
73

Combining Graph Convolutional Neural Networks and

Label Propagation

HONGWEI WANG and JURE LESKOVEC, Stanford University, United States

Label Propagation Algorithm (LPA) and Graph Convolutional Neural Networks (GCN) are both message pass-

ing algorithms on graphs. Both solve the task of node classification, but LPA propagates node label informa-

tion across the edges of the graph, while GCN propagates and transforms node feature information. However,

while conceptually similar, theoretical relationship between LPA and GCN has not yet been systematically in-

vestigated. Moreover, it is unclear how LPA and GCN can be combined under a unified framework to improve

the performance. Here we study the relationship between LPA and GCN in terms of feature/label influence,

in which we characterize how much the initial feature/label of one node influences the final feature/label

of another node in GCN/LPA. Based on our theoretical analysis, we propose an end-to-end model that com-

bines GCN and LPA. In our unified model, edge weights are learnable, and the LPA serves as regularization

to assist the GCN in learning proper edge weights that lead to improved performance. Our model can also be

seen as learning the weights of edges based on node labels, which is more direct and efficient than existing

feature-based attention models or topology-based diffusion models. In a number of experiments for semi-

supervised node classification and knowledge-graph-aware recommendation, our model shows superiority

over state-of-the-art baselines.

CCS Concepts: • Computing methodologies→ Neural networks; Semi-supervised learning settings;

Additional Key Words and Phrases: Graph convolutional neural networks; label propagation algorithm;

semi-supervised learning

ACM Reference format:

Hongwei Wang and Jure Leskovec. 2021. Combining Graph Convolutional Neural Networks and Label Prop-

agation. ACM Trans. Inf. Syst. 40, 4, Article 73 (November 2021), 27 pages.

https://doi.org/10.1145/3490478

1 INTRODUCTION

Consider the problem of node classification in a graph, where the goal is to learn a mapping
M : V → L from node set V to label set L. A solution to this problem is widely applicable to

Some of the experimental results come from our previous work at the 2019 ACM International Conference on Knowledge

Discovery and Data Mining (KDD 2019) [35].

This research has been supported in part by DARPA, ARO, NSF, NIH, Stanford Data Science Initiative, Wu Tsai Neuro-

sciences Institute, Chan Zuckerberg Biohub, Amazon, JPMorgan Chase, Docomo, Hitachi, Intel, JD.com, KDDI, NVIDIA,

Dell, Toshiba, Visa, and UnitedHealth Group.

Authors’ addresses: H. Wang and J. Leskovec, Computer Science Department, Stanford University, Stanford, CA 94305,

United States; emails: {hongweiw, jure}@cs.stanford.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1046-8188/2021/11-ART73 $15.00

https://doi.org/10.1145/3490478

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

https://doi.org/10.1145/3490478
mailto:permissions@acm.org
https://doi.org/10.1145/3490478

73:2 H. Wang and J. Leskovec

various scenarios, e.g., inferring income of users in a social network or classifying scientific ar-
ticles in a citation network. Different from a generic machine learning problem where samples
are independent from each other, nodes are connected by edges in the graph, which provide ad-
ditional information and require more delicate modeling. To capture the graph information, re-
searchers have mainly designed models on the assumption that labels/features are correlated over
the edges of th 4e graph. In particular, on the label side L, node labels are propagated and ag-
gregated along edges in the graph, which is known as Label Propagation Algorithm (LPA)

[5, 10, 21, 33, 45, 47, 49]; On the feature side V , node features are propagated along edges and
transformed through neural network layers, which is known as Graph Convolutional Neural

Networks (GCN)1 [6, 12, 18, 20, 23, 39, 40].
GCN and LPA are related in that they propagate features and labels on the two sides of the

mappingM, respectively. Prior work [19] has shown the relationship between GCN and LPA in
terms of low-pass graph filtering. However, it is unclear how the discovered relationship benefits
node classification. Specifically, can GCN and LPA be combined to develop a more accurate model
for node classification in graphs? Here we study the theoretical relationship between GCN and
LPA from the viewpoint of feature/label influence, where we quantify how much the initial label
of node vb influences the output label of node va in LPA by studying the gradient of node vb with
respect to node va , and how much the initial feature of node vb influences the output feature of
node va in GCN by studying the Jacobian of node vb with respect to node va . We also prove the
quantitative relationship between feature influence and label influence by showing that the label
influence ofvb onva equals the cumulative discounted feature influence ofvb onva in expectation
(see Theorem 1).

Based on the theoretical analysis, we propose a unified model GCN-LPA for node classification.
We show that the key to improving the performance of GCN is to enable nodes of the same class
to connect more strongly with each other by making edge weights/strengths trainable. Then we
prove that increasing the strength of edges between the nodes of the same class is equivalent to
increasing the accuracy of LPA’s predictions (see Theorem 2). Therefore, we can first learn the
optimal edge weights by minimizing the loss of predictions in LPA, then plug the optimal edge
weights into a GCN to learn node representations. In GCN-LPA, we further combine the above
two steps together and train the whole model in an end-to-end fashion, where the LPA part serves
as regularization to assist the GCN part in learning proper edge weights that benefit the separation
of different node classes.
It is worth noticing that GCN-LPA can also be seen as learning the weights for edges based on

node label information, which requires less handcrafting and is more task-oriented than existing
attentionmodels that learn edgeweights based on node feature similarity [22, 31, 32, 44] or diffusion
models that learn adjacency matrix based on graph topology [1, 13, 14, 38].

We conduct extensive experiments in two real-world tasks: semi-supervised node classifica-
tion and knowledge-graph-aware recommendation. Empirical results demonstrate that our unified
model outperforms state-of-the-art methods by a large margin. The experimental results also show
that combining GCN and LPA together is able to learnmore informative edge weights thereby lead-
ing to better performance.
Our contribution in this article are listed as follows:

• We systematically study the theoretical relationship between GCN and LPA in terms of fea-
ture/label influence.

1There are methods in statistical relational learning [25] also using feature propagation/diffusion techniques. In this work,

we focus on GCN, but the analysis and the proposed model can be easily generalized to other feature diffusion methods.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:3

• Based on the theoretical analysis, we propose an end-to-end model that combines GCN and
LPA together under a unified framework.
• We conduct extensive experiments on real-world graphs, and the results demonstrate the
efficacy of our proposed model in graph-related tasks.

2 PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first formulate the problem then briefly introduce LPA and GCN.

2.1 Problem Formulation

Consider a graph G = (V ,A,X ,Y), in which V = {v1, . . . ,vn } is the set of nodes, A ∈ Rn×n is the
adjacency matrix, X is the feature matrix of nodes, and Y is labels of nodes. ai j (the ijth entry of
A) is the weight of the edge connecting vi and vj . N (v) denotes the set of first-order neighbors of
node v in graphG. Each node vi has a feature vector xi , which is the ith row of X , while only the
firstm nodes (m � n) have labels y1, . . . ,ym from a label set L = {1, . . . , c}. The goal is to learn a
mappingM : V → L and predict labels of unlabeled nodes.

2.2 Label Propagation Algorithm

LPA [49] assumes that two connected nodes are likely to have the same label, and thus it propagates

labels iteratively along the edges. Let Y (k) = [y (k)
1 , . . . ,y

(k)
n]� ∈ R

n×c be the soft label matrix in

iteration k > 0, in which the ith row y (k)�
i denotes the predicted label distribution for node vi in

iteration k . When k = 0, the initial label matrix Y (0) = [y (0)
1 , . . . ,y

(0)
n]� consists of one-hot label

indicator vectors y (0)
i for i = 1, . . . ,m (i.e., labeled nodes) or zero vectors otherwise (i.e., unlabeled

nodes). Then LPA in iteration k is formulated as the following two steps:

Y (k+1) = Ã Y (k), (1)

y (k+1)
i = y (0)

i , ∀ i ≤ m. (2)

In the above equations, Ã is the normalized adjacency matrix, which can be the random walk

transition matrix Ãrw = D−1A or the symmetric transition matrix Ãsym = D− 1
2AD− 1

2 , where D
is the diagonal degree matrix for A with entries dii =

∑
j ai j . Without loss of generality, we use

Ã = Ãrw in this work. In Equation (1), all nodes propagate labels to their neighbors according to
normalized edge weights. Then, in Equation (2), labels of all labeled nodes are reset to their initial
values, because LPA wants to persist labels of nodes that are labeled, so that unlabeled nodes do
not overpower the labeled ones as the initial labels would otherwise fade away.

2.3 Graph Convolutional Neural Networks

GCN [12] is a multi-layer feedforward neural network that propagates and transforms node fea-
tures across the graph. The feature propagation scheme of GCN in layer k is as follows:

X (k+1) = σ (ÃX (k)W (k)), (3)

whereW (k) is trainable weight matrix in the kth layer, σ (·) is an activation function, and X (k) =

[x
(k)
1 , . . . , x

(k)
n]� are the kth layer node representations with X (0) = X . By setting the dimension

of the last layer to the number of classes c , the last layer can be seen as (unnormalized) label
distribution predicted for a given node. The whole model can thus be optimized by minimizing
the discrepancy between predicted node label distributions and ground-truth labels Y .
Notice similarity between Equations (1) and (3). Nextwe shall study and uncover the relationship

between the two equations.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

73:4 H. Wang and J. Leskovec

3 FEATURE INFLUENCE AND LABEL INFLUENCE

Consider two nodesva andvb in a graph. Inspired by Reference [15] and Reference [40], we study
the relationship between GCN and LPA in terms of influence, i.e., how the output feature/label
of va will change if the initial feature/label of vb is varied slightly. Technically, the feature/label
influence is measured by the Jacobian/gradient of the output feature/label of va with respect to

the initial feature/label ofvb . Denote x
(k)
a as the kth layer representation vector ofva in GCN, and

xb as the initial feature vector of vb . We quantify the feature influence of vb on va as follows:

Definition 1 (Feature Influence). The feature influence of node vb on node va after k layers of

GCN is the L1-norm of the expected Jacobian matrix ∂x
(k)
a /∂xb :

If (va ,vb ;k) =
������EW (·)

⎡⎢⎢⎢⎢⎣
∂x

(k)
a

∂xb

⎤⎥⎥⎥⎥⎦
������1 , (4)

where the expectation is taken on transformation matricesW (0), . . . ,W (k−1) . The normalized fea-
ture influence is then defined as

