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Abstract— This paper describes an estimation algorithm for
velocity and power output signals in a wind farm under chang-
ing wind direction. A graph-theoretic definition describes the
wind farm as a collection of nodes (turbines) and time-varying
weighted edges (inter-turbine wake propagation) that change
as a function of incoming wind direction. The velocity at each
turbine is determined through a discrete input-output model.
Changes in wind direction serve as the input and the output is
defined in terms of a time-varying weighted adjacency matrix
that depends on the time-delay of information propagation
between turbines. These delays, which are defined in terms of
the advection speed of the wind and the distance between the
turbines, capture the delayed effect of wind direction changes
on the inter-connectivity of the graph as the wind conditions at
the farm inlet propagate through the turbine array. An event-
based update framework is employed to capture time-dependent
topology changes due to shifts in wind direction. Simulation
results for dynamically changing wind inlet directions to a
circular wind farm are compared to predictions from both
the static and dynamic versions of the FLOw Redirection and
Induction in Steady State (FLORIS) model. The approach is
shown to enable real-time tracking of dynamic changes to wind
farm power output within a framework that can be easily
integrated into real-time, horizon-based, control strategies that
typically do not account for wind direction changes.

I. INTRODUCTION

Analytical wake models have long been used to predict the
velocity deficits of individual turbines, see e.g. [1], [2], [3].
Recent work has made significant strides in refining these
models in combination with a variety of wake superposition
approaches to generate accurate estimates of the total farm
power output over a range of turbine layouts for fixed wind
directions, see e.g. [4], [5], [6], [7]. Changes in total wind
farm power output for different wind directions have also
been characterized in terms of fixed wind inlet angles to
a given wind farm [8]. Few studies address the dynamic
behavior of the farm as the wind direction changes. However,
accounting for the effect of these changes has been shown to
improve power output estimates [9] and produce more effec-
tive wake steering control versus approaches that assumed a
static wind direction [10], [11].

Prevailing methods typically account for small changes
in wind direction as an uncertainty that is included in
simulations or models by taking a weighted average of the
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results over a range of wind inlet angles surrounding a
desired value. Prior work has demonstrated that averaging the
results of Reynolds-averaged Navier-Stokes (RANS) wind
farm simulations in this manner improves predictions of
the velocity deficit [12]. This approach also improves the
agreement between wake model power output predictions
and field data [13].

Taking the further step of accounting for dynamically
changing wind direction or sweeps over a range of wind di-
rections is challenging and computationally intensive. Previ-
ous approaches include incorporating the directional changes
within a high-fidelity precursor simulation that then generates
inflow conditions for a second large-eddy simulation (LES)
of the wind farm [9], [14] as well as simulations with
a dynamically changing reference frame [15]. Other work
employs a nested simulation framework, where weather
phenomena are modeled in the larger domains, and the
wind farm is located in the smallest domain [16]. These
detailed studies have provided a greater understanding of
the phenomena and highlighted the difficulties of modeling
the associated dynamic changes in wind farm power. For
example, the LES of Munters et al. [9] show that a wind
farm can experience a sharper drop in power output during
a dynamic wind direction sweep than would be predicted
through a series of static simulations at each different but
constant wind inlet direction. This unforeseen reduction in
power output can have a number of impacts in terms of
forecasting the power available from the wind farm for
the power grid. Control approaches require capturing these
dynamic effects in real-time, which limits the applicability
of the computationally expensive prior approaches based on
LES or nested models.

This work takes steps towards a control-oriented modeling
approach through the development of an estimation algorithm
that leverages a network framework to compute the time
evolution of the wind speed at the turbine hub-height and
corresponding power output throughout the wind farm under
dynamically changing wind inlet directions. Our approach
exploits prior work showing the promise of representing a
wind farm as a network of turbines described by a directed
graph with the turbines as nodes and the interactions between
turbines (i.e., the inter-turbine wake propagation) as edges,
see e.g. [17], [18]. Those authors showed that the combi-
nation of such a model with a consensus algorithm led to
improved wind farm speed estimates given noisy field data.
The performance of optimal control algorithms has also been
improved by adding constraints based on the corresponding
wind farm graph [19]. A related network model in [20] used



correlations between power output data from turbines to form
real-time graphs describing the interactions between turbines
in the wind farm. Graph representations have also been used
to study the arbitrage potential of kinetic energy stored in
aligned wind farm configurations [21].

