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The retrieval of cloud fraction in satellite hyperspectral sounder field of view (FOV) is crucial for numerical
weather prediction. This study proposes an innovative cloud fraction retrieval model for the hyperspectral
infrared sounder - Cross-track Infrared Sounder (CrIS). The model is trained with a deep neural network (DNN),
using the CrIS radiation spectra as the predictors and Visible Infrared Imaging Radiometer Suite (VIIRS) cloud
mask as the learning target. An ensemble of randomly selected CrIS and VIIRS data are collocated and used as the
training dataset. An optimized 5-layer neural network is built to establish the relationship between the CrIS
spectra and the cloud fraction calculated from the VIIRS cloud mask within the CrIS FOV. In order to reduce the
number of input predictors to enhance the efficiency of the model, a principal component transformation is
performed on the original CrIS spectra and only the top 77 principal component scores are adopted as the final
predictors. In general, the cloud fraction retrieved from the proposed DNN model are consistent with truth values
calculated from the VIIRS cloud mask product. Further analysis on use cases demonstrates a slightly better cloud
retrieval result during the daytime than that of the nighttime, and ocean retrievals are more accurate than land
retrievals. