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ABSTRACT
In this work, we apply structured input-output analysis

to study optimal perturbations and dominant flow patterns in

transitional plane Couette-Poiseuille flow. The results demon-

strate that this approach predicts the high structured gain of

perturbations with wavelengths corresponding to the oblique

turbulent bands observed in experiments. The inclination an-

gles of these structures and their Reynolds number dependence

are also consistent with previously observed trends. Reynolds

number scalings of the maximally amplified structures for an

intermediate laminar profile that is equally balanced between

plane Couette and Poiseuille flow show an exponent that is

at the midpoint of previously computed values for these two

flows. However, the dependence of these scaling exponents on

the shape of laminar flow as the relative contribution moves

from predominately plane Couette to Poiseuille flow is not

monotonic and our analysis indicates the emergence of dif-

ferent optimal perturbation structures through the parameter

regime. Finally we adapt our approach to estimate the advec-

tion speeds of oblique turbulent bands in plane Couette flow

and Poiseuille flow by computing their phase speed. The re-

sults show good agreement with prior predictions of the con-

vection speeds of these structures from direct numerical simu-

lations, which suggests that this framework has further poten-

tial in examining the dynamics of these structures.

INTRODUCTION
A coexistence of turbulent and laminar behavior has been

observed in wall-bounded shear flows as they transition from

a laminar to a turbulent regime (Tuckerman et al., 2020). This

transitional state has been observed to take the form of bands

of laminar and turbulent regions that form an oblique angle

with the streamwise direction (Prigent et al., 2003; Kanazawa,

2018). Numerical simulations (Tuckerman & Barkley, 2011;

Tuckerman et al., 2014; Fukudome & Iida, 2012) and experi-

ments (Prigent et al., 2003) have indicated that both the wave-

lengths and inclination angles of these structures are Reynolds

number dependent. The sensitivity of the flow to perturbations

of this type has been exploited through the use of these flow

patterns as initial conditions to trigger turbulence in direct nu-

merical simulations (DNS) (Tao et al., 2018).

While the prevalence and large amplification of oblique

turbulent bands in transitional wall-bounded shear flows has

been widely observed, a comprehensive understanding of their

underlying dynamics and role in transition has yet to be re-

alized. Study of these structures is complicated by the very

large channel size (∼ O(100) channel half-heights) required

to observe them, see e.g., (Prigent et al., 2002; Tuckerman

& Barkley, 2011; Kim et al., 2020). Computations of exact

coherent structures in channel flows also highlight the large

domain sizes required to characterize the laminar-turbulent in-

terface of these flow patterns (Schneider et al., 2010). These

large channel extents increase the computational costs of DNS

and complexity of experiments needed to further study these

structures.

Input-output analysis of the linearized Navier-Stokes

(LNS) equations (Jovanović & Bamieh, 2005) provides a com-

putationally tractable tool that has shown promise in analyz-

ing transitional wall-bounded shear flows. In particular, the

recently introduced structured input-output analysis has been

shown to predict large amplification of similar oblique struc-

tures in transitional plane Couette and Poiseuille flow (Liu &

Gayme, 2021). Both the large energy growth and features

of the structures identified show good agreement with results

from experiments (Prigent et al., 2003) and DNS (Kanazawa,

2018), as well as predictions of nonlinear optimal perturbation

analysis (Rabin et al., 2012; Farano et al., 2015).

