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Abstract—The rapid development of more electric aircraft
(MEA) raises the demand of high-power converters with
significant weight and volume reduction for onboard power
distribution. The isolated DC/DC converter using the medium-
frequency transformer (MFT) is a feasible solution. To design an
MFT with improved electromagnetic and thermal performance, a
matrix core transformer (MCT) architecture is proposed with
accurate models in this paper. With superior heat dissipation
ability, the high current windings can be effectively cooled with
both natural and forced air convection. In addition, an
optimization methodology for MCT design is presented. As a
result, the prototype of a 100 kW, 50 kHz MCT with an additive
manufactured bobbin is built. The results of both finite element
analysis (FEA) simulation and experimental study in a full power
dual active bridge with the MCT prototype are presented to verify
the theoretical design. The power density and efficiency of the
MCT reach to 17.7 kW/L and 99.63%, respectively.

Index Terms—Medium-frequency transformer, more electric
aircraft (MEA), power distribution.

1. INTRODUCTION

As a promising solution for the future commercial aircrafts,
the more electric aircraft (MEA) gets much attention due
to its ability to achieve higher efficiency and lower weight [1].
In addition, MEA is an environmental-friendly solution with
lower fuel consumption and less greenhouse gas (GHG)
emission. An example of power distribution system in MEA is
shown in Fig. 1, in which the HVDC bus is used for delivering
the power. There are several commercial aircrafts available
with more electric features, such as the Boeing 787 and Airbus
A380, where engines are directly coupled with the generators
to lower power losses in the transmission. However, the need
of power level on MEA is still rapidly increasing beyond 1 MW
[2]. To meet this need, the high power converters for power
distribution and motor drives with significantly higher specific
power (kW/kg) and volumetric power density (kW/L) are still
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Fig. 1. Electrical power distribution system of MEA.

needed to be developed. Thanks to the advancement of wide
bandgap semiconductor technology, silicon carbide (SiC)
devices with high blocking voltage capabilities, e.g., 10 kV [3]
and 15 kV [4], and switching frequency lead to the rapidly
increased interests for high power converters in the medium
voltage (MV) application [5-7]. The concept of solid-state
transformer (SST) is proposed as a disruptive solution for
power conversion with galvanic isolation [8]. The SST replaced
the bulky line-frequency transformer with the medium-
frequency transformer (MFT), which reduces the size and
weight of the conversion system significantly. There are several
high-power SST designs reported in the existing literature, such
as a 10 MW, 1 kHz SST setup presented in [9]. Both the high-
power density and high-power operation capability advance the
development of SST for aerospace applications [10]-[12].

The most commonly using building block in the SST is the
dual active bridge (DAB) converter, whose topology, typical
operating waveforms, and equivalent circuit are illustrated in
Fig. 2 [13]. The bidirectional power delivery is controlled by
adjusting the phase shift between the two H-bridges. The MFT
not only provides the galvanic insulation for the converter, but
also is indispensable for delivering power, especially the
leakage inductance of the MFT is an essential component for
power level control and soft switching realization [14]. Even
though an external inductor connected in series with the
transformer winding can be an alternative, the integrated
solution, i.e., using an optimized leakage inductance of the
MEFT, can be a better solution to get rid of the need for external
inductor and increase the power density. The methods to design
and estimate the leakage inductance are discussed in [15]-[17]
and the comparison among them in terms of the accuracy and
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Fig. 2. (a) The topology, (b) typical operation waveforms, and (c) equivalent
circuit of DAB.
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Fig. 3. (a) The structure of MCT and (b) the top view.
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Fig. 4. Applied voltage and excited flux density of the MFT in a DAB converter.
computational burden is presented in [18].

the core window (OW) instead of inside the core window (IW),
which increases the heat dissipation capability. Analytical
models of MCT are introduced in this section, which is critical
for the MCT design and optimization to be presented later.

A. Core Loss Models

Soft magnetic materials are widely used in transformer
design, and they are classified as ferrites, laminated iron alloys,
iron powder, amorphous alloys and nanocrystalline materials
[25]. Even though the saturation flux density of nanocrystalline
cores can achieve 1.5 T and is considered has the lowest core
loss in the medium frequency range, the ferrites cores are
preferred as the frequency increases since the nanocrystalline
cores are tape-wound with conductive ribbon, which worsens
the eddy current loss significantly [26], [27]. Besides, the prices
of ferrite cores are much lower than nanocrystalline cores, thus
the ferrite cores are selected for this 50 kHz application.

