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This paper develops a spatial input—output approach to investigate the dynamics of a
turbulent boundary layer subject to a localized single frequency excitation. This method uses
one-way spatial integration to reformulate the problem in terms of spatial evolution equations.
The technique is used to examine the effect of localized periodic actuation at a given temporal
frequency, based on an experimental set-up in which an active large-scale is introduced into
the outer layer of a turbulent boundary layer. First, the large-scale structures associated with
the phase-locked modal velocity field obtained from spatial input-output analysis are shown to
closely match those computed based on hot-wire measurements. The approach is then used to
further investigate the response of the boundary layer to the synthetically generated large-scale.
A quadrant trajectory analysis indicates that the spatial input-output response produces shear
stress distributions consistent with those in canonical wall-bounded turbulent flows in terms
of both the order and types of events observed. The expected correspondence between the
dominance of different quadrant behavior and actuation frequency is also observed. These
results highlight the promise of a spatial input-output framework for analyzing the formation

and streamwise evolution of structures in actuated wall-bounded turbulent flows.
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X = streamwise location

y = wall-normal location

Z = spanwise location

X0 = streamwise location of forcing

Xm = streamwise location of measurement

ky = streamwise wavenumber

k, = spanwise wavenumber

Ax = streamwise wavelength

Az = spanwise wavelength

t = time

w = temporal frequency

n = temporal growth rate

i = imaginary uniti= V-1

Utor = streamwise velocity

Vtot = wall-normal velocity

Wiot = spanwise velocity

Prot = pressure

) = time-averaging operation

T = final time for time-averaging

i = streamwise component of time-averaged turbulent mean velocity
p = time-averaged pressure

u = streamwise velocity fluctuation from the model or instantaneous streamwise velocity from experiments
v = wall-normal velocity fluctuation

w = spanwise velocity fluctuation

i = phase-locked modal streamwise velocity

u’ = residual fluctuating turbulent streamwise velocity
Wy = spanwise vorticity fluctuation

p = pressure fluctuation

Tw = time-averaged mean shear stress at the wall
Jol = density

Ur = friction velocity

v = kinematic viscosity



Oy = the inner unit length scale

ON = variable normalized by the inner units: ¢, and u,

099 = boundary layer thickness

350 = boundary layer thickness in the inner unit

Re, = (friction Reynolds number

e, = streamwise unit vector

fx = streamwise component of body force modeling plasma actuation
Vp = wall-normal location of plasma actuator plate

Vy = wall-normal location of the center of body force

op = the standard deviation of the Gaussian function of body force
Fy = the magnitude of body force

6(-) = Dirac delta function

do = the initial phase of body force

1) = phase

b 4 = operator mapping the state g5 at x = xo to g g at x = x,,, under the same frequency-wavenumber pair (w, k)
7/ = anominal variable

0 = Laplace transform in the time domain and Fourier transform in the spanwise domain
Uy = &

Wy = 9%

qs = state variable of spatial input-output analysis

Ag = state evolution operator of spatial input-output analysis

Bg = input operator of spatial input-output analysis

Cs = output operator of spatial input-output analysis

M = u(a§ - k%) — n +iw employed to simplify notation

A = adiagonal matrix containing eigenvalues of Ag

\4 = amatrix containing eigenvectors of A g

0 = zero matrix

Re[-] = the real part of the argument

Im[-] = the imaginary part of the argument

Ug = downstream evolution of phase-locked streamwise velocity
Vg = downstream evolution of phase-locked wall-normal velocity
w;s = downstream evolution of phase-locked spanwise vorticity



I. Introduction

Large-scale structures in turbulent boundary layers (TBL) are known to contribute significantly to the turbulent
kinetic energy and Reynolds stress production [1, 2], which influence the near-wall small-scale structures [3-5] and
local skin friction [6]. This influence of the large-scale structures on the TBL dynamics has been shown to increase with
Reynolds number [7]. Large-scale structures can also be manipulated to change the properties of the boundary layer; e.g.
to reduce drag in a high Reynolds number TBL [8]; see e.g., review [9]. Therefore, understanding their dynamics and
interactions with the overall TBL can provide insight into the underlying physics.

The dynamics of large-scale structures can be studied by analyzing the flow response to an external large-scale
perturbation. Single harmonic perturbations provide a particularly attractive approach to tracking the linear response
of the turbulent boundary layer at the same frequency through phase-locked analysis. Investigating these types of
actuated flows dates back to Hussain and Reynolds [10, 11], where a thin vibrating ribbon near the wall is used to
introduce perturbations into turbulent channel flow. They analyzed the experimental results by introducing a triple
decomposition of the instantaneous velocity into a temporal mean, phase-locked harmonic perturbations (organized
waves), and the remaining turbulence. Periodic perturbations have also been experimentally introduced into a turbulent
boundary layer through a dynamic (temporally oscillating) roughness, which provides a reference phase to isolate the
synthetic large-scale and small-scale flow structures [12—15]. The introduced periodic perturbation is shown to alter the
phase relation between large and small scales, and the associated modulation coefficient in a quasi-deterministic manner
[16]. Temporal periodic perturbations can be also introduced by a wall jet [17, 18] or a wall-mounted piezoelectric
actuator [19-21]. Ranade et al. [22] introduced the perturbation outside (above) the boundary layer instead of at the
wall. Their results support the existence of a critical layer inside the wake region that is responsible for the amplified
level of turbulence in that region. Lozier et al. [23, 24, 25] similarly introduced large-scale perturbations in the outer
region of the boundary layer through a dielectric barrier discharge (DBD) plasma actuator. They then performed a triple
decomposition with a phase-locked velocity to obtain synthetic large-scale structures and investigate their interactions
with the residual turbulence.

In the above experiments, the dominant temporal frequency of the perturbation determines the frequency for the
velocity decomposition and acts as an input in models of the phenomena. However, there remains a lack of understanding
regarding a suitable choice of the streamwise wavenumber to e.g., specify a convective velocity, or for use in input-output
based techniques that decompose the flow into a superposition over these wavenumbers. As such, there have been a
number of methods used to determine the streamwise wavenumber of interest. Jacobi and McKeon [13] compared the
phase-locked velocity measured in a TBL perturbed by dynamic roughness with predictions from resolvent analysis [26].
They determined a streamwise wavenumber for modeling of synthetic large-scale structures based on a least-squares
fit over several downstream measurements. This method led to good agreement with the experimental data for that

particular case, however, in general, spatially localized perturbations are known to break the shift-invariance in the



streamwise direction assumed in the resolvent model. Therefore the streamwise variation may be more accurately
characterized by a complex wavenumber that would also capture downstream growth or decay [13, 27]. In addition, a
single frequency perturbation has been shown to be associated with a broad band of streamwise wavenumbers [27]. For
example, the single frequency that is introduced through the perturbation will result in different streamwise wavenumbers
at different wall-normal heights depending on their local mean velocity [13, 27]. Therefore, limiting the analysis to a
single streamwise wavenumber may restrict the range of behaviors that can be studied.