Ĩf (va ,vb ;k) =
If (va ,vb ;k)∑

vi ∈V If (va ,vi ;k)
. (5)

We also consider the label influence of node vb on node va in LPA (this implies that va is unla-

beled and vb is labeled). Since different label dimensions of y (·)
i do not interact with each other in

LPA, we assume that all yi and y
(·)
i are scalars within range [0, 1] (i.e., this is a binary classification

task) for simplicity. Label influence is defined as follows:

Definition 2 (Label Influence). The label influence of labeled node vb on unlabeled node va after

k iterations of LPA is the gradient of y (k)
a with respect to yb :

Il (va ,vb ;k) =
∂y (k)

a

∂yb
. (6)

The following theorem shows the relationship between feature influence and label influence:

Theorem 1 (Relationship Between Label Influence and Feature Influence). Assume the

activation function used in GCN is ReLU (x) = max(x , 0). Denote va as an unlabeled node, vb as a

labeled node, and β as the fraction of unlabeled nodes. Then the label influence of vb on va after k
iterations of LPA equals, in expectation, to the cumulative normalized feature influence of vb on va
after k layers of GCN:

EW (·)
[
Il (va ,vb ;k)

]
=

k∑

j=1

β j Ĩf (va ,vb ; j). (7)

Proof of Theorem 1 is in Appendix A. Intuitively, Theorem 1 shows that if vb has high label

influence on va , then the initial feature vector of vb will also affect the output feature vector of va to

a large extent. Theorem 1 provides the theoretical guideline for designing our unified model in the
next section.

4 THE UNIFIED MODEL: GCN-LPA

Before introducing the proposed model, we rethink the GCN method and see what an ideal set of
node representations should be like. Sincewe aim to classify nodes, the perfect node representation
would be such that nodes with the same label are embedded closely together, which would give a
large separation between different classes. Intuitively, the key to achieve this goal is to enable nodes

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:5

within the same class to connect more strongly with each other, so that they are pushed together
by GCN (more discussion is presented in Section 5).We can therefore make edge strengths/weights
trainable, then learn to increase the intra-class feature influence:

∑

i ∈L

∑
va ,vb :

ya=i,yb=i

Ĩf (va ,vb) (8)

(L is the label set) by adjusting edge weights. However, this requires operating on Jacobian ma-

trices with the size of d (0) × d (K) (d (0) and d (K) are the dimensions of input and output in GCN,
respectively), which is impractical if initial node features are high dimensional. Fortunately, we
can turn to optimizing the intra-class label influence instead, i.e.,

∑

i ∈L

∑
va ,vb :

ya=i,yb=i

Il (va ,vb), (9)

according to Theorem 1. Note that
∑

i ∈L

∑
va ,vb :

ya=i,yb=i

Il (va ,vb) =
∑

va

∑
vb :

yb=ya

Il (va ,vb). (10)

We further show, by the following theorem, that the term
∑
vb :yb=ya Il (va ,vb) (the total intra-class

label influence on a given node va) is proportional to the probability that va is classified correctly
by LPA:

Theorem 2 (Relationship Between Label Influence and LPA’s Prediction). Consider a
given node va and its label ya . If we treat node va as unlabeled, then the total label influence of

nodes with label ya on node va is proportional to the probability that node va is classified as ya by

LPA: ∑

vb :yb=ya

Il (va ,vb ;k) ∝ Pr
(
ŷ
lpa
a = ya

)
, (11)

where ŷ
lpa
a is the predicted label of va using a k-iteration LPA.

Proof of Theorem 2 is in Appendix B. Theorem 2 indicates that, if edge weights {ai j } maximize

the probability that va is correctly classified by LPA, then they also maximize the intra-class label

influence on node va . We can therefore first learn the optimal edge weights A∗ by minimizing the
loss of predicted labels by LPA:2

A∗ = argmin
A

Llpa (A) = argmin
A

1

m

∑

va :a≤m
J
(
ŷ
lpa
a ,ya

)
, (12)

where J is the cross-entropy loss and ŷ
lpa
a andya are the predicted label distribution ofva using LPA

and the true one-hot label ofva , respectively. a ≤ mmeansva is labeled. The optimalA∗maximizes
the probability that each node is correctly labeled by LPA (according to the definition of A∗ in
Equation (12)), thus also maximizes the intra-class label influence (according to Theorem 2) and
intra-class feature influence (according to Theorem 1). Since A∗ increases the connection strength
of nodes within each class (according to Definition 1), it is expected to improve the performance
of GCN compared with the original adjacency matrix A. Therefore, we can plug A∗ into GCN to
predict labels:

X (k+1) = σ
(
A∗X (k)W (k)

)
, k = 0, 1, . . . ,K − 1. (13)

2Here the optimal edge weights A∗ share the same topology as the original graph G , i.e., we do not add or remove edges

from G but only learning the weights of existing edges. See the end of this section for more discussion.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

73:6 H. Wang and J. Leskovec

We use ŷ
дcn
a , the ath row of X (K) , to denote the predicted label distribution of va using the GCN

specified in Equation (13). Then the optimal transformation matrices in the GCN can be learned
by minimizing the loss of predicted labels by GCN:

W ∗ = argmin
W

Lдcn (W ,A
∗) = argmin

W

1

m

∑

va :a≤m
J
(
ŷ
дcn
a ,ya

)
, (14)

It is more elegant (and empirically better) to combine the above two steps together into a multi-
objective optimization problem and train the whole model in an end-to-end fashion:

W ∗,A∗ = argmin
W ,A

Lдcn (W ,A) + λLlpa (A), (15)

where λ is the balancing hyper-parameter. In this way, Llpa (A) serves as a regularization term
that assists the learning of edge weights A, since it is hard for GCN to learn bothW and A simul-
taneously due to overfitting. The proposed GCN-LPA approach can also be seen as learning the
importance of edges that can be used to reconstruct node labels accurately by LPA, then transfer-
ring this knowledge from label space to feature space for GCN.
It is also worth noticing how the optimal A∗ is configured. The principle here is that we do

not modify the basic structure of the original graph (i.e., not adding or removing edges) but only
adjusting weights of existing edges. This is equivalent to learning a positive mask matrix M for
the adjacency matrix A and taking the Hadamard product M ◦ A = A∗. In general, we have two
options to design the mask matrixM :

• Each elementMi j can be set as a free variable during training. This applies to the case where
no node feature or edge feature is available. However, the drawbacks of this option are that, it
can only work in transductive setting while the trained model (learned edge weights) cannot
be used for new graphs, and the model may be extremely large for large graphs, since the
number of model parameters increases linearly with the number of edges.
• Each element Mi j can be set as a function of features of two endpoints and/or the edge, for
example,Mi j = κ (x�i Hxj), where H is a learnable kernel matrix for measuring node feature
similarity and κ (·) is a mapping from R to R+ such as softplus or softmax, orMi j = κ (h�xi j)
where h is a trainable vector to transform edge features to weights. In this way, the model
does not use any node or edge identity, and the learned H or h can be applied to new graphs
in inductive settings. Moreover, the model size is also independent with the graph size.

In our experiments, we use the first option in semi-supervised node classification task (Sec-
tion 6.1) and the second option in knowledge-graph-aware recommendation task (Section 6.2).

5 ANALYSIS OF GCN-LPA MODEL BEHAVIOR

In this section, we show benefits of our unified model compared with GCN by analyzing properties
of embeddings produced by the two models. We first analyze the update rule of GCN for node vi ,

x
(k+1)
i = σ ��

∑

vj ∈N (vi)

ãi jx
(k)
j W (k)��

� , (16)

where ãi j = ai j/dii is the normalized weight of edge (j, i). This formula can be decomposed into
the following two steps:

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:7

• In aggregation step, we calculate the aggregated representation h
(k)
i of all neighborhoods

N (vi):

h
(k)
i =

∑

vj ∈N (vi)

ãi jx
(k)
j . (17)

• In transformation step, the aggregated representation h
(k)
i is mapped to a new space by a

transformation matrix and nonlinear function:

x
(k+1)
i = σ

(
h
(k)
i W (k)

)
. (18)

We show by the following theorem that the aggregation step reduces the overall distance in the
embedding space between the nodes that are connected in the graph:

Theorem 3 (Shrinking Property in GCN). If we define

D (x) =
1

2

∑

vi ,vj

ãi j
���xi − xj���22 (19)

as a distance metric over node embeddings x, then we have

D
(
h
(k)
)
≤ D
(
x
(k)
)
. (20)

Proof of Theorem 3 is in Appendix C. Theorem 3 indicates that the overall distance among con-

nected nodes is reduced after taking one aggregation step, which implies that connected components
in the graph “shrink” and nodes within each connected component get closer to each other in the
embedding space. In an ideal case where edges only connect nodes with the same label, the aggre-
gation step will push nodes within the same class together, which greatly benefits the transforma-

tion step that acts like using a hyperplaneW (k) for classification. However, two connected nodes
may have different labels. These “noisy” edges will impede the formation of clusters and make the
inter-class boundary less clear.
Fortunately, in GCN-LPA, edge weights are learned by minimizing the difference between

ground-truth labels and predicted labels using LPA. As we know that LPA predicts the label of
a given node by propagating and aggregating the labels of nearby nodes to the given node. There-
fore, to force the predicted label of a node to approach its ground truth, our model will learn to
increase the weight/bandwidth of possible paths that connect the given node and its nearby nodes
with the same label, so that their labels can “flow” easily along these paths to the given node (the
given node’s own label is masked when predicting itself, so the model cannot learn to “cheat” by
increasing the weight of the self-loop edge). In this way, GCN-LPA is able to identify potential
intra-class edges. Note that labeled nodes and unlabeled nodes are usually mixed in a graph, so
the intra-class paths between labeled nodes will also connect many unlabeled nodes (see Figure 1
for an illustrating example). Increasing the weight of these intra-class paths can therefore assist
learning clustering structures for both labeled and unlabeled nodes, and improve the classification
accuracy for unlabeled nodes.
To empirically justify our claim, we apply a two-layer untrained GCN with randomly initialized

transformation matrices to a subgraph of Cora dataset (see Section 6.1.1 for detailed description
on Cora), which contains randomly selected 50 nodes with label 0 and randomly selected 50 nodes
with label 1, as well as all edges between these nodes (grey lines). We then increase the weights
of intra-class edges by 10 times to simulate GCN-LPA. The initial node features are set as default
in Cora. We find that GCN works well on this network (Figure 2(a)), but GCN-LPA performs even
better than GCN, because the node embeddings are almost linearly separable as shown in Fig-
ure 2(b). To further justify our claim, we randomly add 50 “noisy” inter-class edges to the original
network, from which we observe that GCN is misled by noise and mixes nodes of two classes

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

73:8 H. Wang and J. Leskovec

Fig. 1. A graph with two classes of nodes, while white nodes are unlabeled (Figure 1(a)). To classify nodes,

our model will increase the connecting strength among nodes within the same class, thereby increasing their

feature/label influence on each other. In this way, our model is able to identify potential intra-class edges

(bold links in Figure 1(b)) and strengthen their weights.

