
Abstract—The rapid development of more electric aircraft 
(MEA) raises the demand of high-power converters with 
significant weight and volume reduction for onboard power 
distribution. The isolated DC/DC converter using the medium-
frequency transformer (MFT) is a feasible solution. To design an 
MFT with improved electromagnetic and thermal performance, a 
matrix core transformer (MCT) architecture is proposed with 
accurate models in this paper. With superior heat dissipation 
ability, the high current windings can be effectively cooled with 
both natural and forced air convection. In addition, an 
optimization methodology for MCT design is presented. As a 
result, the prototype of a 100 kW, 50 kHz MCT with an additive 
manufactured bobbin is built. The results of both finite element 
analysis (FEA) simulation and experimental study in a full power 
dual active bridge with the MCT prototype are presented to verify 
the theoretical design. The power density and efficiency of the 
MCT reach to 17.7 kW/L and 99.63%, respectively. 

Index Terms—Medium-frequency transformer, more electric 
aircraft (MEA), power distribution. 

I. INTRODUCTION 
s a promising solution for the future commercial aircrafts, 
the more electric aircraft (MEA) gets much attention due 

to its ability to achieve higher efficiency and lower weight [1]. 
In addition, MEA is an environmental-friendly solution with 
lower fuel consumption and less greenhouse gas (GHG) 
emission. An example of power distribution system in MEA is 
shown in Fig. 1, in which the HVDC bus is used for delivering 
the power. There are several commercial aircrafts available 
with more electric features, such as the Boeing 787 and Airbus 
A380, where engines are directly coupled with the generators 
to lower power losses in the transmission. However, the need 
of power level on MEA is still rapidly increasing beyond 1 MW 
[2]. To meet this need, the high power converters for power 
distribution and motor drives with significantly higher specific 
power (kW/kg) and volumetric power density (kW/L) are still  
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Fig. 1. Electrical power distribution system of MEA. 
 
needed to be developed. Thanks to the advancement of wide 
bandgap semiconductor technology, silicon carbide (SiC) 
devices with high blocking voltage capabilities, e.g., 10 kV [3] 
and 15 kV [4], and switching frequency lead to the rapidly 
increased interests for high power converters in the medium 
voltage (MV) application [5-7]. The concept of solid-state 
transformer (SST) is proposed as a disruptive solution for 
power conversion with galvanic isolation [8]. The SST replaced 
the bulky line-frequency transformer with the medium-
frequency transformer (MFT), which reduces the size and 
weight of the conversion system significantly. There are several 
high-power SST designs reported in the existing literature, such 
as a 10 MW, 1 kHz SST setup presented in [9]. Both the high-
power density and high-power operation capability advance the 
development of SST for aerospace applications [10]-[12]. 

The most commonly using building block in the SST is the 
dual active bridge (DAB) converter, whose topology, typical 
operating waveforms, and equivalent circuit are illustrated in 
Fig. 2 [13]. The bidirectional power delivery is controlled by 
adjusting the phase shift between the two H-bridges. The MFT 
not only provides the galvanic insulation for the converter, but 
also is indispensable for delivering power, especially the 
leakage inductance of the MFT is an essential component for 
power level control and soft switching realization [14]. Even 
though an external inductor connected in series with the 
transformer winding can be an alternative, the integrated 
solution, i.e., using an optimized leakage inductance of the 
MFT, can be a better solution to get rid of the need for external 
inductor and increase the power density. The methods to design 
and estimate the leakage inductance are discussed in [15]-[17] 
and the comparison among them in terms of the accuracy and  
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Fig. 2. (a) The topology, (b) typical operation waveforms, and (c) equivalent 
circuit of DAB. 
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Fig. 3. (a) The structure of MCT and (b) the top view. 
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Fig. 4. Applied voltage and excited flux density of the MFT in a DAB converter. 
 
computational burden is presented in [18]. 

