this was particularly observed for the F-GLU-S modified perovskite. The GIWAXS and Q Vector  
220 comparison of the control and F-GLU-S modified  $\text{MAPbI}_3$  are provided in Figure 1c-f. The 2D-  
221 GIWAXS image exhibited formation of a mixture of many bright rings and bright spots. The bright  
222 scattering spots come from the ordered crystal structure and have the same orientation relative to  
223 the substrate. The scattering rings come from the disoriented crystal structure, which might locate  
224 at the interface. We have observed similar crystallinity as the scattering intensities from the two  
225 samples are close (Figure e) with the same exposure time and sample thickness. The anisotropic  
226 sharp scattering points and corresponding isotropic scattering rings indicate that majorly well-  
227 oriented crystalline perovskites were formed by the slot die coating. Additionally, the peaks are  
228 sharp which implies the perovskite grains are very large. Furthermore, we have clearly observed  
229 the presence of minute peak for the control sample at  $0.895\text{\AA}$  (Figure 1e-f) which shows the  
230 presence of uncoordinated  $\text{PbI}_2$  in the film which corroborated with the FTIR result. The  $\text{PbI}_2$  peak  
231 is eliminated for the modified perovskite which implies that the F-GLU-S interacted with  $\text{MAPbI}_3$   
232 and effectively suppressed the uncoordinated  $\text{Pb}^{2+}$  (Figure 1e-f).


233  
234



235 Figure 1. Characterization of the interaction between MAPbI<sub>3</sub> and F-GLU-S. (a) FTIR spectra of  
236 the control and 2mM F-GLU-S modified MAPbI<sub>3</sub>, (b) XRD of the control and 2mM F-GLU-S  
237 modified MAPbI<sub>3</sub>, (c) GIWAXS of the control perovskite, (d) GIWAXS of the modified  
238 perovskite, (e) Azimuthally integrated intensity profiles of the 2D-GIWAXS patterns of the control  
239 and F-GLU-S modified MAPbI<sub>3</sub>, and (f) Zoomed azimuthally integrated intensity profiles of the  
240 control and F-GLU-S modified MAPbI<sub>3</sub>. The small spot at 0.895 Å for the control sample is  
241 corresponding to the red rectangle in Figure 1c which clearly showed the presence of  
242 uncoordinated Pb<sup>2+</sup> in the control perovskite.

244 We further employed X-ray photoelectron spectroscopy (XPS) to investigate the chemical  
245 composition changes of C1s, Pb4f, O1s, N1s, I3d, Cl2p and S2p for slot-die coated MAPbI<sub>3</sub> films  
246 with and without F-GLU-S modification. We calibrated the C-C peak at 284.84 eV for both the  
247 control and F-GLU-S modified perovskite films to compare the XPS peak changes.<sup>63</sup> The Cls  
248 spectra are shown in Figure 2a and Figure S2 (a-b). F-GLU-S is organic, thus the C/Pb ratio

249 increases significantly for the modified perovskite film confirming the presence of F-GLU-S on  
250 the surface and grain boundaries of the



251  
252 Figure 2. High-resolution XPS spectrum of the control and 2mM F-GLU-S modified  $\text{MAPbI}_3$  films.  
253 (a) C1s, (b) Pb4f, (c) O1s, (d) N1s, (e) I3d, and (f) Cl2p.

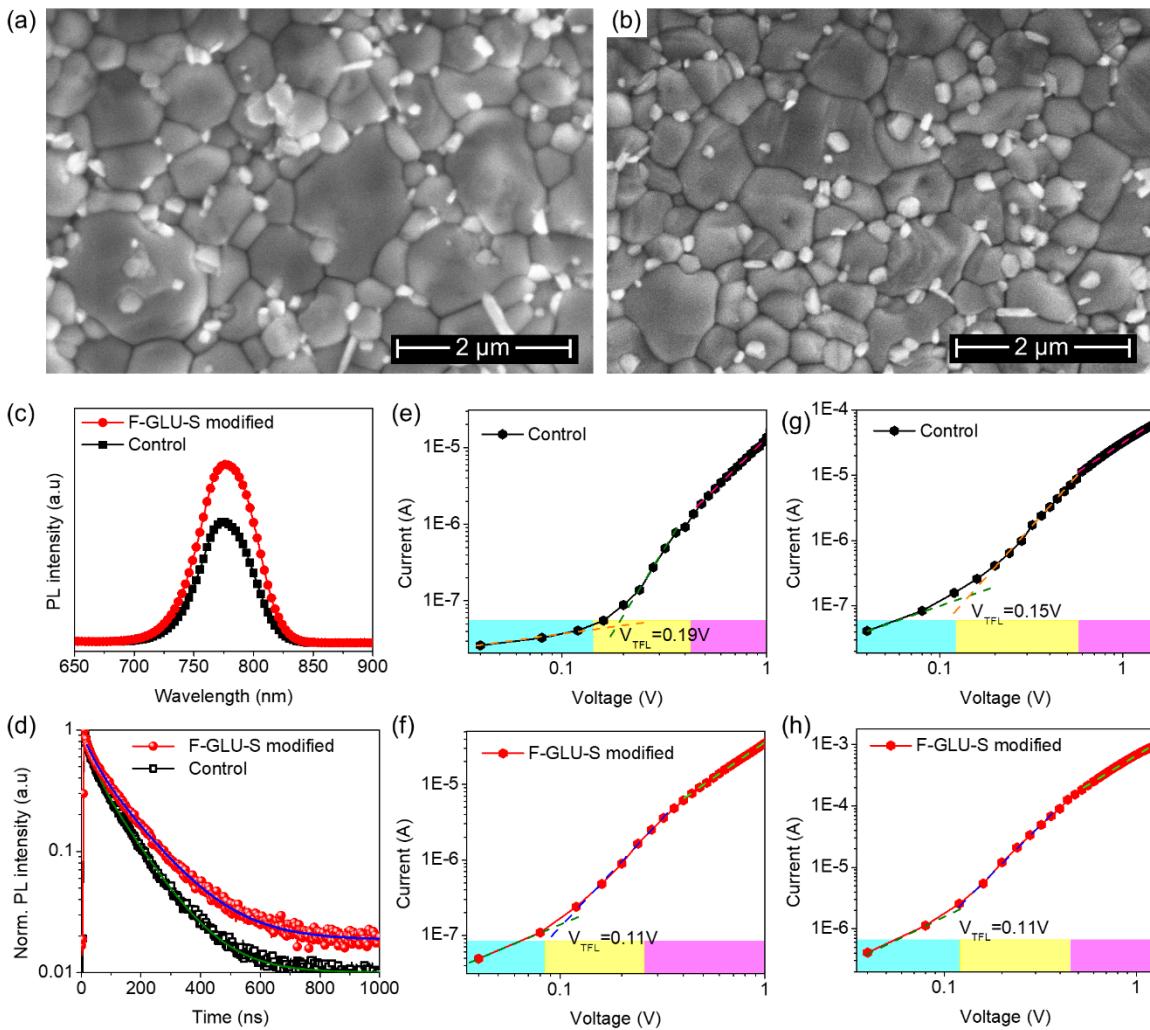
254 perovskite layer. The peak at 286.35 eV in the control perovskite is assigned to C-N from  $\text{MAPbI}_3$ ,  
255 which is shifted to 286.08 eV for the modified perovskite.<sup>64</sup> More importantly, the F-GLU-S  
256 modified perovskite exhibited an additional significant peak at 289.59 eV which is assigned to  
257 C=O from the carbonyl group of the F-GLU-S, confirming the presence F-GLU-S on the treated  
258 perovskite.<sup>65</sup>

259 Figure 2b shows the Pb4f spectra where the two Pb4f peaks at 143.12 eV and 138.42 eV for the  
260 control perovskite are assigned to Pb4f<sub>5/2</sub> and Pb4f<sub>7/2</sub>, respectively, which are shifted to 142.99 eV  
261 and 138.14 eV, respectively, for the F-GLU-S modified  $\text{MAPbI}_3$ , clearly indicating the interaction

262 between  $\text{MAPbI}_3$  and F-GLU-S.<sup>63</sup> Figure 2c shows the O1s XPS peak for the control and F-GLU-  
263 S passivated perovskite. We clearly observed two O1s peaks at 532.46 eV (O=C) and 533.54 eV  
264 (C-O-C) for the control and modified perovskite. Due to the additional O from -COOH and C=O  
265 in the modified perovskite, the O/Pb ratio significantly increased for the modified F-GLU-S  
266 perovskite.<sup>53</sup>