Fig. 2. Node embeddings of a subgraph of Cora trained on a node classification task (red vs. blue). Node

coordinates in Figures 2(a)–2(d) are the embedding coordinates. Notice that GCN does not produce linearly

separable embeddings (Figure 2(a) vs. Figure 2(b)), while GCN-LPA performsmuch better even in the presence

of noisy edges (Figure 2(c) vs. Figure 2(d)). Additional visualizations are included in Appendix D.

together (Figure 2(c)), but GCN-LPA still distinguishes the two clusters (Figure 2(d)), because it is
better at “denoising” undesirable edges based on the supervised signal of labels.
It is worth noticing that the above analysis only works for homophilic graphs, i.e., two con-

nected nodes are likely to have the same label. However, some real-world graphs do not satisfy
the homophily property, (e.g., airline graphs where nodes are airports and edges are airlines),

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:9

Table 1. Statistics for All Datasets in Node Classification Task

Cora Citeseer Pubmed Coauthor-CS Coauthor-Phy

nodes 2,708 3,327 19,717 18,333 34,493
edges 5,278 4,552 44,324 81,894 247,962
classes 7 6 3 15 5

dimension of features 1,433 3,703 500 6,805 8,415
Intra-class edge rate 81.0% 73.6% 80.2% 80.8% 93.1%
Labeled node rate 5.2% 3.6% 0.3% 1.6% 0.3%

which makes our model inapplicable to these graphs. The exploration of applying GCN-LPA to
non-homophilic graphs is left as future work.

6 EXPERIMENTS

We evaluate our model and present its performance in two tasks: semi-supervised node clas-
sification and knowledge-graph-aware recommendation. The code of GCN-LPA is available at
https://github.com/hwwang55/GCN-LPA.

6.1 Semi-Supervised Node Classification

6.1.1 Datasets. We use the following five datasets in our experiments. Cora, Citeseer, and
Pubmed [27] are citation networks, where nodes correspond to documents, edges correspond to
citation links, and each node has a sparse bag-of-words feature vector as well as a class label. We
also use two co-authorship networks [28], Coauthor-CS and Coauthor-Phy, where nodes are au-
thors and an edge indicates that two authors co-authored a paper. Node features represent paper
keywords for each author’s papers, and class labels indicate most active fields of study for each
author.
Statistics of the five datasets are shown in Table 1. We also calculate the intra-class edge rate

(the fraction of edges that connect two nodes within the same class), which is significantly higher
than inter-class edge rate in all networks. The finding supports our claim in Section 5 that node
classification benefits from intra-class edges in a graph.

6.1.2 Baselines. We compare against the following baselines in our experiments. Logistic Re-
gression is feature-based methods that do not consider the graph structure. We set solver = ‘lbfgs’
for LR in the Python sklearn package. LPA [49], however, only consider the graph structure and
ignore node features. We set the iteration of LPA as 20. We also compare with several GNNs: GCN
[12], Graph Attention Network (GAT), Jumping Knowledge Network (JK-Net) [40], Graph Isomor-
phism Network (GIN) [39], and Graph Diffusion Convolution (GDC) [14] (with GCN as the base
model). There hyper-parameter settings are set as default in their original open-source codes. In
addition, we propose three variants that also combines GCN and LPA: GCN-LPA(T), which learns
the optimal adjacency matrix A by minimizing Llpa first, then freezes A and optimizesW by min-
imizing Lдcn ; GCN-LPA(S), which simultaneously optimizes A andW as in Equation (15), but the
gradient of A only propagates back from Llpa ; GCN+LPA, which simply adds predictions of GCN
and LPA together.

6.1.3 Experimental Setup. Our experiments focus on the transductive setting where we only
know labels of part of nodes but have access to the entire graph as well as features of all nodes.3

3Our method can be easily generalized to inductive setting if implemented using minibatch training like GraphSAGE [6].

To accommodate to this change, edge weights should be designed as a function of features of two endpoints, and the

neighborhood should be sampled based on the (normalized) edge weights.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

https://github.com/hwwang55/GCN-LPA

73:10 H. Wang and J. Leskovec

Table 2. Hyper-parameter Settings for All Datasets in Node Classification Task

Cora Citeseer Pubmed Coauthor-CS Coauthor-Phy

Dimension of hidden layers 32 16 32 32 32
GCN layers 5 2 2 2 2

LPA iterations 5 5 1 2 3
LPA weight (λ) 10 1 1 2 1

L2 weight 1 × 10−4 5 × 10−4 2 × 10−4 1 × 10−4 1 × 10−4
Dropout rate 0.2 0 0 0.2 0.2
Learning rate 0.05 0.2 0.1 0.1 0.05

We randomly sample 20 nodes per class as training set, 50 nodes per class as validation set, and the
remaining nodes as test set. Theweight of each edge is treated as a free variable during training.We
train our model for 200 epochs using Adam [11] and report the test set accuracy when validation
set accuracy is maximized. Each experiment is repeated 10 times, and we report the mean and the
95% confidence interval. We initialize weights according to Reference [4] and row-normalize input
features. During training, we apply L2 regularization to the transformation matrices and use the
dropout technique [30].
The detailed hyper-parameter settings of GCN-LPA on all datasets are listed in Table 2. In GCN-

LPA, we set the dimension of all hidden layers as the same. Note that the number of GCN layers
and the number of LPA iterations can actually be different, since GCN and LPA are implemented
as two independent modules. We use grid search to determine hyper-parameters on Cora, and
fine-tune the hyper-parameters on other datasets, i.e., varying one hyper-parameter per time to
see if the performance can be further improved. The search spaces for all hyper-parameters are
listed follows:

• Dimension of hidden layers: {8, 16, 32};
• # GCN layers: {1, 2, 3, 4, 5, 6};
• # LPA iterations: {1, 2, 3, 4, 5, 6, 7, 8, 9};
• LPA weight (λ): {0, 1, 2, 5, 10, 15, 20};
• L2 weight: {10−7, 2 × 10−7, 5 × 10−7, 10−6, 2 × 10−6, 5 × 10−6, 10−5, 2 × 10−5, 5 × 10−5, 10−4, 2 ×
10−4, 5 × 10−4, 10−3};
• Dropout rate: {0, 0.1, 0.2, 0.3, 0.4, 0.5};
• Learning rate: {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.

6.1.4 Comparison with Baselines. The results of node classification are summarized in Table 3.
Table 3 indicates that only using node features (Logistic Regression) or graph structure (LPA) will
lead to information loss and cannot fully exploit datasets. The results demonstrate that our pro-
posed GCN-LPA model surpasses state-of-the-art GNN baselines. We are able to improve upon
the best baseline by 0.8%, 1.0%, 0.8, and 1.6% on Citeseer, Pubmed, Coauthor-CS, and Coauthor-
Phy, respectively (all percentages are absolute gains). We notice that GDC is a strong baseline on
Cora, but it does not perform consistently well on other datasets. In addition, regarding the three
variants of our method: GCN+LPA does not perform well, since it utilizes the prediction of LPA di-
rectly, making its performance limited by LPA; GCN-LPA(T) also performs worse than GCN-LPA,
which is probably due to the reason that learning the optimal adjacency matrix first will make the
edge weights prone to overfitting the training node labels; GCN-LPA(S) achieves almost the same
performance as GCN-LPA. But we observe that it takes more time for GCN-LPA(S) to converge
compared with GCN-LPA, since the adjacency matrix is updated based only on the signal from
Llpa without Lдcn .

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:11

Table 3. Mean and the 95% Confidence Intervals of Test Set Accuracy for All Methods and Datasets

in Node Classification Task

Method Cora Citeseer Pubmed Coauthor-CS Coauthor-Phy

Logistic Regression 57.0 ± 1.6 61.2 ± 1.5 64.0 ± 2.3 86.1 ± 0.8 86.7 ± 1.3
LPA 74.4 ± 2.0 67.5 ± 1.3 70.6 ± 3.4 73.8 ± 1.4 86.2 ± 1.5
GCN 81.4 ± 0.8 71.8 ± 1.3 77.6 ± 2.0 90.9 ± 0.5 92.3 ± 0.9
GAT 80.8 ± 1.2 71.3 ± 1.4 76.8 ± 1.6 90.4 ± 0.5 92.2 ± 0.7
JK-Net 81.1 ± 1.2 70.3 ± 1.0 77.4 ± 0.5 90.3 ± 0.3 90.8 ± 0.6
GIN 74.2 ± 0.9 60.5 ± 1.1 73.3 ± 1.0 84.2 ± 1.1 87.1 ± 0.9
GDC 83.2 ± 0.8 72.0 ± 0.9 77.8 ± 0.7 91.1 ± 0.6 92.1 ± 0.4

GCN-LPA(T) 82.6 ± 0.7 72.4 ± 0.7 78.2 ± 1.0 91.5 ± 0.5 93.1 ± 0.7
GCN-LPA(S) 82.9 ± 0.8 72.4 ± 0.9 78.4 ± 0.9 91.8 ± 0.4 93.4 ± 0.8
GCN+LPA 78.3 ± 0.5 69.9 ± 1.1 74.0 ± 0.6 84.4 ± 0.8 89.9 ± 0.7

GCN-LPA 83.1 ± 0.7 72.6 ± 0.8 78.6 ± 1.3 91.8 ± 0.4 93.6 ± 1.0

The best result is highlighted in bold, while the result falling within the confidence interval of the highest one is

highlighted with underline.