To design the high power MFTs for MEA applications, it is
critical to achieve not only the high efficiency and power
density, but also the excellent heat dissipation and voltage
insulation. There are several publications focus on the MFTs
design to achieve one or more of these design requirements. A
99% efficient 25 kW MFT with vacuum pressure potting
technology was presented in [19] for a 7 kV-to-400 V insulation
design. A 100 kW, 10 kHz MFT prototype was setup in [20]
with accurate leakage and thermal models. A 200 kVA 10kHz
MEFT presented in [21] used nanocrystalline core for lower core
loss, and similar work in [22] increases the frequency to 15 kHz
with parallel-concentric winding structure. An ultra-high-
power density of 32.7 kW/L was achieved for the MFT
illustrated in [23] for 166 kW power level application with
liquid cooling. The matrix core transformer (MCT) is proved to
work for a 25 kW, 50 kHz SST, and the analysis of parasitic
parameters of MCT was focused for resonant frequency
estimation in [24]. To achieve higher power density, further
increase the switching frequency can be a solution, which
however is challenging to realize for the 100 kW+ power rating.
In this work, the design of a 100 kW, 50 kHz MCT, especially
its thermal model and optimization algorithm, is proposed,
which is lacking in existing literature. The experimental results
of the prototype of the optimal MCT design verify the excellent
thermal performance of this structure.

The paper is organized as follows. The electromagnetic and
thermal models and design considerations are introduced in
Section II. Section III discusses the optimization methodology
of MCT, presents the optimal MCT design with finite element
analysis (FEA) simulation. The experimental results with
electrical and thermal characteristics are given in Section IV.
Finally, the conclusions are presented in Section V.

II. MODELING AND DESIGN CONSIDERATIONS OF MCT

The structure of proposed MCT is shown in Fig. 3, where the
MCT has a rotational symmetry in the center, leading to a
circular winding structure. This design can expose much more
core surface area and provide an effective air flow channel
between the windings. The windings are mainly located outside

The core loss is made up with classical eddy current loss,
excess eddy current loss and hysteresis loss [28]. Steinmetz first
proposed the classic core loss model, which expresses the core
loss as a function of frequency and flux density [29]. Then
several works modified the original Steinmetz equation to
reduce the estimation error [30]-[32]. Considering the tradeoff
between the computational burden and accuracy, the improved
generalized Steinmetz’s equation (IGSE) is used and the core
loss per volume P, can be calculated as
‘“ff) (AB)"“ dt (1)

1
F :?J.oTk"

is used,

K, = K @)

L ppl et :”|cos9|d9,

where K, a, and f are the Steinmetz coefficients. A general
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Fig. 5. A 3-D plot of R, as functions of d,, and J with the number of layers m
varying from 1 to 5 for square litz wire.
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Fig. 6. Comparison of square and round litz wire on (a) current distribution and
(b) ac resistance.
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closed-form expression for core loss estimation with variable
duty ratio and phase shift for DAB converter is presented in [33],
where (1) is simplified as

P =2"K [Bl (3)
for traditional single-phase shift (SPS) modulation with the
square voltage excitation and triangle flux density waveform
depicted in Fig. 4, where B,, is the peak flux density.

B. Winding Loss Models and Litz Wire Selection

Besides the resistive loss caused by the high transformer
current, the winding loss worsens as the frequency increases
due to the skin effect and proximity effect. The skin depth d is
a crucial parameter to represent the uneven current distribution
in the conductors, which is expressed as

P I — )

Jﬂfya,
where [ is the frequency, u is the permeability, and o is the
conductivity of the conductor. The Dowell model [34] is a
remarkable work to estimate the winding loss for foil winding
with the skin and proximity factors defined as

_ sinh 2A +sin 2A

== > = 5
¥ cosh2A—cos2A ®)
sinhA —sin A
=, 6
or coshA+cosA ©

respectively, where A is the ratio of the layer thickness to the
skin depth d, and the ratio of ac resistance to dc resistance F is
calculated as

R

E=&=A[és+§(mz—1)ép} )
dc
where m is the number of winding layers.