To design the high power MFTs for MEA applications, it is 
critical to achieve not only the high efficiency and power 
density, but also the excellent heat dissipation and voltage 
insulation. There are several publications focus on the MFTs 
design to achieve one or more of these design requirements. A 
99% efficient 25 kW MFT with vacuum pressure potting 
technology was presented in [19] for a 7 kV-to-400 V insulation 
design. A 100 kW, 10 kHz MFT prototype was setup in [20] 
with accurate leakage and thermal models. A 200 kVA 10kHz 
MFT presented in [21] used nanocrystalline core for lower core 
loss, and similar work in [22] increases the frequency to 15 kHz 
with parallel-concentric winding structure. An ultra-high-
power density of 32.7 kW/L was achieved for the MFT 
illustrated in [23] for 166 kW power level application with 
liquid cooling. The matrix core transformer (MCT) is proved to 
work for a 25 kW, 50 kHz SST, and the analysis of parasitic 
parameters of MCT was focused for resonant frequency 
estimation in [24]. To achieve higher power density, further 
increase the switching frequency can be a solution, which 
however is challenging to realize for the 100 kW+ power rating. 
In this work, the design of a 100 kW, 50 kHz MCT, especially 
its thermal model and optimization algorithm, is proposed, 
which is lacking in existing literature. The experimental results 
of the prototype of the optimal MCT design verify the excellent 
thermal performance of this structure. 

The paper is organized as follows. The electromagnetic and 
thermal models and design considerations are introduced in 
Section II. Section III discusses the optimization methodology 
of MCT, presents the optimal MCT design with finite element 
analysis (FEA) simulation. The experimental results with 
electrical and thermal characteristics are given in Section IV. 
Finally, the conclusions are presented in Section V. 

II. MODELING AND DESIGN CONSIDERATIONS OF MCT 
The structure of proposed MCT is shown in Fig. 3, where the 

MCT has a rotational symmetry in the center, leading to a 
circular winding structure. This design can expose much more 
core surface area and provide an effective air flow channel 
between the windings. The windings are mainly located outside  

the core window (OW) instead of inside the core window (IW), 
which increases the heat dissipation capability. Analytical 
models of MCT are introduced in this section, which is critical 
for the MCT design and optimization to be presented later. 

A. Core Loss Models 
Soft magnetic materials are widely used in transformer 

design, and they are classified as ferrites, laminated iron alloys, 
iron powder, amorphous alloys and nanocrystalline materials 
[25]. Even though the saturation flux density of nanocrystalline 
cores can achieve 1.5 T and is considered has the lowest core 
loss in the medium frequency range, the ferrites cores are 
preferred as the frequency increases since the nanocrystalline 
cores are tape-wound with conductive ribbon, which worsens 
the eddy current loss significantly [26], [27]. Besides, the prices 
of ferrite cores are much lower than nanocrystalline cores, thus 
the ferrite cores are selected for this 50 kHz application. 

The core loss is made up with classical eddy current loss, 
excess eddy current loss and hysteresis loss [28]. Steinmetz first 
proposed the classic core loss model, which expresses the core 
loss as a function of frequency and flux density [29]. Then 
several works modified the original Steinmetz equation to 
reduce the estimation error [30]-[32]. Considering the tradeoff 
between the computational burden and accuracy, the improved 
generalized Steinmetz’s equation (IGSE) is used and the core 
loss per volume Pc can be calculated as  
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where K, α, and β are the Steinmetz coefficients. A general  



 
Fig. 5. A 3-D plot of R* 

ac as functions of dstr and J with the number of layers m 
varying from 1 to 5 for square litz wire. 
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Fig. 6. Comparison of square and round litz wire on (a) current distribution and 
(b) ac resistance. 
 
closed-form expression for core loss estimation with variable 
duty ratio and phase shift for DAB converter is presented in [33], 
where (1) is simplified as 

 2c i mP K f B   +=   (3) 
for traditional single-phase shift (SPS) modulation with the 
square voltage excitation and triangle flux density waveform 
depicted in Fig. 4, where Bm is the peak flux density. 