267 The N1s spectra are presented in Figure 2d, where the control perovskite exhibited a single peak  
268 at 402.44 eV which is assigned for -NH<sub>3</sub> arising from the  $\text{MAPbI}_3$ . This N1s peak is shifted to a  
269 lower binding energy of 402.04 eV for the F-GLU-S treated perovskite.<sup>63</sup> Additionally, the  
270 modified perovskite exhibited an extra peak at 400.29 eV assigned for -NH<sub>2</sub> originating from F-  
271 GLU-S. These shifts in N1s peaks are attributed to the interaction between F-GLU-S and the  
272 perovskite. The I3d spectra are shown in Figure 2d, where the two main peaks at 630.83 eV and  
273 619.31 eV are assigned to I 3d<sub>3/2</sub> and I3d<sub>5/2</sub> for the control slot-die coated perovskite film which  
274 are shifted to lower binding energy of 630.48 eV and 619.01 eV, respectively for F-GLU-S  
275 modified perovskite. Additionally, F-GLU-S modified perovskite exhibit Cl2p (Figure 2f) and S2p  
276 (Figure S3c) peaks which are not present for the control perovskite film confirming the strong  
277 interaction between F-GLU-S and perovskite layer and the presence of F-GLU-S at the surface of  
278 the modified film. The Cl2p spectra has two main peaks at 202.42 eV (Cl2p<sub>1/2</sub>) and 201.08 eV  
279 (Cl2p<sub>3/2</sub>). Likewise, the S2p has two main peaks at 169.68 eV (Sp<sub>1/2</sub>) and 168.57 eV (Sp<sub>3/2</sub>). The  
280 full XPS spectra of the control and F-GLU-S modified perovskite is presented in Figure S2d. The  
281 binding energy shifts associated with C1s, Pb4f, O1s, N1s, and I3d and the emergence of Cl2p and  
282 S2p by F-GLU-S signifies the interaction between F-GLU-S and perovskite suggesting the  
283 passivation of perovskite to suppress the density of traps. The XPS investigation validated the  
284 FTIR and 2D-GIWAXS results.

285 Figure 3a-b and Figure S3a-b demonstrated the top view SEM image of the control and F-GLU-S  
286 modified films where both exhibited highly compact and homogenous layers without significant  
287 morphology difference which implies the perovskite crystallization may not considerably alter  
288 with post-passivation of perovskite layer with F-GLU-S. Previous studies of amino acid based  
289 passivation molecules modified the perovskite crystallization when applied in bulk perovskite  
290 precursor.<sup>56</sup> Intriguingly, the pinholes on the control slot-die coated perovskite decreased when the  
291 surface was modified with F-GLU-S (Figure 3Sa-b). The AFM phase amplitude, topography, and  
292 3D images of the control and F-GLU-S modified perovskites are provided in Figure S4.


293 After we confirmed the successful interaction between F-GLU-S and perovskite, we investigated  
294 the influence of F-GLU-S on the optoelectrical property perovskite. The UV-vis spectra of the  
295 control and 2mM F-GLU-S modified  $\text{MAPbI}_3$  film are provided in Figure S5, where the absorption  
296 onset of the perovskite is not altered signifying the F-GLU-S modification did not shift the energy  
297 level or bandgap of the perovskite. Moreover, to show the uniformity of the perovskite film over  
298 a large area, we fabricated  $10 \times 10 \text{ cm}^2$  perovskite film by slot-die coater (Figure S6a) and cut into  
299 sixteen  $2.5 \times 2.5 \text{ cm}^2$  and investigated their UV-Vis absorption. The absorption spectra are  
300 presented in Figure S6b, where the UV-Vis of all the perovskite layers overlapped which  
301 demonstrated uniform film was achieved over the entire area.

302 The influence of F-GLU-S on charge extraction was investigated with steady-state  
303 photoluminescence (PL) and time-resolved PL (Figure 3c-d). The control and modified perovskite  
304 layers were prepared by slot-die coating on the glass substrate and the light is guided from the  
305 perovskite side. The PL of the F-GLU-S modified perovskite exhibited substantial PL  
306 improvement which indicates substantial suppression of the non-radiative recombination on the  
307 surface and grain boundaries of the modified perovskite film.<sup>62,66</sup>

308 The lifetime of carriers of the control and F-GLU-S modified perovskite are measured by the time-  
 309 resolved PL and fitted using equations (1) and (2).

310 
$$Y = A_1 \exp\left(\frac{-t}{\tau_1}\right) + A_2 \exp\left(\frac{-t}{\tau_2}\right)$$
 equation (1)

311 
$$\tau_{avg} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$
 equation (2)



312  
 313 Figure 3. (a) SEM image of control perovskite, (b) SEM image of F-GLU-F modified MAPbI<sub>3</sub>, (c)  
 314 Steady-state PL of the control and 2mM F-GLU-S modified MAPbI<sub>3</sub> on glass. (d) TRPL of the  
 315 control and 2mM F-GLU-S modified MAPbI<sub>3</sub>. (e-f) Electron-only device with a structure of

316 FTO/c-TiO<sub>2</sub>/ MAPbI<sub>3</sub> (with and without 2mM F-GLU-S)/PCBM/Au, (g-h) Hole-only device  
317 with a structure of FTO/PEDOT:PSS/ MAPbI<sub>3</sub> (with and without 2mM F-GLU-S)/Spiro-  
318 OMeTAD/Au.

319 A<sub>1</sub> and A<sub>2</sub> are the relative amplitudes, t is time, τ<sub>1</sub> and τ<sub>2</sub> are the lifetime values for the fast and  
320 slow decay, respectively.

321 The average lifetime of the control slot-die coated perovskite film is 44.42 ns, which increased to  
322 54.88 ns for the F-GLU-S modified perovskite implying that defects are suppressed with F-GLU-  
323 S modification. The lifetime results are summarized in Table S1. Based on the interaction of F-  
324 GLU-S and perovskite and the morphology study, the F-GLU-S suppressed both the electronic  
325 defects through eliminating non-recombination centers and surface defects by modifying the  
326 surface and grain boundary defects. Consequently, a superior PL was obtained for the modified  
327 film.

