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Abstract— This paper describes an estimation algorithm for
velocity and power output signals in a wind farm under chang-
ing wind direction. A graph-theoretic definition describes the
wind farm as a collection of nodes (turbines) and time-varying
weighted edges (inter-turbine wake propagation) that change
as a function of incoming wind direction. The velocity at each
turbine is determined through a discrete input-output model.
Changes in wind direction serve as the input and the output is
defined in terms of a time-varying weighted adjacency matrix
that depends on the time-delay of information propagation
between turbines. These delays, which are defined in terms of
the advection speed of the wind and the distance between the
turbines, capture the delayed effect of wind direction changes
on the inter-connectivity of the graph as the wind conditions at
the farm inlet propagate through the turbine array. An event-
based update framework is employed to capture time-dependent
topology changes due to shifts in wind direction. Simulation
results for dynamically changing wind inlet directions to a
circular wind farm are compared to predictions from both
the static and dynamic versions of the FLOw Redirection and
Induction in Steady State (FLORIS) model. The approach is
shown to enable real-time tracking of dynamic changes to wind
farm power output within a framework that can be easily
integrated into real-time, horizon-based, control strategies that
typically do not account for wind direction changes.

I. INTRODUCTION

Analytical wake models have long been used to predict the

velocity deficits of individual turbines, see e.g. [1], [2], [3].

Recent work has made significant strides in refining these

models in combination with a variety of wake superposition

approaches to generate accurate estimates of the total farm

power output over a range of turbine layouts for fixed wind

directions, see e.g. [4], [5], [6], [7]. Changes in total wind

farm power output for different wind directions have also

been characterized in terms of fixed wind inlet angles to

a given wind farm [8]. Few studies address the dynamic

behavior of the farm as the wind direction changes. However,

accounting for the effect of these changes has been shown to

improve power output estimates [9] and produce more effec-

tive wake steering control versus approaches that assumed a

static wind direction [10], [11].

Prevailing methods typically account for small changes

in wind direction as an uncertainty that is included in

simulations or models by taking a weighted average of the
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results over a range of wind inlet angles surrounding a

desired value. Prior work has demonstrated that averaging the

results of Reynolds-averaged Navier-Stokes (RANS) wind

farm simulations in this manner improves predictions of

the velocity deficit [12]. This approach also improves the

agreement between wake model power output predictions

and field data [13].

Taking the further step of accounting for dynamically

changing wind direction or sweeps over a range of wind di-

rections is challenging and computationally intensive. Previ-

ous approaches include incorporating the directional changes

within a high-fidelity precursor simulation that then generates

inflow conditions for a second large-eddy simulation (LES)

of the wind farm [9], [14] as well as simulations with

a dynamically changing reference frame [15]. Other work

employs a nested simulation framework, where weather

phenomena are modeled in the larger domains, and the

wind farm is located in the smallest domain [16]. These

detailed studies have provided a greater understanding of

the phenomena and highlighted the difficulties of modeling

the associated dynamic changes in wind farm power. For

example, the LES of Munters et al. [9] show that a wind

farm can experience a sharper drop in power output during

a dynamic wind direction sweep than would be predicted

through a series of static simulations at each different but

constant wind inlet direction. This unforeseen reduction in

power output can have a number of impacts in terms of

forecasting the power available from the wind farm for

the power grid. Control approaches require capturing these

dynamic effects in real-time, which limits the applicability

of the computationally expensive prior approaches based on

LES or nested models.

This work takes steps towards a control-oriented modeling

approach through the development of an estimation algorithm

that leverages a network framework to compute the time

evolution of the wind speed at the turbine hub-height and

corresponding power output throughout the wind farm under

dynamically changing wind inlet directions. Our approach

exploits prior work showing the promise of representing a

wind farm as a network of turbines described by a directed

graph with the turbines as nodes and the interactions between

turbines (i.e., the inter-turbine wake propagation) as edges,

see e.g. [17], [18]. Those authors showed that the combi-

nation of such a model with a consensus algorithm led to

improved wind farm speed estimates given noisy field data.

