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ABSTRACT

Real-world phenomena can often be conveniently described by
dynamical systems (that is, ODE systems in the state-space form).
However, if one observes the state of the system only partially,
the observed quantities (outputs) and the inputs of the system
can typically be related by more complicated differential-algebraic
equations (DAEs). Therefore, a natural question (referred to as the
realizability problem) is: given a differential-algebraic equation (say,
fitted from data), does it come from a partially observed dynamical
system? A special case in which the functions involved in the
dynamical system are rational is of particular interest. For a single
differential-algebraic equation in a single output variable, Forsman
has shown that it is realizable by a rational dynamical system if
and only if the corresponding hypersurface is unirational, and he
turned this into an algorithm in the first-order case.

In this paper, we study a more general case of single-input-single-
output equations. We show that if a realization by a rational dynam-
ical system exists, the system can be taken to have the dimension
equal to the order of the DAE. We provide a complete algorithm for
first-order DAEs. We also show that the same approach can be used
for higher-order DAEs using several examples from the literature.
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1 INTRODUCTION

Many processes in the sciences and engineering are described by
systems of differential equations. One of the prominent classes of
systems of differential equations are systems in the state-space form:

x′ = f (x, u), (1)

where x = (𝑥1, . . . , 𝑥𝑛) are the unknowns describing the state of
the system (state variables), u = (𝑢1, . . . , 𝑢𝑚) are the unknowns
representing external forces (input variables), and f = (𝑓1, . . . , 𝑓𝑛)

are the functions describing how the rate of change of the state
depends on the state and external inputs.

A typical experimental setup contains an assumption that the
functions u are known while the states x may be only partially
observed. In order to encode this constraint into the system, one
augments (1) with the output variables y = (𝑦1, . . . , 𝑦ℓ ) and the
equations describing the observations

y = g(x, u). (2)

Thus, one typically has time course data for y and u only, not for x.
Therefore, one may be able to fit the equations satisfied by y and u,
but not the original (1) and (2).

The question of reconstructing a system in the state-space form
(that is, (1) with (2)) which explains a given set of relations be-
tween y and u is called the realizability problem and it is one of
important problems in control theory. This problem is well stud-
ied for linear systems, see e.g. [7, 20]. In the nonlinear case, there
are several versions of the problem depending on where f and g

are sought. Two popular classes considered in this paper are ratio-
nal functions and input-affine rational functions as in [12, 13, 21],
but one could also consider algebraic, analytic, or smooth func-
tions [18, 23, 24, 26]. From the constructive standpoint, the case of
single-output-no-input systems (for which rational and input-affine
rational functions coincide) has been considered by Forsman [4].
He has shown that a DAE in 𝑦 can be realized by a rational system
in the state-space form if and only if the corresponding hypersur-
face is unrational. In particular, an algorithm for the first-order
DAE was proposed. For higher order, although the general problem
of assessing unirationality is notoriously hard, many theoretical
results are available [8] which could be used to find sufficient or
necessary conditions for realizability.

The goal of the present paper is to consider the realization prob-
lem in the presence of inputs. Our contribution is two-fold. On the
theoretical side, we prove that if a DAE of order ℎ can be realized
by a system in the state-space form, then it can be realized by a
system of dimension ℎ (that is, by a locally observable one). This
result is related to a theorem by Sussmann [23] and its analogues
for rational realizations [12] (see also [6, 24]) which state that, for



a realization problem (analytic or rational), if a realization exists, it
can always be taken to be observable at the expense of allowing a
realization to be defined not on an affine space but on an arbitrary
variety. We achieve only local observability but guarantee the ex-
istence of a realization defined on an affine space. Note that our
result is sharp in the sense that there exist realizable DAEs without
observable realizations by a system of the state-space form, see [4,
Section 4].

On the computational side, we use the developed theory to pro-
pose algorithms for solving both rational and input-affine ratio-
nal realization problems for first-order single-output-single-input
DAEs. We also show, using examples from the literature, that an
approach similar to the one we use for the first-order case, can be
successfully applied for DAEs of higher order as well (see Section 6
and Appendix).

The rest of the paper is organized as follows. Section 2 contains
a precise statement of the realizability problem. Theoretical results
are stated and proved in Section 3. Sections 4 and 5 contain our
algorithms and proofs of their correctness. Finally, Section 6 and
Appendix contain several worked out examples from the literature.
Maple worksheets with the examples are available at [14].

2 PRELIMINARIES

In this paper, we will use the language of differential algebra which
we introduce in Section 2.1. The main problem studied in this paper,
the realization problem, can be viewed as an inverse problem to the
differential elimination problem for dynamical systems, so we first
introduce the elimination problem in Section 2.2, and then define
the realization problem in Section 2.3.

Throughout Sections 2 and 3, 𝑘 is an algebraically closed field
of zero characteristic (e.g., C). In Sections 4 and 5, it will be addi-
tionally assumed to be constructive. For affine varieties 𝑋 and 𝑌 ,
a rational map 𝜑 from 𝑋 to 𝑌 will be denoted by 𝜑 : 𝑋 d 𝑌 . The
corresponding map 𝑘 (𝑌 ) → 𝑘 (𝑋 ) will be denoted by 𝜑∗.

2.1 Differential algebra

Definition 2.1 (Differential rings and fields). A differential ring

(𝑅, ′) is a commutative ring with a derivation ′: 𝑅 → 𝑅, that is, a
map such that, for all 𝑎, 𝑏 ∈ 𝑅, (𝑎+𝑏)′ = 𝑎′+𝑏 ′ and (𝑎𝑏)′ = 𝑎′𝑏+𝑎𝑏 ′.
A differential field is a differential ring that is a field. For 𝑖 > 0, 𝑎 (𝑖)

denotes the 𝑖-th order derivative of 𝑎 ∈ 𝑅. An element 𝑎 ∈ 𝑅 of a
differential ring is said to be a constant if 𝑎′ = 0.

Notation 1. Let 𝑥 be an element of a differential ring and ℎ ∈ Z⩾0.
We introduce

𝑥 (<ℎ) := (𝑥, 𝑥 ′, . . . , 𝑥 (ℎ−1) ) and 𝑥 (∞) := (𝑥, 𝑥 ′, 𝑥 ′′, . . .) .

𝑥 (⩽ℎ) is defined analogously.

Definition 2.2 (Differential polynomials). Let 𝑅 be a differential
ring. Consider a ring of polynomials in infinitely many variables

𝑅 [𝑥 (∞) ] := 𝑅 [𝑥, 𝑥 ′, 𝑥 ′′, 𝑥 (3) , . . .]

and extend the derivation from 𝑅 to this ring by (𝑥 ( 𝑗) )′ := 𝑥 ( 𝑗+1) .
The resulting differential ring is called the ring of differential poly-

nomials in 𝑥 over 𝑅. The ring of differential polynomials in several
variables is defined by iterating this construction.

Notation 2. For a differential polynomial 𝑝 ∈ 𝑘 [𝑥 (∞) ], we define
the order of 𝑝 with respect to 𝑥 (denoted by ord𝑥 𝑝) as the largest
integer 𝑖 such that 𝑥 (𝑖) appears in 𝑝 . If no such 𝑖 exists, we define
ord𝑥 𝑝 = −1.

Definition 2.3 (Differential ideals). Let 𝑅 be a differential ring. An
ideal 𝐼 ⊂ 𝑅 is called a differential ideal if 𝑎′ ∈ 𝐼 for every 𝑎 ∈ 𝐼 .

One can verify that, for every 𝑓1, . . . , 𝑓𝑠 ∈ 𝑅, the ideal

⟨𝑓
(∞)
1 , . . . , 𝑓

(∞)
𝑠 ⟩

is a differential ideal. Moreover, this is the minimal differential ideal
containing 𝑓1, . . . , 𝑓𝑠 , and we will denote it by ⟨𝑓1, . . . , 𝑓𝑠 ⟩

(∞) .

Notation 3 (Saturation). Let 𝑅 be a ring, 𝐼 ⊂ 𝑅 be an ideal, and
𝑎 ∈ 𝑅. We introduce

𝐼 : 𝑎∞ := {𝑏 ∈ 𝑅 | ∃𝑁 ∈ Z⩾0 : 𝑎
𝑁𝑏 ∈ 𝐼 },

which is also an ideal in 𝑅.

2.2 Direct problem: Differential elimination

Consider an ODE system in the so-called state-space form:

Σ =

{
x′ = f (x, u),

𝑦 = 𝑔(x, u),
(3)

where

• x = (𝑥1, . . . , 𝑥𝑛) and u = (𝑢1, . . . , 𝑢𝑚) are the vectors of state
and input variables, respectively; the number 𝑛 is called the
dimension of the system;

• 𝑦 is a single output variable (there may be several outputs
but in this paper we restrict ourselves to the single-output
case);

• f = (𝑓1, . . . , 𝑓𝑛), where 𝑓1, . . . , 𝑓𝑛 ∈ 𝑘 (x, u), 𝑔 ∈ 𝑘 (x, u) and 𝑘
is a constant coefficient field.

The system (3) is called input-affine if 𝑓1, . . . , 𝑓𝑛, 𝑔 are affine (i.e.
polynomials of degree 1) with respect to u.

Bringing 𝑓1, . . . , 𝑓𝑛, 𝑔 to the common denominator, write f = F/𝑄

and 𝑔 = 𝐺/𝑄 , where F = (𝐹1, . . . , 𝐹𝑛) and 𝐹1, . . . , 𝐹𝑛,𝐺,𝑄 ∈ 𝑘 [x, u].
Consider the differential ideal

𝐼Σ := ⟨𝑄𝑥 ′1−𝐹1, . . . , 𝑄𝑥
′
𝑛−𝐹𝑛, 𝑄𝑦−𝐺⟩

(∞) : 𝑄∞ ⊂ 𝑘 [x(∞) , 𝑦 (∞) , u(∞) ]

(4)
which is prime by [5, Lemma 3.2]. Note that every element of 𝐼Σ
vanishes on every analytic or formal power series solution (w.r.t x, u
and 𝑦) of (3).

Definition 2.4 (Input-output equation). We define the ideal of

input-output relations of (3) as

𝐽Σ := 𝐼Σ ∩ 𝑘 [𝑦 (∞) , u(∞) ] .

These relations play an important role in control theory [1, 22]
since they only involve functions for which experimental data is
typically available (i.e., inputs and outputs). For the single-output
case, which we consider in this paper, it is known [2, Remark 2.20]
that 𝐽Σ is łalmost principalž, that is, if 𝑃 is an irreducible nonzero
polynomial in 𝐽Σ of minimal possible order w.r.t 𝑦 (which is unique
up to a multiplicative constant), then

𝐽Σ = ⟨𝑃⟩ (∞) : 𝐻∞, (5)



where 𝐻 =
𝜕𝑃

𝜕𝑦 (ℎ) and ℎ = ord𝑦 𝑃 . Such 𝑃 typically is referred to as

the input-output equation of Σ and, thanks to (5), fully characterizes
the input-output behavior of Σ.

Remark 1 (Multiple-input case). Throughout the paper, we will
focus on the case of single input. We expect that the same methods
will work for the multiple-input case, and we plan to elaborate on
this in an extended version of the paper.

2.3 Inverse problem: Realization

Now we are ready to define the realization problem which is the
main problem of this paper.

Input: an irreducible differential polynomial 𝑃 ∈ 𝑘 [𝑦 (∞) , u(∞) ],
where u = (𝑢1, . . . , 𝑢𝑚);

Output 1: a system of the form (3) such that 𝑃 is the input-output
equation for this system or NO if there is no such system;

Output 2: an input-affine system of the form (3) such that 𝑃 is the
input-output equation for this system or NO if there is no
such system;

We will refer to the cases of Output 1 and Output 2 as the rational
realization problem and input-affine rational realization problem,
respectively.

If there is a realization of 𝑃 , it is typically not unique (e.g., in can
be composed with any invertible change of coordinates). Therefore,
after constructing a realization, one may want to perform change of
variables in the resulting system to obtain a more łinterpretablež or
łinsightfulž realization (see [15, 17] for related results). This second
step if out of scope of the present paper.

3 THEORY

In the rest of the paper, we will use the notation U := 𝑘 (𝑢 (∞) ).

3.1 General realizability criterion

Notation 4 (Lie derivatives).
• Let 𝑅 ∈ 𝐾 (𝑢 (∞) ) be a rational function in 𝑢 (∞) over a field
𝐾 (we will use 𝐾 = 𝑘 (x)). We define 𝐷𝑢 as

𝐷𝑢 (𝑅) :=

∞∑︁
𝑗=0

𝑢 ( 𝑗+1)
𝜕𝑅

𝜕𝑢 ( 𝑗)
.

• Consider a system Σ as in (3). For any rational function
𝑅 ∈ 𝑘 (x, 𝑢 (∞) ), we define the Lie derivative w.r.t. Σ by

LΣ (𝑅) :=

𝑛∑︁
𝑖=1

𝑓𝑖
𝜕𝑅

𝜕𝑥𝑖
+ 𝐷𝑢 (𝑅).

• The Lie derivative of 𝑅 of order 𝑖 w.r.t. Σ is obtained by itera-
tively applying the formula above and is denoted by L𝑖

Σ
(𝑅).

Remark 2 (Lie derivative as a derivation). Consider the differential
ideal 𝐼̃Σ generated by 𝐼Σ in the differential ring𝑘 (x, 𝑢 (∞) ) [(x′) (∞) , 𝑦 (∞) ]

with derivation ′.

• The primality of 𝐼Σ and [5, Lemma 3.1] imply that 𝐼̃Σ is proper
and 𝐼̃Σ ∩ 𝑘 [x(∞) , 𝑦 (∞) , 𝑢 (∞) ] = 𝐼Σ.

• For every 𝑅 ∈ 𝑘 (x, 𝑢 (∞) ), we have LΣ (𝑅) − 𝑅
′ ∈ 𝐼̃Σ.

• 𝑘 (𝑥,𝑢 (∞) ) is a differential field w.r.t. the derivation LΣ.

Notation 5 (Corresponding hypersurface). Consider an irreducible
differential polynomial 𝑃 (𝑦,𝑢) ∈ 𝑘 [𝑦 (∞) , 𝑢 (∞) ] with ord𝑦 𝑃 = ℎ.
Then the hypersurface defined by 𝑃 = 0 in the affine space with
the coordinates 𝑦,𝑦′, . . . , 𝑦 (ℎ) over the field U will be denoted by
H𝑃 and referred to as the corresponding hypersurface.

Lemma 3.1 (Realizability criterion). Let 𝑃 (𝑦,𝑢) ∈ 𝑘 [𝑦 (∞) , 𝑢 (∞) ]

be irreducible with ord𝑦 𝑃 = ℎ. There exists a rational (resp. input-

affine rational) realization of 𝑃 of dimension 𝑛 if and only if there

exists an integer 𝑛 and a dominant (i.e. such that its image is Zariski

dense) map𝜸 : A𝑛
U
d H𝑃 defined over𝑘 (𝑢 (∞) ) with𝜸 = (𝛾0, . . . , 𝛾ℎ)

and the coordinates in A𝑛
U
being x = (𝑥1, . . . , 𝑥𝑛) such that 𝛾0 ∈

𝑘 (x, 𝑢) (resp., 𝛾0 ∈ 𝑘 (x) + 𝑘 (x)𝑢) and the following linear system in

𝑍1, . . . , 𝑍𝑛

©­­
«
𝛾1 − 𝐷𝑢 (𝛾0)

...

𝛾ℎ − 𝐷𝑢 (𝛾ℎ−1)

ª®®
¬
=

©­­­
«

𝜕𝛾0
𝜕𝑥1

. . .
𝜕𝛾0
𝜕𝑥𝑛

...
. . .

...
𝜕𝛾ℎ−1
𝜕𝑥1

. . .
𝜕𝛾ℎ−1
𝜕𝑥𝑛

ª®®®
¬
©­­
«
𝑍1
...

𝑍𝑛

ª®®
¬

(6)

has a solution in 𝑘 (x, 𝑢) (resp., in 𝑘 (x) + 𝑘 (x)𝑢).

Proof. Assume that 𝑃 is realizable by a system Σ as in (3) with
the dimension of the state space being 𝑛. For every 𝑖 ⩾ 0, we have
𝑦 (𝑖) − L𝑖

Σ
(𝑔) ∈ 𝐼̃Σ. Since 𝑃 ∈ 𝐼Σ, it is annihilated by 𝑔 and its first ℎ

Lie derivatives w.r.t. Σ. Thus, we have a map 𝜸 : A𝑛
U
d H𝑃 defined

by

(𝑥1, . . . , 𝑥𝑛) ↦→ (𝑔,LΣ (𝑔), . . . ,L
ℎ
Σ
(𝑔)).

Since 𝑃 has theminimal order in 𝐽Σ, the elements𝑔,LΣ (𝑔), . . . ,L
ℎ−1
Σ

(𝑔)

are algebraically independent over U and, thus, 𝜸 is dominant. Fi-
nally, we observe that the vector 𝑍𝑖 = 𝑓𝑖 is a solution to (6) by the
definition of Lie derivative.

In the other direction, assume that there exists such a dominant
map 𝜸 and let 𝑓1, . . . , 𝑓𝑛 be a solution of (6) in 𝑘 (x, 𝑢) (resp., 𝑘 (x) +
𝑘 (x)𝑢). Consider a system Σ




𝑥 ′1 = 𝑓1 (𝑥1, . . . , 𝑥𝑛, 𝑢),

. . .

𝑥 ′𝑛 = 𝑓𝑛 (𝑥1, . . . , 𝑥𝑛, 𝑢),

𝑦 = 𝛾0 (𝑥1, . . . , 𝑥𝑛, 𝑢) .

.

We claim that 𝑃 is the input-output equation for Σ. Indeed, since
𝑓1, . . . , 𝑓𝑛 is a solution of (6), we have L𝑖

Σ
(𝛾0) = 𝛾𝑖 for every 0 ⩽

𝑖 ⩽ ℎ. Therefore, 𝑃 ∈ 𝐽Σ. Since 𝜸 is dominant, 𝛾0, . . . , 𝛾ℎ−1 are
algebraically independent over U, so 𝑃 is the irreducible element
in 𝐽Σ of the lowest order, so it is the input-output equation. □

3.2 Existence of a realization of minimal order

The goal of this section is to prove the following theorem.

Theorem 3.2. Let 𝑃 (𝑦,𝑢) ∈ 𝑘 [𝑦 (∞) , 𝑢 (∞) ] be an irreducible dif-

ferential polynomial with ord𝑦 𝑃 = ℎ. If there exists a rational (resp.,

input-affine rational) realization of 𝑃 (𝑦,𝑢), then there exists a rational

(resp., input-affine rational) realization of 𝑃 (𝑦,𝑢) of dimension ℎ.

We start with the following lemma.

