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Large Eddy Simulations (LES) are used to study the effects of veer (the height-dependent lateral
deflection of wind velocity due to Coriolis acceleration) on the evolution of wind turbine wakes.
Specifically, this work focuses on turbines that are yawed with respect to the mean incoming wind
velocity, which produces laterally deflected wakes that have a curled (crescent-shaped) structure.
These effects can be attributed to the introduction of streamwise mean vorticity and the formation
of a Counter-rotating Vortex Pair (CVP) on the top and bottom of the wake. In a Truly Neutral
Boundary Layer (TNBL) in which wind veer effects are absent, these effects can be captured well
with existing analytical wake models (Bastankhah et al. J. Fluid Mech. (2022), 933, A2). However,
in the more realistic case of atmospheric boundary layers subjected to Coriolis acceleration, existing
models need to be re-examined and generalized to include the effects of wind veer. To this end, the
flow in a Conventionally Neutral Atmospheric Boundary Layer (CNBL) interacting with a yawed
wind turbine is investigated in this study. Results indicate that in the presence of veer the CVP’s top
and bottom vortices exhibit considerable asymmetry. However, upon removing the veer component
of vorticity, the resulting distribution is much more symmetric and agrees well with that observed
in a TNBL. These results are used to develop a simple correction to predict the mean velocity
distribution in the wake of a yawing turbine in a CNBL using analytical models. The correction
includes the veer-induced sideways wake deformation, as proposed by Abkar et al. (Energies (2018),
11(7), 1838). The resulting model predictions are compared to mean velocity distributions from the
LES and good agreement is obtained.

I. INTRODUCTION

Yawing a turbine deflects its wake, decreasing wake interactions and potentially increasing the power
output of downstream turbines [1]. Coordinating such actions over a wind farm could improve its overall
efficiency [2]. Wake deflection due to yaw was studied experimentally [3-7], while Ref. [8] performed an
early Large Eddy Simulation (LES) study and proposed a simple analytical model for predicting the initial
wake skewing angle just behind the turbine. In a subsequent wind tunnel study [9], the formation of an
axial Counter-rotating Vortex Pair (CVP) was observed behind a yawed actuator disk, in the presence of
a uniform inflow. The deflection of the wake was attributed to the CVP because the vortices (one above
and the other below the actuator disk) induce a side wash velocity that deflects the wake from the center of
the turbine. The vortices also deform the wake shape into a curled (crescent-shaped) structure. Ref. [10]
performed further wind tunnel studies of a model wind turbine in a turbulent boundary layer where the
CVP formation was also observed.

Ref. [11] proposed considering the turbine as a lifting surface (applying a height-dependent sideways force
onto the fluid), i.e., analogous to a vertically placed airfoil that sheds streamwise (tip) vortices in the presence
of an incoming mean flow. Evaluation of the induced strength of the CVP near the turbine enabled predicting
the yaw-induced wake deflection quite accurately [11]. Other vortex-based models describe the vorticity at
the turbine as a distribution of multiple, discrete point-vortices [12-14] whose downstream transport and
diffusion are modeled numerically. Following these studies, Ref. [15] proposed a theory for the generation
and downstream evolution of the CVP. The analytical predictions for the decay of the maximum vorticity
and circulation strength of the vortices showed very good agreement with the LES data, while still assuming
a circular shape of the wake. In a more detailed recent study [16], it was shown that an analytical vortex
sheet-based model can successfully predict the curled wake shape behind yawed turbines. In this model, the
wake edge was treated as a vortex sheet and analytical solutions using truncated power series expansions
were obtained based on the decaying circulation strength estimate of the CVP from Ref. [15]. The Gaussian
wake model for the axial velocity deficit in [10] was then modified to include the deformation caused by the
vortex sheet that predicted the curled shape and the deflection of the wake quite accurately.

Wind turbine wake properties and the performance of wind farms also depend on the prevailing properties



of the atmospheric boundary layer (ABL). For instance, it is well known that the wake recovery rate (i.e., the
wake expansion coefficient) is affected by the ABL’s thermal stratification conditions [17]. At the same time,
the Coriolis acceleration due to Earth’s rotation causes an Ekman spiral flow in the surface layer of the ABL
[18]. This leads to a height-dependent lateral realignment of the incoming wind direction called wind veer,
which can significantly affect the wind farm power output [19]. Veer effects have been previously considered
for an unyawed turbine in a stably stratified ABL [20]. That work modified the Gaussian wake model with
a veer correction term which successfully predicted the skewed/sheared wake structure arising from the
spanwise shear due to the wind veer. Ref. [21] considered the effects of both yaw and veer on individual
turbine blade aerodynamics. However, the combined effects of veer and yawing on wind turbine wakes and
their modeling via analytical approaches have not received significant attention so far. The objective of the
present study is to examine the evolution of turbine wakes in the presence of both turbines yawing and veer,
as well as to include both of these effects in analytical models of the turbine wake.

In order to generate the relevant data, an LES of a yawed wind turbine in the presence of an incoming
mean flow typical of a Conventionally-Neutral ABL (CNBL) that includes veer is performed. The CNBL is
a type of ABL characterized by a neutrally stratified turbulent boundary layer region separated from the
Geostrophic and stably stratified free atmosphere by a capping inversion layer at the boundary layer height
[22]. As a reference, we also perform the LES of a yawed wind turbine in a truly neutral boundary layer
(TNBL). The details of the LES are described in §II. The results are analyzed in section ITI, which focuses
on the effect of wind veer on the downstream evolution of mean vorticity. The results are used to introduce
modifications to existing analytical models so that both ABL veer and turbine yaw can be represented
efficiently and accurately as described in §IV. The main conclusions are summarized in §V.

II. LARGE EDDY SIMULATION OF A YAWED WIND TURBINE IN A CNBL

This section details the LES setup of CNBL and TNBL simulations used to generate data to study the
effect of wind veer on a yawed turbine wake. We use the open-source code LESGO [23], an LES solver
primarily developed to simulate ABL flows [24, 25]. The code includes various dynamic sub-grid stress
parameterizations, wall models, wind turbine representations using actuator disk/line models, and inflow
generation using the concurrent-precursor approach [26]. The code has been validated by several previous
studies [11, 15, 25-31]. The governing equations and numerical method, initial conditions for the velocity,
and potential temperature are discussed in §I1 A. The simulation setup for the current LES study is described
in §II B. The characteristics of the CNBL and TNBL to be simulated are described in §II C, which documents
the main differences in mean flow velocity profiles between both cases.