The performance of optimal control algorithms has also been

improved by adding constraints based on the corresponding

wind farm graph [19]. A related network model in [20] used



correlations between power output data from turbines to form

real-time graphs describing the interactions between turbines

in the wind farm. Graph representations have also been used

to study the arbitrage potential of kinetic energy stored in

aligned wind farm configurations [21].

These previous studies relied on static graphs that are

not designed to account for the dynamic changes in the

turbine interconnections resulting from real-time changes in

the wind inlet direction. Accounting for these dynamics is

complicated by the fact that changes in the wind direction

propagate downstream at different rates depending on the

inlet velocity and the geometry of farms. Therefore changes

at the inlet may not be seen at the outlet until several time

steps later. We account for these behaviors by introducing

a time-varying graph framework with edge switching [22].

This type of graph model has been widely used to capture

similar types of information propagation structures, such

as transportation networks [23], [24], [25]. We adopt this

model to our problem setting by defining edges in terms

of the time delays associated with the turbine to turbine

propagation of changes in wind inlet direction as these

effects travel through the farm. This behavior is captured

using a time-dependent adjacency matrix that depends on

the individual time delays associated with each edge. We

impose the dynamic changes in the graph structure due to

shifting wind direction through an event-based framework.

Our algorithm is then constructed as an input-output map that

outputs predictions of the transient response of the system

to a change in wind direction. Each step in the algorithm is

computationally efficient enough to be implemented in real-

time, horizon-based, control strategies, which is an advantage

over current methods that are able to account for dynamic

wind direction changes.

The rest of the paper is organized in the following way:

The model is described in detail in Section II. The model

is validated using steady-state results from an LES and

compared with a dynamic FLORIS simulation of a changing

wind direction in Section III. Section IV presents conclusions

and discusses directions for future work.

II. MODEL FRAMEWORK

We represent the wind farm as a directed graph G =
(N ,E ), where the turbines define the nodes N and the

edges E describe the directed interconnections between

turbines. In particular, when the wake of turbine j influences

turbine i, there is a directed edge connecting node j to node

i with non-negative edge weight whose magnitude is defined

by the strength of the interaction. The adjacency matrix of

G , denoted by Λ, therefore has elements λi, j = 1 if Turbine

i is in the wake of Turbine j and λi, j = 0 if Turbine i is not

in the wake of Turbine j. We designate turbines not affected

by the wakes of other turbines as freestream turbines, and

these turbines act as the head nodes of the graph. Clearly,

the structure of the wind farm means that the graph will

not always, or perhaps ever, be connected. However, we can

separate the graph into connected subgraphs, composed of

leader-follower trees. The lead turbines are the freestream

turbines, and the follower turbines for each subgraph are all

the turbines that are weakly connected to each leader turbine,

i.e. there exists a directed path from the lead turbine to

each follower. In this way, we can stack multiple connected

subgraphs to obtain a representation of the entire system.

Fig. 1. Example of a graph for an aligned wind farm.

Figure 1 shows an example of a graph for an aligned

wind farm where, based on the freestream velocity U∞,

nodes 1, 2, and 3 correspond to freestream turbines, i.e.,

the turbines not affected by wakes of other turbines. For

the given wind direction the graph structure is comprised of

three line graphs with the directed edges shown, where the

lead turbine of each graph only affects those directly behind

it. For example, in Figure 1, for the lead turbine, Turbine

1, the follower turbines would be Turbine 4 and Turbine

7. The three graphs obtained in this example are a product

of the wind direction, the wind farm geometry, and the

atmospheric conditions. For example, different atmospheric

conditions could cause interconnections between the three

graphs if, e.g., increased prevailing turbulence levels cause

larger wake expansion coefficients leading to lateral wake

overlaps. Changes in these conditions may also result in

leader-follower trees that have shared nodes which must be

taken into account in the implementation of the model. The

next three subsections describe the building blocks of the

input-output estimation algorithm.