Lemma 3.3. Let Σ be a system of the form (3) with the right-

hand side being polynomial in 𝑢. Let 𝑝1, . . . , 𝑝𝑠 ∈ 𝑘 (x) [𝑢 (∞) ] be



algebraically independent over 𝑘 (𝑢 (∞) ) such that, for every 1 ⩽ 𝑖 ⩽ 𝑠 ,

LΣ (𝑝𝑖 ) is algebraic over 𝑘 (𝑢
(∞) , 𝑝1, . . . , 𝑝𝑠 ).

Let C be the set of the coefficients of 𝑝1, . . . , 𝑝𝑠 considered as poly-

nomials in 𝑢 (∞) . Then trdeg𝑘 𝑘 (C) = 𝑠 .

Proof. Wewill first prove the following statement: for every 𝑝 ∈

𝑘 (x) [𝑢 (∞) ] algebraic over 𝐹 := 𝑘 (𝑢 (∞) , 𝑝1, . . . , 𝑝𝑠 ), its coefficients
as a polynomial in 𝑢 (∞) are also algebraic over 𝐹 . We will prove
this by induction on the number of monomials in 𝑝 . For a single
monomial, the statement is true. Assume that there is more than
one monomial. Let ℎ = ord𝑢 𝑝 . By dividing by 𝑢 (ℎ) if necessary, we

may assume that 𝑢 (ℎ) ∤ 𝑝 , so
𝜕𝑝

𝜕𝑢 (ℎ) has fewer monomials than 𝑝 .

Let𝐻 := max
1⩽𝑖⩽𝑠

ord𝑢 𝑝𝑖 . Let ℎ0 := max(1, 𝐻 −ℎ+1) and 𝑃 := L
ℎ0

Σ
(𝑝).

The algebraic closure of 𝐹 is a differential field with respect to LΣ.
Thus, 𝑃 , being the ℎ0-th Lie derivative of 𝑝 ∈ 𝐹 , is also algebraic
over 𝐹 . We can write

𝑃 =
𝜕𝑝

𝜕𝑢 (ℎ)
𝑢 (ℎ+ℎ0) +𝑄, where 𝑄 ∈ 𝑘 (x) [𝑢 (<ℎ+ℎ0) ] . (7)

Let 𝑅 ∈ 𝑘 [𝑢 (∞) ] [𝑋1, . . . , 𝑋𝑠 , 𝑌 ] be an irreducible polynomial such
that 𝑅(𝑝1, . . . , 𝑝𝑠 , 𝑃) = 0. We plug the representation of 𝑃 by (7) into
this equality and consider the result as polynomial in𝑢 (ℎ+ℎ0) . Since

neither of 𝑝1, . . . , 𝑝𝑠 , 𝑄,
𝜕𝑝

𝜕𝑢 (ℎ) involves 𝑢 (ℎ+ℎ0) , every coefficient of
this polynomial must vanish. The leading coefficient only involves

𝑝1, . . . , 𝑝𝑠 ,
𝜕𝑝

𝜕𝑢 (ℎ) and thus yields an algebraic dependence of
𝜕𝑝

𝜕𝑢 (ℎ)

over 𝐹 . Since
𝜕𝑝

𝜕𝑢 (ℎ) has fewer monomials than 𝑝 , all its monomials
are algebraic over 𝐹 . By subtracting corresponding monomials from
𝑝 , we obtain a polynomial with fewer monomials, so the induction
hypothesis implies that the remaining coefficients of 𝑝 are also
algebraic over 𝐹 . The statement is proved.

In order to prove the lemma, we apply the statement above to
𝑝1, . . . , 𝑝𝑠 and deduce that each element of C is algebraic over 𝐹 .
Therefore

𝑠 ⩾ trdeg𝑘 (𝑢 (∞) ) 𝑘 (C) = trdeg𝑘 𝑘 (C) .

On the other hand, 𝑝1, . . . , 𝑝𝑠 are algebraic over 𝑘 (𝑢 (∞) , C), so
trdeg𝑘 (𝑢 (∞) ) 𝑘 (C) ⩾ 𝑠 . □

Corollary 3.4. Let Σ be a system of the form (3). Let 𝑝1, . . . , 𝑝𝑠 ∈

𝑘 (x, 𝑢) [(𝑢 ′) (∞) ] be algebraically independent over 𝑘 (𝑢 (∞) ) such

that, for every 1 ⩽ 𝑖 ⩽ 𝑠 ,LΣ (𝑝𝑖 ) is algebraic over 𝑘 (𝑢
(∞) , 𝑝1, . . . , 𝑝𝑠 ).

Let C be the set of the coefficients of 𝑝1, . . . , 𝑝𝑠 considered as poly-

nomials in 𝑢 ′, 𝑢 ′′, . . .. Then trdeg𝑘 (𝑢) 𝑘 (𝑢, C) = 𝑠 .

Proof. We will modify Σ by considering 𝑢 as a state variable
𝑥0 and 𝑢 ′ an input 𝑣 and adding an equation 𝑥 ′0 = 𝑣 . Applying
Lemma 3.3 to 𝑝1, . . . , 𝑝𝑠 , 𝑥0, we show that trdeg𝑘 𝑘 (𝑢, C) = 𝑠 + 1, so
trdeg𝑘 (𝑢) 𝑘 (𝑢, C) = 𝑠 . □

Proof of Theorem 3.2. Assume that 𝑃 is realizable by system Σ

as in (3) of dimension 𝑛. For every 𝑖 ⩾ 0, we define 𝑝𝑖 := L𝑖
Σ
(𝑔) and

observe that 𝑝ℎ is algebraic over 𝑘 (𝑢 (∞) , 𝑝0, . . . , 𝑝ℎ−1). We denote
the map A𝑛

U
d H𝑃 given by Lemma 3.1 by 𝜸 (note that 𝜸 =

(𝑝0, . . . , 𝑝ℎ)) and the matrix of the system (6) by 𝐽𝑝 (since it is the
Jacobian of 𝑝𝑖 ’s with respect to x).

By renumbering 𝑥1, . . . , 𝑥𝑛 if necessary, we will assume that
the minor of 𝐽𝑝 formed by the first ℎ columns is nonsingular. Let

𝜑 : Aℎ
U
→ A𝑛

U
be a map such that 𝜑∗ (𝑥𝑖 ) = 𝑥𝑖 for every 1 ⩽ 𝑖 ⩽ ℎ

and 𝜑∗ (𝑥𝑖 ) ∈ Z for 𝑖 > ℎ, and these integers are chosen in such a
way so that 𝜑∗ (𝐽𝑝 ) is well-defined and the minor formed by the
first ℎ columns of 𝜑∗ (𝐽𝑝 ) is nonsingular. We set 𝜸 := 𝜸 ◦ 𝜑 . By

construction of 𝜑 , the Jacobian 𝐽̃𝑝 of 𝜑∗ (𝑝0), . . . , 𝜑∗ (𝑝ℎ−1) has rank
ℎ. Thus, by [3, Theorem 2.2]1, they are algebraically independent
over U. Then 𝜸 is dominant.

Rational realizations. For every 1 ⩽ 𝑖 < ℎ, let𝑚𝑖,1, . . . ,𝑚𝑖,𝑁𝑖

be the list of monomials of 𝑝𝑖 as a polynomial in 𝑢 ′, 𝑢 ′′, . . ., and let
𝑐𝑖,1, . . . , 𝑐𝑖,𝑁𝑖

be the corresponding list of coefficients. We denote
C := (𝑐𝑖, 𝑗 | 0 ⩽ 𝑖 < ℎ, 1 ⩽ 𝑗 ⩽ 𝑁𝑖 ). Then Corollary 3.4 implies
trdeg𝑘 (𝑢) 𝑘 (𝑢, C) = ℎ. We will factor matrix 𝐽𝑝 as follows. Set 𝑁 :=

𝑁0 + . . . + 𝑁ℎ−1. We define an ℎ × 𝑁 -matrix𝑈 such the 𝑖-th row is
of the form

( 0, . . . , 0︸  ︷︷  ︸
𝑁0+...+𝑁𝑖−2 zeroes

,𝑚𝑖−1,1, . . . ,𝑚𝑖−1,𝑁𝑖−1
, 0, . . . , 0︸  ︷︷  ︸
𝑁𝑖+...+𝑁ℎ−1 zeroes

).

Then 𝐽𝑝 = 𝑈 · 𝐽C , where 𝐽C is the Jacobian of C. For every 0 ⩽

𝑖 < ℎ, the monomials of 𝑝𝑖+1 − 𝐷𝑢 (𝑝𝑖 ) are among𝑚𝑖,1, . . . ,𝑚𝑖,𝑁𝑖
.

Therefore, there exists 𝑏 ∈ (𝑘 (x, 𝑢))𝑁 such that the left-hand side
of (6) can be written as𝑈 ·𝑏. Since the elemens of each row of𝑈 are
distinct monomials in 𝑢 ′, 𝑢 ′′, . . ., the right kernel of𝑈 over 𝑘 (x, 𝑢)
is zero. Hence, for every 𝑣 ∈ (𝑘 (x, 𝑢))𝑛 , we have

𝑈 · 𝑏 = 𝑈 · 𝐽C · 𝑣 ⇐⇒ 𝑏 = 𝐽C · 𝑣 (8)

The system (6) has a solution over 𝑘 (x, 𝑢) due to the realizability
of 𝑃 . Then, by (8), the same holds for

𝑏 = 𝐽C ·
(
𝑍1 . . . 𝑍𝑛

)𝑇
, (9)

Since trdeg𝑘 (𝑢) 𝑘 (C, 𝑢) = ℎ, we have rank 𝐽C = ℎ by [3, Theo-
rem 2.2]. Then, due to our choise of ordering on 𝑥 ’s, 𝑏 belongs to
the 𝑘 (x, 𝑢)-span of the first ℎ columns of 𝐽C . Then the same is true
over 𝑘 (𝑥1, . . . , 𝑥ℎ, 𝑢) for 𝜑

∗ (𝑏) and 𝐽̃C which is formed by the first
ℎ columns of 𝜑∗ (𝐽C). Therefore, the system

𝑈 · 𝜑∗ (𝑏) = 𝑈 · 𝐽̃C ·
(
𝑌1 . . . 𝑌ℎ

)𝑇
= 𝐽̃𝑝 ·

(
𝑌1 . . . 𝑌ℎ

)𝑇
has a solution in 𝑘 (𝑥1, . . . , 𝑥ℎ, 𝑢). Thus, by Lemma 3.1, 𝑃 has a
realization of dimension ℎ.