A. Governing equations and numerical method

The code LESGO solves the filtered Navier-Stokes equations (with the Boussinesq approximation for
buoyancy effects) and the scalar potential temperature transport equation:

o1y
= 1
oz, = O (1)
a’fbi - 8711 8ﬁj 1 8poo 6}5 g = ~ 871-3-
T g - . TG~ Go)ds —
ot Y (83:] 8m1> L0 ox; ox; + 00( 0) 3 8.%‘]‘
1 - 1 - N -
+ —fo 01 + — [y Oiz — fell 02 + fo¥ d51, (2)
Po Po
90 _ 00 o1l

where the tilde (7) represents spatial filtering operation such that @; = (@, 9,w) are the filtered velocity
components in the streamwise, lateral and vertical directions, respectively, and 6 is the filtered potential
temperature. The term 7;; = 0;; — (1/3)0oxkd;; is the deviatoric part of the Sub-Grid Scale (SGS) stress



tensor o;; = u;uj — U;u;. The quantity p = p./po+ (1/3)okr + (1/2)t;4; is the modified pressure, where the
actual pressure p, divided by the ambient density py is augmented with the trace of the SGS stress tensor
and the kinematic pressure arising from writing the non-linear terms in rotational form. The quantities
fi = (fz, fy,0) are the streamwise and spanwise component of the turbine’s force imparted on the fluid. The
term —(1/p9)0poc/0z; is the mean external pressure gradient applied to drive the flow. The §;; in equation
(2) is the Kronecker delta function determining the direction of buoyancy, turbine thrust and Coriolis forces.
In the buoyancy term, g = 9.8 m/s? is the gravitational acceleration, 0y is the reference potential temperature
scale taken to be 288 K for the CNBL case. In the Coriolis force terms, f. = 2Qsing = 10=* 571 is the
Coriolis parameter at latitude ¢ = 45°. In equation (3), the term IT; = u;6 — &jé is the SGS heat flux.

In the momentum equation (2), a constant mean pressure gradient Vpoo = (0pso /0%, Opoo /0y, 0) is applied
to drive the flow. For the CNBL case, it is written in terms of the Geostrophic velocity components Uy, V,
using the Geostrophic balance equation
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The Geostrophic velocity components are specified as U, = G cos o, V; = G'sin o, where G = (U2 + V2)1/2 is
the magnitude of the Geostrophic wind which is set to 8 m/s and «, is the angle made by the resultant wind
vector with respect to the streamwise x direction. For the TNBL case, the dimensionless streamwise mean
pressure gradient is set to a constant value. This constant streamwise pressure gradient ensures the mean
flow is streamwise aligned throughout the domain without any wind veer (V' (z) = 0). In addition, since the
TNBL flow is isothermal and neutrally buoyant throughout the domain, equation (3) is not solved for this
case, and also the buoyancy term in the momentum equation (2) vanishes.

In the CNBL simulation, we maintain a mean flow direction such that it is streamwise aligned at the hub
height. This is achieved by choosing a value of « for the Geostrophic wind such that the wind veer at hub
height is zero (V(z = 0) = 0). To compute the appropriate value of «, we use the Proportional-Integral (PI)
control approach introduced in Ref. [32] with a proportional gain Kp = 10, and an integral gain K; = 0.5.
We also impose the constraint V(z = 0) = 0.

We solve the equations for the high Reynolds number limit such that the molecular viscous and heat
diffusion terms are neglected in the equations (2) and (3). The necessary diffusion for the problem is
provided by modeling the deviatoric part of the SGS stress tensor (7;;) and the SGS heat flux (II;) as
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where 565 is the SGS momentum diffusivity, #5°5 is the SGS heat diffusivity, S;; = (1/2)(9%,/dz; +

0u,;/0x;) is the symmetric part of the velocity gradient tensor. The diffusivities are related by the SGS
Prandt]l number Prggs = 1595 /k595 which is taken to be 0.4 in the current study [33]. The diffusivities
965 and k595 are modeled as

v = (CsA)*4/ 815845, kS = Prodgri® = Pridg(CoA)? /8585, (6)

where Cy is the Smagorinsky model coefficient and A = (AzAyAz)'/? is the filter width. The model
coefficient Cj is evaluated using the Lagrangian dynamic scale dependent model [25].

The code uses the pseudo-spectral method along the streamwise and spanwise directions. The wall-normal
direction is discretized using a second-order central finite difference method. The second-order accurate
Adams-Bashforth scheme is used for time advancement. A shifted periodic boundary condition is used in
the streamwise direction of the precursor domain to prevent artificially long flow structures from developing.
This approach also enables the development of statistical homogeneity with a shorter precursor domain size
and less computational cost [34]. A stress-free boundary condition is imposed on the top boundaries of the
domains. The wall stress boundary condition from the equilibrium wall model is applied at the bottom wall
of both the precursor and wind turbine domains. Assuming the grid points near the surface is within the
logarithmic layer (Monin-Obukhov similarity in the absence of stratification), the wall stress 7, magnitude



is evaluated as
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where @, = v/u? + 2 is the resultant horizontal velocity at the first grid point z = 23 = Az/2, k = 0.41

is the Von Karman constant, and zp = 0.1 m is the assumed surface roughness height in the present study.
Using equation (7), the wall stress components are evaluated as

i,3lw = Tw="> i:1a2a (8)

which are applied as the stress boundary conditions at the bottom boundary. For the CNBL simulation, we
apply a zero buoyancy flux boundary condition ¢, = 0 to maintain the neutral stratification within the ABL.

The velocity fields of both the CNBL and TNBL LES are initialized with the log-law velocity profile with
zero-mean white noise superimposed. The noise is initialized for the entire domain in the TNBL while only
for the first 900 m from the bottom surface for the CNBL. To simulate the CNBL conditions in the LES,
an initial potential temperature profile with a capping inversion layer is set up such that the boundary layer
is neutral below the layer and is stably stratified above it (see figure 1). The capping inversion height is
set to 1 km from the ground. The initial potential temperature (9~) magnitude below the capping inversion
region is 288 K (the same as the reference temperature scale (éo)) The thickness of the capping inversion
layer where the potential temperature increases linearly from 288 K to 290.5 K is 100 m. Above this capping
inversion layer, the potential temperature increases with a lapse rate of 0.001 K/m.

