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We employ a recently introduced structured input-output analysis (SIOA) approach to
analyze streamwise and spanwise wavelengths of flow structures in stably stratified plane
Couette flow. In the low-Reynolds number (Re) low-bulk Richardson number (Rib)
spatially intermittent regime, we demonstrate that SIOA predicts high amplification
associated with wavelengths corresponding to the characteristic oblique turbulent bands
in this regime. SIOA also identifies quasi-horizontal flow structures resembling the
turbulent-laminar layers commonly observed in the high-Re high-Rib intermittent regime.
An SIOA across a range of Rib and Re values suggests that the classical Miles-Howard
stability criterion (Rib � 1/4) is associated with a change in the most amplified flow
structures when Prandtl number is close to one (Pr ≈ 1). However, for Pr � 1, the
most amplified flow structures are determined by the product PrRib. For Pr � 1,
SIOA identifies another quasi-horizontal flow structure that we show is principally
associated with density perturbations. We further demonstrate the dominance of this
density-associated flow structure in the high Pr limit by constructing analytical scaling
arguments for the amplification in terms of Re and Pr under the assumptions of
unstratified flow (with Rib = 0) and streamwise invariance.

1. Introduction
Statically stable density stratification in wall-bounded shear flows plays an impor-

tant role in many industrial and environmental applications, e.g., in cooling equipment
(Zonta & Soldati 2018), and the turbulent boundary layers governing atmospheric and
oceanic flows (Vallis 2017; Pedlosky 2013). In the atmospheric boundary layer, stable
stratification arising from strong ground cooling effects is of particular importance at
night (Nieuwstadt 1984; Mahrt 1999, 2014) and near the polar region (Grachev et al.
2005). At the ocean floor, stable density stratification is known to influence the boundary
layer thickness (Weatherly & Martin 1978; Lien & Sanford 2004).

(Stably) stratified plane Couette flow (PCF) is a canonical model for stratified wall-
bounded shear flow. When the density as well as the velocity is maintained at different
values at the two horizontal boundary planes, with gravity acting vertically, stratified
PCF has the added benefit (as defined more precisely below) that a natural bulk
Richardson number Rib can be defined, capturing the relative significance of the imposed
stratification and shear. Furthermore, unstratified PCF has no linear instability for any
Reynolds number (Re, again defined more precisely below) (Romanov 1973), and yet
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is observed to transition at Reynolds numbers as low as Re = 360 ± 10 (Tillmark &
Alfredsson 1992). Stratified PCF is a convenient model flow for investigating the effect
of stable stratification on transition dynamics (Deusebio et al. 2015).

Stable stratification provides a restoring buoyancy force inhibiting vertical motion
(Turner 1979; Davidson 2013). Thus, transition to turbulence in stably stratified PCF
typically occurs at a higher Reynolds number than unstratified PCF; see e.g., (Deusebio
et al. 2015; Eaves & Caulfield 2015; Olvera & Kerswell 2017; Deguchi 2017). In the
transitional regime, both stratified PCF and unstratified PCF exhibit spatial intermit-
tency; i.e., the coexistence of laminar and turbulent regions. In the relatively low-Re
low-Rib intermittent regime, the spatial intermittency in stratified PCF is characterized
by oblique turbulent bands (Deusebio et al. 2015; Taylor et al. 2016) at least qualitatively
similar to the unstratified PCF (Prigent et al. 2003; Duguet et al. 2010) with a very large
channel size (∼ O(100) times of channel half-height). In the high-Re high-Rib intermittent
regime, flow structures are instead characterized by turbulent and laminar layers over
the vertical direction due to the strong effect of buoyancy (Deusebio et al. 2015).
This spatial intermittency directly imposes challenges for the computation of averaged
measurements of flow behavior (such as the efficiency of mixing or the dissipation rate),
and thus understanding underlying mechanisms is important for the parameterization of
turbulence properties, in particular the irreversible mixing in stratified flows (Caulfield
2020, 2021).

The existence of a unique critical Richardson number that separates flow into laminar
and turbulent regimes is questionable, to put it mildly (Galperin et al. 2007; Andreas
2002). A threshold value close to 1/4 is supported by some field measurements (Kundu &
Beardsley 1991) and experiments (Rohr et al. 1988), although other field measurements
reported sustained turbulence in flows with Richardson numbers � 1 (Lyons et al. 1964).
More recently, increasing evidence has been found that vertically sheared stably stratified
flow appears to self-organize to maintain an appropriately defined Richardson number
near 1/4, both in field observations (Smyth & Moum 2013; Smyth et al. 2019) and in
simulations (Salehipour et al. 2018). This threshold value of 1/4 also appears in the
classical ‘Miles-Howard’ theorem (Miles 1961; Howard 1961), which provides a necessary
condition for linear instability in inviscid, non-diffusive steady parallel flow. In particular,
it states that instability requires the local or gradient Richardson number must be
less than 1/4 somewhere. Therefore, it is of interest to consider stratified PCF as a
well-controlled sheared stratified flow to investigate whether some kind of self-organized
criticality and/or marginal stability naturally emerges in a viscous and diffusive flow.

The Prandtl number (Pr = ν/κ, where ν is the kinematic viscosity and κ is the
diffusivity of the density field) plays a perhaps unsurprisingly important role in deter-
mining flow structures. For example, for sufficiently small Pr, flows with the same value
of the product PrRib develop the same averaged vertical density profile (Langham et al.
2020). This observation that the product PrRib determines flow behavior in the low
Prandtl number limit is widely observed in stratified shear flows; see e.g., (Lignieres
1999; Garaud et al. 2015, 2017; Garaud 2021). Conversely, in the high Prandtl number
regime, exact coherent structures in stratified PCF (Langham et al. 2020) show that a
nearly uniform density region forms near the channel center, and the influence of bulk
Richardson number on the averaged properties of the flow are significantly reduced.
Moreover, Taylor & Zhou (2017) proposed a multi-parameter criterion for the formation
of a ‘staircase’ in the density distribution (i.e. a distribution with relatively deep ‘layers’
of nearly uniform density separated by relatively thin interfaces of enhanced density
gradient) which suggests that staircase formation is actually favored for a large Prandtl
number (Taylor & Zhou 2017). The sharpness of the density interfaces also appears to
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increase as the Prandtl number increases (Zhou et al. 2017b). In addition, increasing the
Prandtl number has a larger influence on the mean density profiles than on the mean
velocity profiles (Zhou et al. 2017a).

The oblique turbulent bands observed in the intermittent regime of stratified PCF
(Deusebio et al. 2015; Taylor et al. 2016) require a very large channel size to accommodate
them fully, which poses challenges for both simulations and experiments. The three
different flow parameters of interest, Re, Rib and Pr also lead to computational challenges
in exploring the full range of flow regimes. To overcome these challenges to direct
numerical simulation (DNS), we use an input–output (resolvent) analysis based approach.
Such methods, built upon the spatio-temporal frequency response, have been widely
employed in unstratified wall-bounded shear flows (Farrell & Ioannou 1993a; Bamieh &
Dahleh 2001; Jovanović & Bamieh 2005; McKeon & Sharma 2010; McKeon 2017). This
analysis framework has advantages of computational tractability and is not subject to
finite channel effects. Related analysis has shown promise in studying stratified flows
including inviscid stratified shear flow with constant shear (Farrell & Ioannou 1993b),
stratified PCF (Jose et al. 2015, 2018), and stratified turbulent channel flow (Ahmed
et al. 2021).

In this work, we extend the structured input–output analysis (SIOA) originally devel-
oped for unstratified PCF (Liu & Gayme 2021) to stratified PCF. Prior application of the
SIOA approach to unstratified transitional wall-bounded shear flows (Liu & Gayme 2021)
demonstrated that including the componentwise structure of nonlinearity uncovers a
wider range of known key flow features identified through nonlinear analysis, experiments,
and DNS, but not captured through traditional (unstructured) input-output approaches.
Here, SIOA for stratified PCF includes the effect of nonlinearity in the momentum
and density equations (under the Boussinesq approximation) within a computationally
tractable linear framework through a feedback interconnection between the linearized
dynamics and a structured forcing that is explicitly constrained to preserve the com-
ponentwise structure of the nonlinearity. The structured singular value (Doyle 1982;
Safonov 1982) of the spatio-temporal frequency response associated with this feedback
interconnection can then be calculated at each streamwise and spanwise length scale.
This structured singular value can be interpreted as the flow structure that shows the
largest input–output gain (amplification) given the structured feedback interconnection.

Here, we apply the SIOA to characterize highly amplified flow structures in the
intermittent regime of stratified PCF and investigate the behavior of the flow across
a range of Re, Rib and Pr. Our aims are two-fold. First, we wish to investigate whether
the structures predicted by the SIOA can be quantitatively identified with fully nonlinear
structures that have been observed in previously reported DNS of stratified PCF with
specific values of the control parameters Re, Rib and Pr. Second, we wish to explore the
dependence on the control parameters of predictions from the SIOA in parameter regimes
which are not (as yet) accessible to DNS. More specifically, to address our first aim, we
examine how Re and Rib affect flow structures with Prandtl number set at Pr = 0.7,
i.e. the value for air. We demonstrate that SIOA does indeed predict the characteristic
wavelengths and angle of the oblique turbulent bands observed in very large channel
size DNS of the low-Re low-Rib intermittent regime of stratified PCF at the same Pr
(Deusebio et al. 2015; Taylor et al. 2016). We further show that in the high-Re high-
Rib intermittent regime, the SIOA identifies quasi-horizontal flow structures resembling
turbulent-laminar layers (Deusebio et al. 2015).

Having achieved our first aim, and demonstrated the usefulness of the SIOA for
identifying realistic nonlinear flow structures, we then turn our attention to our second
aim. We demonstrate that increasing bulk Richardson number reduces the amplification
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of streamwise varying flow structures. These results show that the classical Miles-Howard
stability criterion (Rib � 1/4) appears (perhaps fortuitously) to be associated with a
change in the most amplified flow structures, which is robust for a wide range of Re and
valid at Pr ≈ 1.

We then examine flow behavior at different Rib and Pr. For flows with Pr � 1, a larger
bulk Richardson number is required to reduce the amplification of streamwise varying
flow structures to the same level as streamwise independent ones compared with Pr ≈ 1.
The largest amplification also is predicted to occur at the same value of the product
PrRib consistent with the observation of the averaged density profile only varying with
the product PrRib in the Pr � 1 regime (Langham et al. 2020). For flows with Pr �
1, the SIOA identifies another quasi-horizontal flow structure independent of Rib. By
decomposing input–output pathways into separate components associated with velocity
and density fluctuations, we show that these quasi-horizontal flow structures at Pr �
1 are primarily associated with fluctuations in the density field. We further highlight
the importance of this density-associated flow structure at Pr � 1 by constructing an
analytical scaling argument for the input-output amplification in terms of Re and Pr
under the assumptions of unstratified flow (with Rib = 0) and streamwise invariance. The
above observations using SIOA distinguish two types of quasi-horizontal flow structures,
one associated with the high-Re high-Rib regime and the other one associated with
density perturbations that emerges in the high Pr regime.

To achieve our twin aims, and to demonstrate the above summarised results, the
remainder of this paper is organized as follows. Section 2 describes the flow configuration
of stratified plane Couette flow and then develops the structured input–output analysis
for this flow. Section 3 analyzes the results obtained from structured input–output
analysis focusing on the wall-parallel length scale of flow structures in this flow. In §
4, we develop analytical scaling arguments with respect to Re and Pr to investigate
behavior for flows in the high Pr limit. Finally we draw conclusions and suggest some
avenues of future work in § 5.

2. Structured input–output response of stratified flow
2.1. Governing Equations

We consider stably stratified plane Couette flow (PCF) between two infinite parallel
plates and employ x, y, and z to denote the streamwise, wall-normal (or vertical),
and spanwise directions. The corresponding (assumed incompressible) velocity compo-
nents are denoted as u, v, and w. The coordinate frames and configurations for this
stratified PCF are shown in figure 1. We express the velocity field as a vector utot =[
utot vtot wtot

]T with T indicating the transpose. We then decompose the velocity field
into the sum of a laminar linearly-varying base flow U(y) = y and fluctuations about the
base flow u; i.e., utot = U(y)ex + u with ex denoting the x-direction (streamwise) unit
vector. The pressure field is similarly decomposed as ptot = P + p. We decompose the
density ρtot as the sum of a reference density ρr, a base, again linearly-varying, density
ρ = −y and a density fluctuation ρ; i.e., ρtot = ρr + ρ + ρ. We use ρ0 to denote half of
the density difference between the top and bottom walls, and it is assumed to be much
smaller than the reference density ρ0 � ρr so that the Boussinesq approximation can be
used.

The dynamics of the fluctuations u, p, and ρ are hence governed by the Navier-Stokes
equations for an incompressible velocity field under the Boussinesq approximation and
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Figure 1: (a) Schematic of stably stratified plane Couette flow with laminar base flow
U(y) = yex and background density ρ = −y. The gravity g = −gey force is orthogonal
to channel walls. The blue and red colors represent high-density and low-density fluids,
respectively. (b) Block diagram of the feedback interconnection between the linearized
dynamics and structured forcing (outlined by the blue dashed line) in (2.4) modeling the
nonlinearity.

an advection-diffusion equation for the density:

∂tu + U∂xu + v
dU

dy
ex + Rib ρ ey + ∇p − 1

Re
∇2u = −u·∇u, (2.1a)

∂tρ + U∂xρ + v
dρ

dy
− 1

RePr
∇2ρ = −u·∇ρ, (2.1b)

∇·u = 0. (2.1c)

Here, the spatial variables are normalized by the channel half-height h, the velocity is
normalized by half of the velocity difference between the top and bottom walls Uw, where
±Uw is the velocity at the channel walls. Time and pressure are normalized by h/Uw

and ρrU2
w, respectively. The base density field ρ(y) and the density fluctuations ρ are

normalized by ρ0. Under this normalization, the base density profile ρ = −y is balanced
by a hydrostatic pressure P = Riby2/2.

The nondimensional control parameters are the Reynolds number Re, the Prandtl
number Pr, and the bulk Richardson number Rib, naturally defined as:

Re :=
Uwh

ν
, Pr :=

ν

κ
, Rib :=

gρ0h

ρrU2
w

, (2.2a-c)

where ν is the kinematic viscosity, κ is the molecular diffusivity of the density scalar and
g is the magnitude of gravity. The gravity is in the direction orthogonal to the wall g =
−gey with ey denoting the y-direction (wall-normal, or vertical) unit vector. In equation
set (2.1), ∇ :=

[
∂x ∂y ∂z

]T represents the gradient operator, and ∇2 := ∂2
x + ∂2

y + ∂2
z

represents the Laplacian operator. We impose no-slip boundary conditions at the wall
u(y = ±1) = 0 and Dirichlet boundary conditions for density fluctuations ρ(y = ±1) = 0
that can be maintained by e.g., constant temperatures at the wall with a linear equation
of state (with the hotter plate at the top).

A large body of linear analysis techniques views the nonlinear terms as a forcing, which
enables these terms to be represented as an unmodeled effect (which can be thought of
as some type of ‘uncertainty’ in the equations). There are a wide range of such models,
but a common approach is a delta-correlated or colored stochastic forcing that captures
a wide range of the unmodeled effects, see e.g., the discussion in Farrell & Ioannou
(1993a); Bamieh & Dahleh (2001); Jovanović & Bamieh (2005); McKeon & Sharma
(2010); McKeon (2017); Zare et al. (2017). Here we similarly write the nonlinear terms



6 C. Liu, C. P. Caulfield, D. F. Gayme

as the forcing:

fu := − u·∇u =
[−u·∇u −u·∇v −u·∇w

]T =:
[
fx fy fz

]T
. (2.3a)

fρ := − u·∇ρ, (2.3b)

which turns (2.1) into a set of linear evolution equations subject to the forcing terms fu

and fρ.
We now construct the model of the nonlinearity, where the velocity field −u in (2.3)

associated with the forcing components can be viewed as the gain operator of an input–
output system in which the velocity and density gradients ∇u, ∇v, ∇w, ∇ρ act as the
respective inputs and the forcing components fx, fy, fz, and fρ act as the respective
output. This input–output model of the nonlinear components in the momentum and
density equations, (2.3), are respectively given by

fu,ξ := − uξ·∇u =
[−uξ·∇u −uξ·∇v −uξ·∇w

]T =:
[
fx,ξ fy,ξ fz,ξ

]T
, (2.4a)

fρ,ξ := − uξ·∇ρ. (2.4b)

Here, −uξ in equations (2.4) maps the corresponding velocity and density gradient into
each component of the modeled forcing driving linearized dynamics. This forcing in (2.4)
is referred to as structured forcing because it preserves the componentwise structure of
nonlinearity in (2.3). Figure 1(b) shows a block diagram of the feedback interconnection
between the linearized dynamics and this forcing whose block diagonal structure mirrors
the nonlinear interactions in the Navier Stokes equations, i.e. the forcing does not include
terms such as −u · ∇v in the forcing fx,ξ since this term does not appear in the Navier
Stokes equations.

Although the nonlinearity in (2.3) can be written in many different ways, the current
formulation leads to a straightforward and unified formulation for structured forcing in
each momentum and density equation in (2.4). We next exploit this form of the equations
to construct an input–output map using the structured singular value formalism (Packard
& Doyle 1993; Zhou et al. 1996). This map will enable us to analyze the fluctuations which
are prominent in the intermittent regime.