The litz wire with multiple individually insulated conductor
strands uses complex twisting to mitigate the ac winding losses.
The strand diameter dy, should be lower than the skin depth 4.
For a fixed winding current /, the relationship between the

strand diameter d,,- and the number of strands £ is as

PO (8)
T Ty
4 str 4 str

where 4 is the total cross-section area of the litz wire winding,
and J is the average current density. The approximate Dowell’s
equation for square litz wire with dy, < 29 is given in [35] as

R 2k —
E:Rac z1+5m—k1 9)

dc

A4
45 str 2

where and Ay, is the normalized value of A for one strand,
which is expressed as

A —(ZJOJS dy, L
o 4 s \k(d, +p)’

where p is the distance between adjacent strands in one layer.
The dc resistance R can be calculated as

(10)

L
R = 1 1
dc oA ( )
where L is the length of the winding, and is expressed as
L=27Nr (12)

avg
for MCT, N is the number of turns, and 7., is the average radius
of the winding. The ac resistance can be obtained by
substituting (8), (10) and (11) into (9) as
4 20m*l —nd. J)d:,J
Rac:i[ 1+ T ( . srz):r

(13)

As an example, Fig. 5 shows the ac resistances per meter R,.
under different dy, and J, where the transformer parameters are
set as / = 100 A, f'= 50 kHz, and p = 0.04 mm It can be
concluded that for high current applications, the strand of litz
wire should be selected lower than ¢ to reduce the ac winding
loss, and a large number of winding layers should be avoided to
reduce the proximity effect. Thus, the optimal selection of litz
wire for the strand diameter and the number of strands is
necessary, for each possible current density and frequency [36].

Another consideration for litz wire selection is the shape of
the litz wire. Compared to the round litz wire, which is more
common with lower cost, the use of square litz wire can achieve
higher filling factor. To compare the winding loss of these two



Fig. 7. The cross-section of MCT for leakage inductance calculation.

options, the high frequency effects for both square and round
litz wires with the same values of dy and £, i.e., dy = 0.1mm, k
= 400, are analyzed by 2-D FEA as shown in Fig. 6. It can be
seen that the difference of winding losses can be neglected
when d,- < J. As a result, the selection of the shape of litz wires
can be made by considering the factors, such as the dimensions
of the window area of the core and the cost.

Since the current waveform of the DAB converter is
nonsinusoidal as shown Fig. 2, fast Fourier transform (FFT) is
used to derive the harmonics in the winding current, such that
the winding loss can be calculated as

P zln ac,n

where I, and Ry, are the RMS current and ac resistance for the
n™ order harmonic, respectively.

(14)

C. Leakage Inductance Models

In a practical transformer, the nonideal coupling between two
windings leads to leakage inductance. A widely used method
for the leakage inductance estimation is as [37]

2W ~th jH av, (15)

o

where W is the leakage energy in the magnetic field, uo is the
permeability of the air, H is the field strength, and V' is the total
volume. The leakage inductance is closely related to the
structure of the transformer, including the geometry of the core
and the also geometry of windings. Besides, since the leakage
energy is stored not only in the space between the windings, but
also in the copper windings, the leakage inductance depends on
the frequency due to the skin and proximity effects. However,
the frequency-dependent factors can be neglected for medium
frequency applications since the variation of leakage inductance
can be ignored when the frequency is lower than 100 kHz [37].

To reduce the complexity of (15), using a simplified 2-D
transformer model to plot the distribution of magnetomotive
force (MMF) is a useful approach [38]. Based on this idea, a
simple leakage inductance model [24] fora 1:1 turns-ratio MCT
shown in Fig. 7 can be derived as

(16)

Airflow Channel
(Winding Gap)

where H,, is the height of window, r,, is the radius of winding
window, Dy, Dy, and D, are the widths of the primary winding,
secondary winding, and winding gap, respectively. However,
this approach may have substantial errors for two reasons. First,
it neglects the effect of uneven magnetic field distribution due
to the leakage flux, and second, it assumes that the windings are
fully covered by the cores in MCT. The Rogowski factor [39]
can be used to reduce the errors, and the corresponding method
is presented as follows.

