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ABSTRACT Recent research shows that supervised learning can be an effective tool for designing near-
optimal feedback controllers for high-dimensional nonlinear dynamic systems. But the behavior of neural
network controllers is still not well understood. In particular, some neural networks with high test accuracy
can fail to even locally stabilize the dynamic system. To address this challenge we propose several novel
neural network architectures, which we show guarantee local asymptotic stability while retaining the approxi-
mation capacity to learn the optimal feedback policy semi-globally. The proposed architectures are compared
against standard neural network feedback controllers through numerical simulations of two high-dimensional
nonlinear optimal control problems: stabilization of an unstable Burgers-type partial differential equation,
and altitude and course tracking for an unmanned aerial vehicle. The simulations demonstrate that standard
neural networks can fail to stabilize the dynamics even when trained well, while the proposed architectures
are always at least locally stabilizing and can achieve near-optimal performance.

INDEX TERMS Computational methods, machine learning and control, neural networks, nonlinear control

systems, optimal control.

I. INTRODUCTION

Designing optimal feedback controllers for high-dimensional
nonlinear systems remains an outstanding challenge for the
control community. Even when the system dynamics are
known, to design such controllers one needs to solve a
Hamilton-Jacobi-Bellman (HJB) partial differential equation
(PDE), whose dimension is the same as that of the state space.
This leads to the well-known curse of dimensionality, which
rules out traditional discretization-based approaches.

Recent work has demonstrated the promise of supervised
learning as one potential approach for handling such challeng-
ing, high-dimensional problems. The main idea is to generate
data by solving many open loop optimal control problems
(OCPs) and then fit a model to this data set, thus obtaining
an approximate optimal feedback controller. Various specific
model design and training approaches have been developed
within this framework. Earlier work [1], [2], [3] uses sparse
grid interpolation to approximate the solution of the HIB

equation — called the value function — and its gradient, which
is used to compute the optimal feedback control. This line
of work has been futher developed using neural networks
(NNs) [4], [5], [6], [7], [8] and sparse polynomials [9], signif-
icantly increasing the maximum feasible problem dimension.
Alternatively, one can directly approximate the value gradi-
ent [10], [11] or control policy [4], [5], [11], [12], [13], [14].
There are also several closely-related research directions
which can be classified as self-supervised learning methods.
The method of successive approximations is a well-studied
approach based on iterative updates of a value function model
and/or control policy by approximately solving a series of
Lyapunov equations [15], [16], [17]. These methods are
equipped with convergence guarantees but they often depend
on specific problem dynamics, a priori access to a semi-
globally stabilizing controller, or polynomial model structures
whose size grow exponentially with the problem dimension.
A second group of methods attempt to solve the HIB PDE in
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FIGURE 1. Simulated trajectory of a fixed wing UAV (29) controlled with an
NN feedback controller, compared to the optimal trajectory.

the least-squares sense by minimizing the residual of the PDE
and boundary conditions at (randomly sampled) collocation
points [18], [19], [20], [21]. More recently, [22], [23], [24]
have proposed methods to solve the HIB equation along its
characteristics without generating data. Generally speaking,
such self-supervised approaches avoid the cost of data gener-
ation by taking on a harder learning problem.

Despite promising developments in the methodology, much
less work has been done to study and improve the stability and
reliability of these NN controllers. To see why this is needed,
if we train a set of NNs to control a fixed wing unmanned
aerial vehicle (UAV) studied in Section VI, a surprisingly
large fraction of these fail to stabilize the system despite hav-
ing good approximation accuracy. Fig. 1 shows a closed loop
simulation with one such controller where the NN-controlled
trajectory closely tracks the optimal (stable) trajectory before
suddenly destabilizing and eventually settling at an undesired
steady state. Behavior like this obviates the need for bet-
ter understanding, more rigorous testing, and more reliable
algorithms.

This problem has been previously recognized by [11], [25],
while [13] point out that test accuracy incompletely charac-
terizes NN controller performance, suggesting some practical
evaluations of optimality and stability. [26] study linear stabil-
ity near a desired equilibrium, linear time delay stability, and
stability around a nominal trajectory using high order Taylor
maps. In terms of algorithm development, [8], [11] propose
several NN architectures incorporating a linear quadratic regu-
lator (LQR) which makes training more reliable and improves
local stability properties.

The purpose of this paper is twofold: first, to bring attention
to stability issues with NN-controlled systems; and second,
to propose some NN architectures which can mitigate some
of these challenges. These architectures improve on previous
work in [8], [11] by guaranteeing, at a minimum, local asymp-
totic stability (LAS) of the system. This is accomplished by
exactly recovering the LQR gain at the origin by construction.
We also prove a universal approximation theorem for NNs
with such structures, showing that they can approximate the
nonlinear optimal feedback law up to arbitrary accuracy, and
consequently provide semi-global stability and optimality.

This paper is organized as follows. We start by describ-
ing the problem setting in Section II. In Section III we
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describe the novel NN architectures and present theory un-
derpinning their local stability properties and their ability to
approximate the full nonlinear optimal feedback policy. In
Section IV we outline the supervised learning procedure. It
should be noted, however, that the proposed architectures do
not have to be trained using supervised learning; in principle
they can also be implemented with self-supervised learning.
In Section V we apply several practical closed loop stability
and optimality tests to demonstrate the advantages of the pro-
posed NN architectures. As a testbed we use the Burgers’-type
PDE system (25), which is nonlinear, open loop unstable, and
high-dimensional. Then in Section VI we apply the proposed
control design methodology to learn optimal feedback con-
trollers for a six degree-of-freedom (6DoF) fixed wing UAV
with nonlinear dynamics and aerodynamics, showing that the
framework can be applied to practical problems. A summary
and directions for future work are given in Section VII. The
code used for simulations in this paper will be made publicly
available at https://github.com/Tenavi/QRnet.