To represent the wind turbine, we use the local thrust coefficient-based actuator disk model (ADM)
[15, 27, 31, 35]. The ADM treats the turbine as a drag disk of diameter D and radius R = D/2 imparting
a total force (T') on the fluid directed along the unit normal direction n = cos 3¢ 4 sin §j perpendicular to
the disk (see figure 2) given by

1
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where C7. is the local thrust coeflicient and ug4 is the disk averaged velocity defined as

ug = /'& -n R(x) &z = /(QCOSB + 9sin B) R(zx) dx. (10)

The ug is an average of the velocity in the direction normal to the disk, w - n = @cos 8 + vsin 8 with the
integration performed over the actuator disk using the indicator function R(x) (defined below). The local
thrust coefficient is set to C. = 1.33, the same value as used in previous studies [15, 27, 31, 35] to represent
standard wind turbine operating conditions. The force is spatially distributed using the smoothed indicator
function R(x) such that the filtered force vector is

f=TR(x)n=T R(x)cosf i+ T R(z)sinfj j. (11)

The smoothed indicator function is defined according to [23, 31]
R(@) = [ Gle - a) T@) ' (12)

where, Z(x) and G(x) are the normalized indicator function and Gaussian filtering kernel, respectively, given
by

I(a) = ﬁ (H(z +s/2) — H(z — s/2)] H(R — 1), (13)
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In equation (13), s is the z-direction thickness of the forcing region which is set to 10 m, H(z) is the Heaviside
function which is used to localize the disk within the region —s/2 < z < s/2 and r < R, where r = \/y? + 22.

In the filtering kernel (14), A is the filter width defined as A = 1.5h, where h = /Az2 + Ay2 + A2?2 is the
effective grid size.

We note that the Actuator Line Model (ALM) is a high-fidelity representation of the turbine as it can
capture the effects of root and tip vortices behind the turbine which are not resolved by the ADM. However,
owing to the high computational costs of running LES with ALM and that there are not many differences
in the far-wake behavior between the ADM and ALM [36], we choose ADM over ALM in this study.

In the following sections, simulation setup and results from the precursor simulation of the CNBL and
TNBL LES cases are discussed.

B. Simulation setup

As shown in the schematic figure 1, the simulation is performed using two computational domains, the
precursor and wind turbine domains. The turbine is placed in the wind turbine domain while the turbulent
inflow simulating the CNBL or TNBL conditions is generated in the precursor domain. The details of the
domain size and number of grid points are summarized in table I and relevant dimensions are also shown in
figure 1.

Precursor Wind turbine
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FIG. 1. Schematic of the CNBL simulation setup with the turbine in the concurrent wind-turbine domain, inflow
mean velocity profile with streamwise U(z) and wind veer V' (z) components, and initial potential temperature profile

0(t = 0) in the precursor domain.

Case  Precursor & wind turbine  Number of grid points Grid resolution
domain size (Nz x Ny x N.) (Az(m) x Ay(m) x Az(m))
(Lz(km) x Ly(km) x L. (km))
CNBL 3.75 x 1.5 x 2 360 x 144 x 432
10.4 x 10.4 x 4.6
TNBL 3. 75 x 1.5 x1 360 x 144 x 216

TABLE I: Computational domain size and grid points for LES of yawed wind turbine in the CNBL and
TNBL cases. Note that the grid resolution is the same for both LES domains.

Figure 1 includes a sketch of the initial potential temperature (8) profile (blue line) used to simulate the
CNBL atmospheric condition in the precursor domain. A sponge (or Rayleigh damping) layer at the top



boundary is used to dampen gravity waves in the computational domain. This is a wave absorbing layer of
500 m width from the top boundary. A body force with a cosine profile for its damping coeflicient is applied
in this layer to prevent reflection of gravity waves [37, 38]. The resultant mean flow is expected to take the
form of a low-level jet with velocity U = U(z)¢ + V(2)j. Together with the turbulence that develops in the
precursor domain, the velocity is then used as an inflow for the wind turbine domain using the concurrent-
precursor method [26]. In this method, at each time step, a part of flow from the precursor domain is copied
to the outflow region of the wind turbine domain. A fringe region is then defined to smoothly transition
between the wind turbine flow and the region of flow copied from the precursor domain. The direction of
the incoming mean velocity changes as a function of height. In contrast, for the TNBL simulation, the flow
is isothermal in the entire computational domain and there is no wind veer, i.e., V(z) = 0.

FIG. 2. Schematic sketch of an isometric view of a yawed () wind turbine in the presence of ABL mean flow with
velocity U = U(z) 1 + V (2) j.

The wind turbine domain (second downstream domain in figure 1) includes a single turbine yawed at an
angle 8 = 20° placed at a distance of 500 m from the inlet. The diameter (D) and hub height (z3) of the
turbine are both 100 m. We use a Cartesian (zy z) coordinate system centered at the hub of the turbine
where x, y, and z are the streamwise, spanwise, and wall-normal directions, respectively. Figure 2 provides
a sketch of the turbine orientation indicating the yaw angle (3, the normal direction. Figure 2 also shows
the two-component velocity profile that includes a veer velocity profile V(z) in addition to the streamwise
profile U(z).

C. Characteristics of CNBL and TNBL

Upon reaching statistically stationary conditions, mean velocity profiles are obtained from the LES in the
precursor domain by performing time (¢) and horizontal spatial (z-y) averaging. Results are shown in figure 3
for both the CNBL (blue solid line) and TNBL (open circles) cases. At the hub height, the magnitude of the
mean velocity for the CNBL profile is U, = \/U%(z = 0) + V2(z = 0) = 6.4 m/s, and the pressure gradient
forcing for the TNBL is set so that the same U, = 6.4 m/s is implied for both simulations. The friction
velocities obtained from averaging the wall stress in the precursor domain of both cases are u, = 0.35 m/s.
The resultant velocity profile for the CNBL and TNBL are shown in figure 3(a) together with the log law
velocity profile. Both LES cases have a similar mean wind profile within the turbulent boundary layer. The
streamwise U (z) and spanwise wind veer component V (z) of the CNBL flow are plotted in figures 3(b) & (c¢).
The normalized streamwise velocity U/Uj, from both the CNBL and TNBL cases agree quite well with each
other. As expected, the TNBL case does not display any mean wind veer (blue circle markers in 3(c)).
Conversely, wind veer exists in the CNBL. This veer is well represented as V(z) = —Sz in the region near




the turbine hub height, i.e., covering the rotor region between z = +0.5D. We find from LES the magnitude
of the slope of the veer velocity is S = 2.2 x 1072 (1/s). The Ekman spiral formed by U(z) and V(z) in
the CNBL is shown in the inset of figure 3(b). These results confirm that a streamwise aligned mean flow
is achieved at the hub height (V(z = 0) = 0) for the CNBL (figure 2) using the proportional-integral (PI)
controller approach [32]. This behavior is also evident in the plot of flow angle a(z) = tan='[V(z)/U(z)]
versus wall-normal height in figure 3(e), where a(z = 0) = 0. The corresponding plot (open circles) from
the TNBL confirms that the flow is aligned in the streamwise direction throughout the domain height.
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FIG. 3. Plots of (a) mean inflow velocity, (b) streamwise velocity and (c) spanwise/wind veer velocity, (d) Ekman
spiral (inset in (b)), (e) angle of inflow near hub height of the CNBL (——) and TNBL (o) LES cases. Dotted black
line in (a) correspond to the Log-law velocity profile with u, = 0.35 m/s and U, = 6.4 m/s. The black dotted line
in (c) represents the linear approximation, V(z) = —Sz with S = 2.2 x 1072 (1/s).