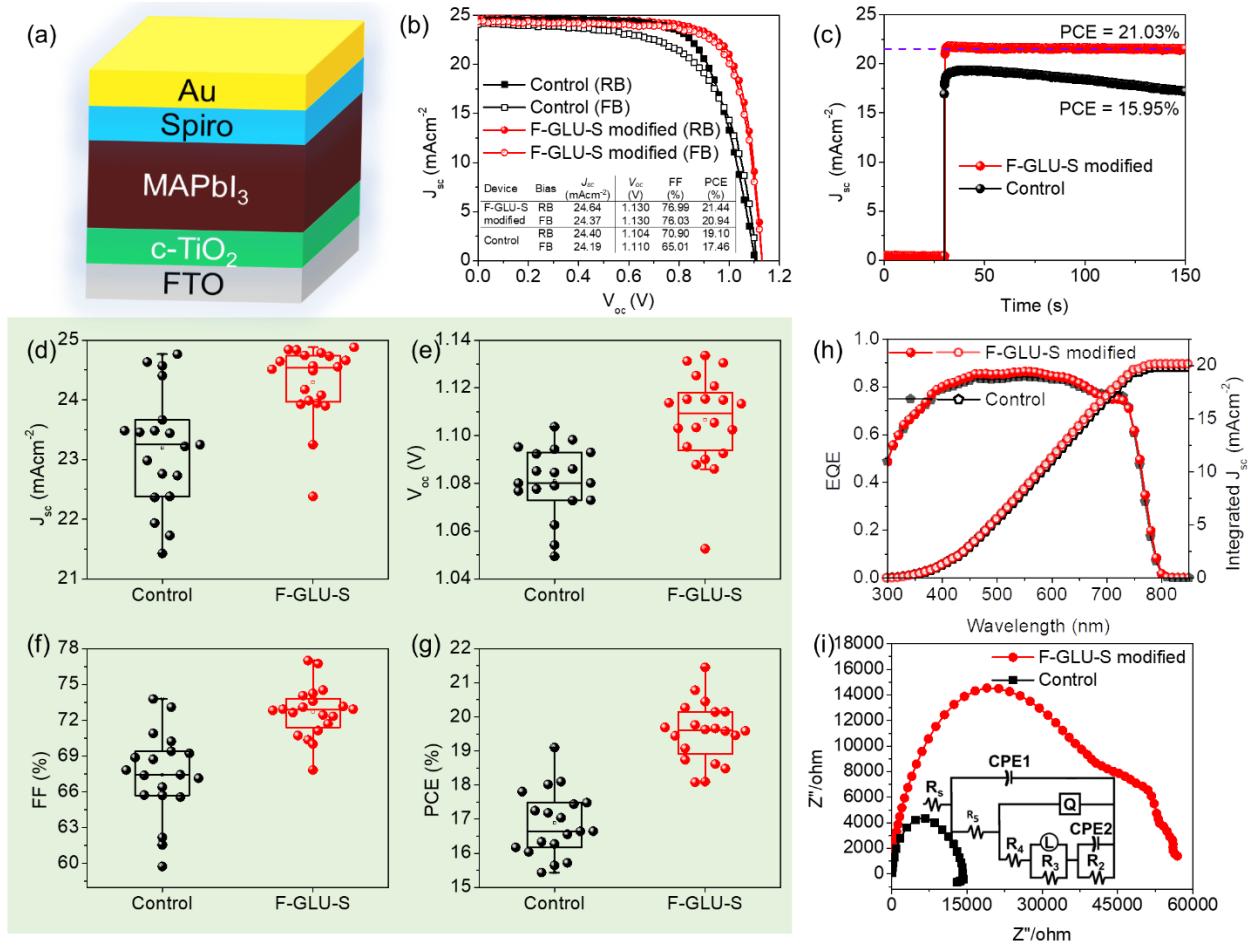
328 To quantify the electron and hole traps, we fabricated electron-only and hole-only devices for the  
329 control and F-GLU-S modified device, respectively. The electron-only devices are fabricated with  
330 a structure of FTO/c-TiO<sub>2</sub>/MAPbI<sub>3</sub> (with and without F-GLU-S)/PCBM/Au. The device is  
331 measured at dark condition and the number of defects are calculated according to equation 3, where  
332 ε is the relative dielectric constant of MAPbI<sub>3</sub> (ε=32), <sup>67-68</sup> ε<sub>0</sub> is vacuum permittivity, V<sub>TFL</sub> is trap-  
333 filled limit voltage, e is the elementary charge, and L is the thickness of MAPbI<sub>3</sub> with and without  
334 F-GLU-S and N<sub>traps</sub> is the number of traps.

335 
$$N_{traps} = \frac{2\epsilon\epsilon_0 V_{TFL}}{eL^2}$$
 equation (3)

336 The double logarithmic graph of the control and F-GLU-S modified electron-only devices are  
337 given in Figure 3e-f. The calculated N<sub>traps</sub> for the control device exhibited 3.47×10<sup>15</sup>cm<sup>-3</sup>. Up on

338 F-GLU-S treatment the  $N_{traps}$  substantially reduced by 49% to  $1.83 \times 10^{15} \text{ cm}^{-3}$ . Subsequently, we  
339 fabricated the hole-only device with a structure of FTO/PEDOT:PSS/MAPbI<sub>3</sub> (with and without  
340 F-GLU-S)/Spiro-OMeTAD/Au is to quantify the number of hole traps (Figure 3g-h). The control  
341 hole-only device exhibited  $3.05 \times 10^{15} \text{ cm}^{-3}$   $N_{traps}$ , intriguingly, the  $N_{traps}$  minimized to  $2.24 \times 10^{15} \text{ cm}^{-3}$   
342 for F-GLU-S modified devices. The electron and hole  $N_{traps}$  results revealed F-GLU-S suppressed  
343 both cationic and anionic defects from the perovskite which ultimately reduce the non-radiative  
344 recombination significantly to improve the device  $V_{oc}$  and FF. The  $N_{traps}$  study is consistent with  
345 the PL study. Full SCLC parameters are summarized in Table S2.

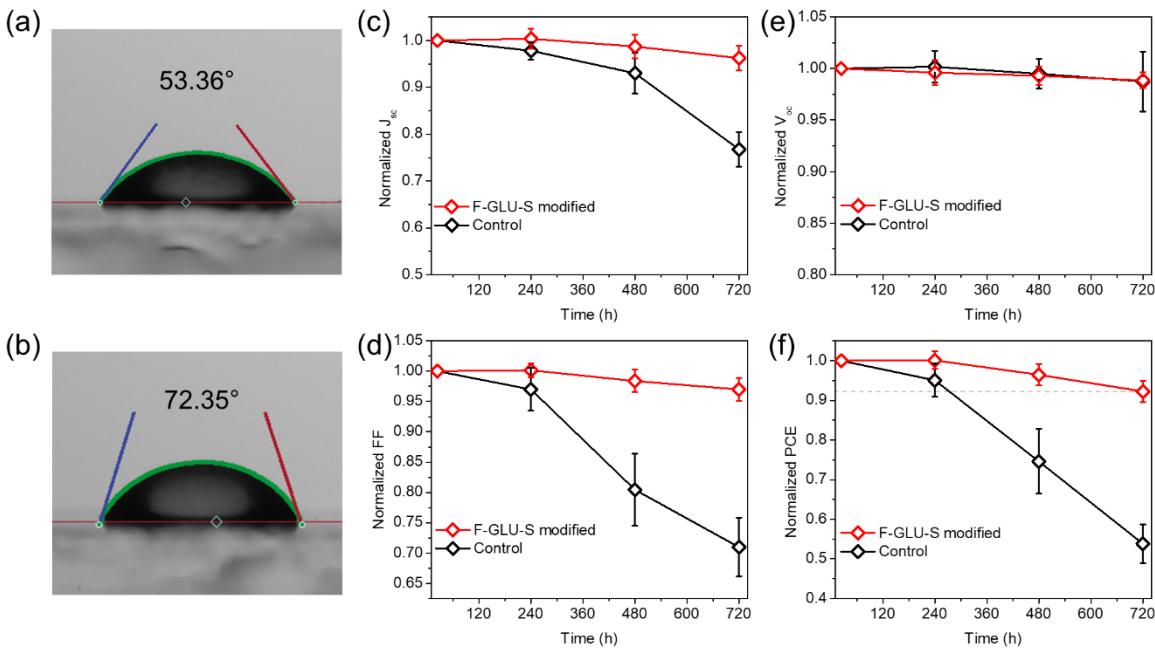
346 The interface between perovskite and spiro-OMeTAD plays crucial role for charge transfer. First,  
347 we employed kelvin probe force microscopy (KPFM) to study the contact potential differences of  
348 the perovskite films with and without F-GLU-S (Figure S7). The contact potential differences of  
349 perovskite film increase from *ca.* 157 mV to *ca.* 286 mV, which shows significant potential in the  
350 carrier transport in the devices and enhanced  $V_{oc}$  of the devices.<sup>18,69</sup> Moreover, we studied  
351 ultraviolet photoelectron spectroscopy (UPS) to quantify the energy level alignment of the  
352 perovskite layer with and without F-GLU-S treatment (Figure S8a-c). The control MAPbI<sub>3</sub>  
353 exhibited a valence band of -5.40 eV which is consistent with the previous study.<sup>70</sup> Upon F-GLU-  
354 S modification the valence band shifted to -5.54 eV,<sup>45</sup> which is beneficial to minimize the  
355 recombination of electrons and holes at the interface.<sup>71</sup>


356 Next, to evaluate the significance of F-GLU-S on the device performance, we fabricated PSCs  
357 with a structure of FTO/c-TiO<sub>2</sub>/MAPbI<sub>3</sub> (with and without F-GLU-S)/Spiro-OMeTAD/Au (Figure  
358 4a). Initially, we fabricated the control slot-die coated perovskite device with the optimized  
359 fabrication process discussed in experimental section. The control device demonstrated a  
360 maximum PCE of 19.10% with a  $J_{sc}$  of a  $V_{oc}$  of 1.104V, 24.40mAcm<sup>-2</sup>, and FF of 70.90% in reverse