Il. PROBLEM SETTING
We focus on infinite horizon nonlinear OCPs of the form

JTu() xo] / £0x w)ds

minimize
u( ) 0
subjectto x(t) f(x u) (1)
x(0)  xq
u(r) e U

Here x : [0 0c0) — R” is the state, u : [0 oc0) - U C R™ is
the control, f : R"” x U — R" is a vector field which is contin-
uously differentiable (C') in x and u, and (x rup) eR"xU
is a (possibly unstable) equilibrium of f( ). We consider box
control constraints

U {u eR" |umini S Sumaxi @01 m} 2

for vectors Wpax Upin € R™; and running costs £ : R" x
U — [0 o0) of the form
L(x u)

gx) r(u) (3)

for smooth functions g : R* — [0 o0),r: U — [0 00) satis-
fying g(x¢) 0,r(uy) 0, q(x) > 0forx / Xy, and r(u) >
0 for u / uy. This is a standard running cost for regulariza-
tion or set-point tracking problems. We make the standard
assumptions that uy is an interior point of U and that the
OCP (1) is well-posed, i.e. there exists an optimal control
u* : [0 o0) — U such that J[u*( )] < oo.

Due to real-time application requirements, we would like to
design a control policy in explicit feedback form, u  u*(x),
which can be evaluated online given any measurement of x.
The mathematical framework for designing such an optimal
feedback policy is the HIB equation.

Define the value function V : R" — R as the optimal cost-
to-go of (1) starting at x(0) x, i.e. V(x): J[u*() x].
Under appropriate conditions, the value function is the unique
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viscosity solution [27] of the steady state HIB PDE,

min? (x Vx w) 0 V(xs) 0 4)
where Vi : [0V 9x]% and
Hx A uw: Lxu) ATfx u) (5)

is the Hamiltonian. If (4) can be solved (in the viscosity
sense), then it provides both necessary and sufficient con-
ditions for optimality. Furthermore, the optimal feedback
control is then obtained from the Hamiltonian minimization
condition,
u*(x)

u* (x Vg(x)) argmin# (x Vx u) (6)

uel

lll. ARCHITECTURES FOR OPTIMAL FEEDBACK DESIGN
Our goal is to construct a feedback policy which approximates
the optimal control, i.e. W(x) ~ u*(x). While previous work
has clearly demonstrated the potential of deep learning as a
means of overcoming the curse of dimensionality in optimal
control, NN are notoriously “black boxes” and their behavior
— especially when implemented in the closed loop system
— is complex and hard to predict. Notably, even if we can
train a highly accurate NN, it can still fail to stabilize the
system. Thus there is a clear need for designing NN feedback
controllers with built-in stability properties.

In prior work, the authors proposed V-QORnet [8] (origi-
nally just called QRner), A-QRnet, and u-QRnet [11]. These
architectures combine an LQR controller with NNs. The LQR
terms are good approximations of the optimal control near x,
and improve local stability. Meanwhile, the NNs are intended
to capture nonlinearities and thereby learn the nonlinear opti-
mal feedback over a large domain.

However, none of these architectures guarantee LAS,
which motivates us to pursue alternative designs. In this paper
we introduce four novel NN architectures, Ajic-QRnet, Amat-
ORnet, uj,c-ORnet, and upma-ORnet, all of which guarantee
LAS of x;y while retaining the ability to approximate the
nonlinear optimal control semi-globally.

The remainder of this section is organized as follows. In
Section III-A we review A-QRnet, u-QRnet, and LQR control
design. The novel NN architectures are presented in Sec-
tion III-B and III-C. In Section III-D we show that these
controllers automatically provide LAS, and finally in Sec-
tion III-E we prove that they have the capacity to approximate
the nonlinear optimal control.

Throughout the paper, architectures denoted with a leading
V approximate the value function, those with A approximate
the value gradient, and those with u directly approximate the
optimal control. V-NN, A-NN, and u-NN refer to standard
feedforward NNs for approximating the value function, value
gradient, and optimal control, respectively.
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A. X -QRNET AND u-QRNET
Introduced in preliminary work [11], A-QRnet and u-QRnet
are straightforward linear combinations of LQR with NNs. Let

.o . of
Ay (xr up) B gy (xr wy)
. .2
Q: FF(xy) R: FZ(uy)
Under the standard conditions that (A B) is controllable and

(A Q! ?)is observable, LQR gives a quadratic value function
approximation,

(N

VER(x)  (x —xp) P(x — x;) (8)

and a linear state feedback law,

uRx) u,-Kx-x;) K RI'B'P (9

where P € R™" is a positive definite matrix satisfying the
Riccati equation,

Q AP PA-PBR'B’P 0 (10)

Sufficiently near x;, the LQR value function (8) and con-
trol (9) are good approximations of the true value function
V() and optimal control u*( ), respectively. Specifically,
[du* 0x](x;) —K and [0°V 9x*](x;) 2P. But further
away from Xy, the control is suboptimal and in some cases
may even fail to stabilize the nonlinear dynamics. For this
reason we are interested in combining the local stability and
optimality of LQR with NN to learn the full nonlinear opti-
mal control u*( ) over a semi-global domain.

Now we describe A-QRnet, which approximates the value
gradient V() as

Ax) 2P(x—x;) N(x 0)—N(x; 6) (11)
Here N : R" x R? — R” is an NN with C! activation func-
tions and parameters 6 € R”, and the linear component
2P(x — xy) is the gradient of the LQR value function (8). We
then substitute (11) into (6) to obtain an approximate optimal

feedback control:

ux) ut(x /):(x)) (12)
A -ORnet can be easily implemented when we can solve (6) for
an explicit formula the optimal feedback control in terms of
the state and value gradient, as is the case for many problems
of interest.

Alternatively, we can directly approximate the optimal con-

trol with u-QRnet:
ux) o [sat (uLQR(X)) N (x 0)— N (x; 0)] (13)

where now N : R” x R? — R™. In (13), sat( ) is the satura-

tion function defined for eachi 1 m as
Umin i Uj < Umin i
[sat (w)]; : Ui Umin i < Uj < Umax i (14)
Umax i Umax i < Ui

VOLUME 1, 2022



IEEE
- CSS

Smooth saturation function

Umax

Uy -

o(u)

Umin
Umin us Umax

u

FIGURE 2. The smooth saturation function (15).

Next, o : R — U is a generalized logistic function which
smoothly saturates the nonlinear control:!