In this work we apply structured input-output analysis

to transitional plane Couette-Poiseuille flow (CPF). We first

focus on the well studied intermediate case in which the

shear and pressure gradient are equally weighted (Klotz et al.,
2017a; Klotz & Wesfreid, 2017b; Klotz et al., 2021; Liu et al.,
2021). Our results indicate that the oblique laminar-turbulent

patterns with nonzero streamwise and spanwise wavenumbers

show the highest gain under structured amplification. The

wavelengths of the oblique turbulent bands identified are con-

sistent with recent experimental observations (Klotz et al.,
2021). In addition, the dependence of the predicted inclination

angles on Reynolds number corresponds to previous findings

in experiments of plane Couette flow (Prigent et al., 2003). We

then analyze the how the Reynolds number scaling ∼ O(Reα )
changes as a function of the shape of laminar base flow. The

scaling of the highest structured gain for the intermediate flow

regime is shown to be α = 1.3, which is halfway between the

respective values of α = 1.1 for plane Couette flow and 1.5 for

plane Poiseuille flow found in Liu & Gayme (2021). However,

the overall trends are not monotonic and the shape of the curve

appears to suggest changes in the most amplified flow struc-

tures as the the flow moves from background shear to pressure

gradient dominant.

Finally, we show that the structured-input output method

can be adapted to estimate the downstream advection speed

of the oblique turbulent bands in plane Couette and Poiseuille

flow. The results compare favorably to measurements based

on oblique turbulent bands captured in DNS (Xiao & Song,

2020; Tuckerman et al., 2014; Lu et al., 2019). The combined

analysis demonstrates the wide range of quantities that can be

characterized by structured input-output analysis.
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Figure 1. Illustration of the structured feedback interconnection between the modified frequency response operator H∇ :=

diag(∇̂∇∇, ∇̂∇∇, ∇̂∇∇)H (blocks inside of red solid line ) and the structured uncertainty ûuuΞ := diag(−ûuuT
ξ ,−ûuuT

ξ ,−ûuuT
ξ ) (block inside of purple

solid line ). The modeled forcing term f̂ff ξ := [ f̂x,ξ , f̂y,ξ , f̂z,ξ ]
T := ûuuΞ∇̂∇∇ûuu, where ∇̂∇∇ûuu := [(∇̂∇∇û)T,(∇̂∇∇v̂)T,(∇̂∇∇ŵ)T]T is the 9-by-1 vectorized

velocity gradient.

PROBLEM SETUP
We consider incompressible flow between two infinite

parallel plates with streamwise, wall-normal, spanwise and

time coordinates (x,y,z, t), respectively. The total velocity is

decomposed into a laminar base flow and fluctuations about

that base flow, i.e., uuutot = [U(y),0,0]T + uuu. The pressure is

similarly decomposed as ptot = P+ p. We employ the laminar

base flow from Klotz & Wesfreid (2017b), which is given by

U(y) =
3(1+η)

4
(y2 −1)+

1−η
2

(y−1)+1. (1)

The parameter η ∈ [−1,1] determines the relative contribution

of shear versus pressure gradient with η = −1 corresponding

to plane Couette flow with laminar profile U(y) = y, and η = 1

to plane Poiseuille flow with U(y) = 1.5y2 − 0.5. Here, the

streamwise velocity is normalized by the upper-plate speed

U∗, and length is normalized by the channel half-height h;

leading to a wall-normal domain of y ∈ [−1,1] and Reynolds

number Re := U∗h
ν , where ν denotes the kinematic viscosity.

The dynamics of velocity fluctuations uuu := [u, v, w]T are

governed by the Navier-Stokes equations (NSE). Following

Liu & Gayme (2021) we linearize the NSE about the lami-

nar based flow and treat the nonlinear terms as forcing fff :=
−uuu ·∇∇∇uuu = [ fx, fy, fz]T, which we model as

fff ξ :=

⎡⎢⎣−uuuT
ξ
−uuuT

ξ
−uuuT

ξ

⎤⎥⎦
⎡⎣∇∇∇u

∇∇∇v
∇∇∇w

⎤⎦=

⎡⎣ fx,ξ
fy,ξ
fz,ξ

⎤⎦ . (2)

This model preserves the structure of the nonlinear interactions

of the NSE since all elements outside of the block-diagonal

elements diag(−uuuT
ξ ,−uuuT

ξ ,−uuuT
ξ ) are zero.

