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ABSTRACT

Real-world phenomena can often be conveniently described by
dynamical systems (that is, ODE systems in the state-space form).
However, if one observes the state of the system only partially,
the observed quantities (outputs) and the inputs of the system
can typically be related by more complicated differential-algebraic
equations (DAEs). Therefore, a natural question (referred to as the
realizability problem) is: given a differential-algebraic equation (say,
fitted from data), does it come from a partially observed dynamical
system? A special case in which the functions involved in the
dynamical system are rational is of particular interest. For a single
differential-algebraic equation in a single output variable, Forsman
has shown that it is realizable by a rational dynamical system if
and only if the corresponding hypersurface is unirational, and he
turned this into an algorithm in the first-order case.

In this paper, we study a more general case of single-input-single-
output equations. We show that if a realization by a rational dynam-
ical system exists, the system can be taken to have the dimension
equal to the order of the DAE. We provide a complete algorithm for
first-order DAEs. We also show that the same approach can be used
for higher-order DAEs using several examples from the literature.
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1 INTRODUCTION

Many processes in the sciences and engineering are described by
systems of differential equations. One of the prominent classes of
systems of differential equations are systems in the state-space form:

x' =f(xu), (1)

where x = (x1,...,xp) are the unknowns describing the state of
the system (state variables), u = (uy,...,umn) are the unknowns
representing external forces (input variables), and f = (fi,..., fu)
are the functions describing how the rate of change of the state
depends on the state and external inputs.

A typical experimental setup contains an assumption that the
functions u are known while the states x may be only partially
observed. In order to encode this constraint into the system, one

augments (1) with the output variables y = (y1,...,yr) and the
equations describing the observations
y = g(xu). )

Thus, one typically has time course data for y and u only, not for x.
Therefore, one may be able to fit the equations satisfied by y and u,
but not the original (1) and (2).

The question of reconstructing a system in the state-space form
(that is, (1) with (2)) which explains a given set of relations be-
tween y and u is called the realizability problem and it is one of
important problems in control theory. This problem is well stud-
ied for linear systems, see e.g. [7, 20]. In the nonlinear case, there
are several versions of the problem depending on where f and g
are sought. Two popular classes considered in this paper are ratio-
nal functions and input-affine rational functions as in [12, 13, 21],
but one could also consider algebraic, analytic, or smooth func-
tions [18, 23, 24, 26]. From the constructive standpoint, the case of
single-output-no-input systems (for which rational and input-affine
rational functions coincide) has been considered by Forsman [4].
He has shown that a DAE in y can be realized by a rational system
in the state-space form if and only if the corresponding hypersur-
face is unrational. In particular, an algorithm for the first-order
DAE was proposed. For higher order, although the general problem
of assessing unirationality is notoriously hard, many theoretical
results are available [8] which could be used to find sufficient or
necessary conditions for realizability.

The goal of the present paper is to consider the realization prob-
lem in the presence of inputs. Our contribution is two-fold. On the
theoretical side, we prove that if a DAE of order h can be realized
by a system in the state-space form, then it can be realized by a
system of dimension h (that is, by a locally observable one). This
result is related to a theorem by Sussmann [23] and its analogues
for rational realizations [12] (see also [6, 24]) which state that, for



a realization problem (analytic or rational), if a realization exists, it
can always be taken to be observable at the expense of allowing a
realization to be defined not on an affine space but on an arbitrary
variety. We achieve only local observability but guarantee the ex-
istence of a realization defined on an affine space. Note that our
result is sharp in the sense that there exist realizable DAEs without
observable realizations by a system of the state-space form, see [4,
Section 4].

On the computational side, we use the developed theory to pro-
pose algorithms for solving both rational and input-affine ratio-
nal realization problems for first-order single-output-single-input
DAEs. We also show, using examples from the literature, that an
approach similar to the one we use for the first-order case, can be
successfully applied for DAEs of higher order as well (see Section 6
and Appendix).

The rest of the paper is organized as follows. Section 2 contains
a precise statement of the realizability problem. Theoretical results
are stated and proved in Section 3. Sections 4 and 5 contain our
algorithms and proofs of their correctness. Finally, Section 6 and
Appendix contain several worked out examples from the literature.
Maple worksheets with the examples are available at [14].

2 PRELIMINARIES

In this paper, we will use the language of differential algebra which
we introduce in Section 2.1. The main problem studied in this paper,
the realization problem, can be viewed as an inverse problem to the
differential elimination problem for dynamical systems, so we first
introduce the elimination problem in Section 2.2, and then define
the realization problem in Section 2.3.

Throughout Sections 2 and 3, k is an algebraically closed field
of zero characteristic (e.g., C). In Sections 4 and 5, it will be addi-
tionally assumed to be constructive. For affine varieties X and Y,
a rational map ¢ from X to Y will be denoted by ¢: X --» Y. The
corresponding map k(Y) — k(X) will be denoted by ¢*.

2.1 Differential algebra

Definition 2.1 (Differential rings and fields). A differential ring
(R, 7) is a commutative ring with a derivation ”: R — R, that is, a
map such that, foralla, b € R, (a+b)’ = a’+b’ and (ab)’ = a’b+ab’.
A differential field is a differential ring that is a field. For i > 0, ad)
denotes the i-th order derivative of a € R. An element a € Rof a
differential ring is said to be a constant if a’ = 0.

Notation 1. Let x be an element of a differential ring and h € Z5,.
We introduce

x(<h) = (x,x’,...,x(h_l)) and x(® = (e, x",x”,..).
x(h) s defined analogously.

Definition 2.2 (Differential polynomials). Let R be a differential
ring. Consider a ring of polynomials in infinitely many variables

R[x(oo)] = R[x,x",x”, x(a), .

and extend the derivation from R to this ring by (xU )y = xU*D),
The resulting differential ring is called the ring of differential poly-
nomials in x over R. The ring of differential polynomials in several
variables is defined by iterating this construction.