Input-affine rational realizations. Consider the linear sys-
tem (6) provided by Lemma 3.1. We will decompose each 𝑍𝑖 as
𝑍𝑖,0 + 𝑍𝑖,1𝑢 and rewrite the system (6) as a linear system with
matrix

(
𝐽𝑝 𝑢𝐽𝑝

)
in variables 𝑍1,0, . . . , 𝑍𝑛,0, 𝑍1,1, . . . , 𝑍𝑛,1. Each so-

lution of the new system in 𝑘 (x) gives rise to a solution of (6) in
𝑘 (x) + 𝑘 (x)𝑢 and vice versa. For this new system we repeat the
construction used to obtain (9) but considering monomials in 𝑢 (∞) ,
not in (𝑢 ′) (∞) . We will obtain the following linear system over
𝑘 (x):

𝑏 = 𝐽 ·
(
𝑍1,0 . . . 𝑍𝑛,0 𝑍1,1 . . . 𝑍𝑛,1

)𝑇
, (10)

LetC be again the list of coefficients of 𝑝0, . . . , 𝑝ℎ−1. Since𝑢𝑝0, . . . , 𝑢𝑝ℎ−1
have the same coefficients but in front of different monomials, we
can write 𝐽 =

(
𝐽0 𝐽1

)
, where the rows of each of 𝐽0 and 𝐽1 are the

rows of the Jacobian 𝐽C and zero rows. Since trdeg𝑘 𝑘 (C) = ℎ, the
dimension of the column space of each of 𝐽0 and 𝐽1 is equal to ℎ.

1The theorem is stated over C but the proof works for every field of zero characteristic



As in the rational case, this implies that the following system has a
solution over 𝑘 (𝑥1, . . . , 𝑥ℎ)

𝜑∗ (𝑏) =
(
𝐽̃0 𝐽̃1

) (
𝑌1,0 . . . 𝑌ℎ,0 𝑌1,1 . . . 𝑌ℎ,1

)𝑇
,

where 𝐽̃0 and 𝐽̃1 are formed by the first ℎ columns of 𝜑∗ (𝐽0) and
𝜑∗ (𝐽1), respectively. This solution yields a solution of the corre-
sponding system (6) for 𝜸 in 𝑘 (𝑥1, . . . , 𝑥ℎ) + 𝑘 (𝑥1, . . . , 𝑥ℎ)𝑢. Hence
Lemma 3.1 implies that 𝑃 has a realization of order ℎ.

□

3.3 Realizability criteria for ord𝑢 𝑃 ⩽ 1

Proposition 3.5. Let 𝑃 (𝑦,𝑢) ∈ 𝑘 [𝑦 (∞) , 𝑢 (∞) ] be with ord𝑦 𝑃 =

ℎ and ord𝑢 𝑃 = 0. Then there exists a rational (resp., input-affine

rational) realization of 𝑃 if and only if there exists a dominant map

𝜸 : Aℎ
U
d H𝑃 such that 𝛾0, . . . , 𝛾ℎ−1 ∈ 𝑘 (x) and 𝛾ℎ ∈ 𝑘 (x, 𝑢) (resp.,

𝛾ℎ ∈ 𝑘 (x) + 𝑘 (x)𝑢), where x are the coordinates in Aℎ
U
.

Proof. Assume that such a parametrization 𝜸 exists. We will
show that it satisfies the conditions of Lemma 3.1. The dominance
of 𝜸 and the dependence of 𝑃 on 𝑦 (ℎ) imply that 𝛾0, . . . , 𝛾ℎ−1 are
algebraically independent over 𝑘 (𝑢 (∞) ). Thus, by [3, Theorem 2.2],
the matrix of the system (6) is nonsingular. For the case of rational
realization, we observe that (6) is defined over 𝑘 (x, 𝑢), so the unique
solution will also be in this field. For the case of rational input-affine
realization, we observe that the matrix of the system if defined
over 𝑘 (x) and the entries of the left-hand side are in 𝑘 (x) + 𝑘 (x)𝑢.
Therefore, Kramer’s rule implies that the unique solution will also
be in 𝑘 (x) + 𝑘 (x)𝑢.

Now assume that 𝑃 is realizable. By Theorem 3.2, it is realiz-
able by a system Σ as in (3) of dimension ℎ. Then 𝑃 vanishes at
𝑔,LΣ (𝑔), . . . ,L

ℎ
Σ
(𝑔). For every 𝑅 ∈ 𝑘 (x, 𝑢 (∞) ) depending on 𝑢, we

have ord𝑢 LΣ𝑅 = ord𝑢 𝑅+1. Letℎ0 be the smallest integer 0 ⩽ 𝑖 ⩽ ℎ

such that Lℎ0

Σ
(𝑔) involves 𝑢. Then ord𝑢 Lℎ

Σ
(𝑔) = ℎ − ℎ0. Since

𝑢 (ℎ−ℎ0) does not occur in 𝑔,LΣ (𝑔), . . . ,L
ℎ−1
Σ

(𝑔), it must occur in 𝑃 .

Thus, ℎ = ℎ0, so (𝑔,LΣ (𝑔), . . . ,L
ℎ
Σ
(𝑔)) yields a desired parametriza-

tion. □

Proposition 3.6. Let 𝑃 (𝑦,𝑢) ∈ 𝑘 [𝑦 (∞) , 𝑢 (∞) ] be with ord𝑦 𝑃 = ℎ

and ord𝑢 𝑃 = 1. Then there exists a rational realization of 𝑃 if and

only if there exists a dominant rational map 𝜸 : Aℎ
U
d H𝑃 (with the

coordinates in Aℎ
U
denoted by x) such that

• 𝛾0, . . . , 𝛾ℎ−2 ∈ 𝑘 (x) and 𝛾ℎ−1 ∈ 𝑘 (x, 𝑢);

• 𝛾ℎ ∈ 𝑘 (x, 𝑢,𝑢 ′) and
𝜕𝛾ℎ
𝜕𝑢′ =

𝜕𝛾ℎ−1
𝜕𝑢 .

Proof. Assume that such a parametrization 𝜸 exists. We will
show that it satisfies the conditions of Lemma 3.1. As in the proof of
Proposition 3.5, the matrix of (6) is nonsingular. Since𝛾ℎ−𝐷𝑢 (𝛾ℎ−1)
does not involve 𝑢 ′, the system (6) is defined over 𝑘 (x, 𝑢), so its
unique solution belongs to 𝑘 (x, 𝑢).

Now assume that 𝑃 is realizable. By Theorem 3.2, it is realizable
by a system Σ as in (3) of dimension ℎ. Similarly to the proof of
Proposition 3.5, one can show that 𝑔,LΣ (𝑔), . . . ,L

ℎ−2
Σ

(𝑔) ∈ 𝑘 (x),

Lℎ−1
Σ

(𝑔) ∈ 𝑘 (x, 𝑢), andLℎ
Σ
(𝑔) ∈ 𝑘 (x, 𝑢,𝑢 ′). Furthermore, the defini-

tion of the Lie derivative implies that
𝜕Lℎ

Σ
(𝑔)

𝜕𝑢′ =
𝜕Lℎ−1 (𝑔)

𝜕𝑢 . Therefore,

(𝑔,LΣ (𝑔), . . . ,L
ℎ
Σ
(𝑔)) yields a desired parametrization. □

4 ORDER ZERO IN INPUTS

In this section, we will consider the case of the input-output equa-
tion being

𝑃 (𝑦,𝑦′, . . . , 𝑦 (ℎ) , 𝑢) = 0, (11)

that is, of zero order with respect to the input. Proposition 3.5 re-
duces the realization problem for (11) to finding a rational parametriza-
tion of the corresponding surfaceH𝑃 of a special form. Thus, it is
sufficient to provide an algorithm for finding such a parametriza-
tion. We show that finding such special parametrization over 𝑘 (𝑢)
can be reduced to finding rational parametrizations of several ℎ-
dimensional hypersurfaces over 𝑘 (Algorithm 1). In particular, this
yields complete algorithms for the cases ℎ = 1, 2. However, the
resulting procedure can be used in practice for ℎ > 2 as well, see
Examples 6.1 and 6.3.

Algorithm 1: Computing parametrization over 𝑘/𝑘 (𝑢)

Input • irreducible polynomial 𝑃 ∈ 𝑘 (𝑢) [𝑧0, . . . , 𝑧ℎ] depending
nontrivially on 𝑧ℎ ;

• a black-box algorithm for computing rational
parametrizations of hypersurfaces over 𝑘 of dimension ℎ.

Output a parametrization 𝜸 = (𝛾0, . . . , 𝛾ℎ) of 𝑃 (𝑧0, . . . , 𝑧ℎ) = 0

such that 𝛾0, . . . , 𝛾ℎ−1 are defined over 𝑘 and 𝛾ℎ is defined
over 𝑘 (𝑢) if such a parametrization exists, and NO otherwise.