Fig. 3. Sensitivity to the number of LPA

iterations on Citeseer dataset.

Fig. 4. Sensitivity to λ (weight of LPA loss)

on Citeseer dataset.

6.1.5 Efficacy of LPA Regularization. We investigate the influence of the number of LPA itera-
tions and the trainingweight of LPA loss term λ on the performance of classification. The results on
Citeseer dataset are plotted in Figures 3 and 4, respectively, where each line corresponds to a given
number of GCN layers in GCN-LPA. From Figure 3 we observe that the performance is boosted
at first when the number of LPA iterations increases, then the accuracy stops increasing and de-
creases, since a large number of LPA iterations will include more noisy nodes. Figure 4 shows that
training without the LPA loss term (i.e., λ = 0) is more difficult than the case where λ = 1−5, which
justifies our aforementioned claim that it is hard for the GCN part to learn both transformation
matricesW and edge weights A simultaneously without the assistance of LPA regularization.

6.1.6 Influence of Labeled Node Rate. To study the influence of labeled node rate on the
performance of our model, we vary the ratio of labeled node rate on Citeseer from 2% to 60% while
keeping the validation and test set fixed, and report the result in Table 4 (note that we do not
deliberately keep the labels balanced for each label category to investigate the model performance
in (possible) label-unbalanced settings). From Table 4 we observe that GCN-LPA outperforms
GCN and LPA consistently, and the improvement achieved by GCN-LPA increases when labeled
node rate is larger (from 0.6% to 2.1% compared with GCN). This is because GCN-LPA requires

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

73:12 H. Wang and J. Leskovec

.
Table 4. Accuracy of LPA, GCN, and GCN-LPA on Citeseer Dataset with Different Labeled Node Rate

Labeled node rate 2% 5% 10% 20% 40% 60%

LPA 65.0 ± 1.1 67.7 ± 1.5 68.2 ± 1.0 70.5 ± 1.4 71.6 ± 1.3 73.9 ± 0.8
GCN 69.6 ± 0.9 72.1 ± 1.2 72.4 ± 1.0 74.4 ± 0.6 75.7 ± 0.5 79.1 ± 0.8

GCN-LPA 70.2 ± 0.7 72.7 ± 1.0 73.3 ± 0.8 75.3 ± 1.1 77.3 ± 0.8 80.9 ± 1.0

Fig. 5. Visualization of learned

edge weights on Coauthor-CS

dataset. The numbers along axes

denote different node labels.

Fig. 6. Training time per epoch of GCN-

LPA and GCN on random graphs.

node labels to calculate edge weights. Therefore, a larger labeled node rate will provide more
information for identifying noisy edges.

6.1.7 Visualization of Learned Edge Weights. To intuitively understand what our model learns
about edge weights, we split nodes in Coauthor-CS dataset into 15 groups according to their labels,
and calculate the average weights of edges connecting every pair of node groups as well as the
average weights of edges within every group. The results are shown in Figure 5, where darker
color indicates higher average weights of edges. It is clear that values along the diagonal (intra-
class edges weights) are significantly larger than off-diagonal values (inter-class edge weights)
in general, which demonstrates that GCN-LPA is able to identify the importance of edges and
distinguish inter-class and intra-class edges. The visualization results are similar for other datasets.

6.1.8 Time Complexity. We study the training time of GCN-LPA on random graphs. We use
the one-hot identity vector as feature and [0, 0] as label for each node. The size of training set
and validation set is 100 and 200, respectively, while the rest is test set. The average number of
neighbors for each node is 5, and the number of nodes is varied from one thousand to one million.
We run GCN-LPA and GCN for 100 epochs on a Microsoft Azure virtual machine with 1 NVIDIA
Tesla M60 GPU, 12 Intel Xeon CPUs (E5-2690 v3 @2.60 GHz), and 128 GB of RAM, using the
same hyper-parameter setting as in Cora. The training time per epoch of GCN-LPA and GCN is
presented in Figure 6. Our result shows that GCN-LPA requires only 9.2% extra training time on
average compared to GCN.
Here we also provide theoretical analysis on time complexity. We first analyze the time com-

plexity of GCN. Suppose that the graph has N nodes and E edges. For a given GCN layer, the input
embedding dimension is Di and the output embedding dimension is Do . Therefore, the size of the

three matrices Ã, X (k) , W (k) in Equation (3) is N × N , N × Di , and Di × Do , respectively. The
complexity of multiplying them together and applying a nonlinear function is N 2Di +NDiDo and
NDo , respectively. The total complexity of one GCN layer is therefore N 2Di +NDiDo +NDo . For

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:13

Fig. 7. Left: An instance of movie knowledge graph and the rating history of user Alice in recommender

systems. Middle: The symbolized knowledge graph and user history. Right: Transforming the knowledge

graph into a weighted graph, in which the weight of edge with relation r is u�r, where u and r are the

trainable embeddings for user u and relation r , respectively. Nodes that user u likes are assigned with label 1

and nodes that useru dislikes are assigned with label 0. In this way, the KG-aware recommendation problem

is transformed to a binary node classification problem.

GCN-LPA, the time complexity of one GCN-LPA layer contains an addition term for LPA, which is
N 2C +MC according to Equations (1) and (2), where C andM are the dimension of labels and the
number of labeled nodes, respectively. Therefore, the ratio of additional time cost of GCN-LPA com-
pared with GCN is (N 2C + MC)/(N 2Di + NDiDo + NDo). Considering that the adjacency matrix
is usually implemented as sparse matrix in practice, we replace N 2 with E in the above equation,
which is now (EC + MC)/(EDi + NDiDo + NDo) = (E

N
C + M

N
C)/(E

N
Di + DiDo + Do) (by elimi-

nating N) = (d2C+ M
N
C)/(d2Di +DiDo+Do) (d is the average node degree) ≈ d

2C/(
d
2Di +DiDo+Do)

(because the labeled node rate M/N � 1). Note that d and C are usually much smaller than Di

and Do , therefore, the additional time cost of LPA term is negligible in practice.
One possible limitation of this experiment is that, for fair comparison, we implement the GCN

layers and the LPA term by ourselves using Tensorflow, but note that there may exist other GNN
implementation that is specially optimized (e.g., Pytorch Geometric) and runs much faster than
our implementation. This could be solved by applying the same optimization strategy to the im-
plementation of the LPA regularization.

6.2 Knowledge-Graph-Aware Recommendation

Knowledge graphs (KGs) are a special type of graphs where nodes denote entities and edges
denote relations among entities (see the left part of Figure 7 for an example). In many recommen-
dation scenarios, items in recommender systems are also nodes in knowledge graphs. Therefore,
knowledge graphs provide additional information about item-item relationship, which can be used
to improve the performance of recommender systems. A typical KG-aware recommendation prob-
lem can be described as follows: Given a user set U and an item set I , we have some observed
user-item interaction data {(u, i)}u ∈U ,i ∈I . In addition, suppose we also have a knowledge graph
G = {(h, r , t)} available, where h and t are two entities, and r is the relation between the two en-
tities. Note that items are also nodes in KGs, i.e., I ⊂ V where V is the set of KG nodes (entities).
Our goal is to predict the potential subset of items that a particular user u may interact with.
The above problem can actually be seen as a binary node classification task: For a particular

user, we only know labels of a part of nodes (items) in the KG, and the goal is to predict labels of
remaining nodes (items) (see the right part of Figure 7 for an example). It is also worth noticing
that our proposed GCN-LPA perfectly fits this problem, because a KG has no explicit edge weights
and they need to be learned.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

73:14 H. Wang and J. Leskovec

Table 5. Statistics for All Datasets in Recommendation Task

MovieLens-20M Book-Crossing Last.FM Dianping-Food

users 138,159 19,676 1,872 2,298,698
items 16,954 20,003 3,846 1,362

interactions 13,501,622 172,576 42,346 23,416,418
entities 102,569 25,787 9,366 28,115
relations 32 18 60 7
KG triples 499,474 60,787 15,518 160,519

To apply GCN-LPA to KG-aware recommendation problem, we first use GCN to propagate node
features across the KG. Then the node labels can be calculated as σ (u�i), where u is the embedding
of user u and i is the final representation of node (item) i output by the GCN. We also use LPA
to propagate node labels across the KG, which serves as a regularization term to help learn edge
weights. Here the weight of an edge is designed as u�r, where u is the embedding of user u and
r is the embedding of the relation of this edge. The reason of such design is due to the fact that
different users may care about different aspects of movies (e.g., some users care more about genre
of movies while other users care more about their leading actors), so the edge weight u�r is able
to characterize personal preference of users.

6.2.1 Datasets. We utilize the following four datasets in our experiments for movie, book, mu-
sic, and restaurant recommendations, respectively.MovieLens-20M is a widely used benchmark
dataset in movie recommendations, which consists of approximately twenty million explicit rat-
ings (ranging from 1 to 5) on the MovieLens website. Book-Crossing contains one million ratings
(ranging from 0 to 10) of books in the Book-Crossing community. Last.FM contains musician lis-
tening information from a set of two thousand users from Last.fm online music system.Dianping-
Food contains over ten million interactions (including clicking, buying, and adding to favorites)
between approximately two million users and one thousand restaurants.
The statistics for all datasets are shown in Table 5.