361 bias, and a forward bias PCE of 17.46% with a  $J_{sc}$  of  $24.19 \text{ mAcm}^{-2}$ ,  $V_{oc}$  of 1.110 V and FF of  
362 65.01%, as a result, the control device exhibited a significant hysteresis index (HI) of 0.086  
363 calculated by  $\text{HI} = (\text{PCE}_{\text{reverse}} - \text{PCE}_{\text{forward}}) / \text{PCE}_{\text{reverse}}$ .<sup>43</sup> First, we spin-coated 30 $\mu\text{L}$  absolute 2-  
364 propanol on the perovskite layer to study the impact of 2-propanol on device performance,  
365 however, 2-propanol couldn't influence the morphology of the perovskite layer and device  
366 performance.<sup>72</sup> Then, various concentrations of F-GLU-S in 2-propanol (0mM, 0.5mM, 1mM,  
367 2mM and 3mM) were spin coated on the slot-die coted perovskite layer to optimize the best  
368 concentration. The concentration optimization is summarized in the box chart in Figure S9, where  
369 at small F-GLU-S concentration (0.5-1mM), the  $V_{oc}$  of the modified device improved but was not  
370 reproducible. At higher concentration (3mM), the bulky F-GLU-S on the surface induces charge  
371 resistance as a result both  $J_{sc}$  and FF of the modified device decreased. The 2mM F-GLU-S  
372 concentration delivered impressive photovoltaic parameters where all the  $J_{sc}$ ,  $V_{oc}$  and FF improved,  
373 and importantly the results were reproducible. Consequently, the F-GLU-S modified perovskite  
374 produced outstanding performance of 21.44% PCE with a  $V_{oc}$  of 1.130V, a  $J_{sc}$  of  $24.64 \text{ mAcm}^{-2}$ ,  
375 and FF of 76.99% at reverse bias which is one of the best performances amongst the modified slot-  
376 die perovskite device with various passivation/additive molecules (Table S3). Intriguingly, the F-  
377 GLU-S device demonstrated a forward bias PCE of 20.94% with a  $J_{sc}$  of  $24.37 \text{ mAcm}^{-2}$ ,  $V_{oc}$  of  
378 1.130 V and FF of 76.03% with reduced HI of 0.023. The HI results validated that defects are  
379 effectively reduced by F-GLU-S treatment. The champion I-V curve for the control and F-GLU-S  
380 modified perovskite is provided in Figure 4b. Next, we measured the stabilized PCE of the control  
381 and F-GLU-S modified  $\text{MAPbI}_3$  based device at maximum power point of 0.98 V for 150s (Figure  
382 4c). The control device power out decreased significantly from 19.10% PCE to 15.95% in 150s  
383 which could be associated with an increase in the concentration of defect density of states while

384 measurement (such as ion diffusion) that leads to severe recombination as a result the PCE  
385 deteriorated over time.<sup>73</sup> Interestingly, the modified devices demonstrated stable stabilized power  
386 output over the measurement time that suggested the defects are effectively suppressed (no  
387 significant recombination) which is consistent with the PL and SCLC study. Moreover, F-GLU-S  
388 effectively modified the interface between perovskite and spiro-OMeTAD (doped with Li-TFSI  
389 and TBP). However, in the control device, the Li<sup>+</sup> could migrate to the and perovskite/spiro-  
390 OMeTAD interface that resulted severe recombination in the device which declined PCE over  
391 time.<sup>73</sup> This result implies the F-GLU-S not only improved the device performance, but it also  
392 substantially improves the stability of the working device.

393 To check the reproducibility of our results, we fabricated 20 devices each for the control and F-  
394 GLU-S modified slot-die coted perovskite and the results summarized on the box chart in Figure  
395 4d-g. The results demonstrated that F-GLU-S treated slot-die coated perovskite exhibited  
396 substantial improvements on both V<sub>oc</sub> and FF which validates the potential of F-GLU-S to repress  
397 the surface, grain boundary and electronic defects which corroborated the results of PL, TRPL,  
398 hole-only and electro-only device. The F-GLU-S coordinated with the perovskite through Lewis  
399 acid-base coordination (Pb-C=O) to suppress the uncoordinated Pb<sup>2+</sup> ions and also formed  
400 hydrogen bonding through chloro functional group where the Cl<sup>-</sup> could directly substitute the I<sup>-</sup>  
401 vacancy. As a result, the electronic defects substantially reduced which leads to improved PL  
402 device performance for the F-GLU-S modified device. Moreover, to study the uniformity of slot-  
403 die coated perovskite over a large area we fabricated large area (1.12 cm<sup>2</sup>) perovskite devices  
404 (Figure S10). Intriguingly, the large area device demonstrated a champion PCE of 15.72% with a  
405 J<sub>sc</sub> of 24.47cm<sup>2</sup>, a V<sub>oc</sub> of 1.09 V, and an FF of 58.93%. It has been reported that in the large area  
406 cells the performance loss is due to large series resistance (R<sub>s</sub>), which drastically lowers the fill


407 factor.<sup>74</sup> The  $R_s$  increasing with aperture area. Subsequently, we recorded the external quantum  
408 efficiency (EQE) of the control and F-GLU-S modified devices (Figure 4h), where the integrated  
409  $J_{sc}$  of  $19.85 \text{ mAcm}^{-2}$  and  $20.16 \text{ mAcm}^{-2}$  was measured for the control and F-GLU-S -modified  
410 device, respectively. The discrepancy between the integrated  $J_{sc}$  and the  $J_{sc}$  measured in the I–  
411 V curve arises because the EQE measurement is carried out in a single wavelength with  
412 considerably lower intensity than the one sun radiation.<sup>75</sup> These deviation might result from also  
413 due to the nonlinear recombination mechanism in the devices.<sup>75</sup> The integrated  $J_{sc}$  extracted from  
414 I–V scans that is within 20% deviation from the EQE signifies a reasonable correlation.<sup>75</sup>  
  
415 Subsequently, we carried out EIS measurement to investigate the charge recombination  
416 characteristics of the control and F-GLU-S modified device. The EIS measurement was recorded  
417 at a bias of 0.9 V in dark condition. The EIS curve and the corresponding equivalent circuit is  
418 provided in Figure 4i, and the extracted information are summarized in Table S4. In general, the  
419 high-frequency semi-circle in the Nyquist plot ascribed the recombination resistance and  
420 geometrical capacitance.<sup>76-77</sup> The fitting results revealed that the series resistance of the F-GLU-S  
421 modified device reduced from  $32.63\Omega$  (control device) to  $26.53\Omega$  which leads to FF improvement.  
422 Intriguingly, the charge recombination resistance ( $R_2$ ) depicted by the large semi-circle  
423 significantly enhanced above seven-fold times for the F-GLU-S passivated device compared to the  
424 control device ( $9545\Omega$  Vs  $1392\Omega$ ) which clearly proved the F-GLU-S significantly reduced the  
425 surface, grain boundary and electronic defects as a result the non-radiative charge recombination  
426 repressed which leads to  $V_{oc}$  improvement in the device.



427

428 Figure 4. (a) Schematic illustration of the fabricated device with a structure of FTO/c-TiO<sub>2</sub>/  
429 MAPbI<sub>3</sub> with and without 2mM F-GLU-S modification/Spiro-OMeTAD/Au. (b) The champion  
430 device performance using the control and 2mM F-GLU-S modified MAPbI<sub>3</sub>. (c) Stabilized power  
431 output of the control and F-GLU-S modified MAPbI<sub>3</sub> based device at maximum power point of  
432 0.98 V. Box chart comparison of the J-V parameters for the control and 2mM F-GLU-S modified  
433 MAPbI<sub>3</sub> (d) J<sub>sc</sub>, (e) V<sub>oc</sub>, (f) FF and (g) PCE. (h) EQE and integrated J<sub>sc</sub> of the control and 2mM F-  
434 GLU-S modified MAPbI<sub>3</sub> based device, and (i) Nyquist plots of the control and 2mM F-GLU-S  
435 modified MAPbI<sub>3</sub> based device. The inset shows their eqivalent circuit.  
436 Finally, we studied the influence of F-GLU-S modification on the long-term device stability. In  
437 general, defects not only minimize the PCE of the PSCs but also cause device instability.<sup>78-79</sup> To

438 study the slot-die coated perovskite film stability, we measured water contact angle for both the  
 439 control and F-GLU-S modified perovskite films where the control perovskite film showed a water  
 440 contact angle of  $53.36^\circ$  (Figure 5a). Interestingly, the water contact angle increased to  $72.35^\circ$   
 441 (Figure 5b) for the F-GLU-S modified slot-die coated perovskite film which infers the modified  
 442 film has potential to prevent the penetration of moisture better than the control perovskite film.  
 443 Then, we studied the long-term stability of the control and F-GLU-S modified perovskite devices.  
 444 We kept both devices in air at RH of 50-60% for one month. Four devices for each of the control  
 445 and modified devices were investigated to ensure the long-term study data is reproducible. The  
 446  $V_{oc}$  of the control devices was not influenced by the moisture, implying we get highly compact  
 447  $TiO_2$  film. However, both  $J_{sc}$  and FF degraded exponentially. Interestingly, the F-GLU-S  
 448 modified devices exhibited impressive stability in which the devices retained  $\sim 92\%$  of their initial  
 449 performance after 720 h. The long-term stability of the control and F-GLU-S modified devices are  
 450 shown in Figure 5c-f.