2.2. Structured input–output response
We need to define the spatio-temporal frequency response HS

∇(y; kx, kz, ω) of stratified
PCF that will form the basis of the structured input–output response. We use the
superscript S to distinguish this operator from its counterpart for unstratified wall-
bounded shear flow (Liu & Gayme 2021). We employ the standard transformation to
express the velocity field dynamics in (2.1) in terms of a formulation using the wall-normal
velocity v and the wall-normal vorticity ωy := ∂zu − ∂xw (Schmid & Henningson 2012).
This transformation enforces the incompressibility constraint in (2.1c) and eliminates the
pressure by construction. We exploit shift-invariance in the (x, z) spatial directions and
assume shift-invariance in time t, which allows us to perform the following triple Fourier
transform:

ψ̂(y; kx, kz, ω) :=
∞∫

−∞

∞∫
−∞

∞∫
−∞

ψ(x, y, z, t)e−i(kxx+kzz+ωt) dx dz dt, (2.5)

where i =
√−1, ω is the temporal frequency, and kx = 2π/λx and kz = 2π/λz are the

x and z wavenumbers, respectively. The sign of temporal frequency ω in (2.5) is chosen
for ease of employing control-oriented toolboxes.
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The resulting equations describing the transformed linearized equations subject to the

forcing
[
fu,ξ

fρ,ξ

]
are given by

iω

⎡⎣ v̂
ω̂y

ρ̂

⎤⎦ = ÂS

⎡⎣ v̂
ω̂y

ρ̂

⎤⎦ + B̂S

⎡⎢⎢⎢⎣
f̂x,ξ

f̂y,ξ

f̂z,ξ

f̂ρ,ξ

⎤⎥⎥⎥⎦ , (2.6a)

⎡⎢⎢⎣
û
v̂
ŵ
ρ̂

⎤⎥⎥⎦ = ĈS

⎡⎣ v̂
ω̂y

ρ̂

⎤⎦ . (2.6b)

The operators in equation set (2.6) are defined as:

ÂS(kx, kz) := M̂−1

⎡⎢⎣−ikxU∇̂2 + ikxU ′′ + ∇̂4

Re 0 Rib(k2
x + k2

z)
−ikzU ′ −ikxU + ∇̂2

Re 0
−ρ′ 0 −ikxU + ∇̂2

ReP r

⎤⎥⎦ , (2.7a)

B̂S(kx, kz) := M̂−1

⎡⎣−ikx∂y −(k2
x + k2

z) −ikz∂y 0
ikz 0 −ikx 0
0 0 0 I

⎤⎦ , M̂ :=

⎡⎣∇̂2 0 0
0 I 0
0 0 I

⎤⎦ , (2.7b)

ĈS(kx, kz) :=
1

k2
x + k2

z

⎡⎢⎢⎣
ikx∂y −ikz 0

k2
x + k2

z 0 0
ikz∂y ikx 0

0 0 k2
x + k2

z

⎤⎥⎥⎦ , (2.7c)

where U ′ := dU(y)/dy, U ′′ := d2U(y)/dy2, ρ′ := dρ(y)/dy, ∇̂2 := ∂yy − k2
x − k2

z , ∇̂4 :=
∂

(4)
y − 2(k2

x + k2
z)∂yy + (k2

x + k2
z)2, and I is the identity operator. The equation associated

with ÂS operator in (2.7a) can also be obtained by generalizing the classical Taylor-
Goldstein equation (Taylor 1931; Goldstein 1931; Smyth & Carpenter 2019) to include
viscosity, density diffusivity, and coupling with wall-normal vorticity ω̂y with kz 	= 0. The
boundary conditions associated with (2.6) are v̂(y = ±1) = ∂v̂

∂y (y = ±1) = ω̂y(y = ±1) =
ρ̂(y = ±1) = 0.

The spatio-temporal frequency response HS of the system in (2.6), which maps the
input forcing to the velocity and density fields at the same spatial-temporal wavenumber-

frequency triplet; i.e.,
[
û(y; kx, kz, ω)
ρ̂(y; kx, kz, ω)

]
= HS(y; kx, kz, ω)

[
f̂u,ξ(y; kx, kz, ω)
f̂ρ,ξ(y; kx, kz, ω)

]
, is given by

HS(y; kx, kz, ω) := ĈS
(

iω I3×3 − ÂS
)−1

B̂S . (2.8)

Here I3×3 := diag(I, I, I), where diag(·) indicates a block diagonal operation.
The linear form of (2.4a)-(2.4b) allows us to perform the same spatio-temporal Fourier

transform on the model of the nonlinearity, which can be decomposed as⎡⎢⎢⎢⎣
f̂x,ξ

f̂y,ξ

f̂z,ξ

f̂ρ,ξ

⎤⎥⎥⎥⎦ = diag
(

−ûT
ξ , −ûT

ξ , −ûT
ξ , −ûT

ξ

)
diag

(
∇̂, ∇̂, ∇̂, ∇̂

) ⎡⎢⎢⎣
û
v̂
ŵ
ρ̂

⎤⎥⎥⎦ . (2.9)
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A block diagram illustrating this decomposition of the nonlinearity is shown inside the
blue dashed line ( ) in figure 2(a). This block diagonal structure constrains the modeled
nonlinear interactions, i.e., provides structured forcing.

In order to isolate the gain operator −uξ, we combine the linear gradient operator
with the spatio-temporal frequency response of the linearized system (2.8). The resulting
modified frequency response operator with outputs that are the vectorized gradients of
the velocity and density components is defined as

HS
∇(y; kx, kz, ω) := diag

(
∇̂, ∇̂, ∇̂, ∇̂

)
HS(y; kx, kz, ω). (2.10)

The resulting system model can be redrawn as a feedback interconnection between this
linear operator and the structured uncertainty

ûS
Ξ := diag

(
−ûT

ξ , −ûT
ξ , −ûT

ξ , −ûT
ξ

)
. (2.11)

Here the structure is introduced in terms of the diagonal form of ûS
Ξ that enforces the

componentwise structure of the nonlinearity in the forcing model defined in (2.4). Figure
2(b) illustrates this feedback interconnection between the modified spatio-temporal fre-
quency response and the structured uncertainty, where HS

∇ and û
S
Ξ respectively represent

the spatial discretizations (numerical approximations) of HS
∇ in (2.10) and ûS

Ξ in (2.11).
We are interested in characterizing the horizontal length scales of the most amplified

flow structures under this structured forcing. This amplification can be quantified in
terms of the structured singular value of the modified frequency response operator HS

∇;
see e.g., Packard & Doyle (1993, definition 3.1); Zhou et al. (1996, definition 11.1), which
is defined as follows.

Definition 1. Given wavenumber and frequency pair (kx, kz, ω), the structured sin-
gular value μ

̂U
S

Ξ

[
H S

∇(kx, kz, ω)
]

is defined as:

μ
̂U

S

Ξ

[
H S

∇(kx, kz, ω)
]

:=
1

min{σ̄[ûS
Ξ] : ûS

Ξ ∈ ̂U
S

Ξ, det[I − H S
∇(kx, kz, ω)ûS

Ξ] = 0}
. (2.12)

If no û
S
Ξ ∈ ̂U

S

Ξ makes I − H S
∇û

S
Ξ singular, then μ

̂U
S

Ξ

[H S
∇] := 0.

Here, σ̄[·] is the largest singular value, det[·] is the determinant of the argument, and I
is the identity matrix. The subscript of μ in (2.12) is a set ̂U

S

Ξ containing all uncertainties
having the same block-diagonal structure as û

S
Ξ; i.e.,

̂U
S

Ξ :=
{

diag
(

−û
T
ξ , −û

T
ξ , −û

T
ξ , −û

T
ξ

)
: −û

T
ξ ∈ C

Ny×3Ny

}
, (2.13)

where Ny denotes the number of grid points in y.

Definition 1 suggests that the inverse of the structured singular value 1/μ is the minimal
norm of the perturbation û

S
Ξ that destabilizes the feedback interconnection in figure 2(b)

in the input-output sense defined by the small gain theorem, see Liu & Gayme (2021,
proposition 2.2) and Zhou et al. (1996, theorem 11.8). This interpretation suggests that
the flow field is more sensitive to perturbations with the flow structures associated with
a larger amplification measured by the structured singular value μ. A similar notion
of destabilizing perturbation was also employed to interpret the largest (unstructured)
singular value (Trefethen et al. 1993, p. 581).

Here, the form of structured uncertainty in (2.13) allows the full degrees of freedom for
the complex matrix −û

T
ξ ∈ C

Ny×3Ny for ease of computation. While uξ is not constrained
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Figure 2: Block diagram showing the feedback interconnection of the structured input–
output analysis (SIOA) framework applied to stratified plane Couette flow (PCF). Panel
(a) redraws figure 1(b), where the blocks inside of ( , blue) lines represent the modeled
forcing in equation (2.9) corresponding to the bottom block in figure 1(b) also inside
of ( , blue). Panel (b) redraws panel (a) after discretization with the top block
corresponding to the combination of the two top blocks in panel (a) and the bottom
block corresponding to the bottom block of the panel (a).

to be incompressible, the incompressibility of u and the role of pressure are accounted for
within the current v-ωy formulation. Further refinement to better represent the physics
and uncover the form of uξ requires an extension of both the analysis method and
computational tools. These extensions are beyond the scope of the current work.

We then define the structured response following Liu & Gayme (2021) as:

‖HS
∇‖μ(kx, kz) := sup

ω∈R

μ
̂U

S

Ξ

[
H S

∇(kx, kz, ω)
]

, (2.14)

where sup represents a supremum (least upper bound) operation. Here we abuse the
notation and terminology by writing ‖ · ‖μ (Packard & Doyle, 1993), although this
quantity is not a proper norm. We employ this notation in analogy with the corresponding
unstructured response of the feedback interconnection, which is given by

‖HS
∇‖∞(kx, kz) := sup

ω∈R

σ̄
[
H S

∇(kx, kz, ω)
]

. (2.15)

This quantity is the unstructured counterpart of ‖HS
∇‖μ, which is obtained by replacing

the structured uncertainty set ̂U
S

Ξ with the set of full complex matrices C
4Ny×12Ny . In

both cases, a larger value indicates that the corresponding flow structures (associated
with a particular kx and kz pair) have larger amplification under either structured or
unstructured feedback forcing. For example, a larger value of ‖HS

∇‖μ(kx, kz) indicates
that the corresponding flow structures (associated with a particular kx and kz pair) have
larger amplification under structured feedback forcing in figure 2(b).