B. Winding Loss Models and Litz Wire Selection 
Besides the resistive loss caused by the high transformer 

current, the winding loss worsens as the frequency increases 
due to the skin effect and proximity effect. The skin depth δ is 
a crucial parameter to represent the uneven current distribution 
in the conductors, which is expressed as 
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where f is the frequency, μ is the permeability, and σ is the 
conductivity of the conductor. The Dowell model [34] is a 
remarkable work to estimate the winding loss for foil winding 
with the skin and proximity factors defined as 

 sinh 2 sin 2
cosh 2 cos2S

+ 
=

− 
, (5) 

 sinh sin
cosh cosP

− 
=

+ 
, (6) 

respectively, where Δ is the ratio of the layer thickness to the 
skin depth δ, and the ratio of ac resistance to dc resistance Fr is 
calculated as 
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where m is the number of winding layers. 
The litz wire with multiple individually insulated conductor 

strands uses complex twisting to mitigate the ac winding losses. 
The strand diameter dstr should be lower than the skin depth δ. 
For a fixed winding current I, the relationship between the 
strand diameter dstr and the number of strands k is as 
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where A is the total cross-section area of the litz wire winding, 
and J is the average current density. The approximate Dowell’s 
equation for square litz wire with dstr < 2δ is given in [35] as 
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where and Δstr is the normalized value of Δ for one strand, 
which is expressed as 
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where p is the distance between adjacent strands in one layer. 
The dc resistance Rdc can be calculated as 

 dc
LR
A

= ， (11) 

where L is the length of the winding, and is expressed as 
 2 avgL Nr=  (12) 

for MCT, N is the number of turns, and ravg is the average radius 
of the winding. The ac resistance can be obtained by 
substituting (8), (10) and (11) into (9) as 
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As an example, Fig. 5 shows the ac resistances per meter Rac 
under different dstr and J, where the transformer parameters are 
set as I = 100 A, f = 50 kHz, and p = 0.04 mm It can be 
concluded that for high current applications, the strand of litz 
wire should be selected lower than δ to reduce the ac winding 
loss, and a large number of winding layers should be avoided to 
reduce the proximity effect. Thus, the optimal selection of litz 
wire for the strand diameter and the number of strands is 
necessary, for each possible current density and frequency [36]. 

Another consideration for litz wire selection is the shape of 
the litz wire. Compared to the round litz wire, which is more 
common with lower cost, the use of square litz wire can achieve 
higher filling factor. To compare the winding loss of these two  
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Fig. 7. The cross-section of MCT for leakage inductance calculation. 
 
options, the high frequency effects for both square and round 
litz wires with the same values of dstr and k, i.e., dstr = 0.1mm, k 
= 400, are analyzed by 2-D FEA as shown in Fig. 6. It can be 
seen that the difference of winding losses can be neglected 
when dstr < δ. As a result, the selection of the shape of litz wires 
can be made by considering the factors, such as the dimensions 
of the window area of the core and the cost. 

Since the current waveform of the DAB converter is 
nonsinusoidal as shown Fig. 2, fast Fourier transform (FFT) is 
used to derive the harmonics in the winding current, such that 
the winding loss can be calculated as  
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where In and Rac,n are the RMS current and ac resistance for the 
nth order harmonic, respectively. 

C. Leakage Inductance Models 
In a practical transformer, the nonideal coupling between two 

windings leads to leakage inductance. A widely used method 
for the leakage inductance estimation is as [37] 
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where W is the leakage energy in the magnetic field, μ0 is the 
permeability of the air, H is the field strength, and V is the total 
volume. The leakage inductance is closely related to the 
structure of the transformer, including the geometry of the core 
and the also geometry of windings. Besides, since the leakage 
energy is stored not only in the space between the windings, but 
also in the copper windings, the leakage inductance depends on 
the frequency due to the skin and proximity effects. However, 
the frequency-dependent factors can be neglected for medium 
frequency applications since the variation of leakage inductance 
can be ignored when the frequency is lower than 100 kHz [37].  

To reduce the complexity of (15), using a simplified 2-D 
transformer model to plot the distribution of magnetomotive 
force (MMF) is a useful approach [38]. Based on this idea, a 
simple leakage inductance model [24] for a 1:1 turns-ratio MCT 
shown in Fig. 7 can be derived as 
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where Hw is the height of window, rw is the radius of winding 
window, Dw1, Dw2, and Dσ are the widths of the primary winding, 
secondary winding, and winding gap, respectively. However, 
this approach may have substantial errors for two reasons. First, 
it neglects the effect of uneven magnetic field distribution due 
to the leakage flux, and second, it assumes that the windings are 
fully covered by the cores in MCT. The Rogowski factor [39] 
can be used to reduce the errors, and the corresponding method 
is presented as follows. 