451

452 Figure 5. (a) Water contact angle of (a) the control, and (b) 2mM F-GLU-S modified MAPbI<sub>3</sub>.  
453 Long-term stability of the control and 2mM F-GLU-S modified MAPbI<sub>3</sub> in air (RH= 50-60%) for  
454 720 hours (c) J<sub>sc</sub>, (d) FF, (e) V<sub>oc</sub> and (f) PCE.

455 **Conclusions**

456 In summary, we have successfully passivated the defects of slot-die coated perovskite by a novel  
457 F-GLU-S. The FTIR characterization revealed the strong interaction between F-GLU-S and  
458 perovskite through carbonyl group (Pb-C=O) as a result the uncoordinated Pb<sup>2+</sup> ions effectively  
459 suppressed which unambiguously validated with 2D-GIWAXS and XPS peak shifts. Moreover,  
460 the F-GLU-S interacted with perovskite through hydrogen bonding (N-H...Cl) thus the I<sup>-</sup>  
461 vacancies successfully repaired. As a result, the non-radiative recombination of the modified  
462 perovskite significantly suppressed which is validated with the PL increase on the modified film.  
463 Furthermore, the modified perovskite exhibited extraordinary charge recombination resistance  
464 (seven-fold times higher) compared to the control device. The investigation on PL and EIS clearly  
465 indicated the non-radiative recombination effectively suppressed by the modification. Therefore,  
466 F-GLU-S modified slot-die coated perovskite device demonstrated excellent V<sub>oc</sub> of 1.130 V and  
467 FF of 76.99% with outstanding PCE of 21.44% which is one of the highest reported results based  
468 on slot-die coated perovskite. Moreover, device fabricated from the F-GLU-S modified perovskite  
469 exhibited excellent long-term stability and retained ~92% of its initial performance after it stored  
470 a month in air at room temperature and 50-60% RT.

471

472 **ASSOCIATED CONTENT**

473 **Supporting Information**

474 Summarized table of various passivation/additive molecules used to modify the slot-die coated  
475 perovskite layer. FTIR of the control, F-GLU-S modified perovskite, and F-GLU-S powder.  
476 Zoomed Q Vector. Fitted C1s, S2p and full XPS spectra. AFM, UV-Vis, TRPL calculations, box  
477 charts and tables of photovoltaic parameters, and EIS fitting calculations.

478 **Notes**

479 The authors declare no competing financial interest.

480

481 **Acknowledgment**

482 This material is based on work supported by the National Science Foundation (NSF) under Grant  
483 No. 1757220. The steady-state PL and TRPL equipment used in this work is supported by National  
484 Science Foundation Research Initiation Award: Novel Perovskite Solar Cells Based on Interface  
485 Manipulation (Award#1900047). Q. Dai thanks the support of NSF-PREM grant #DMR-1826886  
486 for the AFM measurements by N. Pradhan. XPS instrumentation used in this work was supported  
487 by the NSF Major Research Instrumentation Program (DMR-1726901). This work is also partially  
488 supported by the DOE SIPS program with award number of EE0010242.

489

490 **References**

491 1. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T.  
492 Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker,  
493 S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel, J. Y. Kim,

494 Pseudo-Halide Anion Engineering for Alpha-FAPbI<sub>3</sub> Perovskite Solar Cells, *Nature* 592 (2021)

495 381-385.

496 2. H. Min, M. Kim, S.-U. Lee, H. Kim, G. Kim, K. Choi, J. H. Lee, S. I. Seok, Efficient,

497 Stable Solar Cells by Using Inherent Bandgap of a-phase Formamidinium Lead Iodide, *Science*

498 (2019) 749–753.

499 3. N. G. Park, Research Direction toward Scalable, Stable, and High Efficiency Perovskite

500 Solar Cells, *Adv. Energy Mater.* 10 (2019) 1903106.

501 4. H. Higuchi, T. Negami, Largest highly efficient 203 × 203 mm<sup>2</sup> CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite

502 solar modules, *Jpn. J. Appl. Phys.* 57 (2018) 08re11.

503 5. X. Niu, N. Li, Q. Chen, H. Zhou, Insights into Large-Scale Fabrication Methods in

504 Perovskite Photovoltaics, *Adv. Energy Sustainability Res.* 2 (2020) 2000046.

505 6. D.-K. Lee, N.-G. Park, Materials and Methods for High-Efficiency Perovskite Solar

506 Modules, *Sol. RRL* 6 (2021) 2100455.

507 7. D. S. Ham, W. J. Choi, H. Yun, M. Kim, D.-H. Yeo, S. Lee, B. J. Kim, J. H. Lee, Influence

508 of Drying Conditions on Device Performances of Antisolvent-Assisted Roll-to-Roll Slot Die-

509 Coated Perovskite Solar Cells, *ACS Appl. Energy Mater.* 4 (2021) 7611-7621.

510 8. Y. Wang, C. Duan, P. Lv, Z. Ku, J. Lu, F. Huang, Y. B. Cheng, Printing strategies for

511 scaling-up perovskite solar cells, *Natl. Sci. Rev.* 8 (2021) nwab075.

512 9. H.-J. Kim, H.-S. Kim, N.-G. Park, Progress of Perovskite Solar Modules, *Adv. Energy*

513 *Sustainability Res.* 2 (2021) 2000051.

514 10. E. Berger, M. Bagheri, S. Asgari, J. Zhou, M. Kokkonen, P. Talebi, J. Luo, A. F. Nogueira,

515 T. Watson, S. G. Hashmi, Recent developments in perovskite-based precursor inks for scalable

516 architectures of perovskite solar cell technology, *Sustainable Energy Fuels* 6 (2022) 2879-2900.

517 11. J. B. Whitaker, D. H. Kim, B. W. Larson, F. Zhang, J. J. Berry, M. F. Van Hest, K. Zhu,  
518 Scalable slot-die coating of high performance perovskite solar cells, *Sustainable Energy Fuels* 2  
519 (2018) 2442-2449.

520 12. P. Liu, G. Tang, F. Yan, Strategies for Large-Scale Fabrication of Perovskite Films for  
521 Solar Cells, *Sol. RRL* 6 (2021) 2100683.

522 13. E. Rezaee, D. Kutsarov, B. Li, J. Bi, S. R. P. Silva, A route towards the fabrication of large-  
523 scale and high-quality perovskite films for optoelectronic devices, *Sci. Rep.* 12 (2022) 7411.

524 14. I. Zimmermann, M. Al Atem, O. Fournier, S. Bernard, S. Jutteau, L. Lombez, J. Rousset,  
525 Sequentially Slot-Die-Coated Perovskite for Efficient and Scalable Solar Cells, *Adv. Mater.*  
526 *Interfaces* 8 (2021) 2100743.

527 15. M. Fievez, P. J. Singh Rana, T. M. Koh, M. Manceau, J. H. Lew, N. F. Jamaludin, B. Ghosh,  
528 A. Bruno, S. Cros, S. Berson, S. G. Mhaisalkar, W. L. Leong, Slot-die coated methylammonium-  
529 free perovskite solar cells with 18% efficiency, *Sol. Energy Mater. Sol. Cells* 230 (2021) 111189.

530 16. I. Zimmermann, M. Provost, S. Mejaouri, M. Al Atem, A. Blaizot, A. Duchatelet, S. Collin,  
531 J. Rousset, Industrially Compatible Fabrication Process of Perovskite-Based Mini-Modules  
532 Coupling Sequential Slot-Die Coating and Chemical Bath Deposition, *ACS Appl. Mater. Interfaces*.  
533 14 (2022) 11636-11644.