Notation 2. For a differential polynomial p € k[x(*)], we define
the order of p with respect to x (denoted by ordy p) as the largest
integer i such that x(D) appears in p. If no such i exists, we define
ordy p = —1.

Definition 2.3 (Differential ideals). Let R be a differential ring. An
ideal I C R is called a differential ideal if a’ € I for every a € I.
One can verify that, for every fi,..., fs € R, the ideal

<fi(DO)::f:q(OO)>

is a differential ideal. Moreover, this is the minimal differential ideal
containing fi, ..., fi, and we will denote it by (f;, ..., f;)(*).

Notation 3 (Saturation). Let R be a ring, I C R be an ideal, and
a € R. We introduce

I:a®:={beR|3N €Zsp: aVb e I},
which is also an ideal in R.

2.2 Direct problem: Differential elimination

Consider an ODE system in the so-called state-space form:

" =f(xu),
5 - X (x,u) 3)
y=g(xu),
where
e x=(x1,...,xp) and u = (uq, ..., Un) are the vectors of state

and input variables, respectively; the number n is called the
dimension of the system;

e y is a single output variable (there may be several outputs
but in this paper we restrict ourselves to the single-output
case);

o f=(fi,...,fn), where fi,..., fn € k(x,u), g € k(x,u) and k
is a constant coefficient field.

The system (3) is called input-affine if fi, ..., fn, g are affine (i.e.
polynomials of degree 1) with respect to u.

Bringing fi, . .., fn, g to the common denominator, write f = F/Q
and g = G/Q, where F = (Fy,...,F,) and Fy, ..., F,, G, Q € k[x,u].
Consider the differential ideal

Is = (Qx|=Fi, ..., Qxp—Fpn, Qy—=G)(®): 0 c k[x(*), y(*) u(®)]

4)
which is prime by [5, Lemma 3.2]. Note that every element of I
vanishes on every analytic or formal power series solution (w.r.t x, u
and y) of (3).

Definition 2.4 (Input-output equation). We define the ideal of
input-output relations of (3) as

Jz = Iz N k[y(m),u(oo)].

These relations play an important role in control theory [1, 22]
since they only involve functions for which experimental data is
typically available (i.e., inputs and outputs). For the single-output
case, which we consider in this paper, it is known [2, Remark 2.20]
that J5 is “almost principal”, that is, if P is an irreducible nonzero
polynomial in Js, of minimal possible order w.r.t y (which is unique
up to a multiplicative constant), then

Js =(P)(*): H™, (5)



3357) and h = ordy P. Such P typically is referred to as
the input-output equation of ¥ and, thanks to (5), fully characterizes

the input-output behavior of .

where H =

Remark 1 (Multiple-input case). Throughout the paper, we will
focus on the case of single input. We expect that the same methods
will work for the multiple-input case, and we plan to elaborate on
this in an extended version of the paper.

2.3 Inverse problem: Realization

Now we are ready to define the realization problem which is the
main problem of this paper.

Input: an irreducible differential polynomial P € k[y(‘x’), u(®)],
where u = (u1,...,um);

Output 1: a system of the form (3) such that P is the input-output
equation for this system or NO if there is no such system;

Output 2: an input-affine system of the form (3) such that P is the
input-output equation for this system or NO if there is no
such system;

We will refer to the cases of Output 1 and Output 2 as the rational
realization problem and input-affine rational realization problem,
respectively.

If there is a realization of P, it is typically not unique (e.g., in can
be composed with any invertible change of coordinates). Therefore,
after constructing a realization, one may want to perform change of
variables in the resulting system to obtain a more “interpretable” or
“insightful” realization (see [15, 17] for related results). This second
step if out of scope of the present paper.

3 THEORY

In the rest of the paper, we will use the notation U := k(u(*)).

3.1 General realizability criterion

Notation 4 (Lie derivatives).
e Let R € K(u{™) be a rational function in u(* over a field
K (we will use K = k(x)). We define D, as

—  (i+1) OR
Dy(R) = Y ul*) ==
=0

e Consider a system X as in (3). For any rational function
R € k(x, u(*) ), we define the Lie derivative w.r.t. £ by

L5(R) = Zﬁj—ﬁ +Dy(R).
i=1 g

o The Lie derivative of R of order i w.rt. X is obtained by itera-
tively applying the formula above and is denoted by .£L5.(R).

Remark 2 (Lie derivative as a derivation). Consider the differential

ideal Iy, generated by Is in the differential ring k(x, u(®N)[(x") (), y(‘x’) ]

with derivation ’.
e The primality of I5; and [5, Lemma 3.1] imply that I, is proper
and Iy N k[x(‘x’),y(‘x’), u(®] = I.
e For every R € k(x, u(oo)), we have £L3(R) - R’ € I5.
o k(x, u(m)) is a differential field w.r.t. the derivation Ly.

Notation 5 (Corresponding hypersurface). Consider an irreducible
differential polynomial P(y,u) € k[y(®),u(*)] with ordy P = h.
Then the hypersurface defined by P = 0 in the affine space with
the coordinates y, v/, ..., y(h) over the field U will be denoted by
Hp and referred to as the corresponding hypersurface.

LEMMA 3.1 (REALIZABILITY CRITERION). LetP(y,u) € k[y(°°), u(®)]
be irreducible with ordy P = h. There exists a rational (resp. input-
affine rational) realization of P of dimension n if and only if there
exists an integer n and a dominant (i.e. such that its image is Zariski
dense) mapy: Af; --> Hp deﬁnedoverk(u("")) withy = (yo,...,¥n)
and the coordinates in A% being x = (x1,...,xn) such that yy €
k(x,u) (resp., yo € k(x) + k(x)u) and the following linear system in
Z1, . 7n

oy oy
¥1 = Du(y0) B a (4
: = . : (6)
_ 9Yn- OYh-
Yh Du(yh—l) Tll .. Tnl Zn

has a solution in k(x,u) (resp., in k(x) + k(x)u).