2.3. Numerical Method
We employ the Chebyshev differential matrix (Weideman & Reddy 2000; Trefethen

2000) to discretize the operators in equation set (2.7). Our code is validated through com-
parison with the unstratified plane Couette flow and Poiseuille flow results in Jovanović
(2004); Jovanović & Bamieh (2005); Schmid (2007). The implementation of stratification
is validated by reproducing the maximum growth rate of the linear normal mode in a
layered stratified plane Couette flow determined by Eaves & Caulfield (2017, figures 3 and
6(a)), as well as the linear stability predictions for the unstable stratification configuration
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in Olvera & Kerswell (2017, figure 1 and Appendix B). We use Ny = 60 collocation points
not including the boundary points over the wall-normal extent, as well as 48 and 36
logarithmically spaced streamwise and spanwise wavenumbers in the respective spectral
ranges kx ∈ [10−4, 100.48] and kz ∈ [10−2, 101.2], unless otherwise mentioned. To verify
that this resolution is sufficient to achieve grid convergence we recomputed selected results
with 1.5 times the number of collocation points in the wall-normal direction and verified
that the results did not change. The quantity ‖HS

∇‖μ in (2.14) for each wavenumber pair
(kx, kz) is computed using the mussv command in the Robust Control Toolbox (Balas
et al. 2005) of MATLAB. The arguments of mussv employed here include the state-
space model of H S

∇ that samples the frequency domain adaptively. The BlockStructure
argument comprises four full Ny ×3Ny complex matrices, and we use the ‘Uf’ algorithm
option.

3. Structured spatio-temporal frequency response of stratified flow
In this section, we use the structured input–output analysis (SIOA) approach described

in § 2.2 to characterize the flow structures that are most amplified in stably stratified
plane Couette flow (PCF).

3.1. Low-Re low-Rib versus high-Re high-Rib intermittency
In this subsection, we analyze flow structures that are prominent in either the low-Re

low-Rib or the high-Re high-Rib intermittent regimes (Deusebio et al. 2015). Here, we
keep the Prandtl number fixed at Pr = 0.7. This value corresponds to thermally-stratified
air and is the same value studied by Deusebio et al. (2015). We first consider a flow with
Re = 865, Rib = 0.02 and Pr = 0.7, where oblique turbulent bands have been observed
(Deusebio et al. 2015; Taylor et al. 2016). In order to evaluate the relative effect of the
feedback interconnection and the imposed structure, we also compute ‖HS

∇‖∞(kx, kz)
defined in (2.15) and

‖HS‖∞(kx, kz) := sup
ω∈R

σ̄
[
H S(kx, kz, ω)

]
. (3.1)

Here, H S is the discretization of spatio-temporal frequency response operator HS in (2.8),
i.e. the spatio-temporal frequency operator governing the linearized dynamics without the
feedback interconnection. The ‖H‖∞ for unstratified plane Couette and plane Poiseuille
flows were previously analyzed in Jovanović (2004); Schmid (2007); Illingworth (2020).
The quantity in (3.1) describes the maximum singular value of the frequency response
operator HS which represents the maximal gain of HS over all temporal frequencies; i.e.,
the worst-case amplification over harmonic inputs.

Figure 3 shows ‖HS
∇‖μ in panel (a) alongside (b) ‖HS‖∞, and (c) ‖HS

∇‖∞. We indicate
the characteristic wavelength pair λx = 32π, λz = 16π corresponding to the oblique
turbulent bands observed in DNS under the same flow regime (Deusebio et al. 2015;
Taylor et al. 2016, figure 2(b)) in these panels using the symbol (�, black). These
structures are observed to have a characteristic inclination angle (measured from the
streamwise direction in x − z plane) of θ := tan−1(λz/λx) ≈ 27◦, which is indicated in
all panels by the black solid line ( ) that plots λz = λx tan(27◦). While there is some
footprint of these structures and this angle in all three panels, the correspondence with the
peak amplitude is most prominent in panel (a). In fact the peak value of ‖HS

∇‖μ in panel
(a) occurs at streamwise and spanwise wavenumbers associated with the characteristic
wavelengths and angle of the oblique turbulent bands reported in DNS (Deusebio et al.
2015; Taylor et al. 2016), and the line representing the angle of oblique turbulent bands
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Figure 3: (a)log10[‖HS
∇‖μ(kx, kz)], (b)log10[‖HS‖∞(kx, kz)], and (c)log10[‖HS

∇‖∞(kx, kz)]
for stratified plane Couette flow at Re = 865, Rib = 0.02, and Pr = 0.7. Here the symbols
(�) are characteristic wavelengths (λx = 32π, λz = 16π) corresponding to the oblique
turbulent band observed in DNS in the same flow regime (Deusebio et al. 2015; Taylor
et al. 2016). The lines ( ) are λz = λx tan(27◦) indicating the 27◦ angle of the oblique
turbulent bands.

crosses through the center of the narrow roughly elliptical peak region whose principle
axis coincides with this angle. The results in figure 3(a) suggest that the SIOA captures
both the wavelengths and angle of the oblique turbulent bands in the low-Re low-Rib

intermittent regime of stratified PCF. This analysis suggests that these oblique turbulent
bands arise in the intermittent regime of stratified PCF due to their large amplification,
or equivalently their sensitivity to disturbances.

The traditional input–output analysis results, ‖HS‖∞ in panel (b), provide a noticeable
improvement compared with growth rate analysis (as presented in more detail in Ap-
pendix A) and are also able to identify the preferred wavenumber pair in this intermittent
regime. However, this analysis suggests larger amplification of the streamwise elongated
modes. Moreover, the inclusion of an unstructured feedback loop quantified through
‖HS

∇‖∞ in panel (c) correctly orders the relative amplification between the oblique
turbulent bands and streamwise elongated structures (kx ≈ 0). The differences between
‖HS

∇‖∞ and ‖HS‖∞ are likely associated with the additional ∇̂ operator in defining
H∇ in (2.10), which emphasizes flow structures with a larger horizontal wavenumber.
The difference between ‖HS

∇‖μ and ‖HS
∇‖∞ is associated with the structured feedback

interconnection that constrains the permissible feedback pathway, which weakens the
amplification associated with the lift-up mechanism; see similar discussion on unstratified
PCF (Liu & Gayme 2021, section 3.3). A comparison of the results in figure 3 suggests
that it is the imposition of the componentwise structure from the nonlinear terms in (2.3)
further improves the prediction of the oblique turbulent bands.

We now consider the high-Re high-Rib intermittent regime, which was shown to be
qualitatively different in behavior from the low-Re low-Rib intermittent regime (Deusebio
et al. 2015). We first isolate the effect of increasing either Re or Rib. Figure 4(a) presents
‖HS

∇‖μ for a flow with Rib = 0.02 and Re = 4250. The larger colorbar range versus
figure 3 highlights the expected higher magnitudes versus those for a flow with a lower
Reynolds number (Re = 865). We can see that the wavenumber pair of the peak region
extends towards smaller values (larger wavelengths) than those associated with the
oblique turbulent bands that were in the peak region in figure 3(a). Figure 4(b) presents
‖HS

∇‖μ for a higher bulk Richardson number Rib = 0.2541 and the same Re and Pr
values as figure 3(a). Here, the amplification associated with the streamwise varying flow
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(a) (b) (c)

Figure 4: log10[‖HS
∇‖μ(kx, kz)] at Pr = 0.7 and: (a) Re = 4250 and Rib = 0.02; (b)

Re = 865 and Rib = 0.2541, and (c) Re = 52630 and Rib = 0.15.

structures such as the oblique turbulent bands observed in figure 3(a) is reduced and
quasi-horizontal flow structures (kx ≈ 0, kz ≈ 0) show a similar level of amplification
(see the bottom left corner in figure 4(b)). This flow structure associated with kx ≈ 0,
kz ≈ 0 is referred to as quasi-horizontal to distinguish it from a horizontally uniform
mode (kx = 0, kz = 0).

Armed with these insights, we consider the combined high-Re high-Rib intermittent
regime (Re = 52630 and Rib = 0.15), which are the values corresponding to results shown
in figure 7 of Deusebio et al. (2015). Figure 4(c) presents ‖HS

∇‖μ for these parameter
values with an increased wall-normal grid with Ny = 90. Here, the amplification of the
oblique turbulent band is of a similar order to that of flow structures with a wide range
of wavenumber pairs ranging from kx � 10−2 and kz � 1 down to kx ≈ 0 and kz ≈ 0.
These latter flow structures resemble the quasi-horizontal flow structures that have a
horizontal length scale much larger than the vertical length scales, which are limited by
the channel height and therefore restricted to nondimensional scales on the order of 2.
The response in this regime, therefore, shows a large qualitative difference from that in
the low-Re low-Rib (Re = 865 and Rib = 0.02) intermittent regime shown in figure 3(a).
This qualitative difference mirrors the different features in intermittent regimes described
by Deusebio et al. (2015), where oblique turbulent bands are prevalent in the low-Re low-
Rib intermittent regime, but the high-Re high-Rib intermittent regime is characterized
by turbulent-laminar layers indicating a large horizontal length scale.

In figure 4(c), we also observe that the quasi-horizontal flow structures have a stream-
wise wavelength much larger than their spanwise wavelength (λx � λz), which is also
consistent with the observation in Deusebio et al. (2015) that the turbulent and laminar
layers in the high-Re high-Rib intermittent regime are homogeneous in the streamwise
direction. This behavior can be understood through an order of magnitude estimation
of the terms in the continuity equation. We assume highly anisotropic flow with v ≈ 0
under strong stratification, which simplifies the continuity equation to ∂u

∂x + ∂w
∂z = 0.