A. Wind Farm System Graph Identification
We now describe how to identify the steady state graph

representation of the wind farm corresponding to a given

wind direction. The graph of the wind farm depends on the

geometry and the current atmospheric conditions. Voronoi

tessellation is used to partition the domain into cells ob-

tained by placing each vertex equidistant from three nodes

(turbines). We determine the freestream turbines by drawing

a vector from each turbine location to the front of the farm

along the current wind inlet direction. If the line only crosses

one cell, its own, to reach the front of the farm, then it is

determined to be a freestream turbine. Figure 2(a) shows an

example of the line drawn to the front of the farm from the

ninth turbine.
The turbines that are not identified as freestream for a

given wind direction are then tested to determine if they are

in the wake of another turbine. The wake of each turbine

is defined through a linear wake expansion with expansion

coefficient kw determined from the atmospheric conditions

as

kw = α∗ u∗

U∞
. (1)



Fig. 2. A simple 10 turbine wind farm example illustrating the process
of defining the wind farm graph. (a) Voronoi cells drawn for a left-to-right
wind direction. The grey shaded cells are the cells on the line from the
ninth node (turbine) to the front of the farm. (b) The leader-follower graphs
resulting from applying the algorithm to this wind farm with left-to-right
wind direction. The different colors represent subgraphs with independent
lead turbines.

Here u∗ is the friction velocity, U∞ is the freestream velocity,

and α∗ is a model flow parameter of order one. A turbine

is said to be in the wake of an upstream turbine if a line

with slope kw (in the coordinate frame of the incoming

wind direction) extending from either edge of the upstream

turbine hits the given turbine. To streamline the process, for

each non-freestream turbine, we only test the cells that the

line drawn to identify freestream turbines crossed to reach

the front of the farm for that particular turbine. Taking the

example in Figure 2(a), the cells of the turbines that would be

tested for Turbine (node) 9 are shaded gray. If the upstream

turbine’s wake affects the current turbine, there is an edge

defined between these turbines (nodes). The graph formed

using the configuration shown in Figure 2(a) and kw = 0.0625

is shown in Figure 2(b), where there is a subgraph associated

with each of the freestream (lead) turbines (nodes 0, 1, 2, and

5) and the different subgraphs are represented by different

colors. In this case Turbine 9 is not in the wake of Turbine

5, even though the cell surrounding that turbine is shaded

(i.e. the line crosses through it). However, a larger value of

kw may lead to a connection between these turbines. Further

discussion of the definition of the wake coefficients for each

turbine is provided in the next subsection.

Having described the process for identifying the system

graph, we next specify the system dynamics.

B. System Dynamics

The states of the system are the velocity deficits resulting

from the interactions between each turbine pair (i.e. the edges

of the graph). To define this quantity we use the concept

of ‘deficit coefficients’, which represent the normalized ve-

locity deficits between each turbine pair, see e.g. [26]. Our

description of the deficit coefficient at Turbine i caused by

Turbine j, represented by φ j
i , is adapted from an existing

turbine deficit model [6] that uses a super Gaussian wake

profile. In particular, we apply this model in the far wake

limit, which produces a fully Gaussian wake profile and leads

to the following definition of the deficit coefficient

φ j
i = a

(
1

1+2kwΔd j
i

)2 [
1+ erf

(√
2 Δd j

i

)]
W j

i , (2)

where a is the induction factor of the turbine, which is related

to the local coefficient of thrust (C′
T ) by a = C′

T/(4+C′
T ).