Since the length of leakage flux is shorter than the core 
window height at the ends of the windings, the Rogowski factor 
as 
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is used for correction, where hw is height of the winding. Then 
the equivalent height is defined as 

 w
eq

R

h
h

K
= . (18) 

By substituting Hw by heq into (16), the Rogowski-corrected 
leakage inductance is as 

 ,Rogowski RL K L = . (19) 
The accuracy of (19) is proved to be higher than (16) especially 
with a low value of hw/Hw [40]. 

The distribution of the H field of IW and OW in an MCT are 
compared in Fig. 8. As can be seen, the magnetic field 
distribution of OW is more scattered than that in IW because of 
the less influence from cores. Therefore, the leakage inductance 
increases with a larger OW region. An available approach to 
consider this effect is to calculate the total leakage inductance 
as 

 ,IW IW ,OW OWL L l L l  =  +  , (20) 
where Lσ,IW and Lσ,OW are the leakage inductances per unit 
length for IW and OW windings, respectively, lIW and lOW are 
the length of IW and OW windings, respectively [18]. However, 
this method has high computational complexity and hard to use 
for optimal design of MCT. Therefore, a simplified process is 
needed. A parameter γ is defined as 

 OW

OW IW




 
=

+
, (21) 



 
Fig. 8. The simulated H field of IW region (left) and OW region (right). The 
absence of core in OW region influences the magnetic field distribution and 
causes the decrease of leakage inductance. 
 

 
Fig. 9. The plot of KMCT as function of γ based on the 3-D FEA simulation and 
curve fitting function. The leakage inductance decreases with the OW region 
occupied more space. The value of KMCT varies around 0.9. 
 
where θOW and θIW are the central angle of each OW and IW 
winding, respectively, as shown in Fig. 6, to represent 
relationship between the geometries of cores and windings in 
MCT, and the leakage inductance of MCTs with different 
values of γ and simulated with 3-D FEA model. The simulation 
result and the curving fitting function are plotted in Fig. 9 with 
the parameter KMCT defined as 
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to describe the ratio of simulated leakage inductance Lσ,FEA and 
Rogowski-corrected leakage inductance. The curve fitting 
function is as 

 ( ) 3 2
MCT 0.0551 0.0152 0.01574 0.92K    = − + − +   (23) 

with the sum of squares due to error (SSE) of 1.7510-5. KMCT 
can be taken as 0.9 approximately for simplifying the 
calculation. 

D. Thermal Considerations 
With the increase of power density, the heat dissipation 

ability of the transformer may decrease significantly due to the 
lower surface area. To prevent the excessive high temperature 
rise and improve the reliability of MFT, the thermal 
management issues can be addressed using enhanced MFT 
system architecture, accurate thermal models to estimate the 
temperature distribution, and effective cooling approaches [41]. 
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Fig. 10. Thermal models of MCT for IW winding, OW winding and the core. 
 

As shown in Fig. 3, the split cores of MCT have more surface 
areas exposed to the air than the traditional shell type 
transformer to reduce the temperature rise due to the core loss. 
In addition, the space between two windings can be considered 
as an airflow channel for winding cooling. The thermal model 
of MCT is presented with two cases shown in Fig. 10, where 
the IW and OW windings are considered differently since the 
OW winding is cooled with forced air, thus the thermal 
coupling to the cores can be neglected. The core is divided to 
two parts horizontally with the same core loss, and the IW and 
OW windings are modeled for primary winding and secondary 
separately. The airflow cools the cores and the OW winding, 
and its direction is marked in Fig. 10. Based on the above 
analysis, the steady-state 2-D thermal network of MCT is 
proposed in Fig. 11, where the conduction, convection and 
radiation thermal resistances are defined as follows: 

 c
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where l is the thickness of the pad in the thermal flow direction, 
λ is the thermal conductivity of the material, αconv is the 
convective heat transfer coefficient, and αr is the radiative heat 
transfer coefficient. The approximate expressions for 
calculation of Rconv for different convection cases are from [42]. 
With the enhanced structure design for cooling, maximum 
average current density in the litz wire can be increased for 
further improved transformer power density by using the forced 
air cooling. The proposed thermal network model is verified 
with FEA simulation and experimental results shown in the 
followed sections. 