These previous studies relied on static graphs that are
not designed to account for the dynamic changes in the
turbine interconnections resulting from real-time changes in
the wind inlet direction. Accounting for these dynamics is
complicated by the fact that changes in the wind direction
propagate downstream at different rates depending on the
inlet velocity and the geometry of farms. Therefore changes
at the inlet may not be seen at the outlet until several time
steps later. We account for these behaviors by introducing
a time-varying graph framework with edge switching [22].
This type of graph model has been widely used to capture
similar types of information propagation structures, such
as transportation networks [23], [24], [25]. We adopt this
model to our problem setting by defining edges in terms
of the time delays associated with the turbine to turbine
propagation of changes in wind inlet direction as these
effects travel through the farm. This behavior is captured
using a time-dependent adjacency matrix that depends on
the individual time delays associated with each edge. We
impose the dynamic changes in the graph structure due to
shifting wind direction through an event-based framework.
Our algorithm is then constructed as an input-output map that
outputs predictions of the transient response of the system
to a change in wind direction. Each step in the algorithm is
computationally efficient enough to be implemented in real-
time, horizon-based, control strategies, which is an advantage
over current methods that are able to account for dynamic
wind direction changes.

The rest of the paper is organized in the following way:
The model is described in detail in Section II. The model
is validated using steady-state results from an LES and
compared with a dynamic FLORIS simulation of a changing
wind direction in Section III. Section IV presents conclusions
and discusses directions for future work.

II. MODEL FRAMEWORK

We represent the wind farm as a directed graph ¢ =
(A,&), where the turbines define the nodes .4 and the
edges & describe the directed interconnections between
turbines. In particular, when the wake of turbine j influences
turbine i, there is a directed edge connecting node j to node
i with non-negative edge weight whose magnitude is defined
by the strength of the interaction. The adjacency matrix of
%, denoted by A, therefore has elements A; ;=1 if Turbine
i is in the wake of Turbine j and A; ; = 0 if Turbine 7 is not
in the wake of Turbine j. We designate turbines not affected
by the wakes of other turbines as freestream turbines, and
these turbines act as the head nodes of the graph. Clearly,
the structure of the wind farm means that the graph will
not always, or perhaps ever, be connected. However, we can
separate the graph into connected subgraphs, composed of
leader-follower trees. The lead turbines are the freestream

turbines, and the follower turbines for each subgraph are all
the turbines that are weakly connected to each leader turbine,
i.e. there exists a directed path from the lead turbine to
each follower. In this way, we can stack multiple connected
subgraphs to obtain a representation of the entire system.
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Figure 1 shows an example of a graph for an aligned
wind farm where, based on the freestream velocity U,
nodes 1,2, and 3 correspond to freestream turbines, i.e.,
the turbines not affected by wakes of other turbines. For
the given wind direction the graph structure is comprised of
three line graphs with the directed edges shown, where the
lead turbine of each graph only affects those directly behind
it. For example, in Figure 1, for the lead turbine, Turbine
1, the follower turbines would be Turbine 4 and Turbine
7. The three graphs obtained in this example are a product
of the wind direction, the wind farm geometry, and the
atmospheric conditions. For example, different atmospheric
conditions could cause interconnections between the three
graphs if, e.g., increased prevailing turbulence levels cause
larger wake expansion coefficients leading to lateral wake
overlaps. Changes in these conditions may also result in
leader-follower trees that have shared nodes which must be
taken into account in the implementation of the model. The
next three subsections describe the building blocks of the
input-output estimation algorithm.

A. Wind Farm System Graph Identification

We now describe how to identify the steady state graph
representation of the wind farm corresponding to a given
wind direction. The graph of the wind farm depends on the
geometry and the current atmospheric conditions. Voronoi
tessellation is used to partition the domain into cells ob-
tained by placing each vertex equidistant from three nodes
(turbines). We determine the freestream turbines by drawing
a vector from each turbine location to the front of the farm
along the current wind inlet direction. If the line only crosses
one cell, its own, to reach the front of the farm, then it is
determined to be a freestream turbine. Figure 2(a) shows an
example of the line drawn to the front of the farm from the
ninth turbine.