Umax — Umin
1 crexp[—c (u—uy)]

Here multiplication and division are performed element-wise,
and we set the constants ¢; ¢; € R™ as

o (u) : Umin (15)

Umax — Uy
g — ¢
Uy — Upin

Umax — WUmin
(Umax — ) (W — Upin)
It is straightforward to verify that these choices of ¢; ¢
satisfyo(uy) uyand[do du](uy) 1.Consequently,o( )
smoothly imposes saturation constraints while preserving the
unsaturated behavior near uy, as we visualize in Fig. 2.

Use of this smooth saturation function makes learning eas-
ier since it prevents vanishing gradients when the control
becomes saturated. The hard saturation function (14) acting
on the LQR control inside the smooth saturation function (15)
may appear redundant, but this is actually important for lim-
iting the effect of the linear term away from x. This reduces
the burden on the NN: it is free to approximate nonlineari-
ties without negating any excess contributions from the linear
component.

It is easy to show that subtracting N (xy @)in(11)and (13)
makes the goal state X a closed loop equilibrium [11], [24].
This is not true for standard NN controllers, V-NN, A-NN,
u-NN, or V-QORnet. Including the LQR terms improve local
stability due to LQR’s large gain and phase margins, but does
not exactly recover LQR and so cannot assure LAS without
adequate training.

(16)

B. “JACOBIAN” QRNET ARCHITECTURES

Now we describe Aj,.-QRnet and uj,.-QRnet. These are sim-
ilar to A-ORnet and u-QRnet, except that we subtract the
Jacobian of the NN components. This ensures that the con-
trollers exactly recover LQR at xy, thus guaranteeing LAS.
Furthermore, we will prove that these architectures retain the
nonlinear function approximation capacity of standard feed-
forward NNs, allowing them to approximate the full nonlinear
value gradient and optimal control.

First we have Aj,.-ORnet:

(%) |:2P— aaix/(xf 0)} (x —xy)

N (x 0)— N (x; 0) (17)

I'We also clip the exponent —cy(u — u r) to prevent numerical overflow
when evaluating the gradient during training.
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uyac -ORnet has an analogous structure:

ux) o |:sat (uLQR(x)) — |:85/\/

X

% 0] (x=x)

N (x 0)—N (x; 0)} (18)
These models are slower to train than A-QRnet (11) and
u-QRnet (13) since the Jacobian [dN 9x] (xy 6) must be
evaluated during each forward pass. After training, however,
we can store the Jacobian matrix in memory so that it does not
have to be recomputed online. Therefore online evaluation is
just as fast as A-QRnet and u-QRnet.

C. “MATRIX” QRNET ARCHITECTURES

In this section we describe Apa-QRnet and upma-QRnet.
These alternatives to the “Jacobian”-style architectures em-
ploy matrix-valued NNs. Thus they avoid the costly Jacobian
computations in exchange for having to optimize more NN
parameters. These “matrix” QRnets enjoy the same stability
and approximation properties as the “Jacobian” QRnets. We
have not found a consistent performance advantage of either
the “Jacobian” or “matrix” QRners: their relative learning
ability appears to be problem-dependent.

First consider Apya-QRnet:

[2P N (x 0)—N (xf 0)] (x —xy)

Notice that in this case N : R” x R? — R™" is matrix-
valued. Next we have uy,-QRnet:

ux) o [sat (uLQR(X))
[V x 0) =N (x/ 6)] (x—x/) ]

where now N : R" x R? — R™",

A drawback of Ama-QRnet (19) is that the number of NN
parameters scales with O(Lw? wn?), where L is the number
of layers and w is their width. For high dimensional OCPs,
this can make (19) challenging to train as well as deploy on
small processors. Meanwhile, the number of NN parameters
in (20) scales with O(Lw?  wmn). Since we typically have
m <K n, umat-QRnet is often much smaller and hence much
faster to train than A ,-QRnet.

A(x) (19)

(20)

D. LOCAL ASYMPTOTIC STABILITY GUARANTEES
Like A-QORnet and u-QRnet, the new architectures automati-
cally make the goal state Xy an equilibrium. Moreover, if we
linearize the feedback control () at x + then we recover the
LQR control gain (9). This holds even when the models are
poorly trained. This is desirable because LQR locally asymp-
totically stabilizes X, and hence the proposed controllers are
locally stabilizing by construction. This property is stated
formally in Proposition 1 below. The proof is straightforward
but tedious, so we omit it for brevity.

Proposition 1 (Local asymptotic stability): Suppose u( ) is
a feedback policy specified by (12) with (17) or (19); or by
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(18) or (20). Then [9u 9x](x/)
ble equilibrium of the NN-controlled system, x

—K and x; is a locally sta-
f(x u(x)).

E. APPROXIMATION CAPACITY

LAS is a critical but bare minimum requirement. To achieve
the ultimate goal of semi-global stability and optimality
through training, the NN architectures must be able to ap-
proximate u*( ) with sufficient accuracy. Unfortunately, we
cannot directly use the Taylor series-like forms of (17)—(20)
or existing NN universal approximation theorems like [28] to
show this is possible. This is because Vx( ) and u*( ) are in
general not C' everywhere, and because the NN architectures
used in this work are not standard.

Nevertheless, for OCPs like (1) we expect Vx( ) and u*( )
to be everywhere continuous and locally C' in a neighborhood
of xy. In this case Theorem 1 and 2 presented below show
that NNs of the form (17)—(20) are universal approximators
for such functions? To prove Theorem 1 and 2 we will first
specialize the Stone-Weierstrass approximation theorem [29]
to locally C! functions, and then apply an NN universal ap-
proximation theorem [28]. For clarity of presentation, we
simply state the main results here and defer the proofs to the
Appendix.

Throughout this section let X C R" be compact, let x; be
an interior point of X, and without loss of generality letx; 0
anduy 0.By C(X R¢) we denote the space of continuous
functions on X taking values in RY.

Our first main result concerns the approximation capacity
of the “Jacobian” QRnet architectures introduced in Sec-
tion III-B. As mentioned previously, since we expect the value
gradient and optimal control for the OCP (1) to be continuous
and locally C', this supports the use of Aj,c-QRnet and ujy,c-
QORnet as nonlinear function approximators.