Figure 4 shows contour plots of time-averaged streamwise vorticity (@) for cross-stream planes at 2/D =
[2,6,10,14] from the TNBL and CNBL simulations. The vorticity and the streamlines overlayed on top of
the TNBL contours at the cross-planes indicate the presence of counter-rotating vortices in the wake region.
There is a clearly visible clockwise rotating vortex below and counter-clockwise rotating vortex on top of
the turbine as viewed along the positive = direction in figure 4(a). Whereas for the CNBL case in figure
4(b), the contours show the presence of counter-rotating vortices affected significantly by the background
veer vorticity where the top vortex is less visible than the bottom vortex.

The decay of the wake strength is displayed in figure 5, which shows the maximum velocity deficit (Aumax)
normalized by U}, in the wakes of the CNBL (blue line) and TNBL cases (circles) as a function of downstream
distance from the turbine. Except for the near-rotor region (x/D < 3) they are very similar and also agree
well with values obtained from a model (black line) to be discussed later in §IV.
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FIG. 4. Contours of time-averaged streamwise vorticity @, behind a yawed (8 = 20°) wind turbine from (a) TNBL,
and (b) CNBL simulations. Contours are shown on various downstream planes at locations z/D = [2, 6,10, 14] and on
the bottom surface (first plane above the ground) and side plane at y/D = 2. The vorticity contours are normalized
by the turbine diameter D and the hub height velocity Uy of the incoming mean flow. The streamlines of the flow
on the planes shown are overlayed on top of the contours visibly showing the presence of the cross-stream flow.
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FIG. 5. Streamwise evolution of C'(x) = Aumax/Up, the maximum velocity deficit normalized by U}, in the wake of a
yawed wind turbine for the CNBL case (solid blue line) and TNBL case (circles), compared to C(z) from the model
in equation (40) discussed in §IV (black line; the model’s validity holds farther downstream than the near rotor region

(i.e., for z/D > 3)).

In the next section, the time-averaged LES data is used to study the evolution and decay of the mean
streamwise vorticity.

III. GENERATION AND DOWNSTREAM MEAN VORTICITY EVOLUTION

In this section, we discuss the implications of including the wind veer effects on the model developed
in Ref. [15]. The model is based on the linearized mean streamwise vorticity equation and includes two
mechanisms: (1) Streamwise vorticity is generated at the turbine due to curl of the spanwise component of
the thrust force, addressed in §III A, and (2) advection of the generated vorticity downstream by the mean
flow with simultaneous turbulent diffusion in the transverse y-z plane, discussed in §III B.



A. Mean streamwise vorticity generation at the yawed rotor

At the turbine location, the spanwise component of the force due to the yawed turbine changes along the
spanwise direction. As a result, streamwise mean vorticity is created at the actuator disk periphery which
is then transported downstream eventually forming the CVP. At the rotor location, the linearized mean
streamwise vorticity equation is dominated by advection and creation of vorticity due to the yawed actuator
disk [15, 39]:
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where w, represents the time-averaged streamwise vorticity and f, is the spanwise (y-direction) force per
unit volume exerted by the turbine rotor on the passing air.

For a yawed actuator disk representation of the turbine, the spanwise component of the thrust force per
unit (fluid) mass is given by [15]

fy((L‘,y7Z) = _%POCTU}% COSQﬁH(R_T) (S(JJ) Sin57 (16)

where f is the yaw angle and 7% = y? + 2z2. Equation (16) is obtained using the standard expression for total
thrust force T' = —(1/2)pom R2C7U? cos? 3 distributed uniformly on the actuator disk. This distribution is
represented using the indicator function R(x) = H(R — r)d(x)/mR? [11], where H(R — r) is the Heaviside
function with the radial coordinate r spanning the transverse y-z plane with its origin at the hub of the
turbine. The force acts only at the turbine’s streamwise position « = 0 as represented by the delta function
d(x). The thrust coefficient Cp in equation (16) is related to the local thrust coefficient C/. in equation (9)
by the relation Cr = 16C%. /(4 + Chcos? 3)? [11].

Using the expression (16) in (15), the analytical form of the vorticity distribution generated at the turbine
is obtained by integrating (15) in 2 which gives

x
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Here, the r and @ directions are obtained through the cylindrical coordinate transformation of the y-z

transverse plane defined by y = rcosf and z = rsinf. The corresponding circulation strength of the

top and bottom vortices can be obtained by integrating equation (17) in the top and bottom half-planes

respectively, which gives

Ftop - _Fbottom = / / wx(if = O,’l", 9) rdr df = _F07 (18)
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where I'y = RC7Uj, cos? Bsin 8 is the magnitude of the circulation strength. The corresponding induced
mean velocity components on the transverse plane v and w can be obtained by applying the Biot-Savart law
[15]
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In order to compare the analytical solution in equation (17) with LES, it must first be filtered at scales
commensurate with the LES grid resolution to be consistent with the filtered representation of the turbine
forcing. This appropriate filtering was accomplished in Ref. [15] by first mapping the equation (17) to an arc
distributed along the turbine edges (actuator disk circumference) and then convolving this mapped function
with a two-dimensional Gaussian filter. The resulting filtered vorticity at x = 0 is given by
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where, R, = R+0.75h is the effective radius of the filtered actuator disk with h depending on grid resolution
according to h = /Az2 + Ay + Az2. The Gaussian filter width is cg = 1.52/v/12. The magnitude
of the effective circulation strength for the vortices expected from LES must be based on R, instead of
R, specifically Ty = R.CrUj cos? Bsin 3. Further following Ref. [15], the analytical solutions for cross-
stream induced velocities given by equation (19) are compared with the numerical solutions by plotting
v+ uy cos@ and w + u, sinf. Here, u, is the radial velocity given by u, = (r/2)0,u(R,0,0) for r < R, and
u, = (R%/2r)0,u(R,0,0) for r > R,. This step is done to eliminate the radial inflow that occurs due to
streamtube expansion resulting from a finite streamwise pressure gradient behind the actuator disk that is
not included in the theory but affects the LES results.