(S1) Clear the denominators and further assume that
𝑃 ∈ 𝑘 [𝑧0, . . . , 𝑧ℎ, 𝑢] is irreducible.

(S2)Write 𝑃 as a polynomial in 𝑧ℎ :

𝑃 = 𝐴𝑑𝑧
𝑑
ℎ
+𝐴𝑑−1𝑧

𝑑−1
ℎ

+ . . . +𝐴0,

where 𝐴0, 𝐴1, . . . , 𝐴𝑑 ∈ 𝑘 [𝑧0, . . . , 𝑧ℎ−1, 𝑢].
(S3) Apply shift 𝑢 → 𝑢 + 𝑐 for 𝑐 ∈ 𝑘 to ensure that 𝑢 ∤ 𝐴𝑑 .
(S4) Let 𝑑0 := deg𝑢 𝐴0, 𝑑1 := deg𝑢 𝐴𝑑 , and introduce new variables

𝑎0, . . . , 𝑎𝑑0 and 𝑏1, . . . , 𝑏𝑑1 .

(S5) Substitute 𝑧ℎ in 𝑃 with
𝑎0+𝑎1𝑢+...+𝑎𝑑0𝑢

𝑑0

1+𝑏1𝑢+...+𝑏𝑑1𝑢
𝑑1

. Denote the

numerator of the resulting rational function by 𝑄 .
(S6) Denote the coefficients of 𝑄 w.r.t. 𝑢 by 𝐹1, . . . , 𝐹𝑁 .
(S7) Compute a rational univariate representation [16] of the zero

set of 𝐹1 = . . . = 𝐹𝑁 = 0 considered as a polynomial system
over 𝐾 := 𝑘 (𝑧0, . . . , 𝑧ℎ−1):

𝑞(𝑤) = 0, 𝑎0 = 𝑔0 (𝑤), . . . , 𝑏𝑑1 = 𝑔𝑑0+𝑑1 (𝑤),

where 𝑞 ∈ 𝐾 [𝑇 ] and 𝑔0, . . . , 𝑔𝑑0+𝑑1 ∈ 𝐾 (𝑇 ).
(S8) For each irreducible (over 𝐾 ) factor 𝑟 of 𝑞:

(a) Check if there exists a rational parametrization 𝜶 of 𝑟 = 0

in the space with coordinates (𝑧0, . . . , 𝑧ℎ−1,𝑤).
(b) If it exists, compute 𝑎∗0, . . . , 𝑎

∗
𝑑0
, 𝑏∗1, . . . , 𝑏

∗
𝑑1

by evaluating

𝑔0, . . . , 𝑔𝑑0+𝑑1 at 𝜶 and return

𝜸 :=
©­
«
𝛼0, . . . , 𝛼ℎ−1,

𝑎∗0 + 𝑎
∗
1𝑢 + . . . + 𝑎∗

𝑑0
𝑢𝑑0

1 + 𝑏∗1𝑢 + . . . + 𝑏∗
𝑑1
𝑢𝑑1

ª®
¬
.

(S9) Return NO.

Proposition 4.1. Algorithm 1 is correct.



Proof. First we will prove that the system 𝐹1 = . . . = 𝐹𝑁 =

0 over 𝐾 (see (S7)) has dimension zero thus justifying that it is
possible to compute rational univariate representation at step (S7).

Let 𝑍 :=
𝑎0+𝑎1𝑢+...+𝑎𝑑0𝑢

𝑑0

1+𝑏1𝑢+...+𝑏𝑑1𝑢
𝑑1

. Since 𝑃 := 𝑃 (𝑧0, . . . , 𝑧ℎ−1, 𝑍,𝑢) and 𝑄

from step (S5) differ by a factor 1
(1+𝑏1𝑢+...+𝑏𝑑1𝑢

𝑑1 )𝑀
, the coefficients

of 𝑃 as a formal power series in 𝑢 belong to the ideal generated by
𝐹1, . . . , 𝐹𝑁 . Thus, it is sufficient to prove that the coefficients of 𝑃
generate a zero-dimensional ideal over 𝐾 . We will prove this by
showing that their Jacobian has full rank. We compute the partial
derivatives of 𝑃 w. r. to 𝑎𝑖 ’s and 𝑏 𝑗 ’s:

𝜕𝑃

𝜕𝑎𝑖
=
𝜕𝑃

𝜕𝑍
·

𝑢𝑖

1 + 𝑏1𝑢 + . . . + 𝑏𝑑1𝑢
𝑑1
,

𝜕𝑃

𝜕𝑏 𝑗
=
𝜕𝑃

𝜕𝑍
·

−𝑢 𝑗

(1 + 𝑏1𝑢 + . . . + 𝑏𝑑1𝑢
𝑑1 )2

.

(12)

The coefficients of the above derivatives as power series in 𝑢 are
the entries of the Jacobian, so it is sufficient to prove linear indepen-
dence of these rational functions over 𝐾 (𝑎0, . . . , 𝑎𝑑0 , 𝑏1, . . . , 𝑏𝑑1 ).

Multiplying all the functions (12) by
(1+𝑏1𝑢+...+𝑏𝑑1𝑢

𝑑1 )2

𝜕𝑃/𝜕𝑍
, we reduce

the problem to verifying linear independence of the following poly-
nomials:

1 + 𝑏1𝑢 + . . . + 𝑏𝑑1𝑢
𝑑1 , . . . , (1 + 𝑏1𝑢 + . . . + 𝑏𝑑1𝑢

𝑑1 )𝑢𝑑0 ,

𝑢, 𝑢2, . . . , 𝑢𝑑1 ,

which is straightforward.
Now we will prove that, if the algorithm returns 𝜸 , such 𝜸 is a

parametrization satisfying the output specification. Since 𝛾𝑖 = 𝛼𝑖
for 0 ⩽ 𝑖 < ℎ, we deduce that 𝛾0, . . . , 𝛾ℎ−1 are defined over 𝑘 . The
formula for 𝛾ℎ implies that it is defined over 𝑘 (𝑢). In order to show
that 𝜸 is a parametrization of 𝑃 = 0, we observe the fact that 𝜶
is a parametrization of 𝑞 implies that 𝐹1, . . . , 𝐹𝑁 vanish under the
substitution:

𝑧𝑖 → 𝛼𝑖 , 𝑎𝑖 → 𝑎∗𝑖 , 𝑏𝑖 → 𝑏∗𝑖 .

Therefore, 𝑃 must vanish after substituting each 𝑧𝑖 with 𝛾𝑖 . Finally,
the dominance of the map 𝜸 follows from the algebraic indepen-
dence of 𝛾0 = 𝛼0, . . . , 𝛾ℎ−1 = 𝛼ℎ−1 due to the definition of 𝜶 .

Finally, we will show that if a parametrization 𝜸 satisfying the
output specification of the algorithm exists, then such a parametriza-
tion will be found by the algorithm. We denote the variables used
in the parametrization by 𝑥1, . . . , 𝑥ℎ andwrite𝛾ℎ =

𝐶
𝐷 , where𝐶, 𝐷 ∈

𝑘 (𝑥1, . . . , 𝑥ℎ) [𝑢] and gcd(𝐶, 𝐷) = 1. If we consider 𝑃 (𝛾0, . . . , 𝛾ℎ−1, 𝑧ℎ, 𝑢)
to be a polynomial in a variable 𝑧ℎ over a ring 𝑘 (𝑥1, . . . , 𝑥ℎ) [𝑢], 𝛾ℎ
will be a rational function root of this polynomial. Therefore, its
numerator 𝐶 and denominator 𝐷 divide the constant and leading
terms of the polynomial, respectively. Therefore, deg𝑢 𝐶 ⩽ 𝑑0 and
deg𝑢 𝐷 ⩽ 𝑑1. Furthermore, thanks to the shift at step (S3), 𝐷 must
not be divisible by 𝑢, so its constant term will be non-zero, and
can be normalized to be one. After such normalization, we see that
𝛾0, . . . , 𝛾ℎ−1 together with the coefficients of 𝐶 (as 𝑎𝑖 ’s) and 𝐷 (as
𝑏𝑖 ’s) yield a solution of the system 𝐹1 = . . . = 𝐹𝑁 = 0. Due to
the 𝑘-algebraic independence of 𝛾0, . . . , 𝛾ℎ−1, this solution, via an
isomorphism 𝐾 � 𝑘 (𝛾0, . . . , 𝛾ℎ−1), yields a solution of the corre-
sponding zero-dimensional system over𝐾 and thus must annihilate

𝑞 (see step (S7)). Therefore, 𝛾0, . . . , 𝛾ℎ−1 together with the linear
combination of the coefficients of 𝐶 and 𝐷 corresponding to the
linear combination of 𝑎𝑖 ’s and 𝑏𝑖 ’s used to form𝑤 annihilate 𝑞 and
form a rational parametrization of one of its irreducible factors. □

Remark 3 (On the input-affine case). Thanks to Lemma 3.5, Algo-
rithm 1 can be used to find input-affine rational parametrizations as
well. The only difference that the ansatz for 𝑧ℎ constructed in (S5)

should be taken simply 𝑎0 + 𝑎1𝑢.

5 FIRST-ORDER DAE

The goal of this section is to propose algorithms for finding rational
and input-affine rational realizations of first-order (both in 𝑦 and
in 𝑢) DAEs.

5.1 Reminder on rational solutions for DAEs

In this section we will recall and slightly refine the results from [25]
about strong rational general solution of first-order DAEs. We start
with giving the definition of rational curves.