Theorem 1 (Jacobian: QRnet approximation) Suppose
feC(X RY), f(0) 0, and f() is C' in a neighborhood
of 0. Then for all ¢ > 0, there exists a feedforward NN
with bounded, non-constant, C! activation functions, A €
CH(X R%), such that for all x € X,

Hf(x) — ([g—i(O) — %(0)] x Nx) —N(O)) Hl <e

An analogous approximation theorem can be obtained for
the “matrix” QRnet architectures introduced in Section III-C,
Amat-QRnet and up-QRnet.

Theorem 2 (Matrix: QRnet approximation) Suppose f
C(X RY), £(0) 0, and f() is C' in a neighborhood of
0. Then for all &€ > 0, there exists a feedforward NN
with bounded, non-constant, C! activation functions, N €
CH(X R?*™), such that for all x € X,

£ = [2£©0) Nx) —NO)]x| <e

2For simplicity, Theorem 1 and 2 do not address the saturation constraints
(15) which may be applied to uy,.-QRnet and umq-QRnet. In practice we find
that the smooth saturation function does not hinder learning.
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IV. MODEL TRAINING

In this section we provide an overview of the supervised
learning approach we use to train the NN controllers. Note that
the proposed NNs do not have to be trained using supervised
learning: they can be implemented in conjunction with any
learning algorithm as long as an LQR controller can be com-
puted for the system. In this work we focus on the impact of
NN architecture rather than learning algorithm, so we restrict
the scope to supervised learning.

Supervised learning can be broken down into three
steps: data generation (Section IV-A), NN optimization (Sec-
tion IV-B), and finally model evaluation against test data
(Section IV-C). In Section V we will illustrate a more rigor-
ous test regimen specifically for control design, by which we
compare the proposed controllers with LQR and standard NN
controllers.

A. DATA GENERATION

To circumvent the challenge of directly solving the HIB PDE
(4), we can find an approximate optimal control by joining the
solutions of many open loop OCPs. Each open loop OCP can
be solved independently without the use of a spatial grid, thus
mitigating the curse of dimensionality. Numerical methods
based on this idea are referred to as causality-free [1].

To generate training and testing data sets for supervised
learning we solve the open loop OCP (1) for a set of (ran-
domly sampled) initial conditions. Note that in practice we
approximate (1) by a finite horizon problem with large final
time. Each open loop optimal trajectory and control provide
input-output pairs xD, (Ve (xD) u*(x)), where the super-
script (7) is the sample index. Aggregating data from all open
loop solutions,? we obtain a data set

(xO vy (x@) ur (x @)}

Dtrain 1 (2 1 )

In the following we briefly review common computational
methods for solving open loop optimal control. For more
detailed discussions of data generation approaches for su-
pervised learning, we refer the reader to [30] and references
therein.

Algorithms for solving the open loop OCP (1) can be
broadly classified as indirect and direct methods [31]. Indi-
rect methods take the “optimize then discretize” approach,
computing open loop optimal solutions to (1) by numerically
solving necessary conditions of optimality from Pontryagin’s
Minimum Principle (PMP). These necessary conditions are
given in term of a two-point boundary value problem (BVP) in
terms of the state x : [0 co) — R” and costate X : [0 00) —
R", which under some conditions is equivalent to the value
gradient along the optimal trajectory. There are mature BVP
solvers that can be used for such computations.

Direct methods take the ‘“discretize then optimize” ap-
proach, transforming the OCP (1) into a nonlinear program-
ming problem. In contrast to indirect methods, direct methods

3Note that there is no need to distinguish data from different trajectories as
the value function and optimal feedback control are time-independent.
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do not require deriving the costate dynamics or initial guesses
for the costates, and can more easily handle complicated
OCPs such as those with path constraints. In the context of su-
pervised learning, [13], [14] use a Hermite-Simpson method
to generate data for finite horizon OCPs. Radau pseudospec-
tral collocation [32], [33] is a direct method which is ideal
for solving infinite horizon open loop OCPs. Pseudospectral
methods have the added benefit of the covector mapping the-
orem [33], [34], which allows one to extract costate data from
the solution of the discretized OCP.

In this paper we employ an indirect method for the
Burgers’-type PDE stabilization problem (Section V) and a
Radau direct method for the UAV problem (Section VI).

B. SUPERVISED LEARNING

Once a set of training data is available, the next step is training
— i.e. data-driven optimization. Denoting the model parame-
ters (i.e. the NN weights and biases) by 8 € R”, then the NN
is trained by minimizing a mean squared error (MSE) loss
function:

Nirain

[6(x® 6) —u (xV)[3

0 arg min 22)

0 train ;7

As is standard in machine learning, the models learn on data
which has been scaled to the range [—1 1], and the output is
accordingly rescaled to the original domain when ultimately
used for control.

When training the value gradient models, one can augment
the loss function (22) with an additional MSE term to learn
the value gradient,

MNirain

>R 6) - W (x5

train il

lossy (@)

(23)

and/or a term to minimize the residual of the HIB equation
(4). The proposed NNs would also work well in conjunction
with active learning methods [7].

C. QUANTIFYING MODEL ACCURACY

To quantify the accuracy of the model we generate a second
test data set, Diegt, from independently drawn initial condi-
tions. During training, the NN sees only data points from
the training set Dy,in, While Dy is reserved for evaluating
approximation accuracy after training. A typical metric is the
relative mean ¢2 error,

1 Neest
MNeest Zi 1

maxi 1 M test

u (x) —u* (x?)
u* (x)

RM¢? -

(24)

I

where Ny denotes the number of test points X € Dy, A
low test error indicates that the NN generalizes well, i.e. it did
not overfit the training data.

However, even with low test error, there is a chance that
the NN could still perform poorly when implemented in the
closed loop system as seen in Fig. 1. For this reason we believe
that test metrics like (24) are insufficient in the context of
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control design; we should instead focus on rigorous closed
loop stability and performance tests such as those presented
in Section V.

V. NUMERICAL RESULTS

In this section we compare the proposed controllers to stan-
dard feedforward NNs trained to approximate the value
function, its gradient, and the optimal control. We also com-
pare to V-QORnet [8], A-ORnet, and u-QRnet [11]. We present
results for three different tests:

1) linear stability near Xy (Section V-B);

2) Monte Carlo (MC) nonlinear stability (Section V-C);

3) MC optimality analysis (Section V-D).