In this work, we develop a spatial input—output analysis approach that does not require specification of a single
streamwise wavenumber. Our approach uses the integration method of Towne and Colonius [28] to reformulate the
problem in terms of well-posed and exact one-way spatial evolution equations that inherently represents the behavior
across the streamwise spectra. This reformulation also results in a natural embedding of a wall-normal dependent
phase speed that enables specification of a local (wall-normal direction dependent) convective velocity. We apply
the proposed approach to analyze the phase-locked velocity and evolution of large-scale structures in a low Reynolds
number TBL, where a synthetic large-scale structure is introduced through a spanwise-uniform DBD plasma actuator
based on the experimental set-up in [23-25]. We first demonstrate the ability to produce phase-locked velocities with
large-scale structures reminiscent of those obtained by experimental measurements employing hot-wire anemometry and
a phase-locked analysis. Both the theory and experiments indicate that the actuated large-scale structures become more
inclined towards the wall as they propagate downstream, which is indicative of the changes in phase speed with distance
from the wall. Quadrant analysis [29, 30] indicates that the shear stress distribution of the spatially evolving flow field
shows an ordering (spatial progression of quadrant behaviors) consistent with that observed in turbulent pipe flows [31].

The last part of this work exploits the analytical structure of the approach to take some steps towards characterizing
the effect of varying the height and actuation frequency, thereby addressing a gap in the literature that has thus far
focused on periodic perturbations injected at the wall [10, 11, 13, 17-21, 27, 32-34] and perturbations introduced in the
outer layer [22-25]. Our studies indicate that the actuation frequency influences the characteristic streamwise length
scale and that the response to higher frequency actuation decays faster in the downstream direction. The ordering of the
shear stress patterns from the quadrant analysis is found to be independent of actuator height. The perturbation location
instead determines a phase speed for flow structures associated with the local mean velocity at that height. In contrast,
changes in actuation frequency affects the most commonly occurring shear stress patterns in a manner consistent with
canonical wall-bounded turbulence. These results support the notion that synthetic large-scale structures interact with
the TBL in a manner consistent with naturally occurring large-scale structures. They also highlight the promise of
combining such an analysis with experimental studies to provide further insight into scale interactions in the TBL.

The remainder of this paper is organized as follows. Section II describes the spatial input—output analysis framework.
In Section III, we present the experimental setup of interest and compare results obtained from a spatial input—output

analysis using a model of the experimental actuation with the experimentally obtained data. Section IV employs spatial



input-output analysis to analyze the downstream evolution of actuated large-scale structures, as well as the influence of

actuation frequency and wall-normal height on the actuated large-scale structures. Section V concludes this paper.

I1. Spatial input—output analysis of an actuated turbulent boundary layer
We consider incompressible zero-pressure-gradient turbulent boundary layer, where x, y, z are the streamwise, wall-
normal, and spanwise directions, respectively. In order to approximate boundary layer flow, we invoke the quasi-parallel
assumption that the streamwise variation of mean velocity is negligible, which is quantitatively shown to be a reasonable

T
and the

assumption by spatio-temporal measurement in [27]. We decompose the velocity field, u; = [“tot Vot Wit
pressure field, pio¢ into mean and fluctuating quantities u; = @#(y)e +u and pyor = p+ p, where T denotes the transpose,
e denoting the streamwise unit vector and, overbars represent time-averaged quantities, ¢ = Tlggo % fOT o(1) dt.

We are interested in the flow response of turbulent boundary layer subject to a localized temporally harmonic
oscillation at a fixed frequency applied using a spanwise uniform DBD plasma actuator. We model the effect of the
plasma actuation as a streamwise body force fye, and neglect any induced body forces in the wall-normal or spanwise
directions. The use of this type of model is supported by the observation that plasma-induced body force typically
shows a much smaller wall-normal forcing than streamwise forcing [35]. This forcing is localized; i.e., applied at a
particular wall-normal and streamwise location as illustrated in figure 1, the form of the forcing prescribed for this study

is described in detail in § I111.B.

The dynamics of the forced fluctuations u and p linearized around the turbulent mean velocity are governed by:

dil \%
Oiu + 0 u + v—uex + P vy = frex, (1a)
dy P

V-u=0. (1b)

Here, p is the density of the fluid, v is kinematic viscosity. The friction Reynolds number is defined as Re, := dggu /v,
where dgg is the boundary layer thickness and the friction velocity is defined as u, = \/m, and Ty, is the time-averaged
mean shear stress at the wall. We denote the velocity normalized by the friction velocity with a superscript *; i.e.,
ut = u/u,. We also use superscript * to denote the length normalized by the inner unit length scale 6., := v/u, and the
time normalized by &, /u,;i.e., y" = y/d, and t* = tu,/6,.

We next derive a spatial mapping operator to obtain the solution to spatial input-output by assuming solutions of the

form:
W(x,y,2,0) = §(x,y; 0,1, kel kst )

where k, = 27 /4, is spanwise wavenumber and i = V-1 is the imaginary unit. 7 and w respectively denote temporal
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Fig. 1 Illustration of spatially localized actuation applied to a turbulent boundary layer.

growth rate and frequency, where 7 is introduced here for partitioning the upstream and downstream modes following

Towne and Colonius [28] based on Briggs [36]’s criteria. These assumptions allow us to rewrite equation (1) as:

0, v . <y
aqs = ASqS + BS,xfx’ (3)
T ~ v, v
where §s = | § U, W Wy pP/p| s 0x = g—z, Wy 1= %—V;, and the operators Ag and Bg_, are respectively
defined as:
0 —0y 0 —ik, 0 0 0
0 0 1 0 0 0 0
. 0 -M/v ilv 0 0 oy/v| 0
As(yiw,n, k) = » B x = “)
0 0 0 0 1 0 0
0 0 0 -M/v alv ik, v 0
M~ +ady, —vdy ikt —ikey 0 1
with
M :=v(0; - k%) —n+iw. (5)

The operator similar to Ag in equation (4) is previously defined in Schmid and Henningson [37, equations (7.110)-



(7.111)]. We impose boundary conditions of the form:

i(y =0) =ii(y =00) =0, (6a)
(y=0) =0(y =c0) =0, and (6b)
Ww(y =0)=w(y =00) =0, (6¢0)

which correspond to no-slip at the wall and no fluctuation at the free-stream location.