Since the length of leakage flux is shorter than the core
window height at the ends of the windings, the Rogowski factor
as

1— e—ﬂhw/(le +D,+D,;,)

= 0. +D.+D.) (17)

wl

is used for correction, where #,, is height of the winding. Then
the equivalent height is defined as

= (18)

By substituting H,, by ke, into (16), the Rogowski-corrected
leakage inductance is as

Lo',Rogowski = KR LG . (19)

The accuracy of (19) is proved to be higher than (16) especially
with a low value of 4,/H,, [40].

The distribution of the H field of IW and OW in an MCT are
compared in Fig. 8. As can be seen, the magnetic field
distribution of OW is more scattered than that in IW because of
the less influence from cores. Therefore, the leakage inductance
increases with a larger OW region. An available approach to
consider this effect is to calculate the total leakage inductance
as
-l

L =L, ow » (20
where L,iw and L,ow are the leakage inductances per unit
length for IW and OW windings, respectively, /w and /ow are
the length of IW and OW windings, respectively [18]. However,
this method has high computational complexity and hard to use
for optimal design of MCT. Therefore, a simplified process is

needed. A parameter y is defined as

w o lw L

o,0W

yoto @
HOW + HIW



Fig. 8. The simulated H field of IW region (left) and OW region (right). The
absence of core in OW region influences the magnetic field distribution and
causes the decrease of leakage inductance.
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Fig. 9. The plot of Kycr as function of y based on the 3-D FEA simulation and
curve fitting function. The leakage inductance decreases with the OW region
occupied more space. The value of Kycr varies around 0.9.

where fow and Ow are the central angle of each OW and IW
winding, respectively, as shown in Fig. 6, to represent
relationship between the geometries of cores and windings in
MCT, and the leakage inductance of MCTs with different
values of y and simulated with 3-D FEA model. The simulation
result and the curving fitting function are plotted in Fig. 9 with
the parameter Kvcr defined as

KMCT (7) =

Lo‘,FEA

(22)
& ,Rogowski

to describe the ratio of simulated leakage inductance L, rea and

Rogowski-corrected leakage inductance. The curve fitting

function is as

Kyer (7)=—0.0551y" +0.0152y* —0.01574y +0.92 (23)

with the sum of squares due to error (SSE) of 1.75x107°. Kycr
can be taken as 0.9 approximately for simplifying the
calculation.

D. Thermal Considerations

With the increase of power density, the heat dissipation
ability of the transformer may decrease significantly due to the
lower surface area. To prevent the excessive high temperature
rise and improve the reliability of MFT, the thermal
management issues can be addressed using enhanced MFT
system architecture, accurate thermal models to estimate the
temperature distribution, and effective cooling approaches [41].
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Fig. 10. Thermal models of MCT for IW winding, OW winding and the core.

As shown in Fig. 3, the split cores of MCT have more surface
areas exposed to the air than the traditional shell type
transformer to reduce the temperature rise due to the core loss.
In addition, the space between two windings can be considered
as an airflow channel for winding cooling. The thermal model
of MCT is presented with two cases shown in Fig. 10, where
the IW and OW windings are considered differently since the
OW winding is cooled with forced air, thus the thermal
coupling to the cores can be neglected. The core is divided to
two parts horizontally with the same core loss, and the IW and
OW windings are modeled for primary winding and secondary
separately. The airflow cools the cores and the OW winding,
and its direction is marked in Fig. 10. Based on the above
analysis, the steady-state 2-D thermal network of MCT is
proposed in Fig. 11, where the conduction, convection and
radiation thermal resistances are defined as follows:

/

R =—, 24

<=7 (24)

1
= , 25

o aCOnVA ( )
R = (26)

"o d’

where / is the thickness of the pad in the thermal flow direction,
A is the thermal conductivity of the material, oconv is the
convective heat transfer coefficient, and a, is the radiative heat
transfer coefficient. The approximate expressions for
calculation of Reony for different convection cases are from [42].
With the enhanced structure design for cooling, maximum
average current density in the litz wire can be increased for
further improved transformer power density by using the forced
air cooling. The proposed thermal network model is verified
with FEA simulation and experimental results shown in the
followed sections.