Such tests are of course familiar to the control community,
but we believe it is worth emphasizing their importance since
more rigorous and realistic testing is needed in order to start
trusting NN controllers in real-world applications. We also
note that these tests are just a starting point: further examples
include stabilization time [13], time delay stability [26], and
robustness to measurement noise, disturbances, and parameter
variations.

The numerical results clearly illustrate that standard NNs
are not consistently stable, even when they have good ap-
proximation accuracy. Meanwhile, the results confirm that
the proposed architectures guarantee LAS while still being
able to accurately approximate the nonlinear optimal control
throughout the training domain.

A. UNSTABLE BURGERS’-TYPE PDE

To test the NN architectures we revisit the Burgers’-type PDE
stabilization OCP from [8], [11]. This is a high-dimensional
nonlinear OCP formulated by Chebyshev pseudospectral spa-
tial discretization of an unstable version of a Burgers’ PDE.
Briefly, the problem can be summarized as

m%I} Ju()] / (x"Qx u'Ru)ar
u 0

Bu

(25)
Here x : [0 c0) — R” represents the PDE state X (¢ &) col-
located at spatial coordinates §;  cos(jm n), j 1 n,
u: [0 co) > R™ is the control, D € R"*" is the Chebyshev
differentiation matrix, Q € R™" R € R™*™ are diagonal
positive definite matrices, and “o” denotes element-wise mul-
tiplication. The parameters v § > 0 « € R", and B € R™"
are defined in [8], and we take n 64 and m 2. Initial
conditions are also selected as in [8].

We generate data by solving the OCP (1) for randomly
sampled initial conditions, using an indirect method. For
this problem we reliably obtain high quality data with the
SciPy [35] implementation of the two-point BVP solver [36].
To get models with varying approximation accuracy, we gen-
erate training data sets with different numbers of trajectories.

Note that because data generation depends on random sam-
pling and (22) is a highly non-convex optimization problem,
results can vary for different random seeds. To account for

s.t. X _EDXOX vD?x  aoxoe PX
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FIGURE 3. Training time and RM¢? error for different NN architectures,
depending on the amount of training data. Bar heights show the medians
over ten trials, error bars show the 25th and 75th percentiles, and triangles
are minimum and maximum values. LQR approximation accuracy is shown
as a dashed line.

this, for each different data set size we conduct ten trials
with different randomly generated training trajectories and
NN weight initializations. We evaluate the RM¢2 error (24)
on an independent test data set containing 500 trajectories.

V-NN and V-QRnet are trained as described in [8]. For the
value gradient networks we do not use the value gradient loss
term (23) since for this problem it did not improve results.
To be consistent, all NNs have L 5 hidden layers with w
32 neurons each and tanh( ) nonlinearities. Optimization of
(22) is carried out with L-BFGS [37], which stops when the
relative change in the loss is sufficiently small. All models are
trained on an NVIDIA RTX 2080Ti GPU.

Fig. 3 shows training times and test accuracies of the NNs.
We see that models which approximate the value gradient,
especially Aj,c-ORnet and Apa-ORnet, take the longest to
train because of the large number of NN parameters. Despite
this, the training time is still very reasonable at under eight
minutes. We also find that the new architectures have similar
test accuracy statistics to the standard NNs, confirming that
they can learn complicated nonlinear functions as suggested
by Theorem 1 and 2. For this problem there is no clear per-
formance distinction between the “Jacobian” and “matrix”
architectures or between the A and u models.

B. LOCAL STABILITY VERIFICATION

As a first step we assess the local stability of each NN-
controlled system. Let X € R” be an equilibrium of the closed
loop system, x f(x u(x)), i.e. f(x U(X)) 0. Note that
the NN controllers introduced in Section III always have
f(xy u(x ) 0, but Xy may not be a closed loop equilib-
rium for V-NN, A-NN, u-NN, and V-QRnet. Thus for these
controllers we use a root-finding algorithm to locate a closed
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FIGURE 4. Real part of most positive eigenvalue of the closed loop
Jacobian A, at or near x;. Each marker represents a single model.

loop equilibrum X near x;. The dynamics near X can be
approximated by x &~ A (x — X), where

of of ou _
Ay - (x u(x)) [—(X U(X))} [—(X)] (26)
X ou 0x

is the closed loop Jacobian. Therefore, after synthesizing a
feedback controller we can easily verify local stability by
seeing if A is Hurwitz. Furthermore as noted in [26], one
benefit of using an NN controller with differentiable activation
functions is that the closed loop dynamics are locally C'.
This allows one to use tools from linear systems theory to
characterize the local stability of X.

Fig. 4 shows the real part of the most positive eigenvalue of
A for each NN. We find that standard NNs must be trained
to a high level of test accuracy before they are even locally
stable, which necessitates a large data set and long training
time. On the other hand, A-QRnet. u-QRnet, and the new
“Jacobian” and “matrix” QRnets all yield LAS even when
trained on small data sets. Recall that Proposition 1 guarantees
this for the new architectures.

C. MONTE CARLO STABILITY ANALYSIS

Here and in Section V-D we conduct Monte Carlo (MC)
closed loop simulations. We randomly select Nyyc 100 ini-
tial conditions x(()[), i 1 Mvic with norm ||x(()i) — Xyl
12~ MaxXy()ep, i, [x) — Xr|l, placing them at the edge of
the training domain where the NNs may be less accurate and
the system harder to control. We stop each simulation when
the system reaches a steady state or exceeds a large final time.
We call the largest observed final state,

max HX (tf X(()i)) — Xf H

(i)
X0

the worst-case failure. If this is sufficiently small then the
closed loop nonlinear system is likely to be semi-globally
stable.

Fig. 5 shows the worst-case failures for each controller. We
find that only the most accurate standard NNs stabilize the
origin, whereas all controllers from Section III stabilize all
the MC trajectories. These empirical results suggest that the
proposed architectures not only guarantee LAS, but also make
the control design process more reliable, consistently yielding
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FIGURE 5. Worst-case norm of final state over Nyc¢ 100 simulations.
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FIGURE 6. Median percent cost more than optimal cost over Ny¢ 100
simulations.

a stabilizing control law even with small data sets and short
training times.