The turbines that are not identified as freestream for a
given wind direction are then tested to determine if they are
in the wake of another turbine. The wake of each turbine
is defined through a linear wake expansion with expansion
coefficient k,, determined from the atmospheric conditions
as

ky =0 —. (1)
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Fig. 2. A simple 10 turbine wind farm example illustrating the process
of defining the wind farm graph. (a) Voronoi cells drawn for a left-to-right
wind direction. The grey shaded cells are the cells on the line from the
ninth node (turbine) to the front of the farm. (b) The leader-follower graphs
resulting from applying the algorithm to this wind farm with left-to-right
wind direction. The different colors represent subgraphs with independent
lead turbines.

Here u* is the friction velocity, U.. is the freestream velocity,
and a* is a model flow parameter of order one. A turbine
is said to be in the wake of an upstream turbine if a line
with slope k,, (in the coordinate frame of the incoming
wind direction) extending from either edge of the upstream
turbine hits the given turbine. To streamline the process, for
each non-freestream turbine, we only test the cells that the
line drawn to identify freestream turbines crossed to reach
the front of the farm for that particular turbine. Taking the
example in Figure 2(a), the cells of the turbines that would be
tested for Turbine (node) 9 are shaded gray. If the upstream
turbine’s wake affects the current turbine, there is an edge
defined between these turbines (nodes). The graph formed
using the configuration shown in Figure 2(a) and k,, = 0.0625
is shown in Figure 2(b), where there is a subgraph associated
with each of the freestream (lead) turbines (nodes 0, 1, 2, and
5) and the different subgraphs are represented by different
colors. In this case Turbine 9 is not in the wake of Turbine
5, even though the cell surrounding that turbine is shaded
(i.e. the line crosses through it). However, a larger value of
k,, may lead to a connection between these turbines. Further
discussion of the definition of the wake coefficients for each
turbine is provided in the next subsection.

Having described the process for identifying the system
graph, we next specify the system dynamics.

B. System Dynamics

The states of the system are the velocity deficits resulting
from the interactions between each turbine pair (i.e. the edges
of the graph). To define this quantity we use the concept
of ‘deficit coefficients’, which represent the normalized ve-
locity deficits between each turbine pair, see e.g. [26]. Our
description of the deficit coefficient at Turbine i caused by
Turbine j, represented by ¢/, is adapted from an existing
turbine deficit model [6] that uses a super Gaussian wake
profile. In particular, we apply this model in the far wake
limit, which produces a fully Gaussian wake profile and leads

to the following definition of the deficit coefficient

o/ =a <1+211<»M>2 [1 +erf(\/§ Adijﬂ W/, (@

where a is the induction factor of the turbine, which is related
to the local coefficient of thrust (C}) by a = C} /(44 C%).
The direct downstream distance between turbines j and i
normalized by the diameter of the turbines is Ad/. The
variable Wl-] is the average of the linear superposition wake
function (Eq. 10 in Ref. [6]) for the wake of Turbine j over
the disk area of Turbine i, which represents the extent of
the effect of the wake of Turbine j. This coefficient can be
computed as
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where the variable r;;, which denotes the distance from
the center of Turbine j’s wake to an infinitesimal point
on the disk area Turbine i, is found using r;; =
V/(Rj+ricos0)2+ (r;sin)2. Here, R; is the distance be-
tween the center of the wake from Turbine j and the center
of the disk of Turbine i.

The wake expansion coefficient varies throughout the farm
depending on the properties of the farm. The local wake
coefficient values for Turbine i, denoted by k,,, lie within
an interval bounded by a freestream value (kg), and a fully
developed, or waked, value (k,qreq). We define the *waked’
region of the wind farm using the height of the internal
boundary layer resulting from the presence of the wind farm
in the atmospheric boundary layer [27], [28], [29]. The fully
developed ‘waked’ region begins when the height of the
internal boundary layer reaches the maximum boundary layer
height, represented by H. Defining the start of the boundary
layer as the location of the freestream turbines, we vary the
wake expansion coefficient linearly between the two values
according to the weighting function

kyw; = ko + (zf{)
where & represents the initial boundary layer height, and
0; is the height of the internal boundary layer at Turbine i,
modeled according to Eq. 34 of Ref. [6].

To form the state vector @y, the individual deficit coef-
ficients calculated between each turbine pair are stacked in
the form

o =[0] 02 o7 .. 0¥ o . o¥ o). ©®

Since we model the interactions between each turbine pair
individually, the system has N states, where N is the number
of turbines. We use the following update model for the
dynamics of the state vector

> [kwaked - kO] ’ (4)

D =A O+ Ey, (6)

where in this case A =I. The input Ej represents the changes
in system state due to the wind direction changes (events) in
our framework. The precise form of Ej is detailed in II-C.