We further assume that the restoring buoyancy force due to stratification does not have
a preference between streamwise or spanwise directions and, therefore, we also assume
∂u
∂x and ∂w

∂z are the same order of magnitude. However, in the current stratified PCF
configuration, streamwise velocity is associated with a characteristic velocity much larger
than its spanwise counterpart due to the base flow velocity. As a result, streamwise
variation is reduced much faster than spanwise variation (i.e., kx � kz) to keep ∂u

∂x and
∂w
∂z the same order of magnitude.
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3.2. Rib > 1/4: a change in the most amplified flow structures
The Miles-Howard theorem (Miles 1961; Howard 1961) implies that the laminar base

flow would be linearly stable in the limits where ν and κ both are zero if Rib > 1/4.
Although the theorem is not applicable to unsteady flows with finite Re and Pr, it has also
been observed that a ‘marginal’ or ‘critical’ Richardson number near this threshold value
appears to emerge naturally in simulations (Salehipour et al. 2018) and field measurement
(Smyth et al. 2019). In the previous section, we noted that increasing Rib = 0.02 to
Rib = 0.2541, for a fixed Reynolds number of Re = 865, reduces the overall response and
changes the types of flow structures, (kx, kz) wavenumber pairs that exhibit the largest
response, see figures 3(a) and 4(b). In this subsection, we further investigate whether this
apparently marginal threshold Rib � 1/4 is associated with a change in flow structures
and whether this behavior is independent of Re. As in the previous subsection, the
Prandtl number is fixed at Pr = 0.7.

Here, we aggregate results varying over a range of (kx, kz) wavenumber pairs in terms
of the maximum value:

‖HS
∇‖M

μ :=max
kz, kx

‖HS
∇‖μ(kx, kz), (3.2)

over the wavenumber domain kx ∈ [10−6, 100.48] and kz ∈ [10−6, 100.48]. Lowering the
minimum value of the wave number ranges versus those considered in the previous
subsection is motivated by the observation in figure 4 that both the kx and kz values
corresponding to the peak region decrease with increasing Reynolds and Richardson
numbers. To separate streamwise-varying and streamwise-independent flow structures,
we similarly evaluate

‖HS
∇‖sc

μ := max
kz, kx=10−6

‖HS
∇‖μ(kx, kz). (3.3)

This quantity restricts the streamwise wavenumber to kx = 10−6 to approximate the
streamwise constant modes and computes the maximum value over kz ∈ [10−6, 100.48],
where we use an upper bound of 100.48 rather than the larger value of 101.2 to save
computation time. This change in the upper bound was not found to affect the results
since the kz associated with the maximum value was consistently found to be below this
upper bound. The restriction in streamwise wavelengths to kx = 10−6 naturally includes
the quasi-horizontal flow structures prevalent in the high-Re high-Rib regime (kx ≈ 0,
kz ≈ 0) as an extreme case, but excludes streamwise varying flow structures such as the
oblique turbulent bands observed in the low-Re low-Rib regime discussed in § 3.1.

Figure 5 shows the variation of ‖HS
∇‖M

μ (solid lines) and ‖HS
∇‖sc

μ (dashed lines) with
bulk Richardson number Rib ∈ [0, 6] and Reynolds number Re ∈ [865, 15000]. The
quantities ‖HS

∇‖M
μ including streamwise-varying flow structures are very close to ‖HS

∇‖sc
μ

when Rib � 1/4 for the full range of Reynolds numbers Re ∈ [865, 15000] in figure 5(a).
This phenomenon is also reflected in figure 5(b), where for flows with Rib = 0.24 and
Rib = 0.75, the curves for ‖HS

∇‖M
μ and ‖HS

∇‖sc
μ largely overlap. These trends suggest that

the inviscid marginal stability value Rib = 1/4 predicted by the Miles-Howard theorem
(Miles 1961; Howard 1961) for the laminar flow is apparently associated with a change
in the most amplified flow structure in stratified PCF at finite Re and Pr ∼ 1.

The plots in figure 5 show that the largest amplification of the streamwise-invariant
modes represented by ‖HS

∇‖sc
μ (dashed lines) do not appear to be influenced by Rib as

shown by the horizontal dashed lines in figure 5(a) and the overlapping dashed lines
in figure 5(b). We further explore this Rib independence for streamwise constant flow
structures by considering the limit of horizontal invariance ∂x(·) = 0 and ∂z(·) = 0
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(a) (b)

Figure 5: The dependence on Rib and Re of ‖HS
∇‖M

μ ( , black) and ‖HS
∇‖sc

μ ( , red) at
Pr = 0.7. Each black marker on the lines of ‖HS

∇‖M
μ indicates the associated value of (a)

Re and (b) Rib defined in the legend. Each red marker on the lines of ‖HS
∇‖sc

μ indicates
the same parameter value for (a) Re and (b) Rib as the corresponding black one.

(kx = 0 and kz = 0), which directly results in ∂yv = 0 due to the continuity equation.
The boundary condition v(y = ±1) = 0 then directly results in v = 0. Using these
assumptions, the advection terms vanish (i.e., U∂x(·) = 0, and u·∇(·) = 0) in each
momentum and density equation. The terms associated with the background shear and
density gradient also vanish due to zero wall-normal velocity; i.e, vU ′ = vρ′ = 0.

These observations lead to a simplification of the momentum and density equations in
(2.1) to:

∂tu =
1

Re
∂yyu, ∂yp = −Ribρ, (3.4a,b)

∂tw =
1

Re
∂yyw, ∂tρ =

1
RePr

∂yyρ. (3.4c,d)

Here, we can see that horizontal momentum and density field equations are all reduced to
the diffusion equation, and the wall-normal momentum equation is reduced to a balance
between the buoyancy force and the vertical pressure gradient; i.e. to a hydrostatic
balance. This balance suggests that the only dependence on Rib can be absorbed into
the pressure by rescaling pressure and thus does not influence the quasi-horizontal flow
structures. The results presented in figures 3(a) and 4 suggest that flow structures with
kx = 10−4 lead to the same structured response ‖HS

∇‖μ at a wide range of spanwise
wavenumbers kz � 1, and this value is consistent with that of quasi-horizontal flow
structures (kx ≈ 0, kz ≈ 0) that are independent of Rib.

This analysis provides evidence that quasi-horizontal flow structures are associated
with amplification which is independent of Rib. Instead, high Rib (i.e. strong stratifi-
cation) will reduce the amplification of other horizontally-varying flow structures such
as the oblique turbulent bands observed in the low-Re low-Rib intermittent regime of
stably stratified PCF. Furthermore, it appears in figure 5(b) that quasi-horizontal flow
structures are also increasingly amplified as Re increases with scaling law ‖HS

∇‖sc
μ ∼ Re.

This behavior indicates that quasi-horizontal flow structures may prefer a high-Re high-
Rib regime. In § 4, we further explore this scaling law ‖HS

∇‖sc
μ ∼ Re by developing

analytical scaling arguments for ‖HS
∇‖μ in unstratified and streamwise-invariant flow.

3.3. Effects of low and high Pr

The Prandtl number is known to play an important role in the types of flow structures
characterizing stratified PCF (Zhou et al. 2017b,a; Taylor & Zhou 2017; Langham et al.
2020). The Prandtl number also varies over a wide range in different applications. For
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Figure 6: The dependence on PrRib of ‖HS
∇‖M

μ at Re = 4250.

(a) (b)

Figure 7: The dependence on Rib and Pr of ‖HS
∇‖M

μ ( , black) and ‖HS
∇‖sc

μ ( , red)
at Re = 4250. Each black marker on the lines of ‖HS

∇‖M
μ indicates the associated value

of (a) Pr and (b) Rib indicated in the legend. Each red marker on the lines of ‖HS
∇‖sc

μ

indicates the same parameter as the corresponding black marker.

(a) (b) (c)

Figure 8: log10[‖HS
∇‖μ(kx, kz)] at Re = 4250, Rib = 0.02 with three different Prandtl

numbers at (a) Pr = 10−4, (b) Pr = 7, and (c) Pr = 70.

example, Pr � 1 is relevant for flow in the stellar interior; see e.g., (Garaud 2021),
while Prandtl number Pr = 7 corresponds to thermally-stratified water. The Schmidt
number (the analogous parameter to the Prandtl number for compositionally-induced
density variations) for salt-stratified water is significantly larger Sc � 700. Moreover,
the Prandtl number is obviously not well-defined under the inviscid and nondiffusive
assumptions of the Miles-Howard theorem. In this subsection, we explore the effect of
low or high Prandtl numbers on flow structures. Here, we keep the Reynolds number fixed
at Re = 4250 following Zhou et al. (2017a,b). In order to resolve fully the additional scales
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introduced at high Pr, we increase the number of wall-normal grid points to Ny = 120 at
Pr = 70, which is chosen as a more computationally accessible ‘large’ value, as previously
considered by Zhou et al. (2017a,b).