Proor. Assume that P is realizable by a system ¥ as in (3) with
the dimension of the state space being n. For every i > 0, we have
y - Lg (9) € Is. Since P € I5, it is annihilated by g and its first h
Lie derivatives w.r.t. 2. Thus, we have a map y: A{[’J --> Hp defined
by

(X1, xn) (9 L3(9). . L3 (9)).

Since P has the minimal order in J5, the elements g, L3 (g), . . ., Lg_l (9)
are algebraically independent over U and, thus, y is dominant. Fi-
nally, we observe that the vector Z; = f; is a solution to (6) by the
definition of Lie derivative.

In the other direction, assume that there exists such a dominant
map y and let fi, ..., fn be a solution of (6) in k(x,u) (resp., k(x) +
k(x)u). Consider a system %

x{ =f1(x1,~-~,xn,u),

Xy = fu(x1, ... xp,u),

y=yo(x1,...,xXn u).
We claim that P is the input-output equation for . Indeed, since
fi,..., fun is a solution of (6), we have Lg(yo) = y; for every 0 <
i < h. Therefore, P € J5. Since y is dominant, yy, ..., y;_1 are
algebraically independent over U, so P is the irreducible element
in J5 of the lowest order, so it is the input-output equation. O

3.2 Existence of a realization of minimal order

The goal of this section is to prove the following theorem.

THEOREM 3.2. Let P(y,u) € k[y(‘x’), u(®)] be an irreducible dif-

ferential polynomial with ordy P = h. If there exists a rational (resp.,

input-affine rational) realization of P(y, u), then there exists a rational
(resp., input-affine rational) realization of P(y, u) of dimension h.

We start with the following lemma.

LEMMA 3.3. Let X be a system of the form (3) with the right-
hand side being polynomial in u. Let p1,...,ps € k(x)[u(®)] be



algebraically independent overk(u'®)) such that, forevery1 < i <s,
Ls(p;) is algebraic over k(u'™), py, ..., ps).

Let C be the set of the coefficients of p1, . . ., ps considered as poly-
nomials in u(®). Then trdeg k(C) =s.

Proor. We will first prove the following statement: for every p €
k(x)[u(®] algebraic over F := k(u(”),pl, ..., Ps), its coefficients
as a polynomial in u(®) are also algebraic over F. We will prove
this by induction on the number of monomials in p. For a single
monomial, the statement is true. Assume that there is more than
one monomial. Let h = ord,, p. By dividing by u ™ if necessary, we

may assume that u(®) ¢ p, so 3551) has fewer monomials than p.
Let H := max ordy p;. Let hp := max(1,H—h+1) and P := L;O (p).

1<iss
The algebraic closure of F is a differential field with respect to Ls.

Thus, P, being the ho-th Lie derivative of p € F, is also algebraic
over F. We can write
7
= —pu(h+h°) +Q, where Q€ k(x)[u(<h+h°)]. 7)
ouh)
LetR € k[u(‘x’)] [Xi,...,Xs, Y] be an irreducible polynomial such
that R(p1, . .., ps, P) = 0. We plug the representation of P by (7) into
this equality and consider the result as polynomial in u(htho) Since
neither of pq, ..., ps, O, % involves u(h+h°), every coefficient of
this polynomial must vanish. The leading coefficient only involves
DPls-- s Pss % and thus yields an algebraic dependence of %
over F. Since % has fewer monomials than p, all its monomials
are algebraic over F. By subtracting corresponding monomials from
p, we obtain a polynomial with fewer monomials, so the induction
hypothesis implies that the remaining coefficients of p are also
algebraic over F. The statement is proved.
In order to prove the lemma, we apply the statement above to
p1, ..., ps and deduce that each element of C is algebraic over F.

Therefore
s> trdegk(u<m>) k(C) = trdegy k(C).

On the other hand, py,...,ps are algebraic over k(u(""),C), so
trdegk(u(oo)) k(C) > s. ]

COROLLARY 3.4. Let X be a system of the form (3). Let p1,...,ps €
k(x,u)[(w))(™)] be algebraically independent over k(™) such
that, for every1 < i < s, Lz (p;) is algebraic overk(u(®), py,.. ., ps).

Let C be the set of the coefficients of p1, . . ., ps considered as poly-
nomials inu’,u’’,. ... Then trdegk(u) k(u,C) =s.

Proor. We will modify ¥ by considering u as a state variable
xo and u’ an input v and adding an equation x; = v. Applying
Lemma 3.3 to p1,.. ., ps, xo, we show that trdeg; k(u,C) =s+1, s0
trdegy () k(u,C) =s. ]

ProoOF oF THEOREM 3.2. Assume that P is realizable by system =
as in (3) of dimension n. For every i > 0, we define p; := Lg (9) and
observe that py, is algebraic over k(u(‘x’),po, .. .sPh—1)- We denote
the map Afj --» Hp given by Lemma 3.1 by y (note that y =
(po, - - ., ppn)) and the matrix of the system (6) by Jp (since it is the
Jacobian of p;’s with respect to x).

By renumbering xi, ..., x, if necessary, we will assume that
the minor of J, formed by the first h columns is nonsingular. Let

@: A{’J — Agj be a map such that ¢*(x;) = x; forevery 1 <i<h
and ¢*(x;) € Z for i > h, and these integers are chosen in such a
way so that ¢*(Jp) is well-defined and the minor formed by the
first h columns of ¢*(Jp) is nonsingular. We set y := y o ¢. By
construction of ¢, the Jacobian j;, of o*(po), . ... ¢*(pp_1) has rank
h. Thus, by [3, Theorem 2.2]!, they are algebraically independent
over U. Then ¥ is dominant.