The direct downstream distance between turbines j and i
normalized by the diameter of the turbines is Δd j

i . The

variable W j
i is the average of the linear superposition wake

function (Eq. 10 in Ref. [6]) for the wake of Turbine j over

the disk area of Turbine i, which represents the extent of

the effect of the wake of Turbine j. This coefficient can be

computed as

W j
i =

1

2πR2
i

∫ Ri

0

∫ 2π

0
W (DΔd j

i ,ri, j) ri dθdri, (3)

where the variable ri, j, which denotes the distance from

the center of Turbine j’s wake to an infinitesimal point

on the disk area Turbine i, is found using ri, j =√
(R j + ri cosθ)2 +(ri sinθ)2. Here, R j is the distance be-

tween the center of the wake from Turbine j and the center

of the disk of Turbine i.
The wake expansion coefficient varies throughout the farm

depending on the properties of the farm. The local wake

coefficient values for Turbine i, denoted by kwi , lie within

an interval bounded by a freestream value (k0), and a fully

developed, or waked, value (kwaked). We define the ’waked’

region of the wind farm using the height of the internal

boundary layer resulting from the presence of the wind farm

in the atmospheric boundary layer [27], [28], [29]. The fully

developed ‘waked’ region begins when the height of the

internal boundary layer reaches the maximum boundary layer

height, represented by H. Defining the start of the boundary

layer as the location of the freestream turbines, we vary the

wake expansion coefficient linearly between the two values

according to the weighting function

kwi = k0 +

(
δi −δ0

H −δ0

)
[kwaked − k0] , (4)

where δ0 represents the initial boundary layer height, and

δi is the height of the internal boundary layer at Turbine i,
modeled according to Eq. 34 of Ref. [6].

To form the state vector Φk, the individual deficit coef-

ficients calculated between each turbine pair are stacked in

the form

Φk =
[
φ 1

1 φ 2
1 φ 3

1 ... φ N
1 φ 1

2 ... φ N−1
N φ N

N
]T

. (5)

Since we model the interactions between each turbine pair

individually, the system has N2 states, where N is the number

of turbines. We use the following update model for the

dynamics of the state vector

Φk+1 = A Φk +Ek, (6)

where in this case A= I. The input Ek represents the changes

in system state due to the wind direction changes (events) in

our framework. The precise form of Ek is detailed in II-C.



The output of the system is the total wake deficit coeffi-

cient α , which represents the superposition of the individual

deficits that affect a given turbine. Due to the physical system

of the wind farm, the current output of the system is a

function of the states at earlier times, which depends on

edge-specific time delays that arise because of the finite

time it takes information to travel between turbines. This

information, which comprises quantities such as changes

in wind direction or in the wake of a forward turbine, is

contained in the flow field, and thus travels at the speed of

the flow. In other words, this information is a function of

the velocity of the flow field and the distance between two

turbines. The time delay associated with information travel

from Turbine j to i can be approximated as

τ i
k,(i) =

D Δd j
i

u j
, (7)

where u j is the local velocity at Turbine j, representing

the speed that information will propagate to Turbine i. The

diagonal of the matrix τk will be zeros since there is no

delay of information when moving from a turbine to itself.

The corresponding output equation is given by

αk+1 = Λ(τk)Φk(τk), (8)

where Λ(τk) is a time-dependent adjacency matrix and is

found from the subgraphs present at the delayed time. The

quantity Φk(τk) represents the states of the system as a

function of the time delays, and describes the delay of

information propagation (here the change in wind direction)

through the system. The states are updated at every time

step, but the effect of that update does not reach the output

until after the time delay. The architecture of this formulation

results in a linear superposition of the wake velocity deficit

coefficients. These coefficients are related to the velocity

deficit through δui = αiU∞, which enables the disk velocity

of the turbines to be found using

Ud,k+1 =U∞ (1−αk+1)

(
1− C′

T
4+C′

T

)
(9)

where C′
T is the local coefficient of thrust for the turbine.

The power from the wind farm is computed using the disk

velocities calculated in Equation (9) as

Pk =
1

2
ρ
(

1

4
πD2

)
U3

d,k+1C′
P (10)

where ρ is the air density, πD2/4 is the rotor disk area,

and C′
P is the local coefficient of power. C′

P is sometimes

assumed to be the same as the local coefficient of thrust

C′
T (Betz limit), but in applications it is usually less due to

losses.