Definition 5.1 (Rational parametrizations/curves). Let𝑉 be an irre-
ducible curve in A𝑛 . A rational map P : A1 d 𝑉 defined by the set
of rational functions P(𝑡) = (𝜒1 (𝑡), . . . , 𝜒𝑛 (𝑡)) is called a rational
parametrization of 𝑉 if the following conditions are satisfied:

(1) (𝜒1 (𝑡0), . . . , 𝜒𝑛 (𝑡0)) ∈ 𝑉 for all (except for maybe a finite
number of values) 𝑡0 ∈ 𝑘 .

(2) For all (except for maybe a finite number of values) points
𝑝 ∈ 𝑉 there exists 𝑡0 ∈ 𝑘 such that 𝑝 = (𝜒1 (𝑡0), . . . , 𝜒𝑛 (𝑡0)).

A curve 𝑉 is called rational if it has a rational parametrization.
Any parametrizationP(𝑡) induces a homomorphismP∗ : 𝑘 (𝑉 ) →

𝑘 (𝑡). If P∗ is an isomorphism, P(𝑡) is called proper.

We will use the following refinement of Algorithm 1.

Lemma 5.2. Assume that ℎ = 1 and the parametrization computed

in step (S8)a of Algorithm 1 is proper. Then the parametrization

returned by Algorithm 1 is proper as well.

Proof. Assume that the produced parametrization 𝜸 = (𝛾0, 𝛾1)

is not proper. This means that 𝑘 (𝑢,𝛾0, 𝛾1) ⊊ 𝑘 (𝑥,𝑢). Therefore,
by [9, Theorem 9.29, p. 117] there exists an automorphism 𝜎 of

𝑘 (𝑥,𝑢)/𝑘 such that 𝜎 |𝑘 (𝑢,𝛾0,𝛾1) = id and 𝜎 (𝑥) ≠ 𝑥 . Since 𝛾0 (𝜎 (𝑥)) =

𝛾0 (𝑥) ∈ 𝑘 (𝑥), we deduce that 𝜎 (𝑥) ∈ 𝑘 (𝑥). Therefore, 𝜎 can be

restricted to𝑘 (𝑥). Since𝜎 fixes𝛾1 and𝑢, and𝑢 is transcendental over

𝑘 (𝑥), 𝜎 fixes the coefficients of 𝛾1, that is, 𝑎∗0, . . . , 𝑎
∗
𝑑0
, 𝑏∗1, . . . , 𝑏

∗
𝑑1
.

Since 𝛼1 is a Q-linear combination of these, it is also fixed by 𝜎 .
This contradicts the properness of 𝜶 . □

The algorithm deciding the existence of a realization of a first
order input-output equation by a rational dynamical system that
we present in the next subsection is based on the notion of a strong
rational general solution (SRGS). SRGS is a solution of an algebraic
ODE (AODE) of the form

𝑃 (𝑢,𝑦, d𝑦/d𝑢) = 0, (13)

that depends rationally on a transcendental constant (for a precise
definition, see [25, Definition 3.3]). Here 𝑃 is an irreducible polyno-
mial with coefficients in an algebraically closed field 𝑘 . Note that



any SRGS of (13) provides a parametrization of the curve in A2

defined by (13) over 𝑘 (𝑢) or any larger algebraically closed field
(e.g., U) with the transcendental constant arising in the solution
being the parameter.

Proposition 5.3 (cf. [10, Theorem 3.7(iii)]). If the equation (13)
has an SRGS, it also has an SRGS defining a proper parametrization

ofH𝑃 .

Proof. The algorithm for computing an SRGS of (13) presented
in [25] consists of finding an optimal proper parametrization of
the corresponding rational curve and plugging a rational general
solution of the associated ODE (see [25, Definition 5.1]) into this
parametrization.

[25, Theorem 5.4] states that if an SRGS of (13) exists, an associ-
ated ODE is either a Riccati equation or a linear first-order equation.
It is known (see, for instance, [11, Sections A1.2 and A1.3]) that
such equations have general solutions that are linear rational func-
tions with respect to the constant of integration. In particular, if
such an equation has a rational general solution, it necessarily has
a rational general solution that is a linear rational function with
respect to the constant of integration. By definition, such a solution
is an SRGS. This SRGS defines a linear rational substitution of the
parameter on H𝑃 with the new parameter being the constant of
integration. Since a linear rational transformation of the parameter
transforms a proper parametrization into a proper one [19, Lemma
4.17], the claim is proved. □

Proposition 5.4. Let 𝑦1 (𝑢, 𝑐1) and 𝑦2 (𝑢, 𝑐2) be two SRGS of (13)
with 𝑦1 (𝑢, 𝑐1) providing a proper parametrization of the correspond-

ing curve. Then there exists 𝜑 ∈ 𝑘 (𝑡) such that 𝑦1 (𝑢, 𝜑 (𝑐2)) =

𝑦2 (𝑢, 𝑐2).

Proof. Since both (𝑦1, 𝜕𝑦1/𝜕𝑢) and (𝑦2, 𝜕𝑦2/𝜕𝑢) provide parametriza-
tions of the same curve and the parametrization corresponding to𝑦1
is proper, by [19, Lemma 4.17], there exists 𝜑 ∈ 𝑘 (𝑢) (𝑡) such that:

𝑦1 (𝑢, 𝜑 (𝑐2)) = 𝑦2 (𝑢, 𝑐2) and (𝜕𝑦1 (𝑢, 𝑐1)/𝜕𝑢)
��
𝑐1=𝜑 (𝑐2)

= 𝜕𝑦2 (𝑢, 𝑐2)/𝜕𝑢.

Differentiating the former with respect to 𝑢, we obtain(
𝜕𝑦1 (𝑢, 𝑐1)

𝜕𝑢

) ��
𝑐1=𝜑 (𝑐2)

+

(
𝜕𝑦1 (𝑢, 𝑐1)

𝜕𝑐1

) ��
𝑐1=𝜑 (𝑐2)

d𝜑 (𝑐2)

d𝑢
=
𝜕𝑦2 (𝑢, 𝑐2)

𝜕𝑢
.

By combining the equations above, we obtain(
𝜕𝑦1 (𝑢, 𝑐1)

𝜕𝑐1

) ��
𝑐1=𝜑 (𝑐2)

d𝜑 (𝑐2)

d𝑢
= 0,

so
d𝜑 (𝑐2)

d𝑢
= 0, which means that 𝜑 ∈ 𝑘 (𝑡). □

5.2 Algorithm for rational realizations

Proposition 5.5. Algorithm 2 is correct.

Proof. First we note that, thanks to the step (S2)(b)iv, if an
ODE system is returned, it satisfies the specification of the algo-
rithm. Therefore, it is sufficient to prove that if the polynomial 𝑃 is
realizable, the algorithm will return its realization.

Assume that 𝑃 is realizable. By Theorem 3.2, it is realizable by a
one-dimensional system, we will denote it by Σ0:

𝑥 ′ = 𝑓0 (𝑥,𝑢), 𝑦 = 𝑔0 (𝑥,𝑢) .

Algorithm 2: First order realizations

Input Irreducible polynomial 𝑃 ∈ 𝑘 [𝑦,𝑦′, 𝑢,𝑢 ′] depending
nontrivially on 𝑦′ and 𝑢 ′;

Output A system of the form (3) such that 𝑃 = 0 is the
input-output equation for the system or NO if there is no
such system.

(S1) Let 𝑄 := 𝑃 (𝑦, 𝑎𝑢 ′ + 𝑏,𝑢,𝑢 ′) ∈ 𝑘 [𝑦, 𝑎, 𝑏,𝑢,𝑢 ′]. Let
𝑐0 ∈ 𝑘 [𝑎,𝑦,𝑢] and 𝑐1 ∈ 𝑘 [𝑏,𝑦,𝑢] be the leading and the
constant coefficients of 𝑄 as a polynomial in 𝑢 ′.

(S2) For each irreducible factor ℎ0 (𝑎,𝑦,𝑢) of 𝑐0, do:

(a) Compute 𝑦0 (𝑢, 𝑐), an SRGS of ℎ0

(
d𝑦

d𝑢
,𝑦,𝑢

)
= 0 defining a

proper parametrization of the corresponding curve. If there
is no solution, go to the next factor.

(b) For each irreducible factor ℎ1 (𝑏,𝑦,𝑢) of 𝑐1, do
(i) Consider the numerator 𝑁 (𝑏, 𝑐) ∈ 𝑘 (𝑢) [𝑏, 𝑐] of
ℎ1 (𝑏,𝑦0 (𝑢, 𝑐), 𝑢).

(ii) Use Algorithm 1 to find a proper parametrization (see
Lemma 5.2) (𝑏 (𝑥), 𝑐 (𝑥)) of 𝑁 (𝑏, 𝑐) = 0 such that
𝑏 (𝑥) ∈ 𝑘 (𝑢, 𝑥) and 𝑐 ∈ 𝑘 (𝑥).

(iii) Set

𝑔(𝑥,𝑢) := 𝑦0 (𝑢, 𝑐 (𝑥)) and 𝑓 (𝑥,𝑢) := 𝑏 (𝑥)/
𝜕𝑔(𝑥,𝑢)

𝜕𝑥
.

(iv) If the input-output equation of Σ being

𝑥 ′ = 𝑓 (𝑥,𝑢), 𝑦 = 𝑔(𝑥,𝑢)

is equal to 𝑃 , return Σ.
(S3) Return NO.