The output of the system is the total wake deficit coeffi-
cient o, which represents the superposition of the individual
deficits that affect a given turbine. Due to the physical system
of the wind farm, the current output of the system is a
function of the states at earlier times, which depends on
edge-specific time delays that arise because of the finite
time it takes information to travel between turbines. This
information, which comprises quantities such as changes
in wind direction or in the wake of a forward turbine, is
contained in the flow field, and thus travels at the speed of
the flow. In other words, this information is a function of
the velocity of the flow field and the distance between two
turbines. The time delay associated with information travel
from Turbine j to i can be approximated as

;i D Ad! 7

(i) = 5 (7

where u; is the local velocity at Turbine j, representing

the speed that information will propagate to Turbine i. The

diagonal of the matrix 7; will be zeros since there is no

delay of information when moving from a turbine to itself.
The corresponding output equation is given by

01 = A7) Pr (), (®)

where A(T;) is a time-dependent adjacency matrix and is
found from the subgraphs present at the delayed time. The
quantity P, (7;) represents the states of the system as a
function of the time delays, and describes the delay of
information propagation (here the change in wind direction)
through the system. The states are updated at every time
step, but the effect of that update does not reach the output
until after the time delay. The architecture of this formulation
results in a linear superposition of the wake velocity deficit
coefficients. These coefficients are related to the velocity
deficit through du; = U, which enables the disk velocity
of the turbines to be found using
/
< ) ©)
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where C} is the local coefficient of thrust for the turbine.
The power from the wind farm is computed using the disk
velocities calculated in Equation (9) as
1 1
Po=cp|-aD* | U3 Ch (10)
2" \4 i
where p is the air density, £D?/4 is the rotor disk area,
and C), is the local coefficient of power. C}, is sometimes
assumed to be the same as the local coefficient of thrust

C} (Betz limit), but in applications it is usually less due to
losses.

C. Network Changes

Our time-varying graph is based on a log-file approach
[22], where the static directions are the snapshots, and the
changes between two snapshots - or two wind directions -
are cataloged in time. The changes that occur in the graph
are then implemented in an event-based framework, wherein

an event is defined when the wind direction changes. The
events are then associated with their application times #;.

For a given event, the model has a current end-goal graph
that represents what the final form of the graph will look
like after the changes have been applied. When a subsequent
event occurs, the final graph for the new wind direction is
calculated and compared with the current end-goal graph.
Changes between these two graphs are noted and sorted as a
function of the time at which the event state reaches a given
turbine. This time is computed as the streamwise distance
between the turbine and the front of the farm divided by the
freestream velocity. Here the front of the farm is defined by
the turbine at the front (i.e. the one that first experiences the
inlet velocity associated with the new wind direction). Once
the changes are defined and sorted, they are integrated into
the existing event framework to be applied at the appropriate
time in the simulation. The input for the system is then
a function of the event parameters that are relevant to the
current application time.

Ep = f(Pr, 7, ASL) (1)

Each input is a function of the new state values ®, ;, the new
time delay values 7., and the list of the edge changes A&, ;.

III. RESULTS
A. Simulation Setup

The model is tested using the circular wind, shown in
Figure 3, farm comprised of 38 SMW NREL reference tur-
bines [30]. The wind direction is referenced by considering
an inflow direction from the north as 0°. It then proceeds
in a clockwise direction, which places the standard left-to-
right inflow to the farm at 270°, as shown in Figure 3. Each
turbine has a height z; = 90 meters and a turbine diameter
D = 126 meters.
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Fig. 3. The circular wind farm configuration used to validate the graph
model. The arrows and angles show the orientation of the wind direction.

The model is validated by comparing the steady-state
results to the average power from LES using Simulator for
Offshore Wind Farm Applications (SOWFA) [31] and the
results of several wake models. We focus on comparisons
with the Area Localized Coupled (ALC) model, introduced
in [29]. The ALC model has been compared to LES of this
circular wind farm with good agreement in the power output



over a range of wind directions. Figure 4 reports the output
of the ALC model, which was run at intervals of 5° alongside
SOWPFA data at intervals of 30°. Here it is clear that the ALC
model captures trends in the LES power for different static
wind directions.
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Fig. 4. A plot of the data comparison taken from [29] of the power from
the LES data (e) and the results from the ALC model run in 5° increments

(-x-)

The LES have a roughness height of zp = 0.15 meters
and average inflow wind speed of U.. = 8.07 m/s. The
simulations use an actuator disk model for the turbines.
The wake models use the same turbine parameters and U
value. The friction velocity for the models is calculated using
u* =Us In(z,/20,,). The values for coefficients of thrust and
power are taken from the analysis in [29].