6.2.2 Baselines. We compare our model with the following baselines for recommender systems,
in which the first two baselines are KG-free while the rest are KG-aware methods. SVD [17] is a
classic CF-based model using inner product to model user-item interactions. We use the unbiased
version (i.e., the predicted engaging probability is modeled as yuv = u

�
v). The dimension and

learning rate for the four datasets are set as: d = 8, η = 0.5 for MovieLens-20M, Book-Crossing;
d = 8, η = 0.1 for Last.FM; d = 32, η = 0.1 for Dianping-Food. LibFM [24] is a widely used feature-
based factorization model for click-through rate (CTR) prediction. We concatenate user ID and
item ID as input for LibFM. The dimension is set as {1, 1, 8} and the number of training epochs is
50 for all datasets. LibFM + TransE extends LibFM by attaching an entity representation learned
by TransE [2] to each user-item pair. The dimension of TransE is 32 for all datasets. PER [42] is a
representative of path-basedmethods, which treats the KG as heterogeneous information networks
and extracts meta-path-based features to represent the connectivity between users and items. The
settings of dimension and learning rate are the same as SVD. CKE [43] is a representative of
embedding-based methods, which combines CF with structural, textual, and visual knowledge in
a unified framework. We implement CKE as CF plus a structural knowledge module in this article.
The dimension of embedding for the four datasets are 64, 128, 64, 64. The training weight for
KG part is 0.1 for all datasets. The learning rate are the same as in SVD. RippleNet [34] is a
representative of hybrid methods, which is a memory-network-like [37] approach that propagates
users’ preferences on the KG for recommendation. The hyper-parameter settings for RippleNet

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:15

Table 6. Hyper-parameter Settings for the Four Datasets in Recommendation Task

MovieLens-20M Book-Crossing Last.FM Dianping-Food

Hidden layer dim. 32 64 16 8
GCN layers 1 2 1 2

LPA iterations 1 2 1 2
LPA weight (λ) 1.0 0.5 0.1 0.5

L2 weight 10−7 2 × 10−5 10−4 10−7
Learning rate 2 × 10−2 2 × 10−4 5 × 10−4 2 × 10−2

are as follows: d = 8, H = 2, λ1 = 10−6, λ2 = 0.01, η = 0.01 for MovieLens-20M; d = 16, H = 3,
λ1 = 10−5, λ2 = 0.02, η = 0.005 for Last.FM; d = 32, H = 2, λ1 = 10−7, λ2 = 0.02, η = 0.01 for
Dianping-Food. KGIN [36] models user intents as an attentive combination of knowledge graph
relations, and encourages the independence of different intents for better model capability and
interpretability. We set the learning rate to 10−7, the embedding size to 64, the number of layers
to 3, the number of user intents to 4, the coefficient of independence modeling to 10−4, and the
coefficient of L2 regularization to 10−5.

6.2.3 Experimental Setup. Hyper-parameter settings for the four datasets are given in Table 6,
which are determined by optimizing Recall@10 on a validation set. The search spaces for hyper-
parameters are as follows:

• Dimension of hidden layers: {4, 8, 16, 32, 64, 128};
• # GCN layers: {1, 2, 3, 4};
• # LPA iterations: {1, 2, 3, 4};
• LPA weight (λ): {0, 0.01, 0.1, 0.5, 1, 5};
• L2 weight: {10−9, 10−8, 10−7, 2 × 10−7, 5 × 10−7, 10−6, 2 × 10−6, 5 × 10−6, 10−5, 2 × 10−5,
5 × 10−5, 10−4, 2 × 10−4, 5 × 10−4, 10−3};
• Learning rate: {10−5, 2 × 10−5, 5 × 10−5, 10−4, 2 × 10−4, 5 × 10−4, 10−3, 2 × 10−3, 5 × 10−3, 10−2,
2 × 10−2, 5 × 10−2, 10−1}.

For each dataset, the ratio of training, validation, and test set is 6 : 2 : 2. Each experiment is
repeated 10 times, and the average performance is reported. All trainable parameters are optimized
by Adam algorithm.

6.2.4 Comparison with Baselines. We evaluate our method in two experiment scenarios: (1) In
top-K recommendation, we use the trained model to select K items with highest predicted click
probability for each user in the test set, and choose Recall@K to evaluate the recommended sets.
(2) In CTR prediction, we apply the trained model to predict each piece of user-item pair in the test
set (including positive items and randomly selected negative items). We useAUC as the evaluation
metric in CTR prediction.
The results of top-K recommendation and CTR prediction are presented in Tables 7 to 11, which

show that GCN-LPA outperforms baselines by a significant margin. For example, theAUC of GCN-
LPA surpasses the best baseline method by 1.3%, 1.7%, 1.5%, and 1.1% in MovieLens-20M, Book-
Crossing, Last.FM, and Dianping-Food datasets, respectively (all percentages are absolute gains).
We also show daily performance of GCN-LPA and baselines on Dianping-Food to investigate

performance stability. Figure 8 shows their AUC score from September 1, 2018 to September 30,
2018. We notice that the curve of GCN-LPA is consistently above baselines over the test period;
Moreover, the performance of GCN-LPA is also with low variance, which suggests that GCN-LPA
is also robust and stable in practice.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

73:16 H. Wang and J. Leskovec

Table 7. The Results of Recall@K for MovieLens-20M Dataset

in Recommendation Task

Model R@2 R@10 R@50 R@100

SVD 3.6 ± 0.2 12.4 ± 0.2 27.7 ± 0.1 40.1 ± 0.2
LibFM 3.8 ± 0.4 12.1 ± 0.5 27.0 ± 0.5 39.0 ± 0.6

LibFM + TransE 4.0 ± 0.8 12.1 ± 1.0 28.1 ± 1.3 39.4 ± 1.1
PER 2.2 ± 0.7 7.6 ± 0.8 16.1 ± 0.7 24.5 ± 0.7
CKE 3.5 ± 0.5 10.7 ± 0.6 24.2 ± 0.6 32.3 ± 0.5

RippleNet 4.5 ± 0.7 13.1 ± 0.9 27.5 ± 0.8 44.3 ± 0.6
KGIN 4.1 ± 0.4 12.6 ± 0.4 27.1 ± 0.5 42.4 ± 0.3

GCN-LPA 4.3 ± 0.5 15.4 ± 0.5 32.2 ± 0.3 45.9 ± 0.4

Table 8. The Results of Recall@K for Book-Crossing Dataset

in Recommendation Task

Model R@2 R@10 R@50 R@100

SVD 2.5 ± 0.3 4.6 ± 0.5 7.8 ± 0.4 10.9 ± 0.4
LibFM 3.1 ± 0.5 6.1 ± 0.5 9.2 ± 0.5 12.5 ± 0.6

LibFM + TransE 3.7 ± 1.3 6.5 ± 1.2 9.7 ± 1.2 13.0 ± 1.3
PER 2.1 ± 0.8 4.0 ± 1.0 6.4 ± 1.1 7.0 ± 1.0
CKE 2.6 ± 0.4 5.2 ± 0.4 7.8 ± 0.5 11.2 ± 0.6

RippleNet 3.5 ± 0.6 7.4 ± 0.6 10.7 ± 0.7 12.8 ± 0.7
KGIN 3.3 ± 0.4 7.0 ± 0.5 10.2 ± 0.7 12.6 ± 0.5

GCN-LPA 4.5 ± 0.4 8.3 ± 0.5 11.6 ± 0.4 14.9 ± 0.4

Table 9. The Results of Recall@K for Last

Model R@2 R@10 R@50 R@100

SVD 2.9 ± 0.5 9.8 ± 0.4 24.1 ± 0.6 33.2 ± 0.6
LibFM 3.2 ± 0.8 10.3 ± 0.8 26.0 ± 0.9 33.1 ± 0.7

LibFM + TransE 3.1 ± 1.5 10.2 ± 1.7 25.7 ± 1.8 32.6 ± 1.8
PER 1.4 ± 1.2 5.3 ± 1.0 11.6 ± 0.9 17.6 ± 1.0
CKE 2.2 ± 0.6 7.0 ± 0.5 18.1 ± 0.7 29.6 ± 0.7

RippleNet 3.1 ± 0.9 10.1 ± 0.8 24.0 ± 0.8 33.5 ± 0.9
KGIN 3.5 ± 0.4 10.6 ± 0.5 26.2 ± 0.7 33.8 ± 0.7

GCN-LPA 4.4 ± 0.7 12.1 ± 0.7 27.6 ± 0.6 37.0 ± 0.8

FM dataset in recommendation task.

6.2.5 Efficacy of LPA Regularization. To study the efficacy of LPA regularization, we fix the di-
mension of hidden layers as 4, 8, and 16, then vary λ from 0 to 5 to see how performance changes.
The results of Recall@10 in Last.FM dataset are plotted in Figure 9. It is clear that the performance
of GCN-LPA with a non-zero λ is better than λ = 0, which justifies our claim that LPA regulariza-
tion can assist learning the edge weights in a KG. But note that a too-large λ is less favorable, since
it overwhelms the overall loss andmisleads the direction of gradients. According to the experiment
results, we find that a λ between 0.1 and 1.0 is preferable in most cases.

6.2.6 Results in Cold-start Scenarios. To investigate the performance of GCN-LPA in cold-start
scenarios, we vary the size of training set r of MovieLens-20M from r = 100% to r = 20% (while
the validation and test set are kept fixed), and report the results ofAUC in Table 12. When r = 20%,

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:17

Table 10. The Results of Recall@K for Dianping-food Dataset

in Recommendation Task

Model R@2 R@10 R@50 R@100

SVD 3.9 ± 0.2 15.1 ± 0.3 32.8 ± 0.3 45.2 ± 0.3
LibFM 4.1 ± 0.5 15.6 ± 0.5 33.2 ± 0.6 44.9 ± 0.6

LibFM + TransE 4.3 ± 1.0 16.1 ± 0.8 34.2 ± 0.6 45.4 ± 0.8
PER 2.5 ± 0.7 10.1 ± 0.7 25.7 ± 0.9 35.4 ± 0.6
CKE 3.2 ± 0.6 13.8 ± 0.7 30.4 ± 0.6 43.7 ± 0.5

RippleNet 4.1 ± 0.5 15.3 ± 0.6 32.8 ± 0.6 44.1 ± 0.7
KGIN 4.0 ± 0.5 15.5 ± 0.6 33.1 ± 0.6 44.5 ± 0.6

GCN-LPA 4.8 ± 0.3 17.2 ± 0.4 34.0 ± 0.3 48.6 ± 0.3

Table 11. The Results of AUC for all Datasets in Recommendation Task

MovieLens-20M Book-Crossing Last.FM Dianping-Food

SVD 96.3 ± 0.4 67.3 ± 0.6 76.9 ± 0.3 83.9 ± 0.2
LibFM 95.5 ± 1.1 69.0 ± 0.6 77.8 ± 0.7 83.7 ± 0.5

LibFM + TransE 96.6 ± 0.8 69.8 ± 0.9 77.4 ± 0.6 83.9 ± 0.4
PER 83.1 ± 0.7 61.6 ± 0.5 63.3 ± 0.4 74.8 ± 0.4
CKE 92.4 ± 0.5 67.5 ± 0.7 74.5 ± 0.5 80.2 ± 0.6

RippleNet 96.1 ± 0.3 72.7 ± 0.4 77.0 ± 0.3 83.2 ± 0.2
KGIN 95.8 ± 0.3 72.0 ± 0.5 78.8 ± 0.4 83.5 ± 0.5

GCN-LPA 97.9 ± 0.1 74.4 ± 0.4 80.3 ± 0.2 85.1 ± 0.2

Fig. 8. Daily AUC of all KG-aware meth-

ods on Dianping-Food dataset in Septem-

ber 2018.