E. Insulation Considerations

The gap between the windings and the distance between core
and windings are the keys for the insulation design. The
minimum value for insulation [21] can be calculated as

V.
dmin = = >
k.E

s ins

27)
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Fig. 11. Thermal network of MCT with the conduction, convection, and radiation thermal resistances. The hotspot nodes and the heat sources are marked with red

and blue, respectively.

where k; is the safety factor, Ej, is the dielectric strength of the
insulation material, and Vi, is the insulation level, which is set
as 10 kV according to IEEE Std C57.12.01™-2020 for the 1
kV/1 kV dry-type transformer [43]. The geometry requirements
of the MCT are as

min(D,,D,,, ;> D

w2ce,wl ?

D

w2c,h2°

D

w2e,w2 )

>d_.

s (28)
where Dyacit, Dywacwt, Dwaesz, and Dyac w2 are dimensions shown
in Fig. 6. The (28) is used as one of the geometrical constrains

for the MCT optimization.

III. OPTIMIZATION METHODOLOGY AND FEA SIMULATION

A. Pareto-front Optimization

Since the MFT with high efficiency # and high power density
p is required for MEA power distribution, a multivariable and
multi-objective optimization methodology for MCT has been
developed based on the above MCT models. The constant,
input, and output parameters for the optimization can be
expressed as follows:

U=[VV,.1,.1,. f . L,.L,], (29)
X:[xc"]vc’Jl’JZ’]VI’NZ’dstr,l’dstr,Z] > (30)
Y=[777P>TNTW]= (3D

where Vi, I, Ji, N; and dy; are the voltage, current, current
density, number of turns and strand diameter of litz wire for
each winding (primary winding for i = 1 and secondary winding
for i = 2), respectively, x. contains parameters of selected cores,
which are the dimensions, effective cross-sectional area and
Steinmetz coefficients from database, N, is the number of cores,
and T¢ and T, are the estimated peak temperatures of cores and
windings, respectively. The flow chart of optimization
algorithm is presented in Fig. 12, in which the database is setup
with the parameters of available cores and litz wires, and the
constrains filter the designs with core saturation, unsatisfied

Initialize electrical
parameters U

Current estimation and
FFT

1

Obtain an input
variable X

!

Read core and litz wire
data from database

( Database )—b

1

‘ Calculate temperature
with thermal network

Calculate core loss with

(©)

Calculate maximum @
possible L, with (23)

1

Calculate leakage
channel width with (23)

Calculate winding loss Save designs
with (14)

L |
Fig. 12. The proposed optimization algorithm for MCT.

Obtain output ¥

geometries of structure, insufficient leakage inductance, or
overheat occurrence. The maximum possible leakage
inductance is calculated first to check the availability of each
design, and then the accurate length of winding gap is
calculated for obtaining required leakage inductance. The
current waveform is estimated for FFT. The geometries of the
windings are controlled with the leakage inductance control and
used for the winding loss calculation. The loop proceeds for
each combination of input variables, and the parameters of all
available design candidates are saved for the subsequent
comparisons of efficiency and power density.

B. Key Parameters and 3-D Model of 100 kW MCT Design

The proposed optimization methodology is performed for the
design of a 100 kW, 50 kHz, 1 kV/1 kV MCT with 10 xuH



Table I
KEY PARAMETERS OF THE OPTIMAL100 KW MCT DESIGN

Parameter Value

Power 100 kW

Voltage 1kV/1 kV
Frequency 50 kHz

Leakage Inductance 10 uH
Core Magnetics 0P49930UC x 10

Litz Wire AWG 38 x 2500
Turns-ratio 8:8

Selected Optimal Design
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Power Density/kW-L'1

Fig. 13. Result of Pareto optimization for the 100 kW MCT design. The off-
the-shelf ferrite cores and litz wires are listed as the candidate solutions.