We employ the standard transformation to write

the governing equations in terms of the fluctuating

wall-normal velocity and vorticity [v, ωy]
T . We then

perform the triple Fourier transform (̂·)(y;kx,kz,ω) :=∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞(·)(x,y,z, t)e−i(kxx+kzz+ωt)dxdzdt. Here kx and kz

are the respective streamwise and spanwise wavenumbers, ω
is the frequency and i =

√−1. The transformed linearized

NSE driven by the modeled forcing f̂ff ξ for each (kx,kz,ω)
triplet is then given by

iω
[

v̂
ω̂y

]
= Â

[
v̂

ω̂y

]
+ B̂

⎡⎢⎣ f̂x,ξ
f̂y,ξ
f̂z,ξ

⎤⎥⎦ , (3a)

⎡⎣ û
v̂
ŵ

⎤⎦= Ĉ

[
v̂

ω̂y

]
, (3b)

where (Jovanović & Bamieh, 2005)

Â :=M−1

[
−ikxU∇̂2 + ikxU ′′+ ∇̂4/Re 0

−ikzU ′ −ikxU + ∇̂2/Re

]
,

B̂ :=M−1

[−ikx∂y −(k2
x + k2

z ) −ikz∂y
ikz 0 −ikx

]
, M :=

[
∇̂2 0

0 I

]

Ĉ :=
1

k2
x + k2

z

⎡⎣ ikx∂y −ikz
k2

x + k2
z 0

ikz∂y ikx

⎤⎦ .

We employ no-slip boundary conditions v̂(y = ±1) =
∂ v̂/∂y(y =±1) = ω̂y(y =±1) = 0.

We are interested in defining the block-diagonal gain

operator uuuΞ := diag(−uuuT
ξ ,−uuuT

ξ ,−uuuT
ξ ) that maximizes the re-

sponse of the structured input-output system in Fig. 1.

To build this feedback interconnection we define H∇ :=

diag(∇̂∇∇, ∇̂∇∇, ∇̂∇∇)H , where H (y;kx,kz,ω) := Ĉ (iωI−Â )−1B̂
is the spatio-temporal frequency response operator map-

ping f̂ff ξ to ûuu for each triplet (kx,kz,ω) and I is the iden-

tity operator. The modified operator H∇ maps f̂ff ξ :=

[ f̂x,ξ , f̂y,ξ , f̂z,ξ ]
T to the 9-by-1 vectorized velocity gradient

∇̂∇∇ûuu := [(∇̂∇∇û)T,(∇̂∇∇v̂)T,(∇̂∇∇ŵ)T]T. Defining this modified opera-

tor allows us to evaluate the closed-loop system defined by the

feedback interconnection between H∇ and the block-diagonal

structured gain ûuuΞ := diag(−ûuuT
ξ ,−ûuuT

ξ ,−ûuuT
ξ ) shown in Fig. 1.

We then define the structured input-output response (Liu

& Gayme, 2021) as

‖H∇‖μ (kx,kz) := sup
ω∈R

μÛUUΞ
[H∇(kx,kz,ω)] , (5)

where

μÛUUΞ
[H∇(·)] :=

⎧⎪⎨⎪⎩
1

min{σ̄ [ûuuΞ]:ûuuΞ∈ÛUUΞ,det[I−H∇(·)ûuuΞ]=0} ,

0, if ∀ ûuuΞ ∈ ÛUUΞ,det [I−H∇(·)ûuuΞ] 	= 0

is the structured singular value of H∇(kx,kz,ω) for each

triplet (kx,kz,ω) (Packard & Doyle, 1993). Here ÛUUΞ :=
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(a) (b) (c)

Figure 2. Contour plots of (a) log10[‖H∇‖μ (kx,kz)], (b) log10[‖H ‖∞(kx,kz)] and (c) log10[‖H∇‖∞(kx,kz)] for plane Couette-

Poiseuille flow U(y) = 3
4 (y

2 − 1)+ 1
2 (y+ 1) at Re = 610 and η = 0. Here, the black triangle (Δ) marks λx ≈ 93 and λz ≈ 48 which

are the wavelengths of the observed oblique turbulent band at Re = 610 (Klotz et al., 2021). The black solid line ( ) λz = λx tan(27◦)
corresponds to a 27◦ oblique angle of the oblique turbulent band.