Fig. 9. Efficacy of LPA regularization on

Last.FM dataset (d is the dimension of hid-

den layers).

AUC decreases by 8.1%, 5.3%, 5.2%, 2.9%, 2.6%, 4.0%, and 4.4% for the seven baselines compared
to the model trained on full training data (r = 100%), but the performance decrease of GCN-LPA
is only 1.8%. This demonstrates that GCN-LPA still maintains predictive performance even when
user-item interactions are sparse.

6.2.7 Hyper-parameters Sensitivity. We first analyze the sensitivity of GCN-LPA to the number
of GNN layers and LPA iterations (these two numbers are set as the same in recommendation
task). We vary this number from 1 to 4 while keeping other hyper-parameters fixed. The results
are shown in Table 13.We find that themodel performs poorlywhen the number is too large, which
is because a large number of GCN layers or LPA iterations will mix too many entity embeddings
in a given entity, which over-smoothes the representation learning on KGs.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

73:18 H. Wang and J. Leskovec

Table 12. AUC of all Methods w.r.t. the Ratio of Training Set on MovieLens-20M Dataset

Ratio of training set r 20% 40% 60% 80% 100%

SVD 88.2 ± 0.5 91.3 ± 0.5 93.8 ± 0.5 95.5 ± 0.4 96.3 ± 0.4
LibFM 90.2 ± 1.2 92.3 ± 1.2 93.8 ± 1.0 95.0 ± 1.1 95.5 ± 1.1

LibFM+TransE 91.4 ± 0.9 93.5 ± 1.0 94.9 ± 0.9 96.0 ± 0.9 96.6 ± 0.8
PER 80.2 ± 0.6 81.4 ± 0.6 82.1 ± 0.8 82.8 ± 0.7 83.1 ± 0.7
CKE 89.8 ± 0.6 91.0 ± 0.7 91.6 ± 0.5 92.1 ± 0.6 92.4 ± 0.5

RippleNet 92.1 ± 0.4 93.7 ± 0.3 94.7 ± 0.4 95.5 ± 0.4 96.1 ± 0.3
KGIN 91.4 ± 0.3 93.2 ± 0.4 94.4 ± 0.4 95.1 ± 0.5 95.8 ± 0.3

GCN-LPA 96.1 ± 0.1 97.0 ± 0.2 97.4 ± 0.1 97.7 ± 0.0 97.9 ± 0.1

Table 13. Recall@10 w.r.t. the Number of GCN Layers

GCN layers 1 2 3 4

MovieLens-20M 15.4 ± 0.5 14.6 ± 0.8 12.2 ± 1.3 1.1 ± 0.0
Book-Crossing 7.7 ± 0.4 8.3 ± 0.5 4.3 ± 0.9 0.8 ± 0.2

Last.FM 12.1 ± 0.7 10.6 ± 0.6 10.5 ± 0.6 5.7 ± 0.9
Dianping-Food 16.5 ± 0.3 17.2 ± 0.4 6.1 ± 0.8 3.6 ± 0.9

Table 14. Recall@10 w.r.t. the Dimension of Hidden Layers

Hidden layer dim. 4 8 16 32 64 128

MovieLens-20M 13.4 ± 0.6 14.1 ± 0.6 14.3 ± 0.5 15.4 ± 0.5 15.3 ± 0.4 15.1 ± 0.5
Book-Crossing 6.5 ± 0.7 7.3 ± 0.8 7.7 ± 0.7 8.1 ± 0.5 8.3 ± 0.5 8.0 ± 0.6

Last.FM 11.1 ± 0.7 11.6 ± 0.9 12.1 ± 0.7 10.9 ± 1.0 10.2 ± 0.8 10.7 ± 0.8
Dianping-Food 15.5 ± 0.6 17.2 ± 0.4 16.7 ± 0.5 16.6 ± 0.5 16.3 ± 0.6 16.1 ± 0.4

We also examine the impact of the dimension of hidden layers on the performance of GCN-LPA.
The result in shown in Table 14. We observe that the performance is boosted with the increase of
the dimension at the beginning, becausemore bits in hidden layers can improve themodel capacity.
However, the performance drops when the number further increases, since a too-large dimension
may overfit datasets.

6.2.8 Time Complexity. We also investigate the running time of our method with respect to
the size of KG. We run experiments on a Microsoft Azure virtual machine with 1 NVIDIA Tesla
M60 GPU, 12 Intel Xeon CPUs (E5-2690 v3 @2.60GHz), and 128 GB of RAM. The size of the KG
is increased by up to five times the original one by extracting more triples from the original KG,
and the running times of all methods on MovieLens-20M dataset are reported in Figure 10. Note
that the trend of a curve matters more than the real values, since the values are largely dependent
on the minibatch size and the number of epochs (yet we did try to align the configurations of all
methods). The result show that GCN-LPA exhibits strong scalability even when the KG is large.

7 RELATEDWORK

Edge weights play a key role in graph-based machine learning algorithms. In this section, we
discuss three lines of related work that learn edge weights adaptively: locally linear embedding,
label propagation algorithm, attention, and diffusion on graphs.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:19

Fig. 10. Running time of all methods w.r.t. KG size on MovieLens-20M dataset.

7.1 Locally Linear Embedding

Locally linear embedding (LLE) [26] and its variants [16, 46] learn edge weights by construct-
ing a linear dependency between a node and its neighbors and then use the learned edge weights
to embed high-dimensional nodes into a low-dimensional space. Our work is similar to LLE in
the aspect of transferring the knowledge of edge importance from one space to another, but the
difference is that LLE is an unsupervised dimension reduction method that learns the graph struc-
ture based on local proximity only, while our work is semi-supervised and explores high-order
relationship among nodes.

7.2 Label Propagation Algorithm

Classical LPA [47, 49] can only make use of node labels rather than node features. In contrast, adap-
tive LPA considers node features by making edge weights learnable. Typical techniques of learn-
ing edge weights include adopting kernel functions [21, 48] (e.g., ai j = exp(−∑d (xid − x jd)2/σ 2

d
)

where d is dimensionality of features), minimizing neighborhood reconstruction error [10, 33], us-
ing leave-one-out loss [45], or imposing sparseness on edge weights [7]. However, in these LPA
variants, node features are only used to assist learning the graph structure rather than explicitly
mapped to node labels, which limits their capability in node classification. Another notable differ-
ence is that adaptive LPA learns edge weights by introducing the regularizations above, while our
work takes LPA itself as regularization to learn edge weights.

7.3 Attention and Diffusion on Graphs

Our method is also conceptually connected to attention mechanism on graphs, in which an atten-
tion weight αi j is learned between nodevi andvj . For example, αi j = LeakyReLU(a�[W xi | |W xj])
in GAT [32], αi j = a · cos(W xi ,W xj) in AGNN [31], αi j = (W1xi)

�W2xj in GaAN [44], and
αi j = a� tanh(W1xi +W2xj) in GeniePath [22], where a andW are trainable variables. Our method
is also similar to diffusion-based methods [1, 9, 13, 14, 38, 41]. Graph diffusion uses extended neigh-
borhoods for aggregation in GNNs, which can be seen as learning a new adjacency matrix for a
given graph. A significant difference between attention/diffusionmechanisms and our work is that
attention/diffusion is learned based on feature similarity/graph topology, while we propose that
edge weights should be consistent with the distribution of labels on the graph, which requires less
handcrafting of the attention/diffusion function and is more task oriented.

7.4 Connection between LPA and GCN

Researchers also studied the connection between LPA and GCN from various perspectives. For
example, Li et al. [19] studied the similarity of LPA and GCN in terms of low-pass filtering, and
they proposed a a graph filtering framework that injects graph similarity into data features by

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

73:20 H. Wang and J. Leskovec

taking them as signals on the graph and applying a low-pass graph filter to extract useful data
representations for classification. Huang et al. [8] proposed the C&S method, which combines
shallow models that ignore the graph structure with two simple post-processing steps that exploit
correlation in the label structure: (1) an “error correlation” that spreads residual errors in training
data to correct errors in test data and (2) a “prediction correlation” that smooths the predictions
on the test data. They showed that their proposed method can exceed or match the performance
of state-of-the-art GNNs. Dong et al. [3] studied the decoupled GCN (i.e., feature transformation
and neighborhood aggregation are decoupled) and proved that the decoupled GCN is essentially
the same as the two-step label propagation: first, propagating the known labels along the graph
to generate pseudo-labels for the unlabeled nodes and, second, training normal neural network
classifiers on the augmented pseudo-labeled data. Shi et al. proposed UniMP [29], which adopts a
Graph Transformer network taking feature embedding and label embedding as input information
for propagation. The difference between these work and ours is that we use LPA as a regularization
term to assist learning the edge weights for GCN, which combines LPA and GCNmore tightly and
is shown to be effective both theoretically and empirically.

8 CONCLUSION AND FUTURE WORK

We studies the theoretical relationship between two types of well-known graph-based algorithms,
label propagation algorithm and graph convolutional neural networks, from the perspectives of
feature/label influence. We then propose a unified model GCN-LPA, which learns transformation
matrices and edge weights simultaneously in GCN with the assistance of LPA regularizer. We also
analyze why our unified model performs better than traditional GCN for node classification. Ex-
periments on semi-supervised node classification and knowledge-graph-aware recommendation
tasks demonstrate that our model outperforms state-of-the-art baselines, and it is also highly time-
efficient with respect to the size of a graph.
We point out two possible directions as future work. First, it is worth studying why learning ad-

jacency matrix and the parameters of GCN together performs better than learing them separately.
Second, applying our method to the case where labels are extremely sparse is also a promising
direction.