E. Insulation Considerations 
The gap between the windings and the distance between core 

and windings are the keys for the insulation design. The 
minimum value for insulation [21] can be calculated as   
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Fig. 11. Thermal network of MCT with the conduction, convection, and radiation thermal resistances. The hotspot nodes and the heat sources are marked with red 
and blue, respectively. 
 

where ks is the safety factor, Eins is the dielectric strength of the 
insulation material, and Viso is the insulation level, which is set 
as 10 kV according to IEEE Std C57.12.01™-2020 for the 1 
kV/1 kV dry-type transformer [43]. The geometry requirements 
of the MCT are as 

 ( )2 , 1 2 , 1 2 , 2 2 , 2 minmin , , , ,w c h w c w w c h w c wD D D D D d  , (28) 

where Dw2c,h1, Dw2c,w1, Dw2c,h2, and Dw2c,w2 are dimensions shown 
in Fig. 6. The (28) is used as one of the geometrical constrains 
for the MCT optimization. 

III. OPTIMIZATION METHODOLOGY AND FEA SIMULATION 

A. Pareto-front Optimization 
Since the MFT with high efficiency η and high power density 

ρ is required for MEA power distribution, a multivariable and 
multi-objective optimization methodology for MCT has been 
developed based on the above MCT models. The constant, 
input, and output parameters for the optimization can be 
expressed as follows: 

  1 2 1 2, , , , , , mV V I I f L L=U , (29) 

 1 2 1 2 ,1 ,2, , , , , , ,c c str strx N J J N N d d =  X , (30) 

  , , ,c wT T =Y , (31) 
where Vi, Ii, Ji, Ni and dstr,i are the voltage, current, current 
density, number of turns and strand diameter of litz wire for 
each winding (primary winding for i = 1 and secondary winding 
for i = 2), respectively, xc contains parameters of selected cores, 
which are the dimensions, effective cross-sectional area and 
Steinmetz coefficients from database, Nc is the number of cores, 
and Tc and Tw are the estimated peak temperatures of cores and 
windings, respectively. The flow chart of optimization 
algorithm is presented in Fig. 12, in which the database is setup 
with the parameters of available cores and litz wires, and the 
constrains filter the designs with core saturation, unsatisfied  
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Fig. 12. The proposed optimization algorithm for MCT. 
 
geometries of structure, insufficient leakage inductance, or 
overheat occurrence. The maximum possible leakage 
inductance is calculated first to check the availability of each 
design, and then the accurate length of winding gap is 
calculated for obtaining required leakage inductance. The 
current waveform is estimated for FFT. The geometries of the 
windings are controlled with the leakage inductance control and 
used for the winding loss calculation. The loop proceeds for 
each combination of input variables, and the parameters of all 
available design candidates are saved for the subsequent 
comparisons of efficiency and power density. 

B. Key Parameters and 3-D Model of 100 kW MCT Design 
The proposed optimization methodology is performed for the 

design of a 100 kW, 50 kHz, 1 kV/1 kV MCT with 10 μH  



Table I  
KEY PARAMETERS OF THE OPTIMAL100 KW MCT DESIGN 

Parameter Value 
Power 

Voltage 
Frequency 

Leakage Inductance 
Core 

100 kW 
1 kV/1 kV 

50 kHz 
10 μH 

Magnetics 0P49930UC  10 
Litz Wire AWG 38  2500 

Turns-ratio 8:8 

 

Selected Optimal Design

 
Fig. 13. Result of Pareto optimization for the 100 kW MCT design. The off-
the-shelf ferrite cores and litz wires are listed as the candidate solutions. 
 

  
(a) (b) 

Fig. 14. 3-D model of (a) the designed MCT and (b) 3-D printed bobbin with 
airflow channel for winding cooling. 
 
leakage inductance for DAB converter. The candidate cores are 
off-the-shelf ferrite cores, and the maximum allowable 
temperature for core and windings are 100℃ and 150℃, 
respectively. The optimization result is shown in Fig. 13, and 
the key parameters of the selected MCT design with the highest 
efficiency are summarized in Table I. The 3-D model of the 
optimal MCT design is shown in Fig. 14(a), in which two bases 
are placed on the top and bottom of the transformer for 
stabilizing the structure. The slots of the bases are designed for 
improving heat dissipation on the surfaces of cores. The 
detailed 3-D model of bobbin in the MCT is shown in Fig. 14(b), 
which is designed with concerns as decreasing the thermal 
coupling between the windings and cores, provide path for 
airflow, controlling the leakage inductance, and ensuring 
sufficient dielectric strength for insulation consideration. Differ 
from a complete cylinder, the bobbin is also designed with slots, 
which increases the area of winding exposed to the airflow. 