D. MONTE CARLO OPTIMALITY ANALYSIS

In this paper we are interested in both stability and optimality.
Optimality of a given controller u( ) can be quantified by the
accumulated cost J[u( ) xg)] compared to the optimal cost
V(x(()i)), across all MC simulations i 1 Nyic. Fig. 6
shows the results of this analysis for the same set of MC
simulations conducted in Section V-C. Among the stabilizing
NN controllers there is a clear correlation between higher test
accuracy and better performance. All the stabilizing NN con-
trollers follow this trend and perform better than LQR alone.
It follows that the proposed architectures improve stability
without limiting optimality.

VI. APPLICATION EXAMPLE: FIXED-WING UAV

In this section we illustrate how the proposed control archic-
tures can be used with supervised learning to design an
optimal feedback controller a fixed-wing 6DoF UAV. The
controller is designed for stabilization from a wide range of
flight conditions, as well as tracking for arbitrary altitude and
course commands - a challenging nonlinear OCP.

A. FIXED-WING UAV DYNAMICS
The dynamic model we use is based on the one presented
in [38], [39]. We review it here to orient the reader and point
out several small differences.

The position of the UAV is described in inertial north-east-

T
down coordinates, p : (pn De pd) . The velocities

in the body x, y, and z directions are denoted as V :
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T

(u v w) . The attitude of the UAYV, i.e. its rotation

from inertial to body frames, is described using quaternions
T

q: (qo qT) , where ¢o is the scalar quaternion and

T

q: (ql q q3) is the vector quaternion. The angu-

lar velocity of UAV in the body frame is written as o :
T
<p q r) . The full state is then

T T T \7 13
X: (p v q ® ) eR
The UAV is controlled with a throttle §, € [0 1], ailerons

8, € [—6, 8,1, elevator 8, € [-5, &, ], and rudder §, €
[=5, &, ] Thus

27)

T
u: (3, 5, 6 5,) cUcR* (28)

Modeling the UAV as a rigid body we obtain the dynamic
equations [38]

p Ry’ (V)
Y _ 1
% V wle mF 29)
q ;@0q
® J ' [0 x Jw) M]

Here Rq : R? — R? is the rotation (computed using the atti-
tude q) from inertial to body frame, and Ral( ) is the inverse
rotation from body to inertial frame. Next, m is the mass of
the UAV, J € R33 is the UAV’s inertia matrix, and

0 —p —q -r

p 0 r —q
®:

g —-r 0 p

r g —-p O

Finally F  F(x uw)and M  M(x u) are the external forces
and moments acting on the vehicle expressed in the body
frame. These arise as a result of gravity, aerodynamics, and
control inputs. In the following presentation we ignore the
effects of wind for simplicity.

The first force is gravity, which can be expressed in the

T
body frame as Fgrayity Rq[<0 0 mg) ], where g is

the gravitational constant. Next we employ a linear propellor
model based on [38]:

1 krznotor‘st - ”VHZ
— ,onRgmpCpmp 0

5 (30)
0

Fprop

Here p is the air density, Rpqp is the propellor blade length,
and kmotor and Cprop parameterize thrust efficiency.

Finally, the aerodynamic forces Faero (Fx F, FZ>

and moments M (MK M, M,,)
plicated nonlinear relationships that must be modeled from

experimental data. In this work we use the basic models

are in general com-
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from [38], with slight nonlinear modifications to the drag and
pitching moment models to improve their post-stall realism.
The longitudinal forces are modeled as

F, cosa —sina —Fp
F; sina cosa -

tan~!(w u) is the angle of attack and
CCLq
Cr, §
2V e ]
CCDq
Cp; Se
vt P }

are the lift and drag forces, respectively. Here S is the wing
area and CLq, CLSE, CDq, CD&? are modeling parameters. As
in [38] we model

Cr(a)

where o

1
L Epnvuzs [CL(a)

1
Fp zanuZS [cpax)

(1 — ap(e)] [Cr

op(er) 2sign(a) sin® & cos

CLa(X]
(31)

where Cp, and Cp,, are modeling parameters and op(c) is a
smooth blending function which is o5(a) & 0 for @ < oy
and op(a) =~ 1 for o > ogan, With oy being the stall angle
of attack. See [38] for details. For the drag model we use a
blend of a quadratic and post-stall flat plate model [40]:

(Cry CLﬂ)T

Cp(a) [l —op(@)] [CD0 o2 S

op(a) 2 sin « (32)

where Cp, is the parasitic drag, b is the wingspan, and e is
another modeling parameter. We similarly modify the pitching
moment model from [38] to be nonlinear in «. Let

1 C, c
M,, Eanquc[cm(a) -

C,. 6 33
2 O } &)

with

Cu(e)  [1 —op(e)]tanh (Cpy  Cpyt)

op(a) Gy, sin(—o) (34)

and where Cmq, Cmae’ Cingy> Cny» and Gy, are modeling pa-
rameters. The remaining lateral aerodynamics, Fy, M, and
M, are functions of ||V||, p, r, 84, 8, and the sideslip B
sin~!(v ||V]]). These models are the same as in [38] and
are omitted for brevity. The values of the constants used
in this problem are taken from [39], with the exception of
Corop 045, kmotor 32, agean 20°, and Cp,,, 0 8. Note
that oaigiap 20° is lower than in [38], [39], making the model
more realistic and challenging to control.

B. OPTIMAL CONTROL PROBLEM FORMULATION

We aim to design a feedback controller to stabilize the UAV
and track any desired altitude 7y  —py r and course angle
Xf tan_l(p’e Dn)- Let X¢ uy be the pair of trim states and
controls computed for a desired airspeed ||V ¢||. The UAV is
in trim if f(x; uy) 0, except for p, and p.. Note that the
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dynamics are invariant to p, so we can choose any arbitrary
trim altitude. The dynamics (excepting p, and p.) are also
invariant to rotations of the inertial reference frame about the
inertial z axis, which allows us to use the same trim attitude q ¢
to express any desired yaw angle yy. When the vehicle is in
trim (and in the absence of wind) the yaw angle v is equal to
the course angle yx, and thus this formulation allows arbitrary
course tracking.
A suitable running cost for this OCP is

— 3 2
L(xu) QO [hceil tanh (‘pdhcif”ﬂ

(35)

where Qf, heeit > 0, Qv Qq Qo € R3*3 are positive defi-
nite, and R € R**# is positive definite. Notice that the altitude
cost is locally quadratic but saturates for py — pg 5 > Aceil,
preventing extreme maneuvers when the commanded altitude
changes.