APPENDICES

A PROOF OF THEOREM 1

Before proving Theorem 1, we first give two lemmas that demonstrate the exact form of feature
influence and label influence defined in this article. The relationship between feature influence and
label influence can then be deduced from their exact forms.

Lemma 1. Assume that the nonlinear activation function in GCN is ReLU. Let Pa→b
k

be a path

[v (k),v (k−1), . . . ,v (0)] of length k from node va to node vb , where v
(k) = va , v

(0) = vb , and v
(i−1) ∈

N (v (i)) for i = k, . . . , 1. Then we have

Ĩf (va ,vb ;k) =
∑

Pa→b
k

1∏

i=k

ãv (i−1),v (i) , (21)

where ãv (i−1),v (i) is the normalized weight of edge (v (i),v (i−1)).

Proof. See Reference [40] for the detailed proof. �

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:21

Fig. 11. An illustrating example of label propagation in LPA. Suppose labels are propagated for three itera-

tions, and no self-loop exists. Blue nodes are labeled while white nodes are unlabeled. (a) va ’s label propa-
gates to v1 (yellow arrows). Note that the propagation of va ’s label to v3 is cut off, since v3 is labeled thus

absorbing va ’s label. (b) va ’s label that propagated to v1 further propagates to v2 and vb (yellow arrows).

Meanwhile, va ’s label is reset to its initial value then propagates from va again (green arrows). (c) Label

propagation in iteration 3. Purple arrows denote the propagation of va ’s label starting from va for the third

time. (d) All possible paths of length no more than three fromva tovb containing unlabeled nodes only. Note

that there is no path of length one from va to vb .

The product term in Equation (21) is the probability of a given path Pa→b
k

. Therefore, the right-
hand side in Equation (21) is the sum over probabilities of all possible paths of length k from va to
vb , which is the probability that a random walk starting at va ends at vb after taking k steps.

Lemma 2. Let U a→b
j be a path [v (j),v (j−1), . . . ,v (0)] of length j from node va to node vb , where

v (j) = va , v
(0) = vb , v

(i−1) ∈ N (v (i)) for i = j, . . . , 1, and all nodes along the path are unlabeled

except v (0) . Then we have

Il (va ,vb ;k) =
k∑

j=1

∑

U a→b
j

1∏

i=j

ãv (i−1),v (i) , (22)

where ãv (i−1),v (i) is the normalized weight of edge (v (i),v (i−1)).

To intuitively understand this lemma, note that there are two differences between Lemma 1 and
Lemma 2:

• In Lemma 1, Ĩf (va ,vb ;k) sums over all paths from va to vb of length k , but in Lemma 2,
Il (va ,vb ;k) sums over all paths from va to vb of length no more than k . The is because in
LPA, vb ’s label is reset to its initial value after each iteration, which means that the label
of vb serves as a constant signal that begins propagating in the graph again and again after
each iteration.
• In Lemma 1 we consider all possible paths from va to vb , but in Lemma 2, the paths are
restricted to contain unlabeled nodes only. The reason here is the same as above: Since the
labels of labeled nodes are reset to their initial values after each iteration in LPA, the influence
of vb ’s label will be absorbed in labeled nodes, and the propagation of vb ’s label will be cut
off at these nodes. Therefore, vb ’s label can only flow to va along the paths with unlabeled
nodes only. See Figure 11 for an illustrating example showing the label propagation in LPA.

Proof. As mentioned above, a significant difference between LPA and GCN is that all labeled
nodes are reset to its original labels after each iteration in LPA. This implies that the initial label

yb of node vb appears not only as y (0)
b

but also as every y (j)
b

for j = 1, . . . ,k − 1. Therefore, the

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

73:22 H. Wang and J. Leskovec

influence of yb on y (k)
a is the cumulative influence of y (j)

b
on y (k)

a for j = 0, 1, . . . ,k − 1:

Il (va ,vb ;k) =
∂y (k)

a

∂yb
=

k−1∑

j=0

∂y (k)
a

∂y (j)
b

. (23)

According to the updating rule of LPA, we have

∂y (k)
a

∂y (j)
b

=
∂
∑
vz ∈N (va) ãazy

(k−1)
z

∂y (j)
b

=
∑

vz ∈N (va)

ãaz
∂y (k−1)

z

∂y (j)
b

. (24)

In the above equation, the derivative
∂y

(k)
a

∂y
(j)
b

is decomposed into the weighted average of
∂y

(k−1)
z

∂y
(j)
b

,

where vz traverses all neighbors of va . For those vz ’s that are initially labeled, y (k−1)
z is reset to

their initial labels in each iteration. Therefore, they are always constant and independent of y (j)
b
,

meaning that their derivatives w.r.t. y (j)
b

are zero. So we only need to consider the terms where vz
is an unlabeled node:

∂y (k)
a

∂y (j)
b

=
∑

vz ∈N (va),z>m

ãaz
∂y (k−1)

z

∂y (j)
b

, (25)

where z > m meansvz is unlabeled. To intuitively understand Equation (25), one can imagine that
we perform a random walk starting from node va for one step, where the “transition probability”
is the edge weights ã, and all nodes in this random walk are restricted to unlabeled nodes only.

Note that we can further decompose everyy (k−1)
z in Equation (25) in the way similar to what we do

for y (k)
a in Equation (24). So the expansion in Equation (25) can be performed iteratively until the

index k decreases to j. This is equivalent to performing all possible random walks for k − j steps
starting from va , where all nodes but the last in the random walk are restricted to be unlabeled
nodes:

∂y (k)
a

∂y (j)
b

=
∑

vz ∈V

∑

U a→z
k−j

��

1∏

i=k−j
ãv (i−1),v (i)

��
�
∂y (j)

z

∂y (j)
b

, (26)

where vz in the first summation term is the end node of a random walk, U a→z
k−j in the second

summation term is an unlabeled-nodes-only path from va to vz of length k − j, and the product

term is the probability of a given path U a→z
k−j . Consider the last term

∂y
(j)
z

∂y
(j)
b

in Equation (26). We

know that
∂y

(j)
z

∂y
(j)
b

= 0 for all z � b and
∂y

(j)
z

∂y
(j)
b

= 1 for z = b, which means that only those random-

walk paths that end exactly at vb (i.e., the end node vz is exactly vb) count for the computation in
Equation (26). Therefore, we have

∂y (k)
a

∂y (j)
b

=
∑

U a→b
k−j

1∏

i=k−j
ãv (i−1),v (i) , (27)

where U a→b
k−j is a path from va to vb of length k − j containing only unlabeled nodes except vb .

Substituting the right-hand term of Equation (23) with Equation (27), we obtain that

Il (va ,vb ;k) =
k−1∑

j=0

∑

U a→b
k−j

1∏

i=k−j
ãv (i−1),v (i) =

k∑

j=1

∑

U a→b
j

1∏

i=j

ãv (i−1),v (i) . (28)

�

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:23

Now Theorem 1 can be proved by combining Lemma 1 and 2:

Proof. Suppose that whether a node is labeled or not is independent of each other for the given
graph. Then we have

E

[
Il (va ,vb ;k)

]

= E

⎡⎢⎢⎢⎢⎢⎢⎣
k∑

j=1

∑

U a→b
j

1∏

i=j

ãv (i−1),v (i)

⎤⎥⎥⎥⎥⎥⎥⎦
=

k∑

j=1

E

⎡⎢⎢⎢⎢⎢⎢⎣
∑

U a→b
j

1∏

i=j

ãv (i−1),v (i)

⎤⎥⎥⎥⎥⎥⎥⎦
=

k∑

j=1

∑

Pa→bj

Pr
(
Pa→b
j is an unlabeled-nodes-only path

) 1∏

i=j

ãv (i−1),v (i)

=

k∑

j=1

∑

Pa→bj

β j
1∏

i=j

ãv (i−1),v (i) =

k∑

j=1

β j Ĩf (va ,vb ; j).

(29)

�

B PROOF OF THEOREM 2

Proof. Denote the set of labels as L. Since different label dimensions in y (·)
a do not interact with

each other when running LPA, the value of the yath dimension in y (·)
a (denoted by y (·)

a [ya]) comes
only from the nodes with initial label ya . It is clear that

y (k)
a [ya] =

∑

vb :yb=ya

k∑

j=1

∑

U a→b
j

1∏

i=j

ãv (i−1),v (i) , (30)

which equals
∑
vb :yb=ya Il (va ,vb ;k) according to Lemma 2. Therefore, we have

Pr(ŷa = ya) =
y (k)
a [ya]

∑
i ∈L y

(k)
a [i]

∝ y (k)
a [ya] =

∑

vb :yb=ya

Il (va ,vb ;k) (31)

�

C PROOF OF THEOREM 3

In this proof we assume that the dimension of node representations is one, but note that the conclu-
sion can be easily generalized to the case of multi-dimensional representations, since the function
D (x) can be decomposed into the sum of one-dimensional cases. In the following of this proof, we

still use bold notations x
(k)
i and h

(k)
i to denote node representations, but keep in mind that they

are scalars rather than vectors.
We give two lemmas before proving Theorem 3. The first one is about the gradient of D (x):

Lemma 3. h
(k)
i = x

(k)
i − ∂D (x(k))

∂x
(k)
i

.

Proof. x
(k)
i − ∂D (x(k))

∂x
(k)
i

= x
(k)
i −

∑
vj ∈N (vi) ãi j

(
x
(k)
i − x(k)j

)
=
∑
vj ∈N (vi) ãi jx

(k)
j = h

(k)
i . �

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

73:24 H. Wang and J. Leskovec

It is interesting to see from Lemma 3 that the aggregation step in GCN is equivalent to running
gradient descent for one step with a step size of one. However, this is not able to guarantee that

D (h(k)) ≤ D (x(k)), because the step size may be too large to reduce the value of D.
The second lemma is about the Hessian of D (x):

Lemma 4. ∇2D (x) � 2I , or equivalently, 2I − ∇2D (x) is a positive semidefinite matrix.

Proof. We first calculate the Hessian of D (x) = 1
2

∑
vi ,vj ãi j ‖xi − xj ‖22 :

∇2D (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ã11 −ã12 · · · −ã1n
−ã21 1 − ã22 · · · −ã2n
...