 
Fig. 15. The simulated temperature of hotspots on the windings and the core 
under different airflow velocity. 

 
(a) 

 
(b) 

Fig. 16. The temperature distribution of the MCT under (a) natural convection 
and (b) v = 5 m/s forced air convection. The airflow channel provides sufficient 
path for air cooling. 
 

TABLE II 
TRANSFORMER INSULATION COMPONENTS 

 Function Dielectric 
Strength 

Dielectric 
Constant 

Air Main Insulation 3 kV/mm 1 
Polyimide (PI) 

Tape 
Litz Wire Jacket and 
Winding Insulation 197 kV/mm 3.0 

Acrylonitrile 
Butadiene Styrene 

(ABS) 
Bobbin 18 kV/mm 3.1 

C. Design Validation using FEA Simulation 
To verify the thermal design of the MCT, the steady-state 

temperature distributions for both natural convection and forced 
air convection are simulated by Ansys/Icepak. The hotspot 
temperature on the core and windings with variable airflow 
velocity are illustrated in Fig. 15. The temperature distributions 
of the MCT for different airflow speeds, i.e., v = 0 and v = 5  



Emax = 1.83 kV/mm Emax = 0.96 kV/mm

 
Fig. 17. The simulated electrical field distribution of front view (left) and top view (right). 
 

 

   
(a) (b) (c) 

Fig. 18. The prototype of the MCT. (a) Top view and size comparison with a ballpoint pen. (b) Front view and (c) with fan installed on top. 
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Fig. 19. (a) The measured value of leakage inductance with the frequency swept 
from 1 kHz to 500 kHz. (b) The waveforms of OC test to measure the 
magnetizing inductance and core loss. 
 

m/s, are shown in Fig. 16. The temperature rise of the high 
current windings under natural convection is acceptable and can 

be further reduced by forced air convection with the designed 
airflow channel. 

The voltage insulation capability of the 100 kW MCT design 
is verified by the simulated electric field strength E. With the 
potential of core is set to 0 and the isolation level of primary 
and secondary winding is distributed evenly on each turn, a 10 
kV voltage is applied between the primary and secondary 
windings, and the simulation result of electric field distribution 
with 3-D electrostatic simulation as Fig. 17 [43]. The peak E 
occurs around the turn with maximum voltage applied, and its 
value is 1.83 kV/mm, which is lower than the breakdown field 
strengths of all the used insulation components listed in Table 
II. 

IV. PROTOTYPE AND EXPERIMENTAL VERIFICATION 
The top view and front view of prototype of MCT are shown 

in Fig. 18(a) and (b). The outer diameter of selected round litz 
wire is 6.5 mm for both windings. The bases and bobbin are all 
made by 3-D printing technology with ABS [44]. A fan is 
installed on the MCT for forced air convection test as shown in 
Fig. 18(c). The fan is selected with 172 mm diameter, which is 
large enough to cover the airflow channel. The air velocity of 
the fan is 4.16 m/s (205 cfm), and the power consumption is 12 
W. The power densities of the MCT without and with fan are 
17.7 kW/L and 14.2 kW/L, respectively. 

A. Electrical Parameter Measurement 
The leakage inductance Lσ and the magnetizing inductance 

Lm should be measured before the full power operation test. The 



plot of Lσ measured by vector network analyzer Bode 100 with 
the sweep frequency from 1 kHz to 500 kHz are shown in Fig. 
19(a). As can be seen that the value of Lσ maintains as 10.2 μH 
in a wide range, which matches the design requirement. The 
value of Lm is measured with the open circuit (OC) test, and the 
waveforms are shown in Fig. 19(b). Based on the measured data 
of voltage and di/dt, Lm reaches 2.1 mH, which demonstrates a 
ratio of Lm and Lσ over 200. It is a reasonable value since Lm 
should be designed much larger than Lσ to reduce the 
magnetizing current for the DAB converter [12]. In addition, 
core loss can be measured as 128 W with OC test. 
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Fig. 20. (a) The schematic and (b) test setup of pump-back test for the MCT 
operation. 
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Fig. 21. The measured voltage and current waveforms for the MCT at 100 kW. 
 