534 17. M. Wang, Y. Yin, W. Cai, J. Liu, Y. Han, Y. Feng, Q. Dong, Y. Wang, J. Bian, Y. Shi,  
535 Synergetic Co-Modulation of Crystallization and Co-Passivation of Defects for FAPbI<sub>3</sub> Perovskite  
536 Solar Cells, *Adv. Funct. Mater.* 32 (2021) 2108567.

537 18. J. Xiong, Z. Dai, S. Zhan, X. Zhang, X. Xue, W. Liu, Z. Zhang, Y. Huang, Q. Dai, J. Zhang,  
538 Multifunctional Passivation Strategy Based on Tetraoctylammonium Bromide for Efficient  
539 Inverted Perovskite Solar Cells, *Nano Energy* 84 (2021) 105882.

540 19. L. Tang, Yang Huang, Chen Wang, Zhenxuan Zhao, Yiming Yang, Jiming Bian, Huaqiang  
541 Wu, Zengxing Zhang, and David Wei Zhang, Halide perovskite memristor with ultra-high-speed  
542 and robust flexibility for artificial neuron applications *J. Mater. Chem. C* 10 (2022) 14695-14702.

543 20. F. Xu, J. Liu, A. S. Subbiah, W. Liu, J. Kang, G. T. Harrison, X. Yang, F. H. Isikgor, E.  
544 Aydin, M. De Bastiani, S. De Wolf, Potassium Thiocyanate-Assisted Enhancement of Slot-Die-  
545 Coated Perovskite Films for High-Performance Solar Cells, *Small Sci. I* (2021) 2000044.

546 21. M. Du, X. Zhu, L. Wang, H. Wang, J. Feng, X. Jiang, Y. Cao, Y. Sun, L. Duan, Y. Jiao, K.  
547 Wang, X. Ren, Z. Yan, S. Pang, S. F. Liu, High-Pressure Nitrogen-Extraction and Effective  
548 Passivation to Attain Highest Large-Area Perovskite Solar Module Efficiency, *Adv. Mater.* 32  
549 (2020) e2004979.

550 22. M. Othman, F. Zheng, A. Seeber, A. S. R. Chesman, A. D. Scully, K. P. Ghiggino, M. Gao,  
551 J. Etheridge, D. Angmo, Millimeter-Sized Clusters of Triple Cation Perovskite Enables Highly  
552 Efficient and Reproducible Roll-to-Roll Fabricated Inverted Perovskite Solar Cells, *Adv. Funct.  
553 Mater.* 32 (2021) 2110700.

554 23. H.-J. Lee, S.-I. Na, Efficient mixed-cation perovskite photovoltaic cells via additive-  
555 assisted slot-die deposition, *Mater. Res. Bull.* 149 (2022)

556 24. L. Tao, B. Wang, H. Wang, C. Chen, X. Ding, Y. Tian, H. Lu, X. Yang, M. Cheng, Surface  
557 Defect Passivation and Energy Level Alignment Engineering with a Fluorine-Substituted Hole  
558 Transport Material for Efficient Perovskite Solar Cells, *ACS Appl. Mater. Interfaces* 13 (2021)  
559 13470-13477.

560 25. P. J. S. Rana, B. Febriansyah, T. M. Koh, B. T. Muhammad, T. Salim, T. J. N. Hooper, A.  
561 Kanwat, B. Ghosh, P. Kajal, J. H. Lew, Y. C. Aw, N. Yantara, A. Bruno, S. A. Pullarkat, J. W.

562 Ager, W. L. Leong, S. G. Mhaisalkar, N. Mathews, Alkali Additives Enable Efficient Large Area  
563 (>55 cm<sup>2</sup>) Slot-Die Coated Perovskite Solar Modules, *Adv. Funct. Mater.* 32 (2022) 2113026.

564 26. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You,  
565 Surface Passivation of Perovskite Film for Efficient Solar Cells, *Nat. Photonics* 13 (2019) 460-  
566 466.

567 27. N. De Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E. P. Yao, Y. Liu, A. Schiffer,  
568 Y. Yang, Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid  
569 Perovskite Solar Cells, *Nano Lett.* 16 (2016) 1009-1016.

570 28. J. I. Uribe, J. Ciro, J. F. Montoya, J. Osorio, F. Jaramillo, Enhancement of Morphological  
571 and Optoelectronic Properties of Perovskite Films by CH<sub>3</sub>NH<sub>3</sub>Cl Treatment for Efficient Solar  
572 Minimodules, *ACS Appl. Energy Mater.* 1 (2018) 1047-1052.

573 29. M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J.  
574 Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim, D. S. Kim, Methylammonium Chloride Induces  
575 Intermediate Phase Stabilization for Efficient Perovskite Solar Cells, *Joule* 3 (2019) 2179-2192.

576 30. W. Liu, J. Xiong, N. Liu, J. Dai, Z. Dai, Y. Huang, Z. Zhang, X. Xue, Q. Dai, J. Zhang,  
577 Defect Passivation and Interface Modification by Tetra-n-octadecyl Ammonium Bromide for  
578 Efficient and Stable Inverted Perovskite Solar Cells, *Chem. Eng. J.* 429 (2022) 132426.

579 31. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and Elimination of Photocurrent  
580 Hysteresis by Fullerene Passivation in CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Planar Heterojunction Solar Cells, *Nat.*  
581 *Commun.* 5 (2014) 5784.

582 32. Y. Lin, Y. Bai, Y. Fang, Z. Chen, S. Yang, X. Zheng, S. Tang, Y. Liu, J. Zhao, J. Huang,  
583 Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures,  
584 *J. Phys. Chem. Lett.* 9 (2018) 654-658.

585 33. R. J. Stoddard, A. Rajagopal, R. L. Palmer, I. L. Braly, A. K. Y. Jen, H. W. Hillhouse,  
586 Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium  
587 Alloying, *ACS Energy Lett.* 3 (2018) 1261-1268.

588 34. E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh, J. Seo,  
589 Efficient, Stable and Scalable Perovskite Solar Cells using Poly(3-hexylthiophene), *Nature* 567  
590 (2019) 511-515.

591 35. X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, Xiao C. Zeng, J. Huang, Defect  
592 Passivation in Hybrid Perovskite Solar Cells using Quaternary Ammonium Halide Anions  
593 and Cations, *Nat. Energy* 2 (2017) 1-9.

594 36. T. Zhang, L. Xie, L. Chen, N. Guo, G. Li, Z. Tian, B. Mao, Y. Zhao, In Situ Fabrication of  
595 Highly Luminescent Bifunctional Amino Acid Crosslinked 2D/3D  
596 NH<sub>3</sub>C<sub>4</sub>H<sub>9</sub>COO(CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub>)<sub>n</sub> Perovskite Films, *Adv. Funct. Mater.* 27 (2017) 1603568.

597 37. S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian,  
598 C. Huang, A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by  
599 using an Efficient Trap State Passivator Cu(thiourea)I, *J. Am. Chem. Soc.* 139 (2017) 7504-7512.

600 38. X. Li, M. I. Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H.  
601 Han, M. Gratzel, Improved Performance and Stability of Perovskite Solar Cells by Crystal  
602 Crosslinking with Alkylphosphonic Acid Omega-Ammonium Chlorides, *Nat. Chem.* 7 (2015)  
603 703-711.

604 39. C. Kyoungwon, L. Junwoo, K. Hong Il, P. Cheol Woong, K. Guan-Woo, C. Hyuntae, P.  
605 Sungjin, P. Sang Ah, P. Taiho, Thermally Stable, Planar Hybrid Perovskite Solar Cells with High  
606 Efficiency, *Energy Environ. Sci.* (2018) 3238-3247.

607 40. S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X. C. Zeng, J. Huang, Tailoring  
608 Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite  
609 Solar Cells, *J. Am. Chem. Soc.* **141** (2019) 5781-5787.

610 41. X. Zhou, M. Hu, C. Liu, L. Zhang, X. Zhong, X. Li, Y. Tian, C. Cheng, B. Xu, Synergistic  
611 Effects of Multiple Functional Ionic Liquid-Treated PEDOT:PSS and Less-Ion-Defects S-  
612 Acetylthioboholine Chloride-Passivated Perovskite Surface Enabling Stable and Hysteresis-Free  
613 Inverted Perovskite Solar Cells with Conversion Efficiency Over 20%, *Nano Energy* **63** (2019)  
614 103866.