...
. . .

...
−ãn1 −ãn2 · · · 1 − ãnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= I − D−1A. (32)

Therefore, 2I − ∇2D (x) = I + D−1A. Since D−1A is Markov matrix (i.e., each entry is non-negative
and the sum of each row is one), its eigenvalues are within the range [−1, 1], so the eigenvalues
of I + D−1A are within the range [0, 2]. Therefore, I + D−1A is a positive semidefinite matrix, and
we have ∇2D (x) � 2I . �

We can now prove Theorem 3:

Proof. Since D is a quadratic function, we perform a second-order Taylor expansion of D
around x

(k) and obtain the following inequality:

D
(
h
(k)
)
= D
(
x
(k)
)
+ ∇D

(
x
(k)
)� (

h
(k) − x(k)

)
+
1

2

(
h
(k) − x(k)

)� ∇2D (x)
(
h
(k) − x(k)

)

= D
(
x
(k)
)
− ∇D

(
x
(k)
)� ∇D

(
x
(k)
)
+
1

2
∇D
(
x
(k)
)� ∇2D (x)∇D

(
x
(k)
)

≤ D
(
x
(k)
)
− ∇D

(
x
(k)
)� ∇D

(
x
(k)
)
+ ∇D

(
x
(k)
)� ∇D

(
x
(k)
)

= D
(
x
(k)
)
.

(33)

�

D MORE VISUALIZATION RESULTS ON A SUBGRAPH OF CORA

Figure 12 illustrates more visualization of GCN and GCN-LPA on a subgraph of Cora. In each
subfigure, we vary the number of layers from 1 to 4 to examine how the learned representations
evolve. The dimension of hidden layers and output layer is 2. The transformation matrices are
uniformly initialized within range [−1, 1]. We use sigmoid function as the nonlinear activation
function. Comparing the four figures in each row, we conclude that the aggregation step and
transformation step in GCN and GCN-LPA do benefit the separation of different classes. Com-
paring Figures 12(a) and 12(c) (or Figures 12(b) and 12(d)), we conclude that more inter-class edges
will make the separation harder for GCN (or GCN-LPA). Comparing Figures 12(a) and 12(b) (or
Figures 12(c) and 12(d)), we conclude that GCN-LPA is more noise-resistant than GCN, therefore,
GCN-LPA can better differentiate classes and identify clustering substructures.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

Combining Graph Convolutional Neural Networks and Label Propagation 73:25

Fig. 12. Visualization of GCN and GCN-LPA with 1 ∼ 4 layers on a subgraph of Cora.

REFERENCES

[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg

Ver Steeg, and Aram Galstyan. 2019. MixHop: Higher-order graph convolutional architectures via sparsified neigh-

borhood mixing. In Proceedings of the 36th International Conference on Machine Learning. 21–29.

[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating

embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems. 2787–2795.

[3] Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui. 2021. On the equivalence

of decoupled graph convolution network and label propagation. In Proceedings of the Web Conference 2021. 3651–3662.

[4] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks.

In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics.

[5] Chen Gong, Dacheng Tao, Wei Liu, Liu Liu, and Jie Yang. 2016. Label propagation via teaching-to-learn and learning-

to-teach. IEEE Trans. Neural Netw. Learn. Syst. 28, 6 (2016), 1452–1465.

[6] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Advances

in Neural Information Processing Systems.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

73:26 H. Wang and J. Leskovec

[7] ChengHong, Zicheng Liu, and Jie Yang. 2009. Sparsity induced similaritymeasure for label propagation. In Proceedings

of the 12th IEEE International Conference on Computer Vision. IEEE.

[8] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. 2021. Combining label propagation and

simple models out-performs graph neural networks. In Proceedings of the 9th International Conference on Learning

Representations.

[9] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. 2019. Semi-supervised learning with graph learning-

convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

11313–11320.

[10] Masayuki Karasuyama and Hiroshi Mamitsuka. 2013. Manifold-based similarity adaptation for label propagation. In

Advances in Neural Information Processing Systems.

[11] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of the 3rd Inter-

national Conference on Learning Representations.

[12] Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. In Pro-

ceedings of the 5th International Conference on Learning Representations.

[13] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Predict then propagate: Graph neural

networks meet personalized pagerank. In Proceedings of the 7th International Conference on Learning Representations.

[14] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffusion improves graph learning. In Ad-

vances in Neural Information Processing Systems. 13354–13366.

[15] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via influence functions. In Proceedings of

the 34th International Conference on Machine Learning.

[16] Deguang Kong, Chris Ding, Heng Huang, and Feiping Nie. 2012. An iterative locally linear embedding algorithm. In

Proceedings of the 29th International Coference on International Conference on Machine Learning. Omnipress.

[17] Yehuda Koren. 2008. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceed-

ings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 426–434.

[18] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph convolutional networks for semi-

supervised learning. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence.

[19] Qimai Li, Xiao-MingWu, Han Liu, Xiaotong Zhang, and Zhichao Guan. 2019. Label efficient semi-supervised learning

via graph filtering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 9582–9591.

[20] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S. Zemel. 2019. LanczosNet: Multi-scale deep graph convo-

lutional networks. In Proceedings of the 7th International Conference on Learning Representations.

[21] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, and Yi Yang. 2019. Learning to

propagate labels: Transductive propagation network for few-shot learning. In Proceedings of the 7th International

Conference on Learning Representations.

[22] Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. 2019. GeniePath: Graph neural

networks with adaptive receptive paths. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence.

[23] Meng Qu, Yoshua Bengio, and Jian Tang. 2019. GMNN: Graph markov neural networks. In Proceedings of the 36th

International Conference on Machine Learning.

[24] Steffen Rendle. 2012. Factorization machines with libfm. ACM Trans. Intell. Syst. Technol. 3, 3 (2012), 57.

[25] Ryan A. Rossi, Luke K. McDowell, David William Aha, and Jennifer Neville. 2012. Transforming graph data for statis-

tical relational learning. J. Artif. Intell. Res. 45 (2012), 363–441.

[26] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science

290, 5500 (2000).

[27] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. 2008. Collective

classification in network data. AI Mag. 29, 3 (2008).

[28] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pitfalls of graph

neural network evaluation. In Neural Information Processing Systems Workshop on Relational Representation Learning.

[29] Yunsheng Shi, Zhengjie Huang, Wenjin Wang, Hui Zhong, Shikun Feng, and Yu Sun. 2020. Masked label prediction:

Unified message passing model for semi-supervised classification. arXiv:2009.03509. Retrieved from https://arxiv.org/

abs/2009.03509.

[30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A

simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1 (2014).

[31] Kiran K. Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. 2018. Attention-based graph neural network for

semi-supervised learning. arXiv:1803.03735. Retrieved from https://arxiv.org/abs/1803.03735.

[32] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2018. Graph

attention networks. In Proceedings of the 6th International Conference on Learning Representations.

[33] Fei Wang and Changshui Zhang. 2008. Label propagation through linear neighborhoods. IEEE Trans. Knowl. Data Eng.

20, 1 (2008).

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

https://arxiv.org/abs/2009.03509
https://arxiv.org/abs/1803.03735

Combining Graph Convolutional Neural Networks and Label Propagation 73:27

[34] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo. 2018. RippleNet:

Propagating user preferences on the knowledge graph for recommender systems. In Proceedings of the 27th ACM

International Conference on Information and Knowledge Management. ACM, 417–426.

[35] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, and Zhongyuan Wang. 2019.

Knowledge-aware graph neural networks with label smoothness regularization for recommender systems. In Proceed-

ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 968–977.

[36] Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He, and Tat-Seng Chua.

2021. Learning intents behind interactions with knowledge graph for recommendation. In Proceedings of the Web

Conference 2021. 878–887.

[37] Jason Weston, Sumit Chopra, and Antoine Bordes. 2015. Memory networks. In Proceedings of the 3rd International

Conference on Learning Representations.

[38] Bingbing Xu, Huawei Shen, Qi Cao, Keting Cen, and Xueqi Cheng. 2019. Graph convolutional networks using heat

kernel for semi-supervised learning. In Proceedings of the 28th International Joint Conference on Artificial Intelligence.

AAAI Press, 1928–1934.

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful are graph neural networks? In

Proceedings of the 7th International Conference on Learning Representations.

[40] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. 2018. Rep-

resentation learning on graphs with jumping knowledge networks. In Proceedings of the 35th International Conference

on Machine Learning.

[41] Liang Yang, Zesheng Kang, Xiaochun Cao, Di Jin, Bo Yang, and Yuanfang Guo. 2019. Topology optimization based

graph convolutional network. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’19).

4054–4061.

[42] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandelwal, Brandon Norick, and Jiawei Han.

2014. Personalized entity recommendation: A heterogeneous information network approach. In Proceedings of the 7th

ACM International Conference on Web Search and Data Mining. ACM, 283–292.

[43] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. 2016. Collaborative knowledge base

embedding for recommender systems. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM, 353–362.

[44] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. 2018. GaAN: Gated attention net-

works for learning on large and spatiotemporal graphs. arXiv:1803.07294. Retrieved from https://arxiv.org/abs/1803.

07294.

[45] Xinhua Zhang and Wee S. Lee. 2007. Hyperparameter learning for graph based semi-supervised learning algorithms.

In Advances in Neural Information Processing Systems.

[46] Zhenyue Zhang and Jing Wang. 2007. MLLE: Modified locally linear embedding using multiple weights. In Advances

in Neural Information Processing Systems.

[47] Dengyong Zhou, Olivier Bousquet, Thomas N. Lal, Jason Weston, and Bernhard Schölkopf. 2004. Learning with local

and global consistency. In Advances in Neural Information Processing Systems.

[48] Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. 2003. Semi-supervised learning using gaussian fields and

harmonic functions. In Proceedings of the 20th International Conference on Machine Learning.

[49] Xiaojin Zhu, John Lafferty, and Ronald Rosenfeld. 2005. Semi-supervised learning with graphs. Ph.D. Dissertation.

Carnegie Mellon University, School of Language Technologies Institute.

Received May 2021; revised September 2021; accepted September 2021

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 73. Publication date: November 2021.

https://arxiv.org/abs/1803.07294