C. Network Changes

Our time-varying graph is based on a log-file approach

[22], where the static directions are the snapshots, and the

changes between two snapshots - or two wind directions -

are cataloged in time. The changes that occur in the graph

are then implemented in an event-based framework, wherein

an event is defined when the wind direction changes. The

events are then associated with their application times tk.

For a given event, the model has a current end-goal graph

that represents what the final form of the graph will look

like after the changes have been applied. When a subsequent

event occurs, the final graph for the new wind direction is

calculated and compared with the current end-goal graph.

Changes between these two graphs are noted and sorted as a

function of the time at which the event state reaches a given

turbine. This time is computed as the streamwise distance

between the turbine and the front of the farm divided by the

freestream velocity. Here the front of the farm is defined by

the turbine at the front (i.e. the one that first experiences the

inlet velocity associated with the new wind direction). Once

the changes are defined and sorted, they are integrated into

the existing event framework to be applied at the appropriate

time in the simulation. The input for the system is then

a function of the event parameters that are relevant to the

current application time.

Ek = f (Φk,τk,ΔEk) (11)

Each input is a function of the new state values Φe,i, the new

time delay values τe,i, and the list of the edge changes ΔEe,i.

III. RESULTS

A. Simulation Setup

The model is tested using the circular wind, shown in

Figure 3, farm comprised of 38 5MW NREL reference tur-

bines [30]. The wind direction is referenced by considering

an inflow direction from the north as 0o. It then proceeds

in a clockwise direction, which places the standard left-to-

right inflow to the farm at 270o, as shown in Figure 3. Each

turbine has a height zh = 90 meters and a turbine diameter

D = 126 meters.

Fig. 3. The circular wind farm configuration used to validate the graph
model. The arrows and angles show the orientation of the wind direction.

The model is validated by comparing the steady-state

results to the average power from LES using Simulator for

Offshore Wind Farm Applications (SOWFA) [31] and the

results of several wake models. We focus on comparisons

with the Area Localized Coupled (ALC) model, introduced

in [29]. The ALC model has been compared to LES of this

circular wind farm with good agreement in the power output



over a range of wind directions. Figure 4 reports the output

of the ALC model, which was run at intervals of 5o alongside

SOWFA data at intervals of 30o. Here it is clear that the ALC

model captures trends in the LES power for different static

wind directions.
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Fig. 4. A plot of the data comparison taken from [29] of the power from
the LES data (•) and the results from the ALC model run in 5o increments
(-x-)

The LES have a roughness height of z0 = 0.15 meters

and average inflow wind speed of U∞ = 8.07 m/s. The

simulations use an actuator disk model for the turbines.

The wake models use the same turbine parameters and U∞
value. The friction velocity for the models is calculated using

u∗ =U∞ ln(zh/z0,lo). The values for coefficients of thrust and

power are taken from the analysis in [29].
In the graph model, the values of k0 = 0.12 and kwaked =

0.2 were computed from the average values from runs of

the ALC model spanning 90o at 15o increments. The initial

boundary layer height δ0 is computed using a modified top-

down model in the atmospheric boundary layer [28]. The

maximum boundary layer height was set to 750 m, due to a

temperature inversion at that height in the LES.
The dynamic results are compared to modified dynamic

FLOw Redirection and Induction in Steady State (FLORIS)

simulations under changing inflow directions [32]. FLORIS

is a dynamic model where direction changes are also incorpo-

rated using time delays. However the outputs of FLORIS are

tuned using heuristics, and therefore may not be amenable

to real-time control applications. The model was first tested

on a direction change from 280o to 270o. The change was

implemented at a rate of 2o per minute, for a total time of five

minutes. Figure 5(a) shows the power over the wind direction

change. The plot also includes a steady-state comparison for

an LES simulation, where we only have data for 280o, the

Jensen model [1], [2], the coupled model in Shapiro et al.