We first investigate the effect of low Pr. The cross-channel density profiles of exact
coherent structures in stratified PCF were shown to match in flows with the same PrRib

at Pr ∈ [10−4, 10−2] (Langham et al. 2020, figure 3). This combined measure PrRib

has been proposed as the natural control parameter for stably stratified shear flows at
the low Prandtl number limit Pr � 1 (Lignieres 1999; Garaud et al. 2015). In order
to further explore this dependence, we plot ‖HS

∇‖M
μ as a function of PrRib for Prandtl

numbers in the range Pr ∈ [10−4, 7] in figure 6. Here, the results ‖HS
∇‖M

μ for Pr ∈
[10−4, 10−1] (magenta dashed lines) again show a natural matching dependence on PrRib.
This behavior breaks down for flows with Pr � 1 as shown in figure 6. A similar end
to the region of matched dependence on PrRib alone is observed in studies using exact
coherent structures, where the density profile at Pr = 0.1 deviates from the matching
profiles for flows with Pr ∈ [10−4, 10−2] yet fixed PrRib (Langham et al. 2020, figure 3).

In figure 7, we plot ‖HS
∇‖M

μ and ‖HS
∇‖sc

μ as a function of Rib and Pr over the respective
ranges Rib ∈ [0, 6] and Pr ∈ [10−4, 70]. Figure 7(a) shows that the marginal stability
value Rib = 1/4 is not associated with any significant changes in the types of flow features
undergoing the largest amplification for flows with Pr = 0.01 (�). Figure 7(b) further
suggests that flows with smaller Pr require a larger Rib to reduce the amplification of
streamwise varying flow structures to the same level as streamwise constant structures.
This behavior is consistent with the observation that the exact coherent structures in
the low Pr limit require a larger Rib to be affected by stratification in PCF (Langham
et al. 2020). Figure 7 further shows that, for flows with high Pr, the quantities ‖HS

∇‖M
μ

and ‖HS
∇‖sc

μ are the same over a wide range of Rib ∈ [0, 6]. In particular, the horizontal
lines plotted in figure 7(a) for flows with different Rib collapse to one line in the high
Pr � 1 regime shown in figure 7(b). This observation is also consistent with Langham
et al. (2020) who noted that in the high Prandtl number limit Pr � 1, the effect of
increasing Rib is mitigated.

In order to investigate in isolation the effect of Prandtl number on the amplification
of each wavenumber pair (kx, kz), in figure 8 we plot ‖HS

∇‖μ(kx, kz) for flows with (a)
Pr = 10−4, (b) Pr = 7 and (c) Pr = 70. The peak region in figure 8(a) at Pr = 10−4

resembles the shape of the peak region for unstratified PCF (Liu & Gayme 2021, figure
4(a)). We have also computed the results for unstratified PCF at the same Reynolds
number Re = 4250 (not shown here), and we find almost the same results as shown
in figure 8(a). This similarity suggests that for the same bulk Richardson number, a
lower Prandtl number will result in a weakening of the stabilizing effect of stratification.
Comparing ‖HS

∇‖μ in figure 4(a) at Pr = 0.7 with the same quantity at Pr = 7 and
Pr = 70, respectively shown in figures 8(b) and 8(c), we notice that the amplification
associated with the wavenumber pair kx = 10−4 and kz = 10−2 increases with Pr. More
specifically, the value of ‖HS

∇‖μ associated with kx = 10−4 and kz = 10−2 becomes
comparable to the values associated with the kx ≈ 10−2 and kz ≈ 10−1 at Pr = 7 as
shown in 8(b). The wavenumber pair kx = 10−4 and kz = 10−2 is associated with the
largest magnitude over (kx, kz) contour region at Pr = 70 as shown in figure 8(c).

The quasi-horizontal flow structures (kx ≈ 0, kz ≈ 0) observed in flows at high Pr have
different features from those previously observed in the high-Re, high-Rib regime (e.g.,
results for flows with Re = 52630 and Rib = 0.15 shown in figure 4(c)) and described in
§ 3.1. This indicates that a new type of quasi-horizontal flow structure appears in flows
with sufficiently high Pr. The appearance of this flow structure at a high Pr suggests that
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(a)‖HS

ux‖∞ (b)‖HS
vy‖∞ (c)‖HS

wz‖∞ (d)‖HS
ρρ‖∞

Figure 9: Componentwise values of log10[‖HS
ij‖∞](kx, kz) at Re = 865, Rib = 0.02,

Pr = 0.7 (ij = ux, vy, wz, ρρ). Note the range of the colorbar for each panel is modified
based on the maximum value of the particular quantity.

(a)‖HS
ux‖∞ (b)‖HS

vy‖∞ (c)‖HS
wz‖∞ (d)‖HS

ρρ‖∞

Figure 10: Componentwise values of log10[‖HS
ij‖∞](kx, kz) at Re = 4250, Rib = 0.02,

Pr = 70 (ij = ux, vy, wz, and ρρ). Note the range of the colorbar for each panel is
modified based on the maximum value of the particular quantity.

this flow structure is associated with fluctuations in the density field. This can be further
explored by isolating the input–output pathway for each component of the momentum
and density equations, i.e. inputs fx, fy, fz, fρ in (2.3) to outputs u, v, w, and ρ. These
input–output pathways can be studied through the definition of operators HS

ij , where
j defines the forcing input component (j = x, y, z, ρ) and i = u, v, w, ρ describes each
velocity or density output component:

HS
ij = ĈS

i

(
iωI3×3 − ÂS

)−1
B̂S

j (3.5)

with

B̂S
x :=B̂S

[I 0 0 0
]T

, B̂S
y := B̂S

[
0 I 0 0

]T
, (3.6a,b)

B̂S
z :=B̂S

[
0 0 I 0

]T
, B̂S

ρ := B̂S
[
0 0 0 I]T

, (3.6c,d)

ĈS
u :=

[I 0 0 0
] ĈS , ĈS

v :=
[
0 I 0 0

] ĈS , (3.6e,f)

ĈS
w :=

[
0 0 I 0

] ĈS , ĈS
ρ :=

[
0 0 0 I] ĈS . (3.6g,h)

Figures 9 and 10 present quantities ‖HS
ij‖∞ ij = ux, vy, wz, and ρρ for the control

parameters (Re = 865, Rib = 0.02, P r = 0.7), and (Re = 4250, Rib = 0.02, P r =
70) respectively. The combined effect of these four panels associated with the input
and output in the same component resembles the shape of ‖HS

∇‖μ at the same flow
regime in figures 3(a) and 8(c). This correspondence is because the structured feedback
interconnections in (2.4a)-(2.4b) constrain the permissible feedback pathway. In figure
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10, panel (d) ‖HS
ρρ‖∞ (associated with input fρ and output ρ) is significantly larger

than other panels for a flow with Pr = 70 suggesting the strong role of density in the
amplification for this parameter range. We can further isolate each component of the
frequency response operator HS

∇ by defining:

HS
∇ij = ∇̂HS

ij . (3.7)

The values ‖HS
∇ij‖∞, not shown here for brevity, show qualitatively similar behavior to

‖HS
ij‖∞ as plotted in figures 9 and 10. This componentwise analysis demonstrates that

the quasi-horizontal flow structures appearing at high Pr are associated with density
fluctuations. The appearance of this type of quasi-horizontal flow structure associated
with density fluctuations in a high Pr regime is qualitatively consistent with previous
observations that sharp density gradients or even density ‘staircases’ can be observed
when Pr is increased (Zhou et al. 2017b; Taylor & Zhou 2017).

4. Scaling for density-associated flow structures when Pr � 1
The previous subsection reveals the appearance of quasi-horizontal flow structures

associated with density fluctuations in the Pr � 1 limit. In this section, we construct
an analytical scaling of ‖HS

∇‖μ in terms of Re and Pr to provide further evidence that
such flow structures prefer the Pr � 1 regime. The analytical scaling in terms of Re and
Pr can also further provide insight into high Re and Pr flow regimes beyond the current
computation range achievable through direct numerical simulations.

We assume streamwise-invariance (kx = 0) and unstratified flow (Rib = 0) to facilitate
analytical derivation. The importance of streamwise-invariant flow structures is suggested
by the quasi-horizontal flow structures (kx ≈ 0 and kz ≈ 0), which are nearly streamwise
constant. The independence with respect to variations in Rib of the amplification of
streamwise-invariant flow structures ‖HS

∇‖sc
μ shown in figures 5 and 7 and the analysis

of Langham et al. (2020) suggest that Rib = 0 (i.e., density fluctuations can be treated
as a passive scalar) is a reasonable regime to consider to obtain further insight. The
analytically derived Re and Pr scalings of each component of HS

ij in (3.5) and HS
∇ij in

(3.7) are presented in theorem 2(a) and (b), respectively.

Theorem 2. Consider streamwise-invariant (kx = 0) unstratified (Rib = 0) plane
Couette flow with a passive scalar ‘density’ field.