We set the desired airspeed at ||V z||
following cost function parameters:

20 [m/s] and use the

heeit 50 [m] On 1 hgeil
Qv diag(10 VP 1 1)
Qq Sl3x3

Qo _(30]0 2 I3x3
R diag(01 01 (5,)

2 2
L) 1))
Initial conditions are uniformly sampled from the following
domain to elicit a wide range of nonlinear dynamics:

Pdy € [3hceil 3heeil

Voe[Vy—5[m/is] Vy 5[mis]]

Yo ¢o € [—180° 180°] 6y € [-90° 90°]
wo € [—30 [deg/s] 30 [deg/s]]

Here 9 6y ¢o denote the inital yaw, pitch, and roll angles,
which are converted to the initial quaternion ¢g. Recall that
we can set pg, 0 and ¥ 0 without loss of generality,
and thus the initial condition determines the initial altitude and
course errors.

For this high-dimensional and highly nonlinear OCP we
found that indirect methods were unreliable for generating
data. For this reason we generate data with a direct method:
Radau pseudospectral method [33]. To the best of our knowl-
edge this is the first case of pseudospectral methods being
used for supervised learning. To obtain good quality open loop
OCP data we use a large number of Radau collocation points
and set stringent tolerances for the nonlinear programming
solver. Note that direct methods typically provide optimal
state and control pairs, but obtaining costate entails extra

Xo
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FIGURE 7. Worst-case norm of final state over Ny¢ 100 simulations. The
vertical axis is limited since we stop simulations if the altitude h — h; goes
outside of 300 [m].

computational effort. For this reason in this section we only
show results for u-NN, u-QRnet, uy,.-QRnet, and umac-QRnet,
which directly approximate the optimal control and do not
need costate data.

C. LEARNING RESULTS

For this problem we generate training data sets with 32, 64,
128, and 256 trajectories each. For each data set we train each
type of NN controller with different weight initializations. As
before we conduct ten trials for each data set size. We evaluate
the RM¢2 error (24) on an independent data set with 100
trajectories. As in Section V all NNs have L 5 hidden layers
with w 32 neurons each and tanh( ) nonlinearities. Because
these data sets are too large for full-batch optimization we use
Adam [41] with a learning rate of 1073, batch sizes of 256
data points, and 1500 epochs.

Similar to the results shown in Fig. 4, again we find that
well-trained #-NNs may fail to even locally stabilize the sys-
tem. Furthermore, closed loop equilibria under u-NN control
are often far from X. In the physical system this corresponds
to steady state altitude, course, and attitude errors, even when
said equilibrium is stable (see Fig. 1).

Fig. 7 shows the worst case norm for a set of Nyic 100
closed loop simulations. These simulations demonstrate how
challenging the UAV is to control over this large spatial do-
main. First we notice that LQR is not globally stabilizing for
this OCP. Next we observe that most standard u-NNs, even the
well-trained ones, do not stabilize X¢. u-QRnet, uysc-QRnet,
and uma-ORnet also have some difficulty with semi-global
stabilization, though they clearly do better than #-NN. Note
that these controllers are able to stabilize trajectories LQR
fails to stabilize - even though they are built on top of LQR.

Finally Fig. 8 shows the average performance of each con-
troller in terms of minimizing the cost functional J[u( )]. We
again see that most NN controllers perform better than LQR
on average, indicating they they do learn the optimal policy
reasonably well. We also see that the standard u-NNs have
slightly highter test accuracy, suggesting that for this OCP
the training loss (22) converges faster than the modified ar-
chitecture (i.e. requires fewer gradient descent steps). Despite
this, we can see that u-QRnet, uy,c.-QRnet, and upac-QRnet
perform just as good or better in terms of closed loop stability
and optimality. We expect that all methods will improve with
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FIGURE 8. Median percent cost more than optimal cost over Nyc 100
simulations.
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FIGURE 9. Simulated trajectory of the fixed wing UAV (29) with u-NN,
Umat-QRnet, and LQR controllers, compared to optimal trajectory.

larger data sets, more training epochs, and hyperparameter
tuning.

D. EXAMPLE CLOSED LOOP SIMULATION

We conclude this section with an illustrative example of an
NN-in-the-loop simulation. We conduct the simulation for the
same initial condition as in Fig. 1, this time with a uy,-ORnet
controller trained on 256 trajectories. A view of the closed
loop trajectory is presented in Fig. 9, and detailed time series
of system states and feedback controls are shown in Fig. 10.
Notice that the UAV begins off course and pitched down with
large negative pitch rate. For this initial condition, LQR is
36.44% suboptimal while the uma-QRnet is 0.95% subopti-
mal. This simulation highlights the potential benefit of using
NN optimal feedback controllers to achieve good performance
in nonlinear systems.

VIl. CONCLUSION
In this paper we have shown that NN feedback controllers
can frequently fail to stabilize a system, even when they are
trained to a high degree of accuracy. This occurs frequently
enough that it cannot be ignored. One strategy to make NN
feedback controllers more viable is through the use of spe-
cialized NN architectures. To this end we propose four new
model architectures which guarantee (at least) LAS while re-
taining the approximation capacity necessary to learn the full
nonlinear optimal control and provide nonlinear stability on
semi-global domains. A summary of the control architectures
discussed in this paper is given in Table 1.

In Section V we evaluated the proposed architectures
through a series of practical closed loop stability and
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TABLE 1. Summary of NN Control Architectures Discussed in This Paper.
L Denotes the Number of Layers and w is Their Width. *Need to Solve (6)
for Optimal Control in Terms of State and Costate

architecture LAS guarantee number of NN
parameters (p)
V-NN* - 2w + Lw?
V-QRnet* [8] - 2w+ Lu?
A-NN* - 2wn + Lw?
A\-ORnet* (11) ] Swn 4 Lw?
Atac-QRnet* (17) v 2wn + Lw?
Ama-QRnet” (19) v wn? + wn + Lw?
u-NN _ wm + wn + Lw?
u-QRnet (13) - wm -+ wn + Lw?
’UJac-QRI’l@Z (18) v wm + wn + ng
Umar-QRnet (20) v wmn + wn + Lw?

optimality tests, demonstrating their advantages over standard
NNs. Finally in Section VI we illustrated how the proposed
architectures might be used with supervised learning to de-
sign optimal feedback controllers for challenging, practical
systems.