{diag(−ûT
ξ ,−ûT

ξ ,−ûT
ξ ) : −ûT

ξ ∈ C
Ny×3Ny} is the set of wall-

normally discretized structured uncertainties with the same

block-diagonal structure as ûuuΞ, and Ny denotes the number of

Chebyshev collocation points excluding boundary points. H∇
denotes the discretized spatio-temporal frequency response

operator, σ̄ [·] represents the largest singular value of the ar-

gument, and det[·] is the determinant of the argument.

RESULTS
In this section, we compute the response in (5) us-

ing MATLAB with Chebyshev differentiation matrices from

Weideman & Reddy (2000). We employ Ny = 30 colloca-

tion points in the wall normal direction and 50 × 90 loga-

rithmically spaced points in the spatial wavenumber domain

kx ∈ [10−4,100.48] and kz ∈ [10−2,101.2]. This configuration

matches that in Liu & Gayme (2021), who found this number

of points sufficient for convergence of the results.

We first consider the intermediate case, the laminar pro-

file with η = 0 in (1), which corresponds to equal weight-

ing of the contributions from plane Couette and Poiseuille

flow. This profile is linearly stable for all Reynolds num-

bers (Balakumar, 1997). Fig. 2 (a) shows the correspond-

ing ‖H∇‖μ (kx,kz) at Re = 610, which was selected to match

that in Klotz et al. (2021). Here, the peak region covers the

wavelength range λx ≈ 93±5 and λz ≈ 48±5. This region is

consistent with the oblique turbulent bands observed in Klotz

et al. (2021, Fig. 20), whose results are indicated as a black

triangles (Δ) in all panels of Fig. 2. The shape of the peak

region in Fig. 2(a) also reflects the same inclination angle

θ := tan−1(λz/λx) = tan−1(48/93)≈ 27◦ (the black solid line

in Fig. 2) as the experimentally observed band. The consis-

tency of our results with the literature shows that structured

input-output analysis captures both the length scales and incli-

nation angles of dominant flow structures in this intermediate

case of plane CPF.

We next compare these results to similar quantities

that would be obtained through an unstructured analy-

sis by computing ‖H ‖∞(kx,kz) := sup
ω∈R

σ̄ [H(kx,kz,ω)] and

‖H∇‖∞(kx,kz) := sup
ω∈R

σ̄ [H∇(kx,kz,ω)], respectively shown

in Figs. 2(b) and (c). The figures show that both of these

quantities place more emphasis on the streamwise elongated

structures associated with kx ≈ 0 than the oblique turbulent

bands. These results also indicate that the change in the re-

sponse is due to the structured feedback interconnection rather

than the modified frequency response operator. These differ-

ences between the structured and the traditional unstructured

input-output response is similar to that seen in previous studies

of plane Couette and Poiseuille flow, where the change in the

structures obtained under the structured feedback interconnec-

tion was related to a weakening of the lift-up mechanism that

dominates the unstructured response (Liu & Gayme, 2021).

We next study the inclination angles and length scales

of structures that maximize the structured gain for this in-

termediate case (η = 0) and examine and their dependence

on Reynolds number. We define this dominant angle as θ =
tan−1(kM

x /kM
z ), where kM

x and kM
z are defined as the wavenum-

bers associated with the largest structured gain

(kM
x ,kM

z ) := argmax
kx,kz

‖H∇‖μ (kx,kz). (6)

Fig. 3(a) shows how these wavelengths vary as a function of

Reynolds number. Here it is clear that while both wavenum-

bers decrease as Re increases, kM
x decreases faster. We quantify

this difference by computing scalings of these quantities with

Reynolds number using a fit of the form of CiReαi(i = 1,2,3).
The results show that kM

x ∼ Re−0.41 and kM
z ∼ Re−0.34. We

note that this scaling of kM
x is consistent with previous analysis

in the optimal wavenumber range kx ≤ O(1) for oblique flow

structures that produce streamwise vortices in wall-bounded

shear flows (Chapman, 2002). These trends are consistent with

a reduction in the inclination angle as a function of Reynolds

number over this range.