In order to obtain the solution to equation (3), we need to first identify the upstream and downstream modes contained
in Ag( y;w,n =0, k;) to eliminate numerical instabilities associated with upstream decaying modes growing in the
downstream direction. Here, we implement the one-way spatial equation [28] to explicitly identify upstream modes
based on Briggs [36]’s criteria; see e.g., [28, 36, 38, 39, Section 3.3]. Following Towne and Colonius [28], we identify
the eigenvalue associated with ik, (w,n = 0, k,) of As(y;w,n = 0, k;) by tracking the eigenvalues ik, (w, 7, k;) of

As(y;w,n, k) as a function of . This mode ky(w,n = 0, k,) is propagating downstream if

liIP Im[kx(w,n, k;)] =+ oo, (7)
77*) 00
and propagating upstream if
lim Tm(k (7, k.)] = o, ®)
17—+

where Im[-] represents the imaginary part of the argument. We then perform an eigenvalue decomposition

As(yiw,n=0,k;) =VAV!, 9)

where the diagonal elements of the diagonal matrix A, and matrix V respectively contain the eigenvalues and eigenvectors

of Ag (y;w,n =0, k;). We then eliminate the upstream modes by defining an x dependent matrix D as

eMiX | if Aj; is an eigenvalue corresponding to a downstream mode,
Dji(x) = (10)

0, if A;; is an eigenvalue corresponding to an upstream mode,

where the subscript ii represents the i diagonal element of the matrix D or A. The operator mapping the state
qs(x0,y;w, k;) at x = xq to the state g ¢(x, y; w, k;) at another downstream location x = x,,, under the same spatio-

temporal wavenumber-frequency pair (w, k;); i.e., gg(xm, y; 0, k7) = ‘VI’(xm,xo, yViw, k;)gg(xo,y;w, k) is then given



by:
‘VI’(xm,xo,y;a), k;) :=VD(x,, —xO)V_l. (11)

Using (11), we can obtain the state response §g(x,,,y; w, k;) at given frequency-wavenumber pair (w, k) and

certain downstream location x,, due to an input forcing function fy (x, y; w, k) with § s(x0,y;w, k) =0as

Xm
qS(lea yiw, kz) = / ‘P(xmax’ yiw, kz)BS,xfx(xay;a)’ kz)dx~ (12)
X0

With the additional definition of an output operator ¢ , we can obtain the response of an output variable ¢3 (s ys 0, k)

for a given (w, k,) pair and downstream location x,,:
¢ (xm, y: 0, k2) = Clis (xm, y: 0, k). (13)

The formulation here is general for a wide range of k. that can be determined based on actuator geometry, while we
focus on the case k, = 0 representing spanwise uniform actuation corresponding to the experimental setup of interest in

this paper.

A. Numerical method

We compute the spatial mapping matrix associated with the operator in (11) by first discretizing the operators in
equation (4) using the Chebyshev differential matrices generated by the MATLAB routines of Weideman and Reddy [40].
The mean profile # employed in this work is the asymptotic consistent turbulent boundary layer profile obtained from
Monkewitz et al. [41] as detailed in Appendix A. The numerical implementation of the spatial framework is validated
against the results of the spatial eigenvalue problem in Schmid and Henningson [37, figure 7.18]. We implement
algebraic stretching following Schmid and Henningson [37, equations (A.53)-(A.54)], and this stretched grid is validated
against eigenvalue results for the Blasius boundary layer in Schmid and Henningson [37, Table A.4]. We use N, = 82
grid points in the range y* € [0, 1690] with half of the grid points in the range of y* € [0, 345]. This resolution was
deemed sufficient by verifying that the relative difference between the results reported and those obtained when the
number of grid points is increased to N, = 122 is less than 1%. We identify upstream and downstream modes in
equations (7)-(8) through the eigenshuffle [42] function, which tracks the variation of each eigenvalue numerically
based on its continuity with varying parameter 1. This numerical method is selected because analytical tracking is
typically challenging; see e.g., Alves et al. [43]. For results in this work, we use 60 logarithmically spaced values in the
range 7+ € [1073, 10] to approximate 7 — oo in equations (7)-(8). We verified that this is sufficient by checking that the

results do not change if we increase this to 90 logarithmically spaced values in the range n* € [107#, 10?]. These two
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Fig. 2 Schematic of the experimental set-up in which an active large-scale structures actuator (ALSSA) com-
prised of a dielectric barrier discharge plasma actuator is mounted on a plate at a prescribed vertical height

Yp-

grids on * also give the same eigenvalue of the operator Ag( y;w,n =0, k;) associated with the largest real part for the

set of downstream eigenmodes.

ITI. Comparison with experimental results
In this section, we compare the large-scale structures from the model with those obtained from experimental
measurements. We describe the experimental setup in subsection III.A. Then in subsection III.B, we describe the model
calibration and provide a comparison between the phase locked velocity obtained through the analytical approach and

the experimental results.

A. Experimental setup and phase-locked decomposition

The experiments are performed in one of the low-turbulence, subsonic, in-draft wind tunnels located at the Hessert
Laboratory for Aerospace Research at the University of Notre Dame. The wind tunnel has an inlet contraction ratio of
6:1 and a series of 12 turbulence-management screens in front of the inlet to achieve tunnel free stream turbulence levels
of less than 0.1% (0.06% for frequencies above 10 Hz). Experiments are performed in a test section with a 0.610 m
square cross-section and is 1.83 m long. A schematic of the full experimental set-up is shown in Figure 2.

For this study, a two-meter long boundary layer development plate with a distributed roughness element attached to
the leading edge is installed in the central height of the tunnel test section. The leading edge of the boundary layer
development plate is aligned with the test section inlet, while its trailing edge goes into the diffuser. The inlet section of
the diffuser matches the test section so that ~17 cm of boundary layer development plate is inside the diffuser; this is not
expected to influence the development of the turbulent boundary layer within the test section. A constant temperature
anemometer (CTA) with a single boundary layer hot-wire probe (Dantec 55P15) with diameter 5 um and length
[ = 1.25 mm is used to collect time-series measurements of the streamwise velocity component. A computer-controlled

traversing stage is inserted through the top wall of the tunnel along the midpoint of the tunnel span to allow the hot-wire
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probe to traverse the test section and make measurements at different wall-normal (y) locations. The streamwise position
of the hot-wire probe traverse system is adjustable and the following four streamwise locations are selected for this study:
x =51 mm, 102 mm, 170 mm, and 272 mm, which correspond to 1.5699, 3999, 5099, and 899, respectively, based on
the experimentally measured boundary layer thickness, 099, near the actuator trailing edge. The wall-normal position of
the hot-wire probe varies between y/dg9 = 0.0069 and y/899 = 0.9724 for a total of 21 sampling points. The data was
sampled at f; = 30 kHz which corresponds to Ar* = (1/f;)u2 /v = 0.2 for a total period of 90 seconds, or about 15,000
099/Us in each test. With this sampling frequency and sampling time, there should be no loss of turbulence information
as described in [44].