(2) (b)
Fig. 14. 3-D model of (a) the designed MCT and (b) 3-D printed bobbin with
airflow channel for winding cooling.

leakage inductance for DAB converter. The candidate cores are
off-the-shelf ferrite cores, and the maximum allowable
temperature for core and windings are 100°C and 150°C,
respectively. The optimization result is shown in Fig. 13, and
the key parameters of the selected MCT design with the highest
efficiency are summarized in Table I. The 3-D model of the
optimal MCT design is shown in Fig. 14(a), in which two bases
are placed on the top and bottom of the transformer for
stabilizing the structure. The slots of the bases are designed for
improving heat dissipation on the surfaces of cores. The
detailed 3-D model of bobbin in the MCT is shown in Fig. 14(b),
which is designed with concerns as decreasing the thermal
coupling between the windings and cores, provide path for
airflow, controlling the leakage inductance, and ensuring
sufficient dielectric strength for insulation consideration. Differ
from a complete cylinder, the bobbin is also designed with slots,
which increases the area of winding exposed to the airflow.

140

=—@— Winding
120 —@— Core J

7°C

Vs

Fig. 15. The simulated temperature of hotspots on the windings and the core
under different airflow velocity.
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Fig. 16. The temperature distribution of the MCT under (a) natural convection
and (b) v=>5 m/s forced air convection. The airflow channel provides sufficient
path for air cooling.

TABLE 11
TRANSFORMER INSULATION COMPONENTS
Function Dielectric Dielectric
v Strength Constant
Air Main Insulation 3 kV/mm 1
Polyimide (PI) Litz Wire Jacket and
Tape Winding Insulation 197 kV/mm 3.0
Acrylonitrile
Butadiene Styrene Bobbin 18 kV/mm 3.1
(ABS)

C. Design Validation using FEA Simulation

To verify the thermal design of the MCT, the steady-state
temperature distributions for both natural convection and forced
air convection are simulated by Ansys/Icepak. The hotspot
temperature on the core and windings with variable airflow
velocity are illustrated in Fig. 15. The temperature distributions
of the MCT for different airflow speeds, i.e., v=0and v=15
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Fig. 17. The simulated electrical field distribution of front view (left) and top view (right).

(2)

(c)

Fig. 18. The prototype of the MCT. (a) Top view and size comparison with a ballpoint pen. (b) Front view and (c) with fan installed on top.
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Fig. 19. (a) The measured value of leakage inductance with the frequency swept
from 1 kHz to 500 kHz. (b) The waveforms of OC test to measure the
magnetizing inductance and core loss.

m/s, are shown in Fig. 16. The temperature rise of the high
current windings under natural convection is acceptable and can

be further reduced by forced air convection with the designed
airflow channel.

The voltage insulation capability of the 100 kW MCT design
is verified by the simulated electric field strength £. With the
potential of core is set to 0 and the isolation level of primary
and secondary winding is distributed evenly on each turn, a 10
kV voltage is applied between the primary and secondary
windings, and the simulation result of electric field distribution
with 3-D electrostatic simulation as Fig. 17 [43]. The peak £
occurs around the turn with maximum voltage applied, and its
value is 1.83 kV/mm, which is lower than the breakdown field
strengths of all the used insulation components listed in Table
II.

IV. PROTOTYPE AND EXPERIMENTAL VERIFICATION

The top view and front view of prototype of MCT are shown
in Fig. 18(a) and (b). The outer diameter of selected round litz
wire is 6.5 mm for both windings. The bases and bobbin are all
made by 3-D printing technology with ABS [44]. A fan is
installed on the MCT for forced air convection test as shown in
Fig. 18(c). The fan is selected with 172 mm diameter, which is
large enough to cover the airflow channel. The air velocity of
the fan is 4.16 m/s (205 cfm), and the power consumption is 12
W. The power densities of the MCT without and with fan are
17.7 kW/L and 14.2 kW/L, respectively.

A. Electrical Parameter Measurement

The leakage inductance L, and the magnetizing inductance
L,, should be measured before the full power operation test. The



plot of L, measured by vector network analyzer Bode 100 with
the sweep frequency from 1 kHz to 500 kHz are shown in Fig.
19(a). As can be seen that the value of L, maintains as 10.2 xH
in a wide range, which matches the design requirement. The
value of L, is measured with the open circuit (OC) test, and the
waveforms are shown in Fig. 19(b). Based on the measured data
of voltage and di/dt, L,, reaches 2.1 mH, which demonstrates a
ratio of L,, and L, over 200. It is a reasonable value since L,
should be designed much larger than L, to reduce the
magnetizing current for the DAB converter [12]. In addition,
core loss can be measured as 128 W with OC test.
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Fig. 20. (a) The schematic and (b) test setup of pump-back test for the MCT
operation.
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Fig. 22. The efficiency of the MCT at different power level.