[6], and the ALC model [29].
All the models and LES agree well at 280o except the

Jensen model, but the coupled model from Shapiro et al.

diverges at 270o. The Jensen model, while lower than the

other models, perhaps because the way we define the wake

expansion coefficient formulation, exhibits a drop in power

from 280o to 270o that is similar in magnitude to that of the

graph model, the ALC model, and FLORIS. Since this is the

only model without any optimization of the wake expansion

coefficient, the power output numbers may be less due to the

the assumption of uniform wake behavior through the farm.

The dynamic response of the graph model in Figure 5(a)

is compared to the dynamic FLORIS model implemented

with the same direction change, which is represented by the

solid line. Both of the models exhibit similar trends, with

a ramp down to the 270o value. Though the steady-state

FLORIS power for 270o is lower than that of the graph

model, both models reach a steady state at very similar

times, and the difference in the slope is a result of the

variation in the final values. Modeling differences in the

wake deficits likely account for the range of values for the

power at 270o. The black dashed line in the figure shows

what the predicted power would be for the wind farm if the

current wind direction was assumed to be valid through the

whole wind farm, (i.e. at each wind direction the steady state

output power is computed from a static model). In this case,

the steady-state prediction would show that all the effects of

the change in wind direction are accounted for around the

same time that the dynamic direction models start to show

the effects of the wind direction change. This illustrates that

neglecting the dynamic response to the wind direction change

can lead to inaccurate power output predictions.

Figure 5 also shows the graph connections at different

points in the wind direction change. The wind direction

change is evident in the graph when the initial graph in

Figure 5(1) is compared to the final graph in Figure 5(5).

In the initial graph, the connections between turbines are

predominantly diagonal, while the connections in the final

graph reflect the left-to-right inflow direction. The interme-

diate graphs, in Figure 5(2)-(4), show how the change of

direction propagates through the farm.

When considering the wind farm as a graph, the connec-

tions do not tell the whole story. We must also consider

the intensity of the connections, represented by the weights

of the edges. In this context, the weights indicate how

much the wake of the leading turbine in the edge affects

the power of the following turbine. Figure 6(1)-(5), shows

the weighted connections of the graph, where darker colors

indicate a stronger connection. We can see the importance

of the weights of the connections by noting that even though

the graph for the farm with a 280o wind direction appears to

have more connections, the connections are relatively weak

across the farm. The connections in the graph with a 270o

wind direction are much stronger, particularly for the aligned

turbines in the center, resulting in a lower overall power.

We also applied the graph model to a longer change in

wind direction, starting at 280o and finishing at 250o. The

rate of change for the wind direction was kept at 2o per

minute, resulting in a total change time of 15 minutes. Figure

7 shows the power in time from the graph model for this

change. The steady results agree well with the LES data

for the steady state power in both directions, and also with

the model from Shapiro et al. [6], the ALC model, and the

FLORIS model. The Jensen model is lower than all other

points for the 280o case, but is much closer in the 250o
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Fig. 5. The central figure (a) shows the power of the graph model (�) as a function of time as the wind direction changes from 280o to 270o, compared
with the dynamic FLORIS simulation (-) and the static power from FLORIS (- -) over the same wind direction change. The model is compared to LES
data at 280o (•), the Jensen/Park model (�), the coupled model from Shapiro et al. [6] (◦), and the ALC model from Starke et al (♦) for both directions.
The numbered figures correspond to the connections of the graph of the wind farm at different points in the wind direction change, which are shown by
(�) in (a). Each different color line in Figures (1)-(5) represents a separate subgraph and its connections, each of which have an independent lead turbine.
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Fig. 6. The central figure (a) shows the power of the graph model (�) as a function of time as the wind direction changes from 280o to 270o, compared
with the dynamic FLORIS simulation (-) and the static power from FLORIS (- -) over the same wind direction change. The model is compared to LES
data at 280o (•), the Jensen/Park model (�), the coupled model from Shapiro et al. [6] (◦), and the ALC model from Starke et al (♦) for both directions.
The numbered figures correspond to the weighted connections of the graph of the wind farm, where darker colors indicate stronger connections, at different
points in the wind direction change, which are shown by (�) in (a). Each different color line in Figures (1)-(5) represents a separate subgraph and its
connections, each of which have an independent lead turbine.
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Fig. 7. The power prediction of the graph model (�) as the wind direction
changes from 280o to 250o at a rate of 2o per minute, compared with the
FLORIS simulation (-) and the static power from FLORIS (- -) for the same
wind directions. The endpoints are compared with LES data (•), the Jensen
model (�), the model in Shapiro et al.[6] (◦), and the ALC Model from
Starke et al. [29] (♦)