A plasma-based active large-scale structure actuator (ALSSA) device is used to modify the dynamics of the outer
layer of the boundary layer with periodic plasma-induced force. This device is attached to the top side of the boundary
layer development plate at a fixed streamwise location of 140 cm from the leading edge of the boundary layer development
plate, as shown in Figure 2. The plasma actuator is supported above the boundary layer development plate by vertical,
symmetrical NACA(0010 airfoils on both sides. These airfoils are 4 mm thick, have a 50 mm wide chord. The plates are
made at height intervals, y,,, at 10 mm (0.3699) so that the synthetic large-scale structures can be introduced into the
TBL at different heights. The plasma actuator is W = 25 cm (=8 dg99) wide in the spanwise direction and L = 32 mm (x1
d99) long in the streamwise direction. The actuator plate is made of a 2 mm thick sheet of Ultem dielectric polymer. An
upper surface electrode of 0.05 mm thick copper foil tape is located 15 mm from the plate leading edge and is 4 mm in
length and 22 cm in width. On the lower surface, a second copper foil electrode is located 15 mm from the leading edge
in line with the top electrode and is 12 mm in length and 22 ¢m in width. The corners of the electrodes are rounded, and
they are mounted in alignment to eliminate extraneous regions of plasma generation and regions of highly concentrated
plasma. The leading edge of the actuator plate is rounded, and the last 10 mm of the trailing edge is linearly tapered to
reduce the separation region behind the trailing edge of the plate. The alternating current dielectric barrier discharge
(AC-DBD) plasma formed on the actuator is produced using a high voltage AC source consisting of a function generator,
power amplifiers, and a transformer [45]. The electrodes placed on the top and bottom of the actuator are connected to
the high voltage AC source which provides a 40 kV peak-to-peak sinusoidal waveform excitation to the electrodes at
a frequency of 4 kHz. The peak-to-peak voltage is maintained within -5% of the expected excitation voltage during
experiments. At the 4 kHz carrier frequency, the plasma actuator operates in a quasi-steady mode, essentially creating a
spanwise-uniform steady jet in the streamwise direction. To introduce periodic forcing with frequency f},, the sinusoidal
waveform is modulated by a square wave with a fifty percent duty cycle. Previous analysis demonstrates that this form
of square wave forcing does not produce a significant TBL response at frequencies besides f,, see e.g. Lozier et al. [24,
figure 3].

The measured velocity time series are then processed by a narrow bandstop filter around 4 kHz to eliminate electronic

noise associated with the high voltage AC source supplying the actuator. Since the actuator introduced periodic forcing
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Table 1 Turbulent boundary layer parameters from the experiment, measured at x = 599.
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Fig.3 Experimentally measured (a) mean velocity iz* and (b) mean square of the streamwise velocity fluctuation
u*2 _for the canonical turbulent boundary layer at x,,, /S99 = 8.

rms

into the flow, it is convenient to phase-lock the results to the actuation frequency. To do so, a triple phase-locked
Reynolds decomposition of the velocity is considered, as shown in equation (14a) where u is the instantaneous velocity,
i is the time mean component of velocity, i is a phase-locked modal velocity component, u” is a residual fluctuating
turbulent component, ¢ is the phase, defined by the relationship in equation (14b), and »n is the number of realizations as

described below

u(y,t) =ia(y) +i(y, ¢) +u'(y, ¢, n), (14a)
In
=L - n|2n. (14b)
¢ (T‘]7 n) g

Here, t,, is a time in the n™ realization, which is related to the phase angle, ¢, by the period of the forcing repetition
cycle, T, = 1/ f,. The output of the function generator is used to ensure the data is phase-locked with the repetition
cycle of the plasma. These n realizations are then ensemble-averaged to find the modal component of velocity, i(y, ¢),
as a function of the phase angle.

A set of representative characteristic parameters of the canonical turbulent boundary layer are measured at the
downstream location of x,, = 5999 using the hot-wire probe, and the associated data is summarized in Table 1 for
reference. The skin friction velocity u, is found using the Clauser method and the friction Reynolds number is
Re; =690. We use this u, to normalize all of the experimental results. All of the experiments employ a wind tunnel

free stream velocity is 7 m/s that is measured to be within +1% of the expected free stream velocity before each test. The
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mean velocity and mean square of the streamwise velocity fluctuations of canonical TBL at x,,, /599 = 8 shown in Figure
3 demonstrate that the boundary layer is fully developed at this location. Additional statistics for this experimental setup

are reported in [46].

B. Model calibration and comparison results

In this subsection, we will describe the forcing model and calibrate the parameters of the forcing function fy in
equation (3) to closely match the effect of the plasma actuation on the flow field. We will then compare the computed
results to those from the experimental measurements to demonstrate the efficacy of the spatial input-output analysis
described in section II in reproducing the phase-locked velocity.

Based on the actuator geometry described in § III.A, we model the effect of actuation on the flow by assuming the
streamwise body force f is in the form of a Gaussian function over the wall-normal direction, a Dirac delta function
over the streamwise direction, and a uniform function in the spanwise direction:

-yr )?

fex, yiw k) = Foe 270 8(x — xg)e'?, (15)

where Fy represents the magnitude of this body force and ¢ represents the initial phase induced by the plasma actuator.
We select the initial phase of the body force model as ¢ = 1.157 and the magnitude as F;; = 38.2 based on experimental
measurements of phase-locked velocity at x,,, = 1.5699. The values of the parameters ¢o and F; do not influence
the shape of phase-locked velocity due to linearity. In analogy to the vibrating ribbon problem [47] in the study of
transitional boundary layers or the signaling problem [39, 48, Section 3], the streamwise variation of this body force in
(15) is modeled as a Dirac delta 6 (x — xo) function over the streamwise direction that is localized at the streamwise
position xo. Here, we impose xo = 0. The Gaussian function in the wall-normal direction is motivated by [49, 50],
where this function is also employed to model localized forcing. The parameters y  and o, in the Gaussian function
are, respectively, the center of the peak and standard deviation determining the wall-normal shape of plasma-induced
body force. We set o';; = 60 and the body force center to be y s = 0.13d99 + y ), i.€., 0.13699 higher than the actuator
plate height. This height correction and the standard deviation o, of the forcing function are selected in order to
match the ALSSA device induced peak phase-locked velocity at x,,,/d99 = 1.5 from the experiments. The calibrated
values FO+ , ¢0, vy, and o';; are then kept constant. The spanwise wavenumber in equation (4) is set to k, = 0 because
the plasma actuation in the experiment is spanwise-uniform, and the fact that the experimental measurements of flow
response do not show significant spanwise variation. We set the frequency to w™ = 27 f; to match that of the plasma
actuation. We specify the Reynolds number Re, = 690 to match the experimental conditions described in table 1 in
both the determination of the mean velocity profile and the computations. The actuator plate in the experimental

setup will also introduce a wake leading to a velocity deficit in the mean flow, but this wake will decay as the flow
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continues downstream [25]. The clear peak in the premultiplied streamwise energy spectrum with plasma actuation
suggests a much stronger effect of plasma actuation than the actuator plate [46, figure 4]. We therefore make the
simplification of neglecting the effect of the actuator plate and employ the canonical TBL mean velocity profile here.
The use of a canonical TBL mean velocity profile does not require experimental measurements to specify the mean
profile and provides greater flexibility to explore other flow regimes or actuation schemes. Incorporating a spatially
developing mean profile requires modifications to the formulation or recalculation at each location of interest and both
increase computational time. These computations along with a study of the trade-off between additional accuracy and
computational time are beyond the current scope.

The corresponding solution of equation (3) at downstream measurement position x,, with respect to the streamwise
localized forcing f+ can be computed using the spatial mapping operator in (11):

-yp)?

Gs(xm, v, w, kz) = W (X, X0, V3 0, kZ)I}S,xFOe 20p gl (16)

In order to compare with the hot-wire measurements from the experimental set up described in III.A, we select the

streamwise velocity as the output, i.e.

i =Cs uds, (17a)

v

Csu=|1 0 0 0 0 0f- (17b)

We then obtain the phase-locked velocity defined (14) at a certain downstream measurement location x,, by multiplying

e71? to shift the phase:

0 (X, v W, kz, @) = Re[i# (X, y; w, k;)e ?], (18)

where Re|[] represents the real part of the argument. Note that the minus sign of e™'¢ in equation (18) is based on
the fact that an increased phase corresponding to later time moments is consistent with the phase-locked analysis in
equation (14) and the Ansatz in equation (2).