99.63% @ 80 kW

99.62% @ 100 kW

  
Fig. 22. The efficiency of the MCT at different power level. 

B. Pump-back Power Test 
To evaluate the performance of the MCT prototype, a pump-

back test setup with two H-bridges sharing the common DC-
link of together is developed. The schematic and setup are 
shown in Fig. 20. The H-bridges are designed with 1700 V SiC 
MOSFET half-bridge modules and a high current carrying-
capacity busbar with low stray inductance [45]. One of the 
advantages of pump-back test is that the total power loss of the 
system is equal to the power delivered from the DC power  

P/kW
10 20 30 40 50 60 70 80 90 100

 
Fig. 23. The comparison of estimated losses from the analytical models and 
measured loss. 

 
(a) 

 
(b) 

Fig. 24. The thermal images for the MCT in steady state at 100 kW (a) without 
fan and (b) with fan. 
 
supply because of the absence of the load. The power loss of 
the MCT is calculated as 

 MCT total sw conP P P P= − − , (32) 
where Ptotal is total power loss obtained from the power supply, 
Psw and Pcon are the switching loss and conduction loss of the 
switches, respectively. Psw and Pcon are modeled with the curve 
fitting tool based on the measured loss data from double pulse 



test (DPT) [45]. The SPS modulation is adapted in this test, and 
the phase shift φ is expressed as 

 o dt  = + , (33) 
where φo is the phase shift derived from the basic power model 
of DAB converter 

 ( )1 2
22 o o

s

nVVP
f L

  


= −   (34) 

and φdt is the phase shift compensate for the dead-time effect 
[46]. The waveforms of voltage and current at full power 
operation are presented in Fig. 21, and the efficiency curve of  

 
Fig. 25. The hotspot temperature rise profile measured by thermocouple during 
full power operation. The stable hotspot temperature of the windings and the 
core are 53℃ and 29℃, respectively. 
 
the MCT for different power level is plotted in Fig. 22 by 
varying the phase shift. The efficiency of the MCT reaches the 
peak value of 99.63% at 80 kW, and value of 99.62% at the 
rated power. The estimated core and winding losses from the 
analytical models are compared with the measured total loss in 
Fig. 23, which verifies the accuracy of proposed models and 
optimization methodology. 

C. Thermal Performance Characterization  
The thermal performances of the MCT for natural convection 

and forced air convection are both evaluated under the pump-
back test. The both tests run for over 30 minutes at the full 
power operation to ensure the steady-state temperature rise is 
reached. The thermal camera images of the transformer are 
shown in Fig. 24, which illustrate the thermal distribution of the 
MCT matching with the thermal models. The peak winding 
temperature with forced air convection is 45.6℃, which is 
much lower than the 106.3℃ using natural convection. The 
accurate hotspot temperature of the MCT with fan is measured 
with National Instruments cDAQ-9174 chassis and NI-9213 
thermocouple input module as shown in Fig. 25. The 
thermocouples are placed at the maximum temperature location 
identified via the thermal camera. It takes about 15 minutes for 
the MCT to reach the steady state, and the result of hotspot 
temperature verifies the proposed thermal models. 

V. CONCLUSION 
The rapid development of MEA requires the power 

conversion and distribution systems with both high power 
ratings and high power density. In this paper, a detailed process 

of designing a high power MCT for MEA power distribution is 
discussed. Comprehensive electromagnetic and thermal models 
of MCT are introduced. The detailed considerations for core 
and litz wire selection and thermal management design are 
proposed. An optimization methodology for MCT is presented 
for high efficiency, high power density transformer design. A 
100 kW, 50 kHz MCT prototype for high-power DAB 
converter has been developed based on the optimal result. 
Electrical parameters, such as the leakage and magnetizing 
inductance, are measured. The full power operation of the DAB 
prototype is demonstrated using a pump-back test. The steady-
state temperature rises of the prototype with both natural 
convection and forced air convection are measured to verify the 
thermal model of MCT. The efficiency curve for variable power 
level is presented with a measured peak efficiency at 99.63%. 
The successful test results prove the application of MCT on the 
application and provide the possibility of higher power and high 
frequency transformer design in the future. 
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