Fig. 8. Scatter plots comparing the model-predicted power with the LES
data for the LES wind directions (a) 280o and (b) 250o, for the Jensen
model (� ), the model in Shapiro et al.[6] (◦), the ALC model in Starke
et al.[29] (♦), the FLORIS model (�), and the graph model (�). A 1:1
relationship is represented by a 45o line (- -).

case.

In the dynamic response, the graph model is compared

with the results from dynamic FLORIS, represented by the

solid black line. We can see that the trends of the two models

agree well, both exhibiting a dip in power before coming

back to a similar value at the end of the simulation. This is

a result of the more aligned nature of the farm at 270o, as

seen in the previous example. The dynamic responses were

again compared with the static step response, depicting the

result if the wind direction is changed through the whole

farm simultaneously, shown by the black dashed line. While

the magnitude and the general trend of these values are

similar, the static response reaches the trough and the final

wind direction steady state much sooner than the dynamic

response. This illustrates that using a static model for wind

farm control under a wind direction change would give an

inaccurate power prediction, rendering control of the system

less effective. For implementation purposes, the graph model

is significantly faster than the dynamic FLORIS model, with

the entire simulation in Figure 7 taking between two and

three minutes. This makes the graph model approximately

20 times faster than the dynamic FLORIS model, which is

an important factor for applicability in control applications.

In addition to the average power of the farm, we can

compare the individual power for each turbine. Figure 8(a)

shows a scatter plot for 280o and Figure 8(b) shows the

scatter plot for 250o, where the individual power of the

turbines predicted by the Jensen/Park model, the coupled

model in [6], the ALC model, the dynamic FLORIS model,

and the graph model, are plotted against the average indi-

vidual turbine power from the LES. The models compare

well with the LES power, but with less spread for the 250o

direction. Since all the models except the ALC model use

a uniform inflow velocity profile, the freestream turbines all

give the same value, which can be seen as a horizontal cap

on the higher values on both plots, while the ALC model

has variation in the freestream turbines. When compared to

the wake models, the graph model provides a reasonable

prediction of the power for each turbine, and gives an

accurate estimation of the total power.

IV. CONCLUSIONS

Operational wind farms are routinely subjected to chang-

ing wind inlet conditions that need to be taken into account in

algorithms that aim to regulate wind farm power output. This

paper introduces a highly efficient analytical wake model

applicable to a wind farm under dynamically changing wind

directions. The model is an estimation algorithm that enables

one to capture propagation of the wind direction changes

through the wind farm. The algorithm takes into account the

fact that turbines further back in the array do not experience

the wind inlet changes until the inlet flow reaches them,

which results in a finite time delay. The model was applied to

a nonuniform wind farm. The model results are comparable

with LES and wake models for a steady wind direction. More

importantly, the model captures the behavior of the power

output over a wind direction sweep more realistically than



static models, which implicitly assume that the direction of

the wind changes for the entire farm simultaneously. The

structure and speed of the model lends itself to integration

into real-time, horizon-based, control strategies. Future work

will examine different wind farm configurations as well as

adding wind speed variability and yaw capability to the

model. Ongoing efforts include incorporating the model into

a power control framework.
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