We compare the phase-locked velocity obtained from the proposed spatial input—output analysis against results
from experimental measurements associated with an actuation frequency f;, = 80 Hz (0.3983U /99 and f,; = 0.0135)
and an actuator plate height y, /d99 = 0.3. This actuator plate height y, /d99 = 0.3 corresponds to the top boundary
of the log-law layer [51]. Figure 4 compares the phase-locked velocity obtained from experimental measurements
(top panels) and the model (bottom panels) at the four different downstream measurement locations x,, /899 = 1.5,

Xm /699 = 3, X /099 = 5, and x,,, /699 = 8. In all panels, the long black dashed line (- -, black) corresponds to the
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Fig. 4 A comparison of phase-locked modal velocity it computed from experiments (panels (a)-(d)) using
equation (14) and that computed from spatial input-output analysis by equation (18) (panels (e)-(h)) obtained
for y, /699 = 0.3 and f,, = 80 Hz. Here, (- -) indicates the plate height of y, /099 = 0.3 employed in experiments;
and (—) represents the body force center y =y, +0.13699 employed in the body force term described in equation
(15).

height of the actuator plate y,, and the short black solid line (—, black) is the height of the body force center y s in
equation (15). Here, we can see that the model provides good qualitative agreement with experimental measurement.
At the downstream location x,,/d99 = 1.5, the phase-locked velocity is isolated into three distinct regions across the
boundary layer thickness. We refer to the region below the plate y/dg9 € [0, 0.3] as the bottom region, the region
¥/899 € (0.3,0.56) with y ¢ in the middle as the central region, and the region y/dg9 € [0.56, 1) as the top region. As
expected, the central region is most strongly influenced by the actuation. The figures indicate that there is a clear phase
shift between these regions in both the experimental and model results at all measurement locations. The behavior in
the central and top regions is reminiscent of the results from previous studies that showed two similar regions above an
actuator (mounted at the wall) [13, 17, 27, 33, 34]. The bottom region observed here is not visible in these previous
studies [13, 17, 27, 33, 34] as their actuation is introduced by wall-mounted actuation. The phase-locked velocities in
figure 4(a)-(c) have a larger phase ¢ at a larger y that is opposite to what is shown in figure 4(d), which suggests that the
direction of phase-locked velocity is also changing along the streamwise directions. The results from the model in
figure 4(e)-(h) also capture this phenomenon qualitatively. This phenomenon is likely due to different phase speeds at
different wall-normal heights and suggests the importance of a model that allows a range of streamwise wavenumbers.
This notion will be examined further in the next section. One of the differences in the spatial input-output results and
experimental data is the smoother variation between the top, center, and bottom regions (figure 4(a)-(d)), versus sharper

interface that appears to occur at a single phase and wall normal height in figures 4(e)-(h). This difference may be due
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Fig. 5 The experimental measured and model-predicted value of mz:)x it for the top region y/599 € [0.56, 1),
¥,

the center region y/599 € (0.3,0.56), and the bottom region y/d99 € [0, 0.3] at downstream locations x,,, /599 =1.5,
3, 5, and 8 corresponding to results in figure 4.

to the choice of a single temporal frequency f,, and single spanwise wavenumber k, = 0. An interesting direction for
future work is the evaluation of the influence of additional temporal frequencies and spanwise wavenumbers, which
can be introduced by triadic nonlinear interactions, see e.g., [52, 53]. These types of nonlinear effects have also been
partially captured in traditional input-output approaches through the addition of an eddy viscosity model, see e.g.,
[54-56], and incorporating such a model into this framework provides another avenue for ongoing investigation.
Figure 5 compares the experimentally measured maximum velocity with the model predicted maximum amplitude
of phase-locked velocity @+ in the top, center, and bottom regions for downstream locations x,,/d99 =1.5, 3, 5, and 8
corresponding to the results in figure 4. Here it is clear that the magnitude of phase-locked velocity # in the central
region y/dgg € (0.3,0.56) decays with downstream distance in both the experimental data and model results, although
the decay rate of the analytical results is slower, particularly between x,,/d99 =1.5 and 3. This difference could be a
result of the simplified actuator model. This downstream spatio-temporal characteristic of the phase lock velocity as
it decays is consistent with recent work using particle image velocimetry (PIV) measurements to directly track the
streamwise evolution of the velocity field [27]. In the top region y/8g9 € [0.56, 1), the data from the model shows a
slightly lower maximum value close to the actuator, but grows to match the experiment at further downstream distances.
The experimental results show that the magnitude of phase-locked velocity i in the bottom region (y/899 € [0, 0.3])
at x,,, /099 = 3 is larger than that at x,,/d99 = 1.5, a trend that is also reflected in the model prediction. The larger
phase-locked velocity amplitude below the center of perturbation suggests a spatial transient growth mechanism for the
near-wall region. The trend near the wall far downstream of the actuator differs slightly at the two furthest measurement
locations x,,/d99 = 5 and 8 as the model predicts a slightly larger maximum while the experimental results remain
relatively constant within the experimental error. The influence of nonlinear interactions of the small scales in the

near-wall region is expected to be larger, which may account for the differences.
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IV. Downstream propagation of large-scale structures
We next examine the downstream evolution of the streamwise phase-locked velocity, we focus on the streamwise,
wall-normal velocity components as the experimental set-up leads to a flow that is dominated by the (u, v) velocity in
the (x, y) plane and nearly uniform in the spanwise direction due to a spanwise-uniform actuation. In order to obtain the

wall-normal velocity we modify the output operator to obtain the wall-normal velocity:

¥ =Cs.os» (19a)

Cso=[0 1 0 0 0 0f- (19b)

Based on the experimental configuration the spanwise vorticity is of primary interest, and this quantity can be obtained

as

@: =Cs, 0.4 (20a)

Cs.w.=|-0, iky 0 0 0 0 (20b)

We quantify the downstream evolution of phase-locked velocity for these qualities at each downstream measurement

location x,,, as

us (X, y; 0, k) =Re[ii(xp,, y; w, k)], (21a)
Vs (X, Vs w, k) =Re[0(xp, v w, k2)], (21b)
Wz (Xm, y; 0, kz) =Re[d; (xm, y; w, kz)]. 21c)

The experimental measurement of phase-locked velocity is used to construct a pseudo-spatial evolution of

phase-locked streamwise velocity u (xg, y) at the pseudo-streamwise location

nex, -2ty 22)

2 f, ¢

Figure 6 displays the phase speed U} (x,,, y) of phase-locked velocity associated with the actuation frequency, which is
employed to construct the pseudo-spatial evolution of the phase-locked velocity using equation (22). At each wall-normal
location y, this U7 (x,,, y) is obtained by applying a power law fit between the time-delay of the zero-crossing of the
streamwise phase-locked velocity and the downstream measurement location x,,. Then the slope of fitted results at each
downstream measurement location x,, and wall-normal location y is employed to obtain U/ (x,,, y); for a more detailed

description see [24, 46]. The phase speed of phase-locked velocity in figure 6 asymptotes to a constant value near the
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Fig. 6 Phase speed U} (x,,,y) of phase-locked velocity employed to construct pseudo-spatial evolution of phase-
locked velocity.