With these considerations, we can now compare the induced velocities from LES including veer with the
theory. The comparisons are shown in figures 6. Figure 6(a) shows contours of the streamwise vorticity
from the LES of the CNBL with streamlines of the cross-stream velocities superimposed. The corresponding
filtered values from the analytical model (equation (17)) are shown in panel (d). The LES results displayed
in figure 6(a) show a significant asymmetry. Here, most of the streamlines at the top do not close around
the top vortex, in contrast to those of the bottom vortex. This difference from the symmetric behavior
predicted by the theory is due to the background mean vorticity caused by the veer, Q, = —dV/dz and
Q, = dU/dz. The observation inspires a model in which the actual mean streamwise vorticity observed in
LES (total vorticity w'°*) comprises a linear superposition of the veer component of the vorticity () and
the yawed turbine-generated vorticity (w,).

Wi = w, + Q. (21)

We note that for a TNBL there is no wind veer (V(z) = 0) and the mean streamwise vorticity is 0, = 0. If
the assumed form in (21) is correct, the difference w!®* — Q, from LES (i.e. subtracting the veer vorticity
0, = —dV/dz) should be well predicted by the theoretical vorticity distribution from equation (20). Figure
6(g) shows distributions of w!°® — Q, from LES and its associated streamlines in the cross-plane. Clearly,
the agreement between the veer-subtracted CNBL LES data and the model is much improved. For example,
the symmetry is recovered and the streamlines now close around the top vortex as expected from the model.

Figures 6(b), (), (h) show the corresponding spanwise mean velocities, while panels (¢), (f) and (i) show
the vertical velocities. Results in figure 6(b) show significant asymmetry. Since V' > 0 below the hub height
and V < 0 above the hub height, the induced velocity above the rotor disk is significantly lower in the LES
than in the model. In LES the veer velocity cancels much of the induced velocity from the yawed turbine.
Upon subtracting the veer velocity distribution from the CNBL LES results (figures 6(g)-(¢)), we retrieve the
more symmetric distribution, with good agreement with the theory (figures 6(d)-(f)). Contours obtained
from the LES of the TNBL case (not shown) also show good agreement with the model.

These results suggest that the model proposed in Ref. [15] to predict the generation of mean streamwise
vorticity due to a yawed wind turbine remains essentially unaltered even in the presence of a wind veer in
a CNBL. The background veer vorticity can be added to that of the unperturbed vorticity distribution in
order to model the total vorticity distribution immediately behind the yawed actuator disk. The further
downstream evolution of mean vorticity is discussed in the following sub-section.
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FIG. 6. Contours of wi*D /Uy, (or) w.D/Un (a,d,g), (v+ V) /Uy (or) v/Up (b,e,h) and w/Uy (c, f,i) at /D = 0.5
in the wake of yawed turbine with C, = 1.33, 8 = 20°. Plots (a-c) are from the CNBL LES, while (d-f) are analytical

predictions [15]. Subtracting the veer component of vorticity and spanwise velocity from (a,b, ¢) gives (g, h, ), which
has good agreement with the analytical estimates (d, e, f).

B. Downstream evolution of mean vorticity

Downstream of the rotor, the streamwise evolution of the turbine-generated streamwise mean vorticity w,
is dominated by mean advection and transverse turbulent diffusion [15],

2 2
Uhawz = Z/T(IL’) <8 Ya + 0 wm) . (22)

ox Oy? 072

Here, vr(x) ~ u l(x) is the turbulent eddy viscosity, which can be modeled as the product of the friction
velocity u, and a mixing length scale [(x). The wake size, which increases linearly downstream of the turbine
in the presence of ambient turbulence, is chosen as the appropriate mixing length scale, such that I(x) ~ z
[40]. Following Ref. [15], this linearly growing mixing length scale is given by I(x) = 2k, (x —x0)/v/24, where
k, = u, /Uy is the vortex expansion coefficient and zy = —24-1Y/ 41.5h/ k, is the virtual origin. Using this
I(x), the eddy viscosity vr(x) becomes

vp(z) = ur2k, (z — x0) /V24. (23)

From the current LES simulations, using the values u, = 0.35 m/s and U, = 6.4 m/s, the vortex expansion
coefficient for both simulations results in k,, = 0.0547.
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We note that adding the constant vorticity due to veer, 0, to w,, does not affect equation (22) as long as
it is constant in the vertical direction. Also, from figure 3, we can see that near the turbine, the magnitude
of the veer velocity (V(z)) is much smaller than the streamwise mean flow (U(z)). Therefore, we can expect
the streamwise advection term to be dominant resulting in the same governing equation (15) for w, even in
the presence of veer in a CNBL near the hub height. We note that advection of vorticity by the veer-affected
mean velocity can be simply accounted for by interpreting x above as the streamline coordinate along the
vortex trajectory that has a speed V(z) in the transverse direction, but for now, we shall neglect these
differences.

The solution to the advection-diffusion equation (22) can be obtained by the linear superposition of the
fundamental solution to the equation. The vorticity generated at the turbine can be regarded as a distribution
of multiple point vortices with vorticity magnitude dw,(z = 0,y, z) = dI', 6(y — yo) (2 — 2o) of circulation
strength dI', located at the turbine disk edges yo = Rcosf,zy = Rsinf. Governed by equation (22), these
point vortices are advected downstream by the mean flow with simultaneous turbulent diffusion along the
transverse directions. Correspondingly, the fundamental solution [41] to equation (22) is

(24)

T — 2 — Rsin®)2
dwn (2,7, 2) = ar, (y — Rcosf)? + (z — Rsin0) >’

Tamtp(a) O (‘ 42 ()

where 7(x) is the transverse turbulent diffusion length scale [40] given by

o) =[5 Ow vr(€) de. (25)

Using the eddy viscosity from (23) in (25), n(z) becomes
n(x) = ky(x — x0) /244 (26)

Adding the contributions from all the point vortices distributed on the turbine edge, the resultant down-
stream vorticity field is obtained. Adding this vorticity to that of the background veer leads to a total
vorticity of

2m 2 : 2
dr (y — Rcosf)* + (z — Rsin6)
tot = — —r - Q. 27
Wy, ($7 Y, Z) /() 47T2772 (I’) eXp ( 47]2 (IL‘) + ( )
We assume the peak vorticity occurs at y = 0 and z = £R, evaluating (27) at this location gives [15]
r R? R?
tot 0
- - I Q. 28
hoe = gt o (7)1 (77 * =

where T, is the n'® order modified Bessel function of the first kind.
The circulation strength I'(x) of the generated vorticity (excluding the background veer vorticity) as
a function of the downstream location is obtained by integrating w, in the transverse plane, I'(z) =

|f0°° ffooo we(z,y,2) dy dz| = |fEOO ffooo we (2,9, 2) dy dz|, which yields [15]

o () ) ()

These analytical predictions for the decay of the maximum vorticity and circulation strength were shown to
have good agreement with the numerical simulations in Ref. [15].