Rational realizations. For every 1 < i < h,let m;1,...,m; N,
be the list of monomials of p; as a polynomial in u”,u’’, ..., and let
Ci1,---,¢iN,; be the corresponding list of coefficients. We denote

C:=(cij | 0 <i<h 1< j< Nj). Then Corollary 3.4 implies
trdegy () k(u, C) = h. We will factor matrix J, as follows. Set N :=
No +...+ Nj_1. We define an h X N-matrix U such the i-th row is
of the form
( 0,...,0
—_—
No+...+N;_; zeroes

sMi—1,15 - Mi—1,N;_;> 0,...,0 ).
Nj+...+Np_1 zeroes

Then J, = U - J¢, where J¢ is the Jacobian of C. For every 0 <
i < h, the monomials of pj+1 — Dy (p;) are among m; 1, ..., m;N;-
Therefore, there exists b € (k(x,u))N such that the left-hand side
of (6) can be written as U - b. Since the elemens of each row of U are
distinct monomials in u’, 4", .. ., the right kernel of U over k(x, u)
is zero. Hence, for every v € (k(x,u))", we have

U-b=U-Jov & b=]Jg-v 8)

The system (6) has a solution over k(x,u) due to the realizability
of P. Then, by (8), the same holds for

b=Jo-(Zr ... Za)', 9)

Since trdegy(, k(C,u) = h, we have rank Jo = h by [3, Theo-
rem 2.2]. Then, due to our choise of ordering on x’s, b belongs to
the k(x, u)-span of the first & columns of J. Then the same is true
over k(x1, ..., xp,u) for ¢*(b) and Jo which is formed by the first
h columns of ¢*(Ji). Therefore, the system

U-¢*(b)=U-Jg- (%1 v =l ... Y
has a solution in k(xi,...,xp,u). Thus, by Lemma 3.1, P has a
realization of dimension h.

Input-affine rational realizations. Consider the linear sys-
tem (6) provided by Lemma 3.1. We will decompose each Z; as
Zio + Zi1u and rewrite the system (6) as a linear system with
matrix (]p u]p) in variables Z1, ..., Zn,0, Z1,1, - - -» Zn,1. Each so-
lution of the new system in k(x) gives rise to a solution of (6) in
k(x) + k(x)u and vice versa. For this new system we repeat the

)T

construction used to obtain (9) but considering monomials in u(®),
not in (u’)(®). We will obtain the following linear system over
k(x):

) T

b= J- (Zl,() ... Zn,() Zl,l .. Zn,l s (10)

Let C be again the list of coefficients of po, . . ., pp_1. Since upy, . . ., upp_1

have the same coefficients but in front of different monomials, we
can write | = ( Jo ]1), where the rows of each of Jy and J; are the
rows of the Jacobian J¢ and zero rows. Since trdeg; k(C) = h, the
dimension of the column space of each of Jy and J; is equal to h.

I The theorem is stated over C but the proof works for every field of zero characteristic



As in the rational case, this implies that the following system has a
solution over k(xy, ..., xp)

qﬂ*(b):(fo ﬁ)(Yl,o oo Yhoo Yo Yi1) '

where Jp and J; are formed by the first h columns of ¢*(Jp) and
¢*(J1), respectively. This solution yields a solution of the corre-
sponding system (6) for y in k(x1,...,xp) + k(x1,...,xp)u. Hence
Lemma 3.1 implies that P has a realization of order h.

m]

3.3 Realizability criteria for ord, P < 1

ProPOSITION 3.5. Let P(y,u) € k[y(‘"’),u(o")] be with ordy P =
h and ordy, P = 0. Then there exists a rational (resp., input-affine
rational) realization of P if and only if there exists a dominant map
y: A{é --> Hp such that yy, ..., yp_1 € k(x) and yp, € k(x,u) (resp.,
Yh € k(x) + k(x)u), where x are the coordinates in A{Ilj‘

PRrROOF. Assume that such a parametrization y exists. We will
show that it satisfies the conditions of Lemma 3.1. The dominance
of y and the dependence of P on y(h) imply that yo, ...,y are
algebraically independent over k(u(®)). Thus, by [3, Theorem 2.2],
the matrix of the system (6) is nonsingular. For the case of rational
realization, we observe that (6) is defined over k(x, u), so the unique
solution will also be in this field. For the case of rational input-affine
realization, we observe that the matrix of the system if defined
over k(x) and the entries of the left-hand side are in k(x) + k(x)u.
Therefore, Kramer’s rule implies that the unique solution will also
be in k(x) + k(x)u.

Now assume that P is realizable. By Theorem 3.2, it is realiz-
able by a system X as in (3) of dimension h. Then P vanishes at
9. Ls(9),..., .Eg (g). For every R € k(x,u(®)) depending on u, we
have ord,, LsR = ordy R+1.Let hg be the smallest integer 0 < i < h
such that L;” (g9) involves u. Then ord, .Eg (9) = h — hy. Since

u(h=ho) does not occur in g9, L5(9), .- -, _[:g‘l (g), it must occur in P.

Thus, h = hy,so (g, Lx(9), ..., Lg (g)) yields a desired parametriza-
tion. O

PROPOSITION 3.6. Let P(y,u) € k[y(w),u("")] bewithord, P = h
and ordy, P = 1. Then there exists a rational realization of P if and
only if there exists a dominant rational map y: A{fj --> Hp (with the

coordinates in A{[’J denoted by x) such that

® Y0,....Yh—2 € k(%) and yp_1 € k(x,u);
aYh _ 9Yh-1

e ypek(xuu')and 57 = =5,

ProoF. Assume that such a parametrization y exists. We will
show that it satisfies the conditions of Lemma 3.1. As in the proof of
Proposition 3.5, the matrix of (6) is nonsingular. Since y,, —Dy, (yp—1)
does not involve u’, the system (6) is defined over k(x,u), so its
unique solution belongs to k(x, u).

Now assume that P is realizable. By Theorem 3.2, it is realizable
by a system ¥ as in (3) of dimension h. Similarly to the proof of
Proposition 3.5, one can show that g, Lx(g),..., Lg—z (9) € k(x),
.Eh’l(g) € k(x,u),and .[Zh(g) € k(x,u,u’). Furthermore, the defini-

L (g) 13" 1(9) . Therefore,

Lg (g9)) yields a desired parametrlzatlon. O

tion of the Lie derivative implies that ——

(9. L=(9), -

4 ORDER ZERO IN INPUTS

In this section, we will consider the case of the input-output equa-
tion being

P(y,y',...,y ,u) =0, (11)

that is, of zero order with respect to the input. Proposition 3.5 re-
duces the realization problem for (11) to finding a rational parametriza-
tion of the corresponding surface Hp of a special form. Thus, it is
sufficient to provide an algorithm for finding such a parametriza-
tion. We show that finding such special parametrization over k(u)
can be reduced to finding rational parametrizations of several h-
dimensional hypersurfaces over k (Algorithm 1). In particular, this
yields complete algorithms for the cases h = 1, 2. However, the
resulting procedure can be used in practice for h > 2 as well, see
Examples 6.1 and 6.3.