wall that is much larger than turbulent mean velocity. This behavior is qualitatively similar to the convective velocity of
large-scale structures observed in the analysis of canonical turbulent channel flow using DNS data [57, figures 4-5] and
input-output based methods [58, figures 5-6]. We then extrapolate the hot-wire measurement at x,,, /999 = 3, 5, and 8
upstream for approximately one period using the phase speed U (x,,, y) in figure 6. Near the wall, this corresponds to
extrapolate the measurement at x,,, /699 = 3 to obtain ug(xs, y) at x5/dg9 € [0.9, 3], at x,,, /g9 = 5 to obtain uy(x,,y) at
X5 /699 € [2.9,5], and at x,,, /599 = 8 to obtain ug(xs,y) at x;/599 € [5.7,8]. When there is any overlap, we perform
a linear interpolation using the values at the boundary of overlap region for a smooth transition between locations.
The wall-normal modal velocity v (xg, y) is computed using ug (x5, y) and the two-dimensional (x, y)-plane continuity
equation.

Figure 7 presents (a) u} (x, y) and (b) v (xy, y) as a function of pseudo-streamwise location x; and wall-normal
height y obtained from experimental measurements. Panels (c) and (d) respectively show the corresponding computed
values from equations (21a) and (21b). Note that the gap of experimental data near x; /899 € [5, 6] in figures 7 (a) and
(b) is because we limit the construction of pseudo-spatial evolution to one period (see e.g., u} (xs, y) near x5 /899 = 8).
We do not extrapolate measurement data to x5 /d99 € [0, 0.9] as we expect the phase speed there to vary significantly
and the underlying assumption of equation (22) to be violated. Here, we note that the values computed using spatial
input-output analysis show good qualitative agreement with the experimental measurements at x,,/dg9 € [1,5] in
terms of both their amplitude and shape over wall-normal distance. Figure 7(c) at x,,/d99 ~ 8 also shows a phase
shift between the central and top regions compared with x,,/d99 € [1, 5], which is consistent with the variation of the
experimentally obtained u? over pseudo-streamwise location x5 shown in figure 7(a). This phase shift observations for
both experimental and model results are consistent with phase-locked velocity i+ at different downstream locations

shown in figure 4. This phase shift over the downstream extent can be understood in terms of the difference in the phase
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speeds over the wall-normal extent. This difference is illustrated through tracking the evolution of a structure in each of
the three regions over three periods; this distance is indicated by a dotted line (- - - ) in figure 7 (c). The differences in the
locations of these lines clearly illustrate the effect of the wall-normal dependent phase speed. More specifically, the flow
structures in the top region and the central region are traveling slightly faster than those in the bottom region. The shape
of phase-locked velocity observed in figure 4 is a direct result of these differences. Changes in the phase speed of the
large-scale structures as a function of wall-normal heights have been associated with the stretching and intensifying of
the legs of hairpin vortices as they propagate downstream [59]. The results in panels (a) and (c) of figure 4 highlight the
benefit of an analysis method that enables analysis over a wide range of streamwise wavenumbers.

The wall-normal velocity v} obtained from the experimental data and the model are respectively shown in figures 7
(b) and 7(d), which also show good agreement. In contrast to the streamwise component, the v} obtained from both
experimental measurements and spatial input-output analysis are nearly uniform across the wall-normal height. Such a
nearly uniform wall-normal velocity is consistent with observations in [13, 27] based on planar PIV measurements.
Figure 8(a) presents the spanwise vorticity w}  as contours with velocity vectors (us, vs) superimposed. Here, we can
see that this body force model generates counter-rotating spanwise vorticity near the inflow region. As the actuated
large-scale structures propagate downstream, the bottom spanwise vorticity becomes more inclined towards the wall.

Combined information from streamwise and wall-normal velocity can be used to provide insight into the influence of
large-scale structures on the Reynolds shear stress. In order to study these stresses, we combine the spatial input-output
framework with quadrant analysis [29, 30] to classify the shear stress distribution of the spatially evolving flow field. We
then compare the modal structures resulting from actuation with coherent motion in canonical wall-bounded turbulence.
The quadrants are defined in terms of the us and v phase-locked velocities obtained from equations (21a) and (21b). We
adopt the traditional definitions for each quadrant, more specifically the first quadrant Q1 corresponds to outward motions
(ug > 0,vg > 0), the second quadrant Q2 represents ejections (u; < 0, vy > 0), the third quadrant Q3 corresponds
to inward motion (u,; < 0, vy < 0) and the fourth quadrant Q4 behavior corresponds to sweeps (uy; > 0, vy < 0) [30].
Figure 8(b) plots regions of the flow field corresponding to each of these quadrants as a function of streamwise distance
in different colors (contours) with the velocity vectors (uy, vg) superimposed. Here, the Q4 and Q2 quadrant events are
strongest in the central region, particularly close to the actuator x,,,/d99 < 5.5, while Q1, Q2, Q3, and Q4 quadrant events
appear to be equally distributed throughout the top and bottom regions, as well as in the center region further downstream,
i.e. at x,,/dg9 > 7. Moving from left to right (along the downstream direction), quadrant events occur in the order
Q4—Q3—Q2—Q1 in the top region. However, the quadrant event order changes to Q1 —-Q2—Q3—Q4 in the bottom
region. The ordering in both of these regions is consistent with the counter-rotating vorticity patterns appearing in the
top and bottom regions in figure 8(a). Quadrant trajectory patterns of Q2—Q1—Q4, Q2—Q3—Q4, Q4—Q1—Q2, and
Q4—Q3—Q2 were shown to be the most prominent in the dynamics and transport of near-wall turbulence in a previous

study that employed quadrant analysis to characterize 36 distinct evolution patterns for (u, v) in turbulent pipe flow [31].
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We outline instances of these four important quadrant trajectories using boxes with different line types in figure 8(b),
where the (—), (- -), (-- -) and (- - - -) boxes respectively encompass Q2—Q1—Q4, Q4—Q3—0Q2, Q2—Q3—0Q4,
and Q4—Q1—Q2 trajectories. These quadrant trajectories indicate that the interactions of synthetic large scales with
the boundary layer are consistent with the dynamics of a canonical TBL, suggesting the promise of this type of flow

interrogation. The ability to perform this detailed study of the downstream evolution and interactions of synthetically

generated large-scale structures in actuated TBLs highlights the benefits of spatial input-output analysis.
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Fig. 7 Downstream evolution of (a) u} and (b) v{ from experiments, (¢) 4} from the model in (21a), and (d)
v} from the model in (21b) with f,, = 80 Hz, y, /599 = 0.3. The dotted line (- --) in panel (c) indicates the
downstream distance after three periods. In panels (c)-(d), the long horizontal line (- -) represents y, /599 and
the short horizontal line (—) indicates y s = y,, +0.13599.