B. Pump-back Power Test

To evaluate the performance of the MCT prototype, a pump-
back test setup with two H-bridges sharing the common DC-
link of together is developed. The schematic and setup are
shown in Fig. 20. The H-bridges are designed with 1700 V SiC
MOSFET half-bridge modules and a high current carrying-
capacity busbar with low stray inductance [45]. One of the
advantages of pump-back test is that the total power loss of the
system is equal to the power delivered from the DC power

400 - T
I Core loss

350 - [ Winding loss
[ Measured total loss

300 - q

10 20 30 40 50 60 70 8 90 100
PIKW
Fig. 23. The comparison of estimated losses from the analytical models and
measured loss.
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Fig. 24. The thermal images for the MCT in steady state at 100 kW (a) without
fan and (b) with fan.

supply because of the absence of the load. The power loss of
the MCT is calculated as
P, P.,—P,—P

MCT — Liotal ~ Lsw con ? (32)
where Pyl 1s total power loss obtained from the power supply,
Psy and P, are the switching loss and conduction loss of the
switches, respectively. Py and Pcon are modeled with the curve

fitting tool based on the measured loss data from double pulse



test (DPT) [45]. The SPS modulation is adapted in this test, and
the phase shift ¢ is expressed as
P=P,+ P (33)

where ¢, is the phase shift derived from the basic power model
of DAB converter

__nhh,

27 fiL,
and ¢4 is the phase shift compensate for the dead-time effect
[46]. The waveforms of voltage and current at full power
operation are presented in Fig. 21, and the efficiency curve of

o, (7-9,) (34)

55 T T T T T T

Winding
Core 1

30

25

20 . . . . . .
0 5 10 15 20 25 30

Time/min

Fig. 25. The hotspot temperature rise profile measured by thermocouple during
full power operation. The stable hotspot temperature of the windings and the
core are 53°C and 29°C, respectively.

the MCT for different power level is plotted in Fig. 22 by
varying the phase shift. The efficiency of the MCT reaches the
peak value of 99.63% at 80 kW, and value of 99.62% at the
rated power. The estimated core and winding losses from the
analytical models are compared with the measured total loss in
Fig. 23, which verifies the accuracy of proposed models and
optimization methodology.

C. Thermal Performance Characterization

The thermal performances of the MCT for natural convection
and forced air convection are both evaluated under the pump-
back test. The both tests run for over 30 minutes at the full
power operation to ensure the steady-state temperature rise is
reached. The thermal camera images of the transformer are
shown in Fig. 24, which illustrate the thermal distribution of the
MCT matching with the thermal models. The peak winding
temperature with forced air convection is 45.6°C, which is
much lower than the 106.3°C using natural convection. The
accurate hotspot temperature of the MCT with fan is measured
with National Instruments cDAQ-9174 chassis and NI-9213
thermocouple input module as shown in Fig. 25. The
thermocouples are placed at the maximum temperature location
identified via the thermal camera. It takes about 15 minutes for
the MCT to reach the steady state, and the result of hotspot
temperature verifies the proposed thermal models.

V. CONCLUSION

The rapid development of MEA requires the power
conversion and distribution systems with both high power
ratings and high power density. In this paper, a detailed process

of designing a high power MCT for MEA power distribution is
discussed. Comprehensive electromagnetic and thermal models
of MCT are introduced. The detailed considerations for core
and litz wire selection and thermal management design are
proposed. An optimization methodology for MCT is presented
for high efficiency, high power density transformer design. A
100 kW, 50 kHz MCT prototype for high-power DAB
converter has been developed based on the optimal result.
Electrical parameters, such as the leakage and magnetizing
inductance, are measured. The full power operation of the DAB
prototype is demonstrated using a pump-back test. The steady-
state temperature rises of the prototype with both natural
convection and forced air convection are measured to verify the
thermal model of MCT. The efficiency curve for variable power
level is presented with a measured peak efficiency at 99.63%.
The successful test results prove the application of MCT on the
application and provide the possibility of higher power and high
frequency transformer design in the future.
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