(a) Each component of ‖HS
ij‖∞ (i = u, v, w, ρ and j = x, y, z, ρ) scales as:⎡⎢⎢⎣

‖HS
ux‖∞ ‖HS

uy‖∞ ‖HS
uz‖∞ ‖HS

uρ‖∞
‖HS

vx‖∞ ‖HS
vy‖∞ ‖HS

vz‖∞ ‖HS
vρ‖∞

‖HS
wx‖∞ ‖HS

wy‖∞ ‖HS
wz‖∞ ‖HS

wρ‖∞
‖HS

ρx‖∞ ‖HS
ρy‖∞ ‖HS

ρz‖∞ ‖HS
ρρ‖∞

⎤⎥⎥⎦

=

⎡⎢⎢⎣
Re hS

ux(kz) Re2 hS
uy(kz) Re2 hS

uz(kz) 0
0 Re hS

vy(kz) Re hS
vz(kz) 0

0 Re hS
wy(kz) Re hS

wz(kz) 0
0 Re2Pr hS

ρy(kz) Re2Pr hS
ρz(kz) RePr hS

ρρ(kz)

⎤⎥⎥⎦ , (4.1)

where functions hS
ij(kz) are independent of Re and Pr.
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(b) Each component of ‖HS
∇ij‖∞ (i = u, v, w, ρ and j = x, y, z, ρ) scales as:⎡⎢⎢⎣

‖HS
∇ux‖∞ ‖HS

∇uy‖∞ ‖HS
∇uz‖∞ ‖HS

∇uρ‖∞
‖HS

∇vx‖∞ ‖HS
∇vy‖∞ ‖HS

∇vz‖∞ ‖HS
∇vρ‖∞

‖HS
∇wx‖∞ ‖HS

∇wy‖∞ ‖HS
∇wz‖∞ ‖HS

∇wρ‖∞
‖HS

∇ρx‖∞ ‖HS
∇ρy‖∞ ‖HS

∇ρz‖∞ ‖HS
∇ρρ‖∞

⎤⎥⎥⎦

=

⎡⎢⎢⎣
Re hS

∇ux(kz) Re2 hS
∇uy(kz) Re2 hS

∇uz(kz) 0
0 Re hS

∇vy(kz) Re hS
∇vz(kz) 0

0 Re hS
∇wy(kz) Re hS

∇wz(kz) 0
0 Re2Pr hS

∇ρy(kz) Re2Pr hS
∇ρz(kz) RePr hS

∇ρρ(kz)

⎤⎥⎥⎦ , (4.2)

where functions hS
∇ij(kz) are independent of Re and Pr.

The first three columns and three rows presented in equation (4.1) are the same as those
derived in Jovanović (2004, theorem 11) for unstratified wall-bounded shear flows with no
passive scalar field. The details of the proof are presented in Appendix B. These results
demonstrate that the Pr only contributes to the scaling associated with the density
field (here of course assumed to be a passive scalar); i.e. the bottom rows of equations
(4.1) and (4.2) corresponding to the density output. We also note that the rightmost
columns of equations (4.1) and (4.2) show that the forcing in the density equation fρ

does not influence the output corresponding to velocity components u, v, and w, which
is consistent with the assumption that Rib = 0, in that the density perturbation behaves
as a passive scalar.

The effect of imposing a componentwise structure of nonlinearity within the feedback
is analogous to the effect seen in unstratified PCF (Liu & Gayme 2021, section 3.3). The
imposed correlation between each component of the modeled forcing fx,ξ, fy,ξ, fz,ξ, fρ,ξ,
and the respective velocity and density components u, v, w, ρ constrain the influence of
the forcing to its associated component of the velocity or density field. Thus, the overall
scaling of ‖HS

∇‖μ is related to the worst-case scaling of the diagonal terms in equation
(4.2) in theorem 2. The concept is formalized in theorem 3, and we relegate the details
of the proof to Appendix B.

Theorem 3. Given a wavenumber pair (kx, kz).

‖HS
∇‖μ � max[‖HS

∇ux‖∞, ‖HS
∇vy‖∞, ‖HS

∇wz‖∞, ‖HS
∇ρρ‖∞]. (4.3)

We can combine results in theorem 2(b) and theorem 3 to obtain the scaling of ‖HS
∇‖μ

in corollary 4:

Corollary 4. Consider streamwise-invariant (kx = 0) unstratified (Rib = 0) plane
Couette flow with a passive scalar ‘density’ field.

‖HS
∇‖μ(0, kz) � max[Re hS

∇ux(kz), Re hS
∇vy(kz), Re hS

∇wz(kz), RePr hS
∇ρρ(kz)], (4.4)

where functions hS
∇ij(kz) with ij = ux, vy, wz, ρρ are independent of Re and Pr.

Although corollary 4 provides a lower bound on ‖HS
∇‖μ, the numerical results suggest

that ‖HS
∇‖μ follows the same Re and Pr scaling as the right-hand side of (4.4) in corollary

4. For example, corollary 4 suggests that the lower bound of ‖HS
∇‖μ(0, kz) will scale as

∼ Re at a fixed Pr, which is consistent with the red dashed lines of figure 5(b). At a
fixed Re, corollary 4 also suggests that ‖HS

∇‖μ(0, kz) ∼ Pr in the limit Pr � 1, but
‖HS

∇‖μ(0, kz) will become independent of Pr in the limit Pr � 1. This is also consistent
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with the numerical results shown in the red dashed lines of figure 7(b) that suggest
‖HS

∇‖sc
μ ∼ Pr when Pr � 1 and independently of Pr when Pr � 1. For Pr � 1,

theorem 3 and corollary 4 further suggest that the component ‖HS
∇ρρ‖∞ associated with

the density will dominate the overall behavior of ‖HS
∇‖μ, which is consistent with the

large amplification of quasi-horizontal flow structures associated with density fluctuations
‖HS

ρρ‖∞ shown in figure 10(p). Corollary 4 further supports the notion that the flow
structures associated with density fluctuations prefer the flow regime with Pr � 1 under
the assumptions of streamwise-invariant (kx = 0) and unstratified (Rib = 0) flow.

5. Conclusions and future work
In this paper, we have extended the structured input–output analysis (SIOA) originally

developed for unstratified wall-bounded shear flows (Liu & Gayme 2021) to stratified
plane Couette flow (PCF). We first apply SIOA to characterize highly amplified flow
structures in the intermittent regimes of stratified PCF. We first examine how variations
in Re and Rib affect flow structures with Pr = 0.7. SIOA predicts the characteristic
wavelengths and angle of the oblique turbulent bands observed in very large channel size
DNS of the low-Re low-Rib intermittent regime of stratified PCF (Deusebio et al. 2015;
Taylor et al. 2016). In the high-Re high-Rib intermittent regime, SIOA identifies quasi-
horizontal flow structures resembling turbulent-laminar layers (Deusebio et al. 2015).

Having validated the ability of the SIOA approach to predict important structures in
the intermittent regime, we next investigate the behavior of the flow across a range of
the important control parameters Re, Rib and Pr. Increasing Rib is shown to reduce the
amplification of streamwise varying flow structures. The results indicate that the classical
marginally stable Rib = 1/4 for the laminar base flow appears to be associated with a
change in the most amplified flow structures, an observation which is robust for a wide
range of Re and valid at Pr ≈ 1.

We then examine flow behavior at different Rib and Pr. For flows with Pr � 1, a
larger value of Rib is required to reduce the amplification of streamwise varying flow
structures to the same level as streamwise-invariant ones compared with flows with
Pr ≈ 1. The largest amplification also occurs at the same value of PrRib consistent
with the observation of matching averaged density profile for flows with the same value
of PrRib in the Pr � 1 regime (Langham et al. 2020). For flows with Pr � 1, the
SIOA identifies another quasi-horizontal flow structure that is independent of Rib. By
decomposing input–output pathways into each velocity and density component, we show
that these quasi-horizontal flow structures for flows with Pr � 1 are associated with
density fluctuations. The importance of this density-associated flow structure for flows
with Pr � 1 is further highlighted through a derived analytical scaling of amplification
with respect to Re and Pr under the assumptions that the flow is streamwise invariant
(kx = 0) and unstratified (i.e. Rib = 0 and the density behaves as a passive scalar). The
above observations using SIOA distinguish two types of quasi-horizontal flow structures,
one emerging in the high-Re high-Rib regime and the other one (associated with density
fluctuations) emerging in the high Pr regime.

The results here suggest the promise of this computationally tractable approach in
identifying horizontal length scales of prominent flow structures in stratified wall-bounded
shear flows and opens up many directions for future work. For example, this framework
may be extended to other stratified wall-bounded shear flows such as stratified channel
flow (Garcia-Villalba & del Alamo 2011), stratified open channels (Flores & Riley 2011;
Brethouwer et al. 2012; Donda et al. 2015; He & Basu 2015, 2016), and the stratified
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Ekman layer (Deusebio et al. 2014), where intermittent regimes of flow dynamics were also
observed. This framework may be also extended to configurations where the background
density gradient and velocity gradient are orthogonal; e.g., spanwise stratified plane
Couette flow (Facchini et al. 2018; Lucas et al. 2019) and spanwise stratified plane
Poiseuille flow (Le Gal et al. 2021).
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Appendix A. Growth rate analysis
Here, we present the growth rate of the dynamics in equation (2.6) computed as:

R[ÂS(kx, kz)] := max
{
Re

[
eig

(
ÂS(kx, kz)

)]}
, (A 1)

where eig(·) is the eigenvalue of the argument, Re[·] represents the real part, max{·} is the
maximum value of the argument, and ÂS is the discretization of operator ÂS . Figure 11
shows the growth rate R(ÂS)(kx, kz) in (A 1). Here, we observe that this modal growth
rate analysis R(ÂS)(kx, kz) cannot distinguish a preferential structure size over a wide
range of wavenumbers kx � 1 and kz � 10, and there is no identified instability consistent
with Davey & Reid (1977).

Appendix B. Proof of theorems 2-3
B.1. Proof of theorem 2

Proof: The proof of theorem 2 naturally follows the procedure in unstratified flow
(Jovanović 2004; Jovanović & Bamieh 2005; Jovanović 2021) and is outlined as a block
diagram in figure 12. Under the assumption of streamwise-invariance (kx = 0) and taking
the passive scalar limit (Rib = 0) for stratified plane Couette flow (PCF) in theorem 2,
the operators ÂS , B̂S , and ĈS can be simplified and their non-zero elements can be
defined as:
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Figure 11: R(ÂS)(kx, kz) for stratified plane Couette flow in a flow with Re = 865,
Rib = 0.02, and Pr = 0.7.