Algorithm 1: Computing parametrization over k/k(u)

Input e irreducible polynomial P € k(u)|zo, ...
nontrivially on zj;
e a black-box algorithm for computing rational
parametrizations of hypersurfaces over k of dimension h.
Output a parametrization y = (yo, ..., yy) of P(zp,...,2,) =0
such that yo, ..., y,_; are defined over k and yy, is defined
over k(u) if such a parametrization exists, and NO otherwise.

, 2] depending

(S1) Clear the denominators and further assume that

P e k[zo,...,zp,u] is irreducible.
(S2) Write P as a polynomial in zj,:
P=Agzl + Agqzd 4.+ A,
where Ao, A1, ..., Ag € klz0,...,2p_1, u]-

(S3) Apply shift u — u + ¢ for ¢ € k to ensure that u ¥ Ay.

(S4) Let dy := deg,, A, di := deg, Ay, and introduce new variables
ao, . .., aq, and by,..., by

a0+a1u+ +ad0

1+byu+...+bg, udl
numerator of the resulting rational function by Q.

(S6) Denote the coefficients of Q w.r.t. u by Fy,..., Fn.

(S7) Compute a rational univariate representation [16] of the zero
set of F; = ... = Fn = 0 considered as a polynomial system
over K := k(zq,...,2p_1):

(S5) Substitute z; in P with . Denote the

q(w) =0,a0 = go(w),....bg, = gdp+d, (W),

where q € K[T] and go, . . ., g4, +4, € K(T).
(S8) For each irreducible (over K) factor r of g:
(a) Check if there exists a rational parametrization a of r = 0

in the space with coordinates (205 -y 2p_1,W).
(b) If it exists, compute a(*), . d R b;‘, . b;l by evaluating
90s - - > 9dy+d, at & and return
* * x . d
a0+a1u+...+ad0u 0

=l1ap, .-, 0p1s "
y 1+biu+...+b2ud1
1

(S9) Return NO.

PROPOSITION 4.1. Algorithm 1 is correct.



Proor. First we will prove that the system F; = ... = Fy =
0 over K (see (S7)) has dimension zero thus justifying that it is
possible to compute rational univariate representation at step (S7).

d
_ Gotajut..tagu 0 . 5.
Let Z = —1+b1u+...+bd1ud1 . Since P := P(zq,...,23_1,Z,u) and Q

from step (85) differ by a factor the coefficients

(1+b1u+...-ll—bd1ud1)M ’
of P as a formal power series in u belong to the ideal generated by
Fi,...,Fn. Thus, it is sufficient to prove that the coefficients of P
generate a zero-dimensional ideal over K. We will prove this by
showing that their Jacobian has full rank. We compute the partial
derivatives of P w. 1. to a;’s and b;’s:

oP 0P ul

da;  9Z 1+bju+...+bgud’ 2
~ . 1

oP 9P —u’

obj  9Z (1+biu+...+bgud)?

The coeflicients of the above derivatives as power series in u are
the entries of the Jacobian, so it is sufficient to prove linear indepen-
dence of these rational functions over K(ay, .. - gy by,..., bd1)~

dp)2
Multiplying all the functions (12) by %

the problem to verifying linear independence of the following poly-
nomials:

, we reduce

l+b1u+...+bd1ud1,...,(l+b1u+...+bd1ud1)ud°,

which is straightforward.

Now we will prove that, if the algorithm returns p, such y is a
parametrization satisfying the output specification. Since y; = «;
for 0 < i < h, we deduce that yy, ..., ys_ are defined over k. The
formula for yy, implies that it is defined over k(u). In order to show
that y is a parametrization of P = 0, we observe the fact that «
is a parametrization of g implies that Fy, ..., Fy vanish under the
substitution:

zi > aj, aj —>d;, b;i—b].

Therefore, P must vanish after substituting each z; with y;. Finally,
the dominance of the map y follows from the algebraic indepen-
dence of yo = ap, ..., yp—1 = ap_1 due to the definition of .
Finally, we will show that if a parametrization y satisfying the
output specification of the algorithm exists, then such a parametriza-
tion will be found by the algorithm. We denote the variables used
in the parametrization by x1, . . ., xj, and write y;, = %, whereC, D €
k(x1,...,xp)[u] and ged(C, D) = 1.1f we consider P(yy, . .
to be a polynomial in a variable zj, over a ring k(x1, ..., xp)[u], yn
will be a rational function root of this polynomial. Therefore, its
numerator C and denominator D divide the constant and leading
terms of the polynomial, respectively. Therefore, deg,, C < dp and
deg, D < di. Furthermore, thanks to the shift at step (§3), D must
not be divisible by u, so its constant term will be non-zero, and
can be normalized to be one. After such normalization, we see that
Y0, - - . Yn—1 together with the coefficients of C (as a;’s) and D (as
b;i’s) yield a solution of the system F; = ... = Fy = 0. Due to
the k-algebraic independence of o, . . ., y,_1, this solution, via an
isomorphism K = k(yo,...,ys_1), yields a solution of the corre-
sponding zero-dimensional system over K and thus must annihilate

> Yh-1, 2, U)

q (see step (S7)). Therefore, yy, ..., yp_; together with the linear
combination of the coefficients of C and D corresponding to the
linear combination of a;’s and b;’s used to form w annihilate g and
form a rational parametrization of one of its irreducible factors. O

Remark 3 (On the input-affine case). Thanks to Lemma 3.5, Algo-
rithm 1 can be used to find input-affine rational parametrizations as
well. The only difference that the ansatz for zj constructed in (S5)
should be taken simply ag + aju.