For problems where the dimension is not too large, the
value gradient approximators, Ajac-ORnet and Apmg-ORnet,
can sometimes perform better than the control approxima-
tors, ujac-ORnet and upma-ORnet. This is because they encode
additional physical structure and can learn from costate data
in addition to control data. On the other hand, the control
approximators are generally much faster to train, and they
can be implemented even when it is not possible to solve (6)
for the optimal control, and when it is difficult to generate
accurate costate data.

To complement the NN architectures presented in this
paper, in future work we intend to develop mathematical
tools to explain the behavior of NN feedback controllers. In
particular, we would like to better understand what causes
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seemingly-accurate NN models to fail at stabilizing a system,
as well as why and to what extent the novel NN architec-
tures improve semi-global system stability. Such theoretical
advances will be necessary if supervised learning is to become
a reliable and commonly accepted control design method.

APPENDIX

PROOFS OF APPROXIMATION CAPACITY

To prove the approximation capacity theorems, we first spe-
cialize the classic Stone-Weierstrass theorem (stated below
for reference) to approximation of locally C' functions. This
result is given as Corollary 1. The proofs of Theorem 1 and
2 in Section Al and A2, respectively, subsequently apply
classical NN approximation theory [28] to the approximating
function from Corollary 1 to obtain the desired result.

By C(X) and C(X R?) we denote the spaces of continuous
functions on X taking values in R and R?, respectively. These
function spaces are algebras; a set of functions A an algebra
if it is closed under (element-wise) addition, multiplication,
and scalar multiplication. A subalgebra of A is a subset of A
which is also an algebra.

Theorem 3 (Stone-Weierstrass [29]): Suppose that A is
a subalgebra of C(X) which separates points* and does not
vanish’ anywhere in X. Then for all f € C(X) and all & > 0
there exists g € A satisfying maxyex f(X) — g(X) < e.

Corollary 1 (Approximation of locally C' functions): Sup-
pose f € C(X RY), f(0) 0,andf( )isC' inaneighborhood
of 0. Then for all ¢ > 0, there exists a function g € C' (X R?)
satisfying g(0) 0, [0g 0x](0) 0, and maxycx ||f(x) —
[ 0)]x — g1 <e.

4An algebra A separates points if forallx y € X,x / y, there exists g € A

such that g(x) / g(y).

S A set of functions A vanishes at x; € X iff(x;) 0forallf e A.
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Proof: Consider the set of functions A C C'(X) which
have [dg 9x](0) 0. We claim that 4 is an algebra which
vanishes nowhere and separates points. It is easy to verify
that A is closed under addition, multiplication, and scalar
multiplication; hence A is an algebra. A also contains the
constant functions, so it vanishes nowhere. Lastly, to see that
A separates points, note that for any x / y without loss of

generality x; / y;. Then take g(x) xf / y? g(y), since x>
is one-to-one. ’
Now write f(x) ( J1(x) fa (x)) . For each i

1 d, by Theorem 3 there exists ; € A satisfying
£i00 = [HO0]x - | < %

0 by assumption, this implies

MaXxex
Since f;(0)
O [HO) - [E®]0 - mO)| < &
hi(x) -
£i00 = [H0]x - gix)|

Defining g;(x) : hi(0) we get g;(0) 0Oand

maXyxex

fioo =[O ]x—ne|  mo

& & &

2d 2d d

< maXxeX

Because A is an algebra we must also have g; € A
and hence [dg; 9x](0) 0. Thus setting g(x)
T

(g1 (x) gd (x)) yields the desired function. |

A. PROOF OF THEOREM 1

Since X is bounded, there is some B > 0 for which
maxyex ||X||; < B.Forany e > 0,lete* min ¢ ¢ B .From
Corollary 1 we can find some ge C'(X RY) satisfying
g(0) 0,[dg ox](0) 0, and

maxyex [£(x) — [2Z£(0)]x — g, < &

Also by the universal approximation theorem [28] there ex-
ists an NN, M € C1(X R?), which approximates g( ) and its
derivative to arbitrary accuracy, say

maxyex llg(x) — N )|,
g—i(x) - %AX/(X)Hl 1

e
max < —
maXyex 6

Here we define the matrix norm [|All; | : [[vec(A)|; for a
matrix A € R?*" and its vectorization, vec(A) € R™". Notice
that

INO 110 =N O, g0
Consequently, for all x € X we get

lgx) — N'(x) = NO);

< lg® -N®I;  INO; <5

~NO; <&

Similarly,
3 N
w0 — 5

of,, [Fol, <5
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which implies
o], =[] <5
for all x € X. Putting this all together we obtain
Hf(x) — ([%(0) — %(0)] x Nx) —N(O)) H1
[O]x g,
g0 — N~ N Ol [[H®]x|,

< |fx) -

¥

S* 8*
7 3 §B=

forall x € X. |

£
3 &

(ST
[T

<

B. PROOF OF THEOREM 2
From Corollary 1 we can find some g € C!'(X R?) satisfying
g(0) 0, [og 9x](0) 0,and

maxyex [fx) — [F5(O)]x — g, < 5

Applying [42], Exercise 3.23], for all x € X we can de-
compose g(x)  [h(x)]x, where h € C(X R?*") is given by
h(x) fol[ag 0x](sx)ds. Further, since [0g 0x](0) 0 we
have h(0)  [[dg 9x]1(0)ds 0.

Since X is bounded, there is some B > 0 for which
maxyex [|X||1 < B. Now given ¢ > 0, by the universal approx-
imation theorem [28] there exists an NN, A/ € C}(X R*"),
with maxyex [|h(x) — N (X)||1 1 < & (4B). In particular,

(36)

INOIp 10=NO) 1 [1h©) =N O 1 < 55
Therefore, for all x € X we have
lg(x) — [NV(x) = N(0)] x|,
Ih(x) =N x)  N(O)]x|,
< (I =Nl INO ) Xl
< &8
« (37)
Applying the triangle inequality to (36) and (37) finishes the
proof. [ ]
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