Fig. 3(b) and (c) show ‖H∇‖μ for two additional

Reynolds numbers, respectively Re = 2000 and 20000. In

both panels the most energetic wavenumber pairs, respectively

(kM
x ,kM

z ) = (0.25,0.67) and (0.08,0.29) are indicated with a

black asterisk. These figures indicate that θ decreases from

approximately 22◦ to 15◦ over this Reynolds number range,

and that both angles are lower than the value at Re = 610. In

addition, as Reynolds number increases, the peak response re-

gion extends visibly and shifts slightly more towards larger

streamwise wavelengths than toward the large spanwise ones.

This negative correlation is consistent with trends observed in

previous studies of laminar-turbulent patterns in plane Couette

flow (Prigent et al., 2003).
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(a) (b) (c)

Figure 3. (a) The most energetic wavenumber pairs from Re = 300 to 20000 with scalings kM
x ∼ Re−0.41 and kM

z ∼ Re−0.34 and

contour plots showing the relative location of regions associated with peak structured frequency response at (b) Re = 2000 and (c)

20000 with η = 0. The blue asterisks (�) in panels (b) and (c) symbol the wavenumber pairs (kM
x ,kM

z ) = (0.25,0.67) at Re = 2000 and

(kM
x ,kM

z ) = (0.08,0.29) at Re = 20000 corresponding to the largest structured frequency response ‖H∇‖M
μ at Re = 2000. The black

solid line ( ) represents λz = λx tan(22◦) in panel (b) and λz = λx tan(15◦) in (c) respectively.

The maximal response for a given Reynolds number

for the three quantities in Fig. 2 can be respectively

quantified as ‖H∇‖M
μ := max

kx,kz

‖H∇‖μ (kx,kz), ‖H∇‖M
∞ :=

max
kx,kz

‖H∇‖∞(kx,kz), and ‖H ‖M
∞ :=max

kx,kz

‖H ‖∞(kx,kz). These

quantities for the range Re ∈ [300,4000] are depicted in Fig.

4(a), where we again obtain their respective Reynolds num-

ber scalings through a fit to CiReαi(i = 1,2,3). The results

reveal that both ‖H∇‖M
∞ and ‖H ‖M

∞ scale as Re2, which is

the same scaling seen in both plane Couette and Poiseuille

flow, see e.g. Trefethen et al. (1993); Jovanović (2004). How-

ever, ‖H∇‖M
μ ∼ Re1.3, and this lower scaling exponent ver-

sus the unstructured response is similar to previous results that

showed ‖H∇‖M
μ ∼ Re1.1 for plane Couette flow U(y) = y and

‖H∇‖M
μ ∼ Re1.5 for plane Poiseuille flow U(y) = 1− y2 (Liu

& Gayme, 2021). This lower amplification of the structured re-

sponse is consistent with previous observations that the struc-

tured feedback weakens the amplification of the lift-up mech-

anism in a manner similar to that of nonlinear effects in plane

Couette and plane Poiseuille flows (Liu & Gayme, 2021).

We next explore how the scaling and structural features

vary as a function of the relative contributions of shear and

pressure gradient forcing to the laminar profile shape. Fig.

4(b) shows the scaling exponents of the maximal structured

frequency response ‖H∇‖M
μ ∼ Reα with laminar profiles de-

fined by equation (1) with η = [−1,1] computed at steps of

0.1 over the Reynolds number range Re ∈ [300,4000]. Fig.