In figure 7, the time-averaged streamwise vorticity distribution from the CNBL and TNBL simulations
are plotted at different downstream locations, here cross-stream velocity streamlines are superimposed. The
results from the CNBL LES (i.e., including wind veer in figure 7(a)) can be compared to those with the
veer subtracted (figure 7(b)) and the contours from the TNBL simulation (figure 7(c¢)). Similar to prior
results at the turbine location, it is evident from the cross-stream velocity streamlines that veer distorts the
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structure of the top and bottom vortices along their entire downstream evolution. This distortion results in
an asymmetric distribution of vorticity between the top and bottom vortices.

Next, we compare the top and bottom vortex circulations from LES to the model. The circulation in LES
is computed by integrating total vorticity I'rLes(z) = | [ L wit(z,y, 2) dy dz| over a suitably defined cross-
sectional area A of the vortices. Following the approach of Ref. [15], we use Otsu’s classification method
to determine the cross-sectional region over which to integrate the vorticity. We apply the calculation of
circulation using both the full vorticity and after subtracting the background veer vorticity.
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FIG. 7. Turbulent decay of streamwise vorticity from the CNBL (a) with background veer, (b) after subtracting veer
component and from (¢) TNBL case at downstream locations /D = 1,3,5,8,11.

The resulting decay of circulation for the CNBL case is shown in figure 8(a), where the unequal strength
of the top (blue circles) and bottom (red circles) vortices can be seen. Veer causes the circulation strength
of the bottom vortex to be significantly higher than the top vortex’s circulation. Also, these circulation
estimates deviate from the analytical prediction of equation (29) (solid lines in the plot). However, upon
subtracting the veer vorticity €2, from the time-averaged vorticity (open triangles), we obtain good agreement
with the theoretical estimate from (29) with small differences at far downstream locations for the bottom
vortex. It also shows good agreement with the circulation strengths obtained from the TNBL simulation
(cross markers). Figure 8(b) shows that the peak vorticity of the CVP (wy max) is much larger than the veer
vorticity (£2,) so that whether the €2, is included or not, does not affect the results appreciably.

In figure 8(a), we note a small deviation of the red open triangles at far downstream locations. This
difference can be attributed to the size difference of the bottom vortex in the CNBL versus the TNBL cases
(see figures 7(b) & (¢) at /D = 8,11). The difference could be due to a differing turbulent expansion rate of
the vortices between the CNBL and TNBL cases. The presence of a capping inversion layer and the stable
Geostrophic region above a CNBL are known to limit the size of the largest turbulent eddies [42, 43]. Thus,
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turbulent diffusion may be more effective in the case of a TNBL, thus enlarging the bottom vortex more
when compared to the CNBL. While the bottom vortices grow slightly differently in the TNBL and CNBL
cases, the peak vorticity strength at downstream locations from figure 8(b) are quite comparable. Hence,
the circulation strength of the bottom vortex in a CNBL falls slightly below the analytical model due to its
smaller size.

The comparisons of LES results to the theoretical model confirm that for the presently studied CNBL case
the downstream evolution of mean vorticity remains dynamically unaffected by the presence of wind veer.
The only effect of the veer is its mean vorticity is superimposed with that of the vorticity generated by the
yawed actuator disk. With improved understanding and an analytical model for the downstream evolution
of vorticity in the wake of a yawed turbine, in the next section, we examine analytical modeling of the mean
axial velocity deficit needed to predict the power generation of downstream wind turbines.
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FIG. 8. Decay of (a) circulation strength I'/U,D as a function of the downstream location and (b) maximum

streamwise vorticity we,maxD/Unr. Red and blue colors correspond to bottom and top vortices of the CVP respectively.

Solid lines (——,—) represent analytical solutions (28) and (29). Markers represent quantities plotted from LES,

where circular markers (0,0) include wind veer component and open triangular markers (V,V) are plotted after
subtracting the wind veer component, (x,x) are plotted from the TNBL simulation.

IV. APPLICATION OF VORTEX SHEET-BASED CURLED WAKE MODEL IN A CNBL

The discussions in the previous sections demonstrate that a yawed actuator disk in the presence of an
incoming mean flow sheds a pair of vortices behind the turbine. This CVP arises from an initially tubular
vortex sheet distribution generated around the turbine disk periphery [13]. The induced velocity from the
vortex sheet deflects the wake away from the centerline and also deforms the vortex sheet, leading to the
known curled wake structure [9]. A recent study [16], proposes an analytical model for the downstream
evolution of vorticity that reproduces the curled wake shape from the induced velocities acting on the vortex
sheet. We first summarize the model of [16] in §IV A. We then generalize it to include the new insights
regarding possible effects of veer from the previous section and compare it with results from LES in §IV B.

A. Summary of vortex sheet-based curled wake model

According to the vortex sheet-based curled wake model, the streamwise velocity deficit Au(x,y,z) =
U(z) — u(zx,y, z) is given by a Gaussian profile [10, 44] according to

Au W)+ (2 z)?
U, Cl) exp 20(0,x)?

(30)
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Here, C(x) is the magnitude of the normalized velocity deficit, while o (6, z) is the wake width expressed as
a function of the downstream location x and polar angle 0 defined as tané = (z — z3,)/(y — y.). The centroid
location of the wake is y., z5. In this section, we shift the origin of the xy 2z coordinate system from the
center of the turbine to the ground in order to be consistent with the curled wake model definitions in Ref.
[16].

The wake width o(x,0) is determined by adding Jensen model linear wake growth [45] and the angle-
dependent wake shape function according to

o(0,7) = kyx +0.4£(0, ). (31)

Here k,, = 0.6u, /Uy, is the wake expansion coefficient [16], and the curled structure of the wake is modeled
by the angle-dependent wake shape function £(6,z). This function describes the vortex sheet location which
augments the wake width along the polar angle ¢ at any given streamwise location as per equation (31). The
sketches in Figure 9 show the shape of the wake behind the turbine under different conditions. Figure 9(a)
shows the symmetric Gaussian wake of an unyawed turbine that expands linearly downstream of the flow
in a TNBL without wind veer effects. Figure 9(b) shows the definition of the angle-dependent wake shape
function £(#,x) which becomes curled due to the vortex sheet self-induction again in the absence of wind
veer. Figure 9(c) shows the sketch of the wake behind a yawed turbine in an ABL with wind veer effects,
which is further discussed in §IV B. The model in [16] also takes into account the effect of the hub vortex
which occurs as a result of the rotation of the turbine. However, in this study, we do not include the effects
of rotation.