Figure 12: Block diagram of the frequency response operator that maps forcing in each
momentum and density equation to each velocity and density gradient in streamwise-
invariant (kx = 0) PCF with density assumed to be a passive scalar (i.e. Rib = 0). Here,
Ω1 = ωRe and Ω2 = ωRePr. The block outlined by ( , red) contributes to the scaling
associated with ‖HS

uy‖∞, ‖HS
uz‖∞, while the block outlined by ( . , blue) contributes

to the scaling associated with ‖HS
ρy‖∞, ‖HS

ρz‖∞.

ÂS(kx, kz) =

⎡⎢⎣ ∇̂−2∇̂4

Re 0 0
−ikzU ′ ∇̂2

Re 0
−ρ′ 0 ∇̂2

ReP r

⎤⎥⎦ , (B 1a)

B̂S(kx, kz) =

⎡⎣ 0 −k2
z∇̂−2 −ikz∇̂−2∂y 0

ikz 0 0 0
0 0 0 I

⎤⎦ =:

⎡⎣ 0 B̂S
y,1 B̂S

z,1 0
BS

x,2 0 0 0
0 0 0 B̂S

ρ,3

⎤⎦ (B 1b)

ĈS(kx, kz) =

⎡⎢⎢⎣
0 −i/kz 0
I 0 0

i∂y/kz 0 0
0 0 I

⎤⎥⎥⎦ =:

⎡⎢⎢⎢⎣
0 ĈS

u,2 0
ĈS

v,1 0 0
ĈS

w,1 0 0
0 0 ĈS

ρ,3

⎤⎥⎥⎥⎦ (B 1c)
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We employ a matrix inverse formula for the lower triangle block matrix:⎡⎣L11 0 0
L21 L22 0
L31 0 L33

⎤⎦−1

=

⎡⎣ L−1
11 0 0

−L−1
22 L21L−1

11 L−1
22 0

−L−1
33 L31L−1

11 0 L−1
33

⎤⎦ (B 2)

to compute
(

iωI3×3 − ÂS
)−1

. Then, we employ a change of variable Ω1 = ωRe and Ω2 =
ωRePr to obtain componentwise frequency response operators HS

ij with i = u, v, w, ρ,
and j = x, y, z, ρ as:

HS
ux =ĈS

u,2Re
(

iΩ1I − ∇̂2
)−1

B̂S
x,2, (B 3a)

HS
uy =ĈS

u,2Re
(

iΩ1I − ∇̂2
)−1

(−ikzU ′)Re
(

iΩ1I − ∇̂−2∇̂4
)−1

B̂S
y,1, (B 3b)

HS
uz =ĈS

u,2Re
(

iΩ1I − ∇̂2
)−1

(−ikzU ′)Re
(

iΩ1I − ∇̂−2∇̂4
)−1

B̂S
z,1, (B 3c)

HS
uρ =0, (B 3d)

HS
vx =0, (B 3e)

HS
vy =ĈS

v,1Re
(

iΩ1I − ∇̂−2∇̂4
)−1

B̂S
y,1, (B 3f )

HS
vz =ĈS

v,1Re
(

iΩ1I − ∇̂−2∇̂4
)−1

B̂S
z,1, (B 3g)

HS
vρ =0, (B 3h)

HS
wx =0, (B 3i)

HS
wy =ĈS

w,1Re
(

iΩ1I − ∇̂−2∇̂4
)−1

B̂S
y,1, (B 3j)

HS
wz =ĈS

w,1Re
(

iΩ1I − ∇̂−2∇̂4
)−1

B̂S
z,1, (B 3k)

HS
wρ =0, (B 3l)

HS
ρx =0, (B 3m)

HS
ρy =ĈS

ρ,3RePr
(

iΩ2I − ∇̂2
)−1

(−ρ̄′)Re
(

iΩ1I − ∇̂−2∇̂4
)−1

B̂S
y,1, (B 3n)

HS
ρz =ĈS

ρ,3RePr
(

iΩ2I − ∇̂2
)−1

(−ρ̄′)Re
(

iΩ1I − ∇̂−2∇̂4
)−1

B̂S
z,1, (B 3o)

HS
ρρ =ĈS

ρ,3RePr
(

iΩ2I − ∇̂2
)−1

B̂S
ρ,3. (B 3p)

Taking the operation that ‖ · ‖∞ = sup
ω∈R

σ̄[·] = sup
Ω1∈R

σ̄[·] = sup
Ω2∈R

σ̄[·], we obtain the scaling

relation in theorem 2(a).
Using the relation that HS

∇ij = ∇̂HS
ij in equation (3.7) with i = u, v, w, ρ, and j =

x, y, z, ρ, and similarly employ the notion of ‖ · ‖∞, we obtain the scaling relation in
theorem 2(b). �

In figure 12, the block −ikzU ′ inside the dashed line ( , red) contributes to the
relatively large scalings of ‖HS

uy‖∞ ∼ Re2, ‖HS
uz‖∞ ∼ Re2 at high Re in equation (4.1)

of theorem 2(a), which has been attributed to the lift-up mechanism; see discussion in
Jovanović (2021). Similarly, the block −ρ′ outlined by ( . , blue) contributes to the
relatively large scalings of ‖HS

ρy‖∞ ∼ Re2Pr, and ‖HS
ρz‖∞ ∼ Re2Pr at high Re or Pr.

This similarity between streamwise streaks and density streaks is consistent with the
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observation that passive scalar streaks can be generated by the same lift-up mechanism
as the streamwise streaks (Chernyshenko & Baig 2005).

B.2. Proof of theorem 3
Proof: We define the set of uncertainties:

̂U
S

Ξ,ux :=
{

diag
(

−û
T
ξ , 0 , 0 , 0

)
: −û

T
ξ ∈ C

Ny×3Ny

}
, (B 4a)

̂U
S

Ξ,vy :=
{

diag
(

0 , −û
T
ξ , 0 , 0

)
: −û

T
ξ ∈ C

Ny×3Ny

}
, (B 4b)

̂U
S

Ξ,wz :=
{

diag
(

0 , 0 , −û
T
ξ , 0

)
: −û

T
ξ ∈ C

Ny×3Ny

}
, (B 4c)

̂U
S

Ξ,ρρ :=
{

diag
(

0 , 0 , 0 , −û
T
ξ

)
: −û

T
ξ ∈ C

Ny×3Ny

}
, (B 4d)

Here, 0 ∈ C
Ny×3Ny is a zero matrix with the size Ny × 3Ny. Then, using the definition

of the structured singular value in definition 1, we have:

μ
̂U

S

Ξ,ux

[
H S

∇(kx, kz, ω)
]

=
1

min{σ̄[ûS
Ξ,ux] : ûS

Ξ,ux ∈ ̂U
S

Ξ,ux, det[I − H S
∇(kx, kz, ω)ûS

Ξ,ux] = 0}
(B 5a)

=
1

min{σ̄[−û
T
ξ ] : −û

T
ξ ∈ CNy×3Ny , det[I3Ny

− H S
∇ux(kx, kz, ω)(−û

T
ξ )] = 0}

(B 5b)

=σ̄[H S
∇ux(kx, kz, ω)] (B 5c)

Here, equality (B 5a) is obtained by substituting the uncertainty set in (B 4a) into
definition 1. The equality (B 5b) is obtained by performing a block diagonal partition
of terms inside of det[·] and employing zeros in the uncertainty set in equation (B 4a).
Here, H S

∇ux is the discretization of HS
∇ux and I3Ny ∈ C

3Ny×3Ny in (B 5b) is an identity
matrix with matching size (3Ny × 3Ny), where we use the subscripts to distinguish it
from I ∈ C

12Ny×12Ny in (B 5a). The equality (B 5c) uses the definition of unstructured
singular value; see e.g., (Zhou et al. 1996, equation (11.1)).

Similarly, we have:

μ
̂U

S

Ξ,vy

[
H S

∇(kx, kz, ω)
]

= σ̄[H S
∇vy(kx, kz, ω)], (B 6a)

μ
̂U

S

Ξ,wz

[
H S

∇(kx, kz, ω)
]

= σ̄[H S
∇wz(kx, kz, ω)], (B 6b)

μ
̂U

S

Ξ,ρρ

[
H S

∇(kx, kz, ω)
]

= σ̄[H S
∇ρρ(kx, kz, ω)]. (B 6c)

Using the fact that ̂U
S

Ξ ⊇ ̂U
S

Ξ,ij with ij = ux, vy, wz, ρρ and equalities in (B 5)-(B 6), we
have:

μ
̂U

S

Ξ

[
H S

∇(kx, kz, ω)
]
� μ

̂U
S

Ξ,ij

[
H S

∇(kx, kz, ω)
]

= σ̄[H S
∇ij(kx, kz, ω)]. (B 7)

Applying the supreme operation sup
ω∈R

[·] on (B 7) and using definitions of ‖ · ‖μ and ‖ · ‖∞

we have:

‖HS
∇‖μ �‖HS

∇ux‖∞, ‖HS
∇‖μ � ‖HS

∇vy‖∞, (B 8a,b)

‖HS
∇‖μ �‖HS

∇wz‖∞, ‖HS
∇‖μ � ‖HS

∇ρρ‖∞. (B 8c,d)

This directly results in inequality (4.3) of theorem 3. �
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