4(b) indicates that α grows from 1.1 to 1.35 as η increases

roughly from −1 to 0.3, and then declines at a low rate in

the range 0.3 ≤ η ≤ 0.7 before finally climbing to α = 1.5
at η = 1. While the end points are consistent with previous

scalings associated with plane Couette and Poiseuille flow,

the non-monotonic growth of the scaling exponent was un-

expected. In order to analyze this behavior we explore the

structural features associated with the different regions of this

scaling plot in Fig. 5, which shows ‖H∇‖μ (kx,kz) for lami-

nar profiles corresponding to η =−1,−0.5,0,0.3,0.5,0.7,0.9
and 1 for Re = 500.

Figs. 5 (a) – (c) indicate that there is a single peak fre-

quency response region (kx,kz) ≈ (10−1,1) associated with

oblique flow structures when −1 ≤ η ≤ 0. In this region the

(a) (b)

Figure 4. (a) Reynolds number dependence of the maximal structured and unstructured frequency response associated with scaling

‖H∇‖M
μ ∼ Re1.3, ‖H∇‖M

∞ ∼ Re2 and ‖H ‖M
∞ ∼ Re2 at Re ∈ [300,4000] and η = 0. (b) The dependence of scaling exponents α

in ‖H∇‖M
μ ∼ Reα on the parameter η determining the shape of laminar base flow U(y) = 3(1+η)

4 (y2 − 1) + 1−η
2 (y− 1) + 1. The

asterisks in panel (b) represent α at η = −1,−0.9, ...,0.9,1. The red asterisks (�) mark η = −1,−0.5,0, the magenta ones (�) mark

η = 0.3,0.5,0.7,0.9,1, and the black ones (�) indicate the remaining values of η .
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Table 1. Advection speeds c of laminar-turbulent patterns in plane Couette and Poiseuille flows by predictions of structured input-

output analysis and results of direct numerical simulations. Here the paper sources where we obtain DNS results of advection speeds

are consistent with those of wavenumbers in the third column.

Laminar Reynolds Wavenumbers Estimations of c DNS Results of c

Profile Number (kx,kz) and by Structured and Their Sources

U(y) Re Their Sources I/O Analysis (From Papers in Col. 3)

1− y2 750 (0.15,0.10) (Fig. 1(a), Xiao & Song, 2020) 0.92 0.85 (Fig. 1(b))

1
2 − 3

2 y2 1100 (0.06,0.14) (Fig. 2(a), Tuckerman et al., 2014) ≈ 0 0.07 (Fig. 4(b))

y 317 (0.04,0.05) (Fig. 3(b), Lu et al., 2019) ≈ 0 ≈ 0 (Fig. 4)

scaling is increasing at a roughly constant rate and the an-

gle associated with these structures appears to increase with

η . Panels (d) – (h) indicate that a new wavenumber re-

gion (kx,kz) ≈ (1,0) corresponding to large structured fre-

quency response emerges in the slowly decreasing (roughly

flat region in Fig. 4(b). Given that the laminar flow is

no longer linearly stable for all Reynolds numbers for η >
0.309 (Balakumar, 1997), these are likely associated with

the Tollmien-Schlichting (TS) waves that become unstable at

higher Reynolds numbers. This conjecture is supported by

the fact that the TS wavenumbers ranges are consistent with

these regions. The definition of this secondary TS related peak

becomes sharper for η > 0.7 as does the peak range of the

oblique structures. The angle associated with these structures

and shape of this region also changes for η > 0.7, which may

indicate a change in the characteristic structures in this param-

eter regime. A full characterization of how the structural fea-

tures of the flow change with η is a direction of ongoing work.