5 FIRST-ORDER DAE

The goal of this section is to propose algorithms for finding rational
and input-affine rational realizations of first-order (both in y and
in u) DAEs.

5.1 Reminder on rational solutions for DAEs

In this section we will recall and slightly refine the results from [25]
about strong rational general solution of first-order DAEs. We start
with giving the definition of rational curves.

Definition 5.1 (Rational parametrizations/curves). Let V be an irre-
ducible curve in A", A rational map P : Al - V defined by the set
of rational functions P (t) = (x1(¢), ..., yn(t)) is called a rational
parametrization of V if the following conditions are satisfied:

(1) (x1(t0),--., xn(t0)) € V for all (except for maybe a finite
number of values) ¢y € k.

(2) For all (except for maybe a finite number of values) points
p €V there exists ty € k such that p = (y1(t0), ..., xn(t0))-

A curve V is called rational if it has a rational parametrization.
Any parametrization P (t) induces a homomorphism P* : k(V) —
k(). If P* is an isomorphism, P (¢) is called proper.

We will use the following refinement of Algorithm 1.

LEMMA 5.2. Assume that h = 1 and the parametrization computed
in step (S8)a of Algorithm 1 is proper. Then the parametrization
returned by Algorithm 1 is proper as well.

ProoF. Assume that the produced parametrization y = (yo, y1)
is not proper. This means that k(u, yo,y1) < k(x,u). Therefore,
by [9, Theorem 9.29, p. 117] there exists an automorphism o of
k(x,u)/k such that ok (y,y,,,) = id and o(x) # x. Since yo (o (x)) =
Yo(x) € k(x), we deduce that o(x) € W Therefore, o can be
restricted to W Since o fixes y1 and u, and u is transcendental over
m, o fixes the coefficients of yj, that is, a(’;, el azo, bT, el b:ll.
Since a7 is a Q-linear combination of these, it is also fixed by o.
This contradicts the properness of . O

The algorithm deciding the existence of a realization of a first
order input-output equation by a rational dynamical system that
we present in the next subsection is based on the notion of a strong
rational general solution (SRGS). SRGS is a solution of an algebraic
ODE (AODE) of the form

P(u,y,dy/du) =0, (13)

that depends rationally on a transcendental constant (for a precise
definition, see [25, Definition 3.3]). Here P is an irreducible polyno-
mial with coefficients in an algebraically closed field k. Note that



any SRGS of (13) provides a parametrization of the curve in A2
defined by (13) over k(u) or any larger algebraically closed field
(e.g., U) with the transcendental constant arising in the solution
being the parameter.

PROPOSITION 5.3 (CF. [10, THEOREM 3.7(111)]). If the equation (13)
has an SRGS, it also has an SRGS defining a proper parametrization

of Hp.

Proor. The algorithm for computing an SRGS of (13) presented
in [25] consists of finding an optimal proper parametrization of
the corresponding rational curve and plugging a rational general
solution of the associated ODE (see [25, Definition 5.1]) into this
parametrization.

[25, Theorem 5.4] states that if an SRGS of (13) exists, an associ-
ated ODE is either a Riccati equation or a linear first-order equation.
It is known (see, for instance, [11, Sections A1.2 and A1.3]) that
such equations have general solutions that are linear rational func-
tions with respect to the constant of integration. In particular, if
such an equation has a rational general solution, it necessarily has
a rational general solution that is a linear rational function with
respect to the constant of integration. By definition, such a solution
is an SRGS. This SRGS defines a linear rational substitution of the
parameter on Hp with the new parameter being the constant of
integration. Since a linear rational transformation of the parameter
transforms a proper parametrization into a proper one [19, Lemma
4.17], the claim is proved. o

PROPOSITION 5.4. Let y1(u, c1) and y2(u, c2) be two SRGS of (13)
with y1 (u, c1) providing a proper parametrization of the correspond-
ing curve. Then there exists ¢ € k(t) such that yi1(u,¢(c2)) =
y2(u, c2).

Proor. Since both (y1, dy1/du) and (y2, dy2/du) provide parametriza-

tions of the same curve and the parametrization corresponding to y;
is proper, by [19, Lemma 4.17], there exists ¢ € k(u)(t) such that:

y1(u, @(c2)) = y2(u, c2) and (dy1(u, c1)/du) \Cl:q,(CZ)

Differentiating the former with respect to u, we obtain

ay1(u, c1) | . ay1(u, c1) | do(c2) _ aya2(u,cz)
ou c1=¢p(cz) acy ca=¢(c2) dy ou
By combining the equations above, we obtain
Iy1(u,c1) | do(c2) _ 0
oct c1=¢(c2) du -
S0 d%_(:z) = 0, which means that ¢ € k(t). o

5.2 Algorithm for rational realizations

PROPOSITION 5.5. Algorithm 2 is correct.

Proor. First we note that, thanks to the step (S2)(b)iv, if an
ODE system is returned, it satisfies the specification of the algo-
rithm. Therefore, it is sufficient to prove that if the polynomial P is
realizable, the algorithm will return its realization.

Assume that P is realizable. By Theorem 3.2, it is realizable by a
one-dimensional system, we will denote it by :

x" = foleu), y=golx,u).

Algorithm 2: First order realizations

Input Irreducible polynomial P € k[y,y’,u, u’] depending
nontrivially on y” and v’;

Output A system of the form (3) such that P = 0 is the
input-output equation for the system or NO if there is no
such system.