We also compute LΣ0
(𝑔0) :=

𝜕𝑔0
𝜕𝑢 (𝑥,𝑢)𝑢 ′ + 𝑏0 (𝑥,𝑢). Since

𝑃 (𝑔0,LΣ0
(𝑔0), 𝑢,𝑢

′) = 0,

we have 𝑐0 (
𝜕𝑔0
𝜕𝑢 (𝑥,𝑢), 𝑔0, 𝑢) = 0, so 𝑔0 (𝑥,𝑢) is an SRGS of one of the

irreducible factors of 𝑐0, we will denote this factor by ℎ0. Consider
the SGRS 𝑦0 (𝑢, 𝑐) computed by the algorithm for ℎ0 at step (S2)a.
By Proposition 5.4, there exists a rational function 𝜑 (𝑥) ∈ 𝑘 (𝑥)

such that 𝑔0 (𝑥,𝑢) = 𝑦0 (𝑢, 𝜑 (𝑥)).
The vanishing of 𝑃 (𝑔0,LΣ0

(𝑔0), 𝑢,𝑢
′) implies that 𝑐1 (𝑏0, 𝑔0, 𝑢) =

0, so (𝑏0, 𝑔0) annihilates one of the irreducible factors of 𝑐1, say ℎ1.
Let (𝑏 (𝑥,𝑢), 𝑐 (𝑥)) be the parametrization computed at the step (S2)(b)ii.
Then we have

ℎ1 (𝑏0 (𝑥,𝑢), 𝑦0 (𝑢, 𝜑 (𝑥)), 𝑢) = ℎ1 (𝑏 (𝑥,𝑢), 𝑦0 (𝑢, 𝑐 (𝑥)), 𝑢) = 0.

The properness of the parametrization (𝑏 (𝑥,𝑢), 𝑐 (𝑥)) (see Lemma 5.2)
implies that there exists 𝑠 (𝑥) ∈ 𝑘 (𝑥) such that 𝑏0 (𝑥,𝑢) = 𝑏 (𝑠 (𝑥), 𝑢)
and 𝜑 (𝑥) = 𝑐 (𝑠 (𝑥)). The system Σ produced by the algorithm will
have the following 𝑓 and 𝑔:

𝑔(𝑥,𝑢) = 𝑦0 (𝑢, 𝑐 (𝑥)), 𝑓 (𝑥,𝑢) =
𝑏 (𝑥,𝑢)

𝑐 ′(𝑥)𝑧 (𝑐 (𝑥), 𝑢)
,



where 𝑧 :=
𝜕𝑦0 (𝑥,𝑐)

𝜕𝑐 . The Lie derivative of 𝑔 will be

LΣ (𝑔) =
𝜕𝑦0 (𝑢, 𝑐 (𝑥))

𝜕𝑢
𝑢 ′ + 𝑐 ′(𝑥)𝑧 (𝑐 (𝑥), 𝑢)

𝑏 (𝑥,𝑢)

𝑐 ′(𝑥)𝑧 (𝑐 (𝑥), 𝑢)
=

=
𝜕𝑦0 (𝑢, 𝑐 (𝑥))

𝜕𝑢
𝑢 ′ + 𝑏 (𝑥,𝑢).

Therefore, the pair 𝑔0,LΣ0
(𝑔0) can be obtained from 𝑔,LΣ (𝑔) by

a substitution 𝑥 ↦→ 𝑠 (𝑥). Therefore 𝑃 vanishes at 𝑔,LΣ (𝑔), so it is
the input-output equation for Σ. □

5.3 Algorithm for input-affine realizations

Algorithm 3: First order input-affine realizations

Input Irreducible polynomial 𝑃 ∈ 𝑘 [𝑦,𝑦′, 𝑢,𝑢 ′] depending
nontrivially on 𝑦′ and 𝑢 ′;

Output An input-affine system of the form (3) such that 𝑃 = 0 is
the input-output equation for this system or NO if there is
no such system.

(S1) Consider 𝑃 = 𝑃 (𝑎1𝑢 + 𝑎0, 𝑏2𝑢
2 + 𝑏1𝑢 + 𝑏0 + 𝑎1𝑢

′, 𝑢,𝑢 ′).
(S2) Consider the leading coefficient of 𝑃 w.r.t. 𝑢 ′ and, in this

coefficient, the leading coefficient 𝑞 ∈ 𝑘 [𝑎0, 𝑎1] w.r.t. 𝑢.
(S3) For each irreducible factor 𝑞0 (𝑎0, 𝑎1) of 𝑞 do:

(a) Find a proper rational parametrization 𝑎0 (𝑠), 𝑎1 (𝑠) of the
curve 𝑞0 (𝑎0, 𝑎1) = 0. If the curve is not rational, go to the
next irreducible factor.

(b) Plug 𝑎0 (𝑠), 𝑎1 (𝑠) into 𝑃 to obtain a polynomial
in 𝑘 (𝑠, 𝑏0, 𝑏1, 𝑏2) [𝑢,𝑢 ′], and clear the denominators to
obtain 𝑃0 ∈ 𝑘 [𝑠, 𝑏0, 𝑏1, 𝑏2, 𝑢,𝑢

′].
(c) Let 𝑉 be the variety defined by the coefficients of 𝑃0 with

respect to 𝑢,𝑢 ′ in the space with coordinates 𝑠, 𝑏0, 𝑏1, 𝑏2
over the field 𝑘 . Then dim𝑉 ⩽ 1 (see proof of
Proposition 5.6).

(d) For each irreducible one-dimensional component 𝑉0 of 𝑉 :
(i) Find a proper rational

parametrization 𝑠 (𝑥), 𝑏0 (𝑥), 𝑏1 (𝑥), 𝑏2 (𝑥) of 𝑉0. If 𝑉0 is
not rational, move to the next component.

(ii) Let 𝑎𝑖 (𝑥) := 𝑎𝑖 (𝑠 (𝑥)) for 𝑖 = 0, 1.

(iii) Let 𝑐1 (𝑥) := 𝑏2 (𝑥)/
d𝑎1

d𝑥
and 𝑐0 (𝑥) := 𝑏0 (𝑥)/

d𝑎0

d𝑥
.

(iv) Return

{
𝑥 ′ = 𝑐1 (𝑥)𝑢 + 𝑐0 (𝑥),

𝑦 = 𝑎1 (𝑥)𝑢 + 𝑎0 (𝑥) .

(S4) Return NO

Proposition 5.6. Algorithm 3 is correct.

Proof. First we prove that the system returned in step (S3)(d)iv
(denote it by Σ) satisfies the specification of the algorithm. This is
ensured by Proposition 3.6 combined with

𝑃0 (𝑠 (𝑥), 𝑏0 (𝑥), 𝑏1 (𝑥), 𝑏2 (𝑥), 𝑢,𝑢
′) = 0 =⇒

𝑃 (𝑦 (𝑥,𝑢),LΣ (𝑦 (𝑥,𝑢)), 𝑢,𝑢
′) = 0.

Assume 𝑃 = 0 is realizable by an input-affine system. By Theo-
rem 3.2 it is realizable by a one-dimensional input-affine system,
we will denote it by Σ0:

𝑥 ′ = 𝑐0,1 (𝑥)𝑢 + 𝑐0,0 (𝑥), 𝑦 = 𝑔0 (𝑥,𝑢) = 𝑎0,1 (𝑥)𝑢 + 𝑎0,0 (𝑥).

Since 𝑃 vanishes at 𝑔0,LΣ0
(𝑔0), 𝑞 vanishes at 𝑎0,0 (𝑥), 𝑎0,1 (𝑥). Thus,

at least one irreducible factor of𝑞, say𝑞0, vanishes at𝑎0,0 (𝑥), 𝑎0,1 (𝑥).
Let 𝑎0 (𝑠), 𝑎1 (𝑠) be the parametrization of 𝑞0 = 0 obtained on
step (S3)(d)i. By [19, Lemma 4.17] there exists 𝑟 (𝑥) ∈ 𝑘 (𝑥) such
that 𝑎0,𝑖 (𝑥) = 𝑎𝑖 (𝑟 (𝑥)) for 𝑖 = 0, 1.

Analogously to the proof of Proposition 4.1, one can prove that
coefficients of 𝑃0 define a zero-dimensional variety over 𝑘 (𝑠), i.e. a
variety of dimension at most one over 𝑘 .

We write LΣ0
(𝑔0) = 𝑎0,1𝑢

′ + 𝑏0,2𝑢
2 + 𝑏0,1𝑢 + 𝑏0,0. Since 𝑃 van-

ishes at 𝑔0,LΣ0
(𝑔0), all the coefficients of 𝑃0 w.r.t. 𝑢,𝑢 ′ vanish

at 𝑟 (𝑥), 𝑏0 (𝑥), 𝑏1 (𝑥), 𝑏2 (𝑥). This yields a parametrization of a one-
dimensional component of𝑉 , say𝑉0. Thus, once the algorithm will
reach 𝑉0 in step (S3)d, it will find a realization. □

6 EXAMPLES

Maple worksheets with all the details of the computations for the
examples presented in this paper are available at [14].

Example 6.1 (SIR model with input). Consider a version of the
standard SIR model from epidemiology which we have augmented
with an input to the susceptible compartment (e.g., regulated travel
of unvaccinated individuals):



𝑆 ′ = Λ − 𝜇𝑆 −

𝛽𝑆𝐼
𝑆+𝐼+𝑅 + 𝑢,

𝐼 ′ =
𝛽𝑆𝐼

𝑆+𝐼+𝑅 − 𝜇𝐼 − 𝛾𝐼,

𝑅′ = 𝛾𝐼 − 𝜇𝑅,

where Λ, 𝜇, 𝛽,𝛾 are scalar parameters and 𝑢 is the input. We will
assume that the output is𝑦 = 𝑅. Wewill not give the full expressions
arising in this computation due to their size, full details can be found
in the Maple worksheet.