Finally, we adapt the structured input-output approach to

compute the phase speed associated with the maximum re-

sponse, which we interpret as the convective velocity of these

structures. We limit the analysis to the case where the tempo-

ral frequency ω ∈ R, since any time-dependent flow structure

can be represented by integrating its Fourier components over

real temporal frequencies (Trefethen et al., 1993). The phase

speed c of a given oblique flow structure with (kx,kz) 	= 0 is

obtained as

c(kx,kz) =− 1

kx
argmax

ω∈R
μÛUUΞ

[H∇(kx,kz,ω)] . (7)

In order to validate the approach we focus our investigation on

the phase speeds of flow patterns in plane Couette and plane

Poiseuille flow, which have been previously studied (Tucker-

man et al., 2014; Xiao & Song, 2020; Lu et al., 2019). Table.

1 provides a comparison between the advection speeds of the

laminar turbulent (oblique bands) predicted from our approach

to results computed from the DNS of Lu et al. (2019); Tuck-

erman et al. (2014) and Xiao & Song (2020). The oblique

turbulent band wavenumbers (kx,kz) reported were extracted

from snapshots of these DNS results, specifically from Lu

et al., 2019, Fig. 3 (b); Tuckerman et al., 2014, Fig. 4 (a);

Xiao & Song,2020, Fig. 1 (a), respectively. In each case, the

table indicates the laminar base flows and Reynolds numbers

from the references. We note that Tuckerman et al. (2014) and

Lu et al. (2019) use the same characteristic length and velocity

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Plots of log10[‖H∇‖μ (kx,kz)] at Re = 500 with (a) η =−1, (b) η =−0.5, (c) η = 0, (d) η = 0.3, (e) η = 0.5, (f) η = 0.7,

(j) η = 0.9, and (h) η = 1. The shape of laminar flow η associated with panels (a)–(c) correspond to the red asterisks (�) while panels

(d)–(h) match with the magenta asterisks (�) in Fig. 4 (b).
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scales as our analysis so their laminar profiles directly corre-

spond to the cases where η = 1 and η =−1 respectively, so we

can directly compare to their results by matching the Reynolds

numbers. On the other hand, the flow configuration in Lu et al.
(2019) differs from ours, which leads to a different laminar

profile. In order to compare with those results, we renormalize

velocity using the centerline speed of base flow U∗
cen and rede-

fine the laminar plane Poiseuille flow as U(y) = 1−y2 and the

Reynolds number as Re :=
U∗

cenh
ν .

The results in Table 1 indicate that the estimated values

have a resonable margin of error when compared to the DNS

results. This success in predicting the traveling speeds of the

given structures indicates that our framework may be useful

in estimating the convection rate of different flow structures.

Although further analysis is needed to fully validate this ap-

proach for a wider range of structures, these preliminary re-

sults suggest the promise of this framework in probing the dy-

namics of the oblique turbulent bands.

CONCLUSIONS
In this paper, we apply structured input-output analysis

to study the oblique turbulent bands that have been observed

in transitional plane Couette-Poiseuille flow (CPF). The re-

sults reveal that the wavenumbers of these structure are asso-

ciated with large gain under structured feedback forcing. As

Reynolds number increases, these most energetic streamwise

and spanwise wavenumbers decrease with different scalings

kM
x ∼ Re−0.41 and kM

z ∼ Re−0.34, thereby resulting in the de-

cline of oblique angles and extension of the wavenumber re-

gion associated with the large response. The Reynolds num-

ber scaling of the maximal structured amplification ‖H∇‖M
μ

associated with dominant oblique patterns changes from 1.1 to

1.5 as the laminar profile changes from plane Couette flow to

plane Poiseuille flow, with an intermediate CPF flow value of

1.3. While the end points are consistent with previous results

and the intermediate flow falls at the midpoint the increase is

not monotonic and the analysis suggests that different struc-

tural features emerge as the pressure gradient contribution to

the laminar profile is increased. Further characterization of

this behavior is a direction for future work.

Finally we adapt the framework to predict the advec-

tion speeds of oblique turbulent bands for plane Couette and

Poiseuille flow configurations. The results are consistent with

DNS and indicate the promise of this approach in further ana-

lyzing the dynamics of these transitional structures.
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