(S1) Let Q := P(y,au’ + b,u,u’) € k[y,a,b,u,u’]. Let

co € k[a,y,u] and ¢1 € k[b,y, u] be the leading and the
constant coefficients of Q as a polynomial in u’.
(S2) For each irreducible factor hg(a, y, u) of co, do:

d
(a) Compute yo(u, c), an SRGS of hy (d_Z v, u) = 0 defining a

proper parametrization of the corresponding curve. If there
is no solution, go to the next factor.
(b) For each irreducible factor hy (b, y, u) of c1, do
(i) Consider the numerator N (b, c) € k(u)[b, c] of
h1(b,yo(u,c),u).
(if) Use Algorithm 1 to find a proper parametrization (see
Lemma 5.2) (b(x),c(x)) of N(b,c) = 0 such that
b(x) € k(u,x) and ¢ € k(x).
(iii) Set

g(x,u) ==yo(u,c(x)) and f(x,u) :=b(x)/

(iv) If the input-output equation of ¥ being

ag(x,u)
ox

x' = f(xu), y=g(xu)
is equal to P, return .
(S3) Return NO.

= ayz(u, c2)/ou.

We also compute L3, (go) = %(x, u)u’ + bo(x,u). Since

P(go, Lz, (g0), u,u’) =0,

0

we have co(%iu (2, u), go, u) = 0, so go(x,u) is an SRGS of one of the

irreducible factors of ¢y, we will denote this factor by hg. Consider
the SGRS yo(u, ¢) computed by the algorithm for hy at step (S2)a.

By Proposition 5.4, there exists a rational function ¢(x) € k(x)

such that go (x, u) = yo (v, p(x)).
The vanishing of P(go, L5, (go), u, u”) implies that c1 (b, go, u) =
0, so (bo, go) annihilates one of the irreducible factors of ¢y, say hy.

Let (b(x, u), c(x)) be the parametrization computed at the step (S2)(b)ii.
Then we have

ha(bo (x, u), yo (u, ¢ (x)), u) = h1(b(x, u), yo(u, c(x)),u) = 0.

The properness of the parametrization (b(x, u), ¢(x)) (see Lemma 5.2)

implies that there exists s(x) € k(x) such that by (x,u) = b(s(x), u)
and ¢(x) = c¢(s(x)). The system ¥ produced by the algorithm will

have the following f and g:

b(x,u)

g(x’ u) = yo(uﬂc(x))7 f(x’ u) = Ws



where z := %. The Lie derivative of g will be

b(x,u) B
¢/(x)z(c(x),u)
_ 9yo(u, c(x))

- ou
Therefore, the pair go, L5, (go) can be obtained from g, L5 (g) by
a substitution x +— s(x). Therefore P vanishes at g, L3 (g), so it is
the input-output equation for X. O

L3 = B

u +c(x)z(c(x),u)

u' +b(x,u).

5.3 Algorithm for input-affine realizations

Algorithm 3: First order input-affine realizations

Input Irreducible polynomial P € k[y,y’, u, u’] depending
nontrivially on y’ and u’;

Output An input-affine system of the form (3) such that P = 0 is
the input-output equation for this system or NO if there is
no such system.

(S1) Consider P = P(ayu + ag, byu? + bru + by + ayu’, u,v’).

(S2) Consider the leading coefficient of P wr.t. v’ and, in this

coefficient, the leading coefficient q € k[ao, a1] w.r.t. u.

(S3) For each irreducible factor go(ao, a1) of q do:

(a) Find a proper rational parametrization ag(s), a; (s) of the
curve go(ao, a1) = 0. If the curve is not rational, go to the
next irreducible factor.

(b) Plug ao(s), a1 (s) into P to obtain a polynomial
in k(s, bo, b1, b2) [u, u’], and clear the denominators to
obtain Py € k[s, by, b1, ba, u, u’].

(c) Let V be the variety defined by the coeflicients of Py with
respect to u, u’ in the space with coordinates s, by, b1, by
over the field k. Then dim V' < 1 (see proof of
Proposition 5.6).

(d) For each irreducible one-dimensional component V; of V:
(i) Find a proper rational

parametrization s(x), bo(x), by (x), ba(x) of Vy. If V is
not rational, move to the next component.
(if) Let a;(x) := a;(s(x)) fori = 0, 1.
d ai d ao
(iii) Let ¢1 (x) == ba2(x)/—— and ¢o(x) = bo(x)/—.
dx dx
x" = c1(x)u+co(x),

(iv) Return
y =a1(x)u+ao(x).

(S4) Return NO

PROPOSITION 5.6. Algorithm 3 is correct.

Proor. First we prove that the system returned in step (S3)(d)iv
(denote it by X) satisfies the specification of the algorithm. This is
ensured by Proposition 3.6 combined with

Py(s(x), bo(x), b1 (x), bz (x), u,u") = 0 =

P(y(x,u), Lz (y(x,u),u,u’) = 0.
Assume P = 0 is realizable by an input-affine system. By Theo-
rem 3.2 it is realizable by a one-dimensional input-affine system,
we will denote it by 2g:

x" =co1(x)u+coo(x), y=go(x,u)=ao1(x)u+ago(x).

Since P vanishes at go, L, (go), q vanishes at ag o (x), ag,1(x). Thus,
atleast one irreducible factor of g, say qo, vanishes at ag o (x), ag,1 (x).
Let ag(s),ai(s) be the parametrization of qo = 0 obtained on
step (83)(d)i. By [19, Lemma 4.17] there exists r(x) € k(x) such
that ag ;(x) = a;j(r(x)) fori =0, 1.

Analogously to the proof of Proposition 4.1, one can prove that
coefficients of Py define a zero-dimensional variety over k(s), i.e. a
variety of dimension at most one over k.

We write Ly, (go) = ao,1u” + bo’zuz + bo,1u + bo,0. Since P van-
ishes at go, L5, (go), all the coefficients of Py w.r.t. u,u’ vanish
at r(x), bo(x), b1(x), b2(x). This yields a parametrization of a one-
dimensional component of V, say V. Thus, once the algorithm will
reach Vj in step (S3)d, it will find a realization. O

6 EXAMPLES

Maple worksheets with all the details of the computations for the
examples presented in this paper are available at [14].