615 42. A. Krishna, M. A. Akhavan Kazemi, M. Sliwa, G. N. M. Reddy, L. Delevoye, O. Lafon,  
616 A. Felten, M. T. Do, S. Gottis, F. Sauvage, Defect Passivation via the Incorporation of  
617 Tetrapropylammonium Cation Leading to Stability Enhancement in Lead Halide Perovskite, *Adv.  
618 Funct. Mater.* **30** (2020) 1909737.

619 43. S. Y. Abate, Q. Zhang, Y. Qi, J. Nash, K. Gollinger, X. Zhu, F. Han, N. Pradhan, Q. Dai,  
620 Universal Surface Passivation of Organic-Inorganic Halide Perovskite Films by  
621 Tetraoctylammonium Chloride for High-Performance and Stable Perovskite Solar Cells. , *ACS  
622 Appl. Mater. Interfaces* **14** (2022) 28044-28059.

623 44. Y. Qi, K. A. Green, G. Ma, S. Jha, K. Gollinger, C. Wang, X. Gu, D. Patton, S. E. Morgan,  
624 Q. Dai, Passivation of Iodine Vacancies of Perovskite Films by Reducing Iodine to Triiodide  
625 Anions for High-Performance Photovoltaics, *Chem. Eng. J.* (2022) 135647.

626 45. S.-C. Yun, S. Ma, H.-C. Kwon, K. Kim, G. Jang, H. Yang, J. Moon, Amino acid salt-driven  
627 planar hybrid perovskite solar cells with enhanced humidity stability, *Nano Energy* **59** (2019) 481-  
628 491.

629 46. C. T. Lin, W. Xu, T. J. Macdonald, J. Ngiam, J. H. Kim, T. Du, S. Xu, P. S. Tuladhar, H.  
630 Kang, K. Lee, J. R. Durrant, M. A. McLachlan, Correlating the Active Layer Structure and  
631 Composition with the Device Performance and Lifetime of Amino-Acid-Modified Perovskite  
632 Solar Cells, *ACS Appl. Mater. Interfaces* 13 (2021) 43505-43515.

633 47. W. Zhang, X. Lei, J. Liu, J. Dong, X. Yan, W. Gao, H. Dong, C. Ran, Z. Wu, Efficient  
634 Charge Collection Promoted by Interface Passivation Using Amino Acid Toward High  
635 Performance Perovskite Solar Cells, *Phys. Status Solidi RRL* 13 (2019) 1800505.

636 48. H. S. Lin, J. M. Lee, J. Han, C. Lee, S. Seo, S. Tan, H. M. Lee, E. J. Choi, M. S. Strano, Y.  
637 Yang, S. Maruyama, I. Jeon, Y. Matsuo, J. W. Oh, Denatured M13 Bacteriophage-Templated  
638 Perovskite Solar Cells Exhibiting High Efficiency, *Adv. Sci.* 7 (2020) 2000782.

639 49. D. Jia, J. Chen, M. Yu, J. Liu, E. M. J. Johansson, A. Hagfeldt, X. Zhang, Dual Passivation  
640 of CsPbI<sub>3</sub> Perovskite Nanocrystals with Amino Acid Ligands for Efficient Quantum Dot Solar  
641 Cells, *Small* 16 (2020) e2001772.

642 50. J. Du, L. Feng, X. Guo, X. Huang, Z. Lin, J. Su, Z. Hu, J. Zhang, J. Chang, Y. Hao,  
643 Enhanced efficiency and stability of planar perovskite solar cells by introducing amino acid to  
644 SnO<sub>2</sub>/perovskite interface, *J. Power Sources* 455 (2020) 227974.

645 51. J. Han, K. Kim, J. S. Nam, S. J. Hong, E. J. Choi, D. Kim, I. Chung, H. S. Lin, T. D. Kim,  
646 M. S. Strano, B. Han, J. W. Oh, H. D. Kim, I. Jeon, Genetic Manipulation of M13 Bacteriophage  
647 for Enhancing the Efficiency of Virus-Inoculated Perovskite Solar Cells with a Certified  
648 Efficiency of 22.3%, *Adv. Energy Mater.* 11 (2021) 2101221.

649 52. B. Ma, X. Sun, S. Yan, L. Zhang, S. Chen, X. Liu, J. Song, Interface modification by Fmoc-  
650 Met-OH molecule for high-efficient perovskite solar cells, *J. Mater. Sci: Mater. Electron.* 33 (2022)  
651 15359-15368.

652 53. B. Hu, J. Zhang, Z. Guo, L. Lu, P. Li, M. Chen, C. Li, Manipulating Ion Migration and  
653 Interfacial Carrier Dynamics via Amino Acid Treatment in Planar Perovskite Solar Cells, *ACS*  
654 *Appl. Mater. Interfaces* 14 (2022) 15840-15848.

655 54. Y. Choi, D. Koo, G. Jeong, U. Kim, H. Kim, F. Huang, H. Park, A vertically oriented two-  
656 dimensional Ruddlesden–Popper phase perovskite passivation layer for efficient and stable  
657 inverted perovskite solar cells, *Energy Environ. Sci.* 15 (2022) 3369-3378.

658 55. S. Han, H. Zhang, Y. Li, R. Wang, Q. He, Solution-processed amino acid modified SnO<sub>2</sub>  
659 electron transport layer for carbon-based CsPbIBr<sub>2</sub> perovskite solar cells, *Mater. Sci. Semicond.*  
660 *Process.* 133 (2021) 105964.

661 56. J. Song, Q. Qiu, X. Sun, L. Wang, Surface modification of perovskite film by an amino  
662 acid derivative for perovskite solar cell, *Org. Electron.* 108 (2022) 106598.

663 57. P. Sang, Y. Shi, B. Huang, S. Xue, T. Odom, J. Cai, Sulfono- $\gamma$ -AApeptides as Helical  
664 Mimetics: Crystal Structures and Applications, *Acc. Chem. Res.* 53 (2020) 2425-2442.

665 58. Y. Shi, P. Sang, G. Yin, R. Gao, X. Liang, R. Brzozowski, T. Odom, P. Eswara, Y. Zheng,  
666 X. Li, J. Cai, Aggregation-Induced Emissive and Circularly Polarized Homogeneous Sulfono-  
667 gamma-AApeptide Foldamers, *Adv. Opt. Mater.* 8 (2020)

668 59. Y. Shi, G. Yin, Z. Yan, P. Sang, M. Wang, R. Brzozowski, P. Eswara, L. Wojtas, Y. Zheng,  
669 X. Li, J. Cai, Helical Sulfono- $\gamma$ -AApeptides with Aggregation-Induced Emission and Circularly  
670 Polarized Luminescence, *J. Am. Chem. Soc.* 141 (2019) 12697-12706.

671 60. G. B. Adugna, S. Y. Abate, W. T. Wu, Y. T. Tao, Toward Large-Area and Fully Solution-  
672 Sheared Perovskite Solar Cells., *ACS Appl. Mater. Interfaces* 13 (2021) 25926-25936.

673 61. D.-N. Jeong, D.-K. Lee, S. Seo, S. Y. Lim, Y. Zhang, H. Shin, H. Cheong, N.-G. Park,  
674 Perovskite Cluster-Containing Solution for Scalable D-Bar Coating toward High-Throughput  
675 Perovskite Solar Cells, *ACS Energy Lett.* 4 (2019) 1189-1195.

676 62. S. Y. Abate, Q. Zhang, Y. Qi, J. Nash, K. Gollinger, X. Zhu, F. Han, N. Pradhan, Q. Dai,  
677 Universal Surface Passivation of Organic-Inorganic Halide Perovskite Films by  
678 Tetraoctylammonium Chloride for High-Performance and Stable Perovskite Solar Cells, *ACS Appl.*  
679 *Mater. Interfaces* 14 (2022) 28044-28059.

680 63. S. Wang, F. Cao, Y. Wu, X. Zhang, J. Zou, Z. Lan, W. Sun, J. Wu, P. Gao, Multifunctional  
681 2D Perovskite Capping Layer using Cyclohexylmethylammonium Bromide for Highly Efficient  
682 and Stable Perovskite Solar Cells, *Mater. Today Phys.* 21 (2021) 100543.