Z — Zp Z — Zp Z — Zp

e

(a) B=0,V(2) =0 B#0,V(z B#0,V(z S(z — 2)

FIG. 9. Sketch of velocity deficit behind (a) an unyawed turbine with no wind veer, (b) a yawed turbine showing the

induced curled wake, with the angle-dependent wake shape function £(6,x) = & (6 )é (6,%) and no wind veer, and (c)
the yawed turbine in a CNBL (with wind veer). The shading represents the strength of the velocity deficit Awu.

The wake shape function £(0,x) has units of length and is normalized using &, (0) = £(60,0), the initial
shape of the wake which depends on the angle 6 and represents the shape of an ellipse as the rotor disk is
yawed

| cos ]
= R\ A, . 32
\/1 —sin? Bsin? 6 32)

Here A, is the ratio of the expanded streamtube area with the projected frontal area of the rotor [16]:

_ 2
A = 1+ +/1—Crpcos B. (33)
24/1 — Crcos? 8

The normalization introduces a dimensionless angle-dependent wake shape function f (6,1) according to

£(0,2) = &(60) (6, 1). (34)
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where £ is a dimensionless time variable to be defined below [16].

The downstream evolution of the angle-dependent radial location of the wake is given by £(0, z) = £(0) +
Jur(0,t) dt, where time ¢ stands for the downstream evolution, i.e., t = /Uy, and u,(0,t) is the radial
velocity induced by the shed streamwise vorticity. The vortex sheet shape at downstream locations for a
given 6 is changed by the induced radial velocity from the vortices. Given the strength of the vortex sheet or
the circulation density v = v(6,t), the radial velocity u,.(6,t) governing the shape of the vortex sheet can be
determined using the Biot-Savart law as described in Ref. [16]. In Ref. [16], the evolution of dimensionless
velocities, @, = u, /v, Go = ug/vp and sheet location, é = £/& are obtained using a power series method,
where 7, is the reference circulation density at the turbine location. It is related to the circulation strength
I’y in equation (18) by

L'y

"= g = fC'TUhc% Bsin 8. (35)

The dimensionless time is defined as £ = t, /€o. The analytical general solutions are valid at short times,
i.e. only near the turbine for times (|t| < 2) [16].
To capture the wake-curling effects at large times, an empirical expression for the non-dimensional vortex

sheet location £(6, ) is proposed (see equation B1 in Ref. [16]) which is valid for both short and long times.
For a non-rotating turbine, the empirical expression simplifies to

0, =1— L tanh © 20 — L tanh © 5(36)
5 = « 9 an dov COSs 1 an 3a COS

_ 5 tanh 1?74 cos(20) + T tanh a cos(40) (36)
48 16 48 16a ’

where, the constant o = 1.263. In equation (36), we also need to know t. In a turbulent boundary layer, the
strength of the vortex decays downstream leading to a time-dependent circulation density v, = v(t) [16].
The definition of the non-dimensional time ¢ = tv, /£, then generalizes to

L1t

= / p(t) dt’. (37)
&

The circulation density ~,(t) is related to the decaying circulation strength I'(z) considered in equation (29)

by v = T'(z)/2R. Using this relation along with ¢ ~ z/U(z) with U(z) = (u,/k)In(z/z) and n(x) =

k,x/24Y/* from equation (26), and assuming the virtual origin o = 0 to simplify the problem, the integral

(37) becomes

f—w/nl“(’)d’ (38)
© 2k,U(2)&R Jo P

The integral was approximated using a fitting function resulting in a ¢ which is expressed compactly
according to

i(z,2) ~ —1441 RFCTCOS 5sm5[ —exp (— . U%;)]. (39)

The value of ¢ from equation (39) is used to evaluate £(6,f) in (36) and subsequently obtain &(0,z) =
€0(0)€(6,1) in equation (31).

Next, we turn to the normalized maximum velocity deficit magnitude C(2) = Aumax/Un in equation (30)
which is given by

Crcos3 3

Clo) =1 =1~ 552y Re

(40)
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where,

5%(x) = (kyz + 0.4R\/A,) (kw4 0.4R\/A, cos ), (41)

is an estimate of the average wake width over the angles which captures the trend of reduction of horizontal
width due to yawing at an angle 3. The quantity R+/A, is also an approximation of the initial wake shape
according to equation (32) for small 3.

In figure 5, this analytical prediction for the maximum normalized velocity deficit magnitude C(x) is
plotted alongside estimates from the CNBL and TNBL LES. Here it is clear that the model provides good
agreement with the LES and is able to predict the correct velocity deficit decay for /D 2 3.

The curled wake model predicts the wake deflection y. due to the shed vorticity according to

Ye = Je(t) RV A, (42)
where, the non-dimensional wake deflection g, is expressed as

N (m =D +2v3n2E2 4 48(m — 1)%{]

2 t
Je(t) = - -
Be(t) 2m(m — 1)£2 + 4+/372|t| + 96(m — 1)2

() /[RVAP -1

In Ref. [16], an analytical solution for the wake deflection for short times is obtained assuming a circular
vortex sheet. For longer times, the deflection of the wake is estimated instead by modeling the vorticity
distribution as a CVP. This first term in equation (43) which is an empirical fit captures the behavior of
both these solutions across short and long times. The second term models the deflection due to the image
vortices needed to model ground effects.

These analytical estimates for wake deflection in equation (42) are compared with the wake deflection
computed from the velocity deficit in the CNBL simulation in figure 10. The two lines in color represent the
wake deflection y. s obtained from the CNBL simulation using

sgn({) (43)

v Aulz,y,zn) dy
fy Au(xa:%Zh) dy ’

where Au(z,y,z) = U(z) — u(z,y, 2) is the velocity deficit. We chose two methods, one in which regions
where Au > 0 and another where Au > Augts, is used to perform the integrations in equation (44). Here,
Auotsy 18 the threshold chosen by the Otsu edge detection method [15]. It is evident in figure 10 that the
wake deflection from the curled wake model given by equation (42) shows good agreement with the LES up
to /D = 7, but slightly overpredicts the observed deflection further downstream. For the purposes of the
present modeling accuracy, however, we consider the level of agreement satisfactory.