In the graph model, the values of ko = 0.12 and k,greq =
0.2 were computed from the average values from runs of
the ALC model spanning 90° at 15° increments. The initial
boundary layer height &y is computed using a modified top-
down model in the atmospheric boundary layer [28]. The
maximum boundary layer height was set to 750 m, due to a
temperature inversion at that height in the LES.

The dynamic results are compared to modified dynamic
FLOw Redirection and Induction in Steady State (FLORIS)
simulations under changing inflow directions [32]. FLORIS
is a dynamic model where direction changes are also incorpo-
rated using time delays. However the outputs of FLORIS are
tuned using heuristics, and therefore may not be amenable
to real-time control applications. The model was first tested
on a direction change from 280° to 270°. The change was
implemented at a rate of 2 per minute, for a total time of five
minutes. Figure 5(a) shows the power over the wind direction
change. The plot also includes a steady-state comparison for
an LES simulation, where we only have data for 280°, the
Jensen model [1], [2], the coupled model in Shapiro et al.
[6], and the ALC model [29].

All the models and LES agree well at 280 except the
Jensen model, but the coupled model from Shapiro et al.
diverges at 270°. The Jensen model, while lower than the
other models, perhaps because the way we define the wake
expansion coefficient formulation, exhibits a drop in power
from 2807 to 270° that is similar in magnitude to that of the
graph model, the ALC model, and FLORIS. Since this is the

only model without any optimization of the wake expansion
coefficient, the power output numbers may be less due to the
the assumption of uniform wake behavior through the farm.

The dynamic response of the graph model in Figure 5(a)
is compared to the dynamic FLORIS model implemented
with the same direction change, which is represented by the
solid line. Both of the models exhibit similar trends, with
a ramp down to the 270° value. Though the steady-state
FLORIS power for 270° is lower than that of the graph
model, both models reach a steady state at very similar
times, and the difference in the slope is a result of the
variation in the final values. Modeling differences in the
wake deficits likely account for the range of values for the
power at 270°. The black dashed line in the figure shows
what the predicted power would be for the wind farm if the
current wind direction was assumed to be valid through the
whole wind farm, (i.e. at each wind direction the steady state
output power is computed from a static model). In this case,
the steady-state prediction would show that all the effects of
the change in wind direction are accounted for around the
same time that the dynamic direction models start to show
the effects of the wind direction change. This illustrates that
neglecting the dynamic response to the wind direction change
can lead to inaccurate power output predictions.

Figure 5 also shows the graph connections at different
points in the wind direction change. The wind direction
change is evident in the graph when the initial graph in
Figure 5(1) is compared to the final graph in Figure 5(5).
In the initial graph, the connections between turbines are
predominantly diagonal, while the connections in the final
graph reflect the left-to-right inflow direction. The interme-
diate graphs, in Figure 5(2)-(4), show how the change of
direction propagates through the farm.

When considering the wind farm as a graph, the connec-
tions do not tell the whole story. We must also consider
the intensity of the connections, represented by the weights
of the edges. In this context, the weights indicate how
much the wake of the leading turbine in the edge affects
the power of the following turbine. Figure 6(1)-(5), shows
the weighted connections of the graph, where darker colors
indicate a stronger connection. We can see the importance
of the weights of the connections by noting that even though
the graph for the farm with a 280 wind direction appears to
have more connections, the connections are relatively weak
across the farm. The connections in the graph with a 270
wind direction are much stronger, particularly for the aligned
turbines in the center, resulting in a lower overall power.