683 64. H. Kim, M. Pei, Y. Lee, A. A. Sutanto, S. Paek, V. I. E. Queloz, A. J. Huckaba, K. T. Cho,  
684 H. J. Yun, H. Yang, M. K. Nazeeruddin, Self-Crystallized Multifunctional 2D Perovskite for  
685 Efficient and Stable Perovskite Solar Cells, *Adv. Funct. Mater.* 30 (2020) 1910620.

686 65. J. Hu, X. Xu, Y. Chen, S. Wu, Z. Wang, Y. Wang, X. Jiang, B. Cai, T. Shi, C. J. Brabec,  
687 Y. Mai, F. Guo, Overcoming photovoltage deficit via natural amino acid passivation for efficient  
688 perovskite solar cells and modules, *J. Mater. Chem. A* 9 (2021) 5857-5865.

689 66. C. Ma, N.-G. Park, Paradoxical Approach with a Hydrophilic Passivation Layer for  
690 Moisture-Stable, 23% Efficient Perovskite Solar Cells, *ACS Energy Lett.* 5 (2020) 3268-3275.

691 67. S. Y. Abate, W. T. Wu, S. Pola, Y. T. Tao, Compact TiO<sub>2</sub> films with sandwiched Ag  
692 nanoparticles as electron-collecting layer in planar type perovskite solar cells: improvement in  
693 efficiency and stability, *RSC Adv.* 8 (2018) 7847-7854.

694 68. Y. S. Lin, S. Y. Abate, K. W. Lai, C. W. Chu, Y. D. Lin, Y. T. Tao, S. S. Sun, New  
695 Helicene-Type Hole-Transporting Molecules for High-Performance and Durable Perovskite Solar  
696 Cells, *ACS Appl. Mater. Interfaces* 10 (2018) 41439-41449.

697 69. W. Yang, R. Su, D. Luo, Q. Hu, F. Zhang, Z. Xu, Z. Wang, J. Tang, Z. Lv, X. Yang, Y.  
698 Tu, W. Zhang, H. Zhong, Q. Gong, T. P. Russell, R. Zhu, Surface modification induced by  
699 perovskite quantum dots for triple-cation perovskite solar cells, *Nano Energy* 67 (2020)

700 70. S. Y. Abate, D.-C. Huang, Y.-T. Tao, Surface modification of TiO<sub>2</sub> layer with phosphonic  
701 acid monolayer in perovskite solar cells: Effect of chain length and terminal functional group, *Org.*  
702 *Electron.* 78 (2020)

703 71. Q. Chen, K. Deng, Y. Shen, L. Li, Stable One Dimensional (1D)/Three Dimensional (3D)  
704 Perovskite Solar Cell with an Efficiency Exceeding 23%, *InfoMat.* 4 (2022) e12303.

705 72. E. A. Alharbi, A. Y. Alyamani, D. J. Kubicki, A. R. Uhl, B. J. Walder, A. Q. Alanazi, J.  
706 Luo, A. Burgos-Caminal, A. Albadri, H. Albrithen, M. H. Alotaibi, J. E. Moser, S. M. Zakeeruddin,  
707 F. Giordano, L. Emsley, M. Gratzel, Atomic-Level Passivation Mechanism of Ammonium Salts  
708 Enabling Highly Efficient Perovskite Solar Cells, *Nat. Commun.* 10 (2019) 3008.

709 73. H.-S. Kim, J.-Y. Seo, S. Akin, E. Simon, M. Fleischer, S. M. Zakeeruddin, M. Grätzel, A.  
710 Hagfeldt, Power output stabilizing feature in perovskite solar cells at operating condition: Selective  
711 contact-dependent charge recombination dynamics, *Nano Energy* 61 (2019) 126-131.

712 74. J. Kim, J. S. Yun, Y. Cho, D. S. Lee, B. Wilkinson, A. M. Soufiani, X. Deng, J. Zheng, A.  
713 Shi, S. Lim, S. Chen, Z. Hameiri, M. Zhang, C. F. J. Lau, S. Huang, M. A. Green, A. W. Y. Ho-  
714 Baillie, Overcoming the Challenges of Large-Area High-Efficiency Perovskite Solar Cells, *ACS*  
715 *Energy Lett.* 2 (2017) 1978-1984.

716 75. J. A. Christians, J. S. Manser, P. V. Kamat, Best Practices in Perovskite Solar Cell  
717 Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good, *J. Phys. Chem.*  
718 *Lett.* **6** (2015) 852-857.

719 76. A. Bou, A. Pockett, D. Raptis, T. Watson, M. J. Carnie, J. Bisquert, Beyond Impedance  
720 Spectroscopy of Perovskite Solar Cells: Insights from the Spectral Correlation of the Electrooptical  
721 Frequency Techniques, *J. Phys. Chem. Lett.* **11** (2020) 8654-8659.

722 77. A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Impedance Spectroscopy of Metal Halide  
723 Perovskite Solar Cells from the Perspective of Equivalent Circuits, *Chem. Rev.* **121** (2021) 14430-  
724 14484.

725 78. D.-H. Kang, S.-Y. Kim, J.-W. Lee, N.-G. Park, Efficient Surface Passivation of Perovskite  
726 Films by a Post-Treatment Method with a Minimal Dose, *J. Mater. Chem. A* **9** (2021) 3441-3450.

727 79. M. M. Byranvand, M. Saliba, Defect Passivation of Perovskite Films for Highly Efficient  
728 and Stable Solar Cells, *Sol. RRL* **5** (2021) 2100295

729

730

731

732

733

734

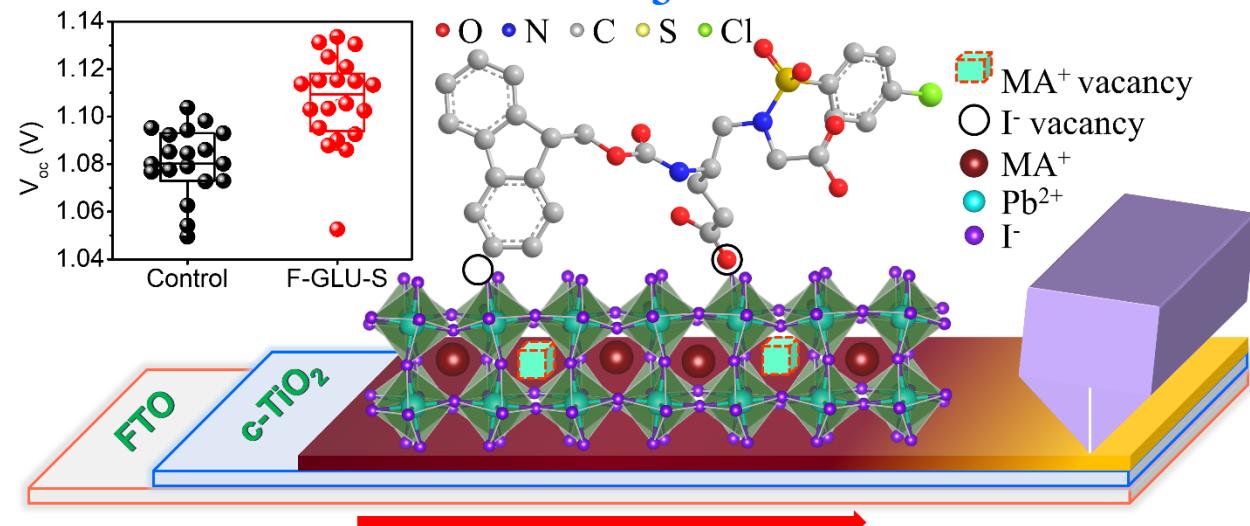
735

736

737

738

739


740

741

742

743 TOC

## Sulfonyl- $\gamma$ -Aapeptide passivated large area slot-die coated $\text{MAPbI}_3$ with 21.44% PCE



744

745

746 Highlights

- Large area perovskite layer slot-die coated on CBD prepared c-TiO<sub>2</sub> at room temperature
- The multi-functional F-GLU-S strongly coordinated with perovskite through Pb-C=O/N/O and N-H...Cl and modify the uncoordinated Pb<sup>2+</sup> ions and I<sup>-</sup> vacancy concurrently

750 • F-GLU-S treatment improved PL,  $V_{oc}$  and charge recombination resistance significantly

751 • F-GLU-S modified slot-die coated planar perovskite device produced 21.44% PCE

752

753