Example 6.1 (SIR model with input). Consider a version of the
standard SIR model from epidemiology which we have augmented
with an input to the susceptible compartment (e.g., regulated travel
of unvaccinated individuals):

_ pSI
S, = /t;;ifls ~ STI+R + u,
I,: S+I+R —[1[—)/[,
R’ =yl — iR,

where A, p, B,y are scalar parameters and u is the input. We will
assume that the output is y = R. We will not give the full expressions
arising in this computation due to their size, full details can be found
in the Maple worksheet.

Computation using [2] yields a differential equation in y and u
of the respective orders 3 and zero, so we will use Algorithm 1. We
have dy = 1 and d; = 0 thus the ansatz y(3) = aiu + ag will be used.
This yields equations F; = 0 and F, = 0 such that F; is linear in ag
and does not involve a1 and Fs is linear in a1 and does not involve
ay. Therefore, one can take y = x1,y’ = x3,y”" = x3 and extend this
parametrization to ag and a; by solving linear equations. This will
yield a realization of the equation in y and u (different from the
original ODE system).

For further examples we refer the reader to the appendix.
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APPENDIX: FURTHER EXAMPLES

Example 6.2. The following example of a realization problem
was considered in [21, Section 8]:

uy// —_ y2u2 + y'u'.

We will follow the same strategy as in Algorithm 2. Plugging y”’ =
au” +c and y’ = au’ + b into this equation yields

—?y? v aun” —au? —bu' +cu=0

The coefficient at u”’ must be zero, thus, a = 0, y’ = band y"’ =
pu’+q, where b, p, q do not involve u’ but can, in principle, involve u.
Plugging these expressions for y’ and y’’ into the initial equation,
we obtain
(pu - b)u’ —y*u? + qu = 0.

Thus, we have pu = b and g — y?u = 0. Note that p = db/du,
i.e. the first equation of this system is a DAE in b(u). Its SRGS
is b = xju, where x; is a transcendental constant. The second
equation of the system defines a rational curve over k(u) with
parametrization y = x2,q = xgu. Therefore

’ 7 ’ 2
Yy=x2, Y =xiu, Y =x1u +uxj.

Using the approach from Lemma 3.1, we find a realization

r_ 2 ’_ —
X1 =Xy, Xy =X1U, Y =X2.

Example 6.3 (Predator-prey model). Consider the following predator-

prey model with an input influencing the predator population:

x1 = kix1 = kax1xz,
xé = —k3x2 + k4X1X2 + k5u,
Yy=x,

where ki, ..., ks are scalar parameters. The result of differential
elimination (computed using the software [2]) is

gy —kiksy? +kikay® + kayy’ +kskoy?u—kay’y' — (v)2 = 0. (14)
We will now apply Algortihm 1 with zg = y,z1 = y’,z2 = y”.
We have dy = 1 and d; = 0 (see (S4)), so we make an ansatz
y”’ = aju + ap in (S5) and obtain:

ulkoksy® +ary)+kikay’ —kiksy® —kay®y’ +ksyy' +aoy—(y')* = 0.
We obtain the following equations for ap and ay:

kzksyz +a1y=0 = a; = —kzksy,
kikay® — kiksy? — kay®y’ + ksyy’ + aoy — (y')? = 0.

One can take w = ag and g(w) = 0 to be the last equation. The equa-
tion of this surface is linear in ay, so the surface has a parametriza-
tion:
2
Yy =X, y/ =X2, Ay = —k1k4x% + k1k3X1 + k4x1x2 - k3x2 + x—2
1

We follow the proof of Lemma 3.1 and obtain a realization of (14):

x| = X2,
2
X.
xé = —kzksxlu - k1k4x% + k1k3X1 + k4x1xz - kgxz + ﬁ,
y=x1

Note that, in the resulting ODE system, one can straighforwardly
reduce the dimension of the parameter space by setting k¢ := kaks
and thus providing a reparametrization of the original model.

Example 6.4 (Predator-prey model, continued). This example is
version of Example 6.3 with a different choice of the output variable:

x{ = k1X1 - klexz,
xé = —k3X2 + k4X1X2 + k5u,
Yy =x2.



The input-output equation for this model is
— kskyyu + kskoy?u + ksyu’ — ksy'u + k1ksy®

+kiyy’ ~ keksy’ —kay?y’ — gy + (y)? = 0.
We will follow the same strategy as Algorithm 2. Plugging y”’ =
au” +candy’ = au’ + b yields

au'"”? +r(abcuu’)=0

for some rational function r. Thus, a =0, y’ = b and y”’ = pu’ + g,
where b, p, q do not involve u’ but can, in principle, involve u. The
following equation is the result of plugging these expressions into
the initial equation:
(ksy — py)u’ = kaksy® + kskay?u — bkay? + kiksy®~
— kskyyu + bkyy — bksu + b? —yq = 0.

The coeflicient at u; has to be zero, therefore, p = ks.

Since the constant coefficient is linear in g, it defines a unirational
surface with parametrization yo = v1,b = vy and

2
voksu Uy
+_

q= —k2k32)?+k5k22)1u—2)2k22)1 +k1k32)1 —k5k1u+vzk1 - .
01 1

. do; .
Since p = —, one can conclude that vy = ksu + x1, where x; is

u
a transcendental constant, and v3 = x2. Thus,

kgu k5x1
q(xl,xg, u) = (—kzkst + k5k1 + — + —)u+
X2 X2
2 kguz x1 X
+k2k3x2+k2k5x2u—k1k3x2—k1k5u+k2x1x2———k1x1—2k5u———
X2 X2 X

and we obtain the following realization of the original equation:

x1 = q(x1, x2,u),
x5 = x1 + ksu,

Yy =Xx2.



	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Differential algebra
	2.2 Direct problem: Differential elimination
	2.3 Inverse problem: Realization

	3 Theory
	3.1 General realizability criterion
	3.2 Existence of a realization of minimal order
	3.3 Realizability criteria for `3́9`42`"̇613A``45`47`"603Aordu P 1

	4 Order zero in inputs
	5 First-order DAE
	5.1 Reminder on rational solutions for DAEs
	5.2 Algorithm for rational realizations
	5.3 Algorithm for input-affine realizations

	6 Examples
	Acknowledgments
	References