We also applied the graph model to a longer change in
wind direction, starting at 280° and finishing at 250°. The
rate of change for the wind direction was kept at 2° per
minute, resulting in a total change time of 15 minutes. Figure
7 shows the power in time from the graph model for this
change. The steady results agree well with the LES data
for the steady state power in both directions, and also with
the model from Shapiro et al. [6], the ALC model, and the
FLORIS model. The Jensen model is lower than all other
points for the 280° case, but is much closer in the 250°



5 5
68 4 (a)
4 S 4
=5
ElR 8 ER
= g =
> 2 - [a > 2
&
+©
1 2 1 4
0 T T T T 58 - T T T 0 T T T T
0 1 2 3 4 5 0 250 500 750 0 1 2 3 4 5
x [km]
5
4—
E 3
=}
> 2
1—
0 T T T T T T T T T T T T

x [km] x [km] x [km]

Fig. 5. The central figure (a) shows the power of the graph model (») as a function of time as the wind direction changes from 280° to 270°, compared
with the dynamic FLORIS simulation (-) and the static power from FLORIS (- -) over the same wind direction change. The model is compared to LES
data at 280 (e), the Jensen/Park model ((J), the coupled model from Shapiro et al. [6] (o), and the ALC model from Starke et al (<)) for both directions.
The numbered figures correspond to the connections of the graph of the wind farm at different points in the wind direction change, which are shown by
(») in (a). Each different color line in Figures (1)-(5) represents a separate subgraph and its connections, each of which have an independent lead turbine.
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Fig. 6. The central figure (a) shows the power of the graph model (») as a function of time as the wind direction changes from 280 to 270°, compared
with the dynamic FLORIS simulation (-) and the static power from FLORIS (- -) over the same wind direction change. The model is compared to LES
data at 280 (e), the Jensen/Park model (OJ), the coupled model from Shapiro et al. [6] (o), and the ALC model from Starke et al (<») for both directions.
The numbered figures correspond to the weighted connections of the graph of the wind farm, where darker colors indicate stronger connections, at different

points in the wind direction change, which are shown by (») in (a). Each different color line in Figures (1)-(5) represents a separate subgraph and its
connections, each of which have an independent lead turbine.
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case.

In the dynamic response, the graph model is compared
with the results from dynamic FLORIS, represented by the
solid black line. We can see that the trends of the two models
agree well, both exhibiting a dip in power before coming
back to a similar value at the end of the simulation. This is
a result of the more aligned nature of the farm at 2707, as
seen in the previous example. The dynamic responses were
again compared with the static step response, depicting the
result if the wind direction is changed through the whole
farm simultaneously, shown by the black dashed line. While
the magnitude and the general trend of these values are
similar, the static response reaches the trough and the final
wind direction steady state much sooner than the dynamic
response. This illustrates that using a static model for wind
farm control under a wind direction change would give an
inaccurate power prediction, rendering control of the system
less effective. For implementation purposes, the graph model
is significantly faster than the dynamic FLORIS model, with
the entire simulation in Figure 7 taking between two and
three minutes. This makes the graph model approximately
20 times faster than the dynamic FLORIS model, which is
an important factor for applicability in control applications.

In addition to the average power of the farm, we can
compare the individual power for each turbine. Figure 8(a)
shows a scatter plot for 280° and Figure 8(b) shows the
scatter plot for 250°, where the individual power of the
turbines predicted by the Jensen/Park model, the coupled
model in [6], the ALC model, the dynamic FLORIS model,
and the graph model, are plotted against the average indi-
vidual turbine power from the LES. The models compare
well with the LES power, but with less spread for the 250°
direction. Since all the models except the ALC model use
a uniform inflow velocity profile, the freestream turbines all
give the same value, which can be seen as a horizontal cap
on the higher values on both plots, while the ALC model
has variation in the freestream turbines. When compared to
the wake models, the graph model provides a reasonable
prediction of the power for each turbine, and gives an
accurate estimation of the total power.

IV. CONCLUSIONS

Operational wind farms are routinely subjected to chang-
ing wind inlet conditions that need to be taken into account in
algorithms that aim to regulate wind farm power output. This
paper introduces a highly efficient analytical wake model
applicable to a wind farm under dynamically changing wind
directions. The model is an estimation algorithm that enables
one to capture propagation of the wind direction changes
through the wind farm. The algorithm takes into account the
fact that turbines further back in the array do not experience
the wind inlet changes until the inlet flow reaches them,
which results in a finite time delay. The model was applied to
a nonuniform wind farm. The model results are comparable
with LES and wake models for a steady wind direction. More
importantly, the model captures the behavior of the power
output over a wind direction sweep more realistically than



static models, which implicitly assume that the direction of
the wind changes for the entire farm simultaneously. The
structure and speed of the model lends itself to integration
into real-time, horizon-based, control strategies. Future work
will examine different wind farm configurations as well as
adding wind speed variability and yaw capability to the
model. Ongoing efforts include incorporating the model into
a power control framework.
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