Computation using [2] yields a differential equation in 𝑦 and 𝑢
of the respective orders 3 and zero, so we will use Algorithm 1. We
have 𝑑0 = 1 and 𝑑1 = 0 thus the ansatz 𝑦 (3) = 𝑎1𝑢 + 𝑎0 will be used.
This yields equations 𝐹1 = 0 and 𝐹2 = 0 such that 𝐹1 is linear in 𝑎0
and does not involve 𝑎1 and 𝐹2 is linear in 𝑎1 and does not involve
𝑎0. Therefore, one can take 𝑦 = 𝑥1, 𝑦

′
= 𝑥2, 𝑦

′′
= 𝑥3 and extend this

parametrization to 𝑎0 and 𝑎1 by solving linear equations. This will
yield a realization of the equation in 𝑦 and 𝑢 (different from the
original ODE system).

For further examples we refer the reader to the appendix.
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APPENDIX: FURTHER EXAMPLES

Example 6.2. The following example of a realization problem
was considered in [21, Section 8]:

𝑢𝑦′′ = 𝑦2𝑢2 + 𝑦′𝑢 ′.

We will follow the same strategy as in Algorithm 2. Plugging 𝑦′′ =
𝑎𝑢 ′′ + 𝑐 and 𝑦′ = 𝑎𝑢 ′ + 𝑏 into this equation yields

−𝑢2𝑦2 + 𝑎𝑢𝑢 ′′ − 𝑎𝑢 ′2 − 𝑏𝑢 ′ + 𝑐𝑢 = 0

The coefficient at 𝑢 ′′ must be zero, thus, 𝑎 = 0, 𝑦′ = 𝑏 and 𝑦′′ =
𝑝𝑢 ′+𝑞, where𝑏, 𝑝, 𝑞 do not involve𝑢 ′ but can, in principle, involve𝑢.
Plugging these expressions for 𝑦′ and 𝑦′′ into the initial equation,
we obtain

(𝑝𝑢 − 𝑏)𝑢 ′ − 𝑦2𝑢2 + 𝑞𝑢 = 0.

Thus, we have 𝑝𝑢 = 𝑏 and 𝑞 − 𝑦2𝑢 = 0. Note that 𝑝 = d𝑏/d𝑢,
i.e. the first equation of this system is a DAE in 𝑏 (𝑢). Its SRGS
is 𝑏 = 𝑥1𝑢, where 𝑥1 is a transcendental constant. The second
equation of the system defines a rational curve over 𝑘 (𝑢) with
parametrization 𝑦 = 𝑥2, 𝑞 = 𝑥22𝑢. Therefore

𝑦 = 𝑥2, 𝑦′ = 𝑥1𝑢, 𝑦′′ = 𝑥1𝑢
′ + 𝑢𝑥22 .

Using the approach from Lemma 3.1, we find a realization

𝑥 ′1 = 𝑥
2
2 , 𝑥 ′2 = 𝑥1𝑢, 𝑦 = 𝑥2 .

Example 6.3 (Predator-preymodel). Consider the following predator-
prey model with an input influencing the predator population:



𝑥 ′1 = 𝑘1𝑥1 − 𝑘2𝑥1𝑥2,

𝑥 ′2 = −𝑘3𝑥2 + 𝑘4𝑥1𝑥2 + 𝑘5𝑢,

𝑦 = 𝑥1,

where 𝑘1, . . . , 𝑘5 are scalar parameters. The result of differential
elimination (computed using the software [2]) is

𝑦𝑦′′−𝑘1𝑘3𝑦
2+𝑘1𝑘4𝑦

3+𝑘3𝑦𝑦
′+𝑘5𝑘2𝑦

2𝑢−𝑘4𝑦
2𝑦′− (𝑦′)2 = 0. (14)

We will now apply Algortihm 1 with 𝑧0 = 𝑦, 𝑧1 = 𝑦′, 𝑧2 = 𝑦′′.
We have 𝑑0 = 1 and 𝑑1 = 0 (see (S4)), so we make an ansatz
𝑦′′ = 𝑎1𝑢 + 𝑎0 in (S5) and obtain:

𝑢 (𝑘2𝑘5𝑦
2+𝑎1𝑦) +𝑘1𝑘4𝑦

3−𝑘1𝑘3𝑦
2−𝑘4𝑦

2𝑦′+𝑘3𝑦𝑦
′+𝑎0𝑦−(𝑦′)2 = 0.

We obtain the following equations for 𝑎0 and 𝑎1:{
𝑘2𝑘5𝑦

2 + 𝑎1𝑦 = 0 =⇒ 𝑎1 = −𝑘2𝑘5𝑦,

𝑘1𝑘4𝑦
3 − 𝑘1𝑘3𝑦

2 − 𝑘4𝑦
2𝑦′ + 𝑘3𝑦𝑦

′ + 𝑎0𝑦 − (𝑦′)2 = 0.

One can take𝑤 = 𝑎0 and 𝑞(𝑤) = 0 to be the last equation. The equa-
tion of this surface is linear in 𝑎0, so the surface has a parametriza-
tion:

𝑦 = 𝑥1, 𝑦
′
= 𝑥2, 𝑎0 = −𝑘1𝑘4𝑥

2
1 + 𝑘1𝑘3𝑥1 + 𝑘4𝑥1𝑥2 − 𝑘3𝑥2 +

𝑥22
𝑥1
.

We follow the proof of Lemma 3.1 and obtain a realization of (14):



𝑥 ′1 = 𝑥2,

𝑥 ′2 = −𝑘2𝑘5𝑥1𝑢 − 𝑘1𝑘4𝑥
2
1 + 𝑘1𝑘3𝑥1 + 𝑘4𝑥1𝑥2 − 𝑘3𝑥2 +

𝑥2
2

𝑥1
,

𝑦 = 𝑥1

Note that, in the resulting ODE system, one can straighforwardly
reduce the dimension of the parameter space by setting 𝑘6 := 𝑘2𝑘5
and thus providing a reparametrization of the original model.

Example 6.4 (Predator-prey model, continued). This example is
version of Example 6.3 with a different choice of the output variable:



𝑥 ′1 = 𝑘1𝑥1 − 𝑘2𝑥1𝑥2,

𝑥 ′2 = −𝑘3𝑥2 + 𝑘4𝑥1𝑥2 + 𝑘5𝑢,

𝑦 = 𝑥2 .



The input-output equation for this model is

− 𝑘5𝑘1𝑦𝑢 + 𝑘5𝑘2𝑦
2𝑢 + 𝑘5𝑦𝑢

′ − 𝑘5𝑦
′𝑢 + 𝑘1𝑘3𝑦

2

+ 𝑘1𝑦𝑦
′ − 𝑘2𝑘3𝑦

3 − 𝑘2𝑦
2𝑦′ − 𝑦𝑦′′ + (𝑦′)2 = 0.

We will follow the same strategy as Algorithm 2. Plugging 𝑦′′ =
𝑎𝑢 ′′ + 𝑐 and 𝑦′ = 𝑎𝑢 ′ + 𝑏 yields

𝑎2𝑢 ′′2 + 𝑟 (𝑎, 𝑏, 𝑐,𝑢,𝑢 ′) = 0

for some rational function 𝑟 . Thus, 𝑎 = 0, 𝑦′ = 𝑏 and 𝑦′′ = 𝑝𝑢 ′ + 𝑞,
where 𝑏, 𝑝, 𝑞 do not involve 𝑢 ′ but can, in principle, involve 𝑢. The
following equation is the result of plugging these expressions into
the initial equation:

(𝑘5𝑦 − 𝑝𝑦)𝑢
′ − 𝑘2𝑘3𝑦

3 + 𝑘5𝑘2𝑦
2𝑢 − 𝑏𝑘2𝑦

2 + 𝑘1𝑘3𝑦
2−

− 𝑘5𝑘1𝑦𝑢 + 𝑏𝑘1𝑦 − 𝑏𝑘5𝑢 + 𝑏2 − 𝑦𝑞 = 0.

The coefficient at 𝑢1 has to be zero, therefore, 𝑝 = 𝑘5.

Since the constant coefficient is linear in𝑞, it defines a unirational
surface with parametrization 𝑦0 = 𝑣1, 𝑏 = 𝑣2 and

𝑞 = −𝑘2𝑘3𝑣
3
1+𝑘5𝑘2𝑣1𝑢−𝑣2𝑘2𝑣1+𝑘1𝑘3𝑣1−𝑘5𝑘1𝑢+𝑣2𝑘1−

𝑣2𝑘5𝑢

𝑣1
+
𝑣22
𝑣1
.

Since 𝑝 =
d 𝑣2

d𝑢
, one can conclude that 𝑣2 = 𝑘5𝑢 + 𝑥1, where 𝑥1 is

a transcendental constant, and 𝑣2 = 𝑥2. Thus,

𝑞(𝑥1, 𝑥2, 𝑢) = (−𝑘2𝑘5𝑥2 + 𝑘5𝑘1 +
𝑘25𝑢

𝑥2
+
𝑘5𝑥1

𝑥2
)𝑢+

+𝑘2𝑘3𝑥
2
2+𝑘2𝑘5𝑥2𝑢−𝑘1𝑘3𝑥2−𝑘1𝑘5𝑢+𝑘2𝑥1𝑥2−

𝑘25𝑢
2

𝑥2
−𝑘1𝑥1−2𝑘5𝑢

𝑥1

𝑥2
−
𝑥21
𝑥2

and we obtain the following realization of the original equation:



𝑥 ′1 = 𝑞(𝑥1, 𝑥2, 𝑢),

𝑥 ′2 = 𝑥1 + 𝑘5𝑢,

𝑦 = 𝑥2 .
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