Ye,LES () (44)

O T T T T T T T T T T
01 i
-0.2
-0.3
04}

= 06 ]
—07 r Ye,LES (AU > Auotsu) 1
0.8+ — — Yerps(Au>0) .
-09 - Ye = QER\/I b
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FIG. 10. Wake deflection at hub height from the LES (CNBL) determined using two different methods is compared
with the estimate from curled wake model (—) [16]. The LES results include y. 1gs using the integration over
positive velocity defect region (— =) or Otsu’s method (—).
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B. Curled wake model applied to the CNBL including veer

Following Ref. [20], the effect of veer can be included as an additional spanwise wake displacement such
that

x

yc,Veer(mv Z) = U(Z)

Here we also take into account the additional effects from z-dependent streamwise velocity. This effect
induces larger sideways displacement in the lower parts of the domain since for a fixed z, the advection time
will be larger and the sideways displacement will have had more “time” to take place. The total spanwise
wake deflection of the velocity deficit in (30) including the veer displacement (45) is

ye(w, 2) = §o(f) RV/A, — %S(Z%h) (46)

where, §.(#) is the dimensionless deflection given by equation (43) with ¢ = #(z, z) evaluated from equation
(39). For the present LES data, the shear rate S of the wind veer in equation (45) has been measured, and
results in S = 2.2 x 1073 (1/s) (see figure 3(c)).
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AU/U},

FIG. 11. Contours of Au/U, at various streamwise locations from curled wake analytical model (30) with centroid
location (a) ye = Ye,1, (b) Ye = Ye,1 + Ye,Veer, and (¢) CNBL simulation with the v-w velocity streamlines.

Analytical model predictions for Au/Uj, from equation (30) at select downstream distances are plotted
as contours in figure 11(a) (no veer), 11(b) (including veer) and compared against the CNBL data (figure
11(c)). Panel (c) also includes v-w cross-stream velocity streamlines (evaluated from LES with the veer
velocity subtracted). In figures 12 and 13, the one-dimensional profiles of Au/Uj, at z/D = [0.36,1, 1.59]
and y/D = [—0.94,0,0.42] respectively are plotted at different downstream locations. We can clearly see
the effect of the wind veer in the contours of the analytically modeled defect velocity. The veer deflects the
wake rightward below the hub height and leftward above the hub height, whereas not including the veer
produces a wake that is only deformed by the vortex-sheet streamwise vorticity, resulting in a curled wake
structure. The analytically predicted contours closely resemble the contours from the CNBL simulation.
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The one-dimensional profiles in figures 12 and 13 show a more detailed comparison between the model and
LES. These plots show that the veer-deflected velocity deficit structure at far downstream locations is better
predicted by the wake model with the veer correction term included, albeit with slight deviations.

The results suggest that the curled wake model which was originally developed for a TNBL can also be
applied to a CNBL. The presence of veer only alters the shape of the velocity deficit by shifting it towards
one side below the hub height and to the other side above the hub height, and this effect can be modeled
with the additional spanwise deflection term given by equation (45).
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FIG. 12. Profiles of Au/U} plotted at z/D = [0.36,1,1.59] and different streamwise locations z/D = [3,5,8,11]
from curled wake analytical model (30) with centroid location ye. = ye,1 (—), Ye = Ye,1 + Ye,veer (— —), and CNBL
simulation (--).
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from curled wake analytical model (30) with centroid location y. = ye,1 (—), Ye = Ye,1 + Ye,veer (— —), and CNBL
simulation (--+).

To complete the description of velocity defect evolution, we compare with results from the TNBL simulation
in figure 14, again including the cross-stream velocity streamlines. Although there is no wind veer in this
simulation, we observe that the wake structure is still deflected to the right below the hub height and
somewhat towards the left above the hub height. This may appear surprising at first sight since one would
expect that the CVP induces a symmetric curled wake structure akin to the analytical contours from figure
11(a) without veer. However, in this case, the cause for the asymmetry appears to be that unlike what is
assumed in the model, the top and bottom vortices themselves are not aligned in the same spanwise location.
We can clearly see from the contour at 2z/D = 11 in figure 14 that the bottom vortex has moved relatively
more towards the left than the top vortex. The cause of the misalignment of the two vortices is likely due
to the fact that the streamwise advection velocity near the ground is smaller than that at the top due to
the shear in the U(z) ABL profile. Thus, at a fixed distance x from the turbine, moving with the mean
velocity there has been more time for a sideways motion for the bottom vortex (induced by the top vortex)
as compared to the top vortex (induced by the bottom vortex). As a result, the entire bottom vortex is
shifted to the left, hence deflecting the induced velocity near the wake center downwards. This effect is
partially accounted for by using U(z) in equation (39) in the model and hence also helps explain the slight
top-bottom asymmetry seen in figure 11(a) even in the absence of veer. However, the results show that for
the TNBL case this effect is somewhat stronger. More detailed model versions that take such effects into
account may have to be developed. However, the presently proposed approach already provides significant
accuracy in predicting the highly non-trivial spatial distribution of velocity in yawed turbine wakes.
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FIG. 14. Contours of Au /Uy, from the TNBL simulation with cross-stream v-w velocity streamlines.

V. CONCLUSIONS

This study investigates the effect of wind veer on the evolution of mean streamwise vorticity and velocity
deficit in the wake of a yawed turbine, in the context of conventionally neutral atmospheric boundary layers
including Coriolis acceleration causing a wind veer. In earlier work in the absence of veer (TNBL), the
curled wake dynamics had been shown to be best understood as consisting of a vortex generation phase,
where streamwise vorticity is injected in the flow due to the curl of the turbine yaw force, followed by
downstream advection and transverse turbulent diffusion of vorticity. Analytical solutions determining such
behavior were derived and validated in Ref. [15]. In the present study, we have shown that the evolution
of mean vorticity remains relatively unchanged even in the presence of wind veer. LES data show that
when wind veer is included, the streamwise vorticity corresponding to the veering mean flow, €, is simply
superimposed additively to the vorticity generated by the yawed turbine. For the yaw angle considered in this
study, this strengthens the bottom vortex and weakens the top vortex while their evolution is still modeled
well following the approach as described in Ref. [15]. We also adapted the vortex sheet-based curled wake
model [16] to describe present flow conditions. It was found to yield good results for modeling the velocity
deficit in both conventionally-neutral and truly-neutral conditions. The velocity deficit affects downstream
wind turbines if interacting with the wake. The presence of wind veer in the CNBL can be included in the
wake model by adding an additional spanwise displacement term, modeled here using the wind veer velocity
V(z). We approximated the latter as V(z) = —S(z — z5,), where the shear rate parameter S was determined
from the LES of CNBL flow. Although only one yaw angle is discussed in this work, the veer correction can
in principle be applied to model the evolution of the velocity deficit for different yaw angles, at least up to
those tested in the work of [16], i.e., up to B = 30°. Also, note that both the LES and the model proposed
do not include the effects of wake angular momentum. Such effects can be included in the analytical model
as well as in the LES using ADM with rotation (ADM-R), as was done in [16]. A detailed analysis of such
additional effects, i.e., evaluating whether wake angular momentum could affect the superposition of veer
and yaw vorticity decay, is left for future efforts. For a fully predictive analytical model, one requires, in
addition, an analytical model for V(z) and U(z). Further work is required to cast such models (e.g. those
developed in Refs. [46, 47]) in terms that can be efficiently incorporated into present wind turbine wake
models.
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