A. Effect of actuation frequency and actuator height

In this subsection, we employ spatial input-output analysis to study the effect of changes in actuation frequency
fp and actuator plate height y,,. We first investigate the effect of actuation frequency, by introducing two additional
frequencies, f, = 20 Hz and f,, = 200 Hz, while keeping the plate height fixed at y,, /599 = 0.3. Then, we analyze
the effect of varying the actuator height to values y,/d99 = 0.1 and y, /699 = 0.5 for the fixed actuation frequency
fp =80 Hz.

Figure 9(a)-(b) show modal velocity components u«}, and v} obtained for an actuation frequency of f,, = 20 Hz
(0.0996Uc/d99 and f,; =

0.0034). These results indicate that the streamwise wavelength of the actuated structures

is longer than those in figure 7(c) and (d), where the actuation frequency is f = 80 Hz, which is consistent with the
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Fig.8 The contour in panel (a) is spanwise vorticity w} ; and the contour colors in panel (b) indicate quadrant
numbers. The velocity vector field (uf, v}) is superimposed on contours in panels (a) and (b). In panel (b), the
blue color indicates quadrant Q1, cyan indicates quadrant Q2, yellow corresponds to quadrant Q3, and the red
color denotes quadrant Q4. The boxes with (—), (- -), (- -), and (- - -+ -) outlines examples of Q2—Q1—Q4,
Q4—Q3—Q, Q2—Q3—Q4, and Q4—Q1—Q trajectories, respectively.

lower frequency of the actuation. Note, the two modal velocity components for f = 80 Hz, from figure 7(c) and (d) are
replotted here in panels (c)-(d) of figure 9 for ease of comparison. Figure 9(e)-(f) plots the same quantities as in figure
9(a)-(b) for actuation at f, = 200 Hz (0.996U« /99 and f; = 0.034). Here, the large-scale structures show a much
smaller streamwise wavelength and decay much faster with downstream distance; see e.g., the streamwise velocity of the
central region shown in 9(e). Similar variations with temporal frequencies were observed by Huynh and McKeon [27],
who found a linear correlation between temporal frequency and streamwise wavenumber. We also observe that the flow
structures close to the wall at high frequency f), = 200 Hz are vanishing at downstream location x/dg9 € [7, 10] in figure
9(e)-(f), which suggests that flow structures close to the wall due to off-wall actuation persist for a shorter downstream
distance when their streamwise wavelength is smaller. Instead, the flow structures associated with lower frequency
in figure 9(a)-(d) display longer streamwise wavelength and extend their footprint towards the wall. This behavior is
consistent with the observation that large-scale structures associated with large streamwise wavelengths have a footprint
that extends further towards the wall [3, 60]. Furthermore, the streamwise velocity at low-frequency f, = 20 Hz in
figure 9(a) is stronger than that seen in the structures generated by higher frequency actuation, f,, = 200 Hz in figure
9(e). Instead, the amplitude of wall-normal velocity for the lower frequency f), = 20 Hz actuation in figure 9(b) is
smaller than that due to the higher frequency f;, = 200 Hz actuation in figure 9(f). This phenomenon can be qualitatively
understood from the two-dimensional continuity equation, which suggests the vertical velocity amplitude is proportional
to the streamwise wavenumber. As shown in figure 9, the flow structures associated with f;, = 20 Hz possess the
largest wavelength (or smallest wavenumber) leading to the smallest amplitude among these three different frequencies.
However, for the high frequency results (f, = 200 Hz) in figure 9(f), the spatial transient growth is weaker and the
wall-normal velocity amplitude shows faster downstream decay compared with the case when f,, = 80 Hz. The faster

decay leads to vertical velocity amplitudes smaller than that in the data for f,, = 80 Hz in figure 9(d) at downstream
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Fig. 9 Downstream evolution of u; and v} at f,, = 20 Hz, 80 Hz and 200 Hz. The plate height is y, /699 = 0.3
for all cases. In all panels, the long horizontal line (- -) marks y,/d99 and short horizontal line (—) indicates

vy =yp+0.13699.
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Fig. 10 Downstream evolution of spanwise vorticity ? ;, and quadrant numbers at f, = 20 Hz, 80 Hz and

200 Hz. All results are associated with y,/599 = 0.3. The velocity vector field (i,

v}) is superimposed on

contours. In panels (b), (d), and (f), the blue color indicates quadrant Q1, cyan indicates quadrant Q2, yellow
corresponds to quadrant Q3, and the red color denotes quadrant Q4.
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Table 2 Ratio (%) of each quadrant events over all four quadrant events Qi/ Zj.:] Q0jJ, (i=1,2,3,4) occupying the
region x,, /599 € [0, 10] and y/dg9 € [0, 1] for different actuator heights and frequencies.

yplde  fpHz) QU/Y5_,Qj Q2/¥,0j 0Q3/%,,0/ Q4/3).,0)

0.3 20 16.2 342 18.0 31.6
0.3 80 20.5 27.9 21.9 29.7
0.3 200 28.9 22.1 28.2 20.8
0.1 80 25.8 24.4 253 24.4
0.5 80 18.8 31.0 19.9 30.4

location x,,, /099 = 8. This f,, = 80 Hz case displaying the largest wall-normal velocity amplitude also coincides with
the frequency leading to the largest modulation coefficient between phase-locked velocity and residual turbulence [25,
figure 3.10].

Figure 10 shows the spanwise vorticity computed from equation (21c) and the results of a quadrant trajectory analysis
for the f;, = 20 Hz, 80 Hz, and 200 Hz cases. For all of these frequencies, the spanwise vorticity in figures 10(a), (c), (e)
suggest that the actuated large-scale structures are more inclined towards the wall as they propagate downstream due to
their height-dependent phase speed. Comparing the quadrant analysis at actuation frequency f, = 20 Hz, 80 Hz, and
200 Hz in figures 10(b), (d), and (f), it is clear that the ejection (Q2) and sweep (Q4) events occupy a larger extent
of the (x,,,, y) plane at the lowest frequency. This prevalence of Q2 and Q4 events are also observed at f, = 80 Hz
(replotted here as figure 10(d)) but are restricted to downstream regions close to the actuator location x,, /899 < 5. Table
2 displays the relative prevalence of each quadrant event, computed as Qi/ Z‘}:l 0j, (i=1,2,3,4), over the spatial extent
Xm/d99 € [0,10] and y/d99 € [0, 1]. We compute this ratio for each forcing injection height y,, and forcing frequency
fp considered here. The prevalence of Q2 and Q4 events of f,, =20 Hz and f,, = 80 Hz with y,, /699 = 0.3 can be also
reflected in table 2 with prevalence ratios greater than 25%.

Close to the actuator x,,/d99 < 2, the quadrant order at high actuation frequency f,, = 200 Hz in figure 10(f) looks
similar to the previous analysis at f,, = 80 Hz in figure 10(d), where the behavior is separated into different vertical
bands with alternating Q1 or Q2 quadrant and Q3 or Q4 quadrant (Q1/Q2-Q3/Q4) events. However, farther downstream,
the events in figure 10(f) at f,, = 200 Hz corresponding to quadrant Q1 and Q3 behavior are more prevalent and stronger
than the quadrant Q2 and Q4 events. This larger prevalence of Q1 and Q3 events for f,, = 200 Hz is quantified in table
2, which indicates that both of these types of events occur with prevalence ratios greater than 25%. This can be related
to the observation that Q2 and Q4 are associated with a larger time scale (smaller frequency) than Q1 and Q3 events in
fully developed turbulent channel flow [29, 30]. An increase in Q1 and Q3 quadrant events are shown to be associated
with a negative contribution to Reynolds shear stress; see e.g., [30]. A reduction in Q2 and Q4 events has also been
observed in turbulent channel flow with active or passive drag reduction [61, 62]. This observation suggests further

analyzing the potential to achieve drag reduction by high frequency actuation, which we leave as a topic of future work.

26



The observation that quadrant events occur in the order Q4—Q3—Q2—Q1 at the top region quadrant event order
changes to Q1 —-Q2—Q3—Q4 at the bottom region is also consistent with important quadrant events characterized in
turbulent pipe flow [31].

Finally, we study the effect of different plate heights given a fixed actuation frequency of f,, = 80 Hz. Figure
11 shows u} and v} computed for the cases with actuator heights y, /899 = 0.1, y,, /699 = 0.3, and y,,/d99 = 0.5.
Comparing the plots of u? in figure 11 (a), (c), and (e), it is clear that the characteristic streamwise wavelength is longer
when the actuator height is higher. This phenomenon results from a larger phase speed associated with the central region
due to a larger local mean velocity at a higher plate height. Here, the effect of differences in phase speed between the
central region and bottom region is more visible than in the results for y, /899 = 0.1 with y, /699 = 0.3. This larger
difference is due to the larger mean velocity gradient in the near-wall region. The wall-normal velocity v} generated
through actuation at different actuator heights y,, in figures 11(b), (d), and (f), shows nearly uniform behavior across the

wall-normal height for downstream positions x,, /899 € [0, 10] for all cases.

+

Figure 12 presents w? g,

and quadrant trajectories associated with actuation at heights y,, /699 = 0.1, y, /699 = 0.3,
and y, /099 = 0.5. The spanwise vorticity w; s in figure 12(a), (c), and (e) indicates similar patterns for all of these
actuator heights. The quadrant analysis results in figure 12(b), (d), and (f) for these different actuator heights are
separated into different vertical bands with alternating Q1 or Q2 quadrant and Q3 or Q4 quadrant (Q1/Q2-Q3/Q4)
activity. The quadrant order remains the same as the case with plate height y,, /999 = 0.3, i.e., Q4—Q3—Q2—Ql at
the top region, and Q1 —Q2—Q3—Q4 at the bottom region. This suggests that quadrant trajectory orders observed in

canonical wall-bounded turbulent flows are robust to the height where the large-scale structures are introduced.

V. Conclusions and future work

In this work, we use the one-way spatial integration method of Towne and Colonius [28] to develop a spatial
input—output analysis approach that does not require specification of a single streamwise wavenumber. This approach
naturally has the advantage of naturally producing a wall-normal dependent phase speed allowing the computation of a
local convective velocity of the actuated large-scale structures. We focus on the particular problem of a low Reynolds
number turbulent boundary layer where a synthetic large-scale structure is introduced through a spanwise-uniform DBD
plasma actuator, whose effect is modeled as a streamwise body force associated with a dominant temporal frequency.

We first demonstrate the proposed spatial input-output based analysis produces phase-locked velocities with
large-scale structures reminiscent of those obtained by experimental measurements employing hot-wire anemometry and
a phase-locked analysis. We further predict the decreasing inclination angle of the associated large-scale structures as
they propagate downstream, which illustrates the benefit of an analysis method that emits a wall-normal dependent phase
speed. We use the quadrant analysis in [29, 30] to classify the shear stress distribution of the spatially evolving flow field.

The results indicate that ordering the field based on these quadrants produces a trajectory order (Q4—Q3—Q2—Ql
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in the top region and Q1—Q2—Q3—Q4 in the bottom region) similar to that observed in turbulent pipe flow [31].
This ordering (spatial progression of quadrant behaviors) is found to be independent of actuator height, while actuator
height instead determines a phase speed for flow structures that is close to the local mean velocity at that height.
The analysis also captures the relationship between changes in the actuation frequency and the greater prevalence of
different shear stress patterns, particularly the association of greater Q2 and Q4 activity with a larger time scale [29].
These observations further support the fact that the synthetic large-scale structures interact with the TBL in a manner
consistent with naturally occurring large-scale structures. It therefore suggests that progress in analyzing the dynamics
of large-scale structures can be made by studying the effect of introducing external perturbations in a controlled manner.

The results demonstrate that the proposed spatial input-output analysis can provide insights into the large-scale
flow structures induced by temporally periodic and spatially localized perturbations in wall-bounded turbulent flows.
The method can be naturally extended to study flow structures with spanwise variation by setting k, # 0 and spanwise
velocity by modifying the output operator. This method may be further extended to analyze flow structures and potential
drag reduction induced by more comprehensive actuators by modifying the forcing function and associated input

operator. This change would allow the analysis of different types of flow perturbations than the set-up considered here.
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A. Asymptotic consistent turbulent boundary layer profile
Here, we describe the asymptotic consistent turbulent boundary layer profile developed by Monkewitz et al. [41],

which is also previously used; e.g., in Cossu et al. [63]. The mean profile is provided by:
U=u-[Uf (%) = Uj,, (") + U (Res.) — Uy, (m)]. (23)

u- is the wall friction velocity, y* = yu, /v is the wall-normal location in the inner units, and U} = U, /u is the free
stream velocity U, scaled with u,. Res, = U,d./v is the Reynolds number scaled on the displacement thickness length
scale, and 7 = y/A is the wall-normal coordinate scaled with the Rotta-Clauser outer length scale A = 6, U;. The inner

and the outer coordinates are related by y* = Re s, n. Then we have the explicit formula for these mean velocity from
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Monkewitz et al. [41]:

+6.5624567 In(y™ + 13.670520) + 6.1128254,
1

Ul-'—()g(y_'—) :; ln(y+) + B,
1

U;'(Re(;*) =— ln(Re(;*) +C,
K

1 1 w_
Ui (n) =[S Er () + wol 3 [1 = tanh(= s wan? + waar®) .
where k = 0.384, B =4.17, C = 3.3, wg = 0.6332, w_; = —0.096, wy = 28.5, wg = 33000, and E/ () = f:’

UF(y*) =0.68285472 In(y*? +4.7673096y" + 9545.9963)
+1.2408249 arctan(0.010238083y™ + 0.024404056)
+1.2384572 In(y* +95.232690) — 11.930683
~0.50435126 In(y*? — 7.8796955y" + 78.389178)
+4.7413546 arctan(0.12612158y" — 0.49689982)
~2.7768771 In(y*? + 16.209175y" +933.16587)

+0.37625729 arctan(0.033952353y* +0.27516982)

(24a)
(24b)
(24¢)

(24d)

t

< _dt.

t

These analytical expressions are validated to be the same as the mean profile at Re, = 690 obtained from direct

numerical simulations [64, 65] (https://torroja.dmt.upm.es/turbdata/blayers/low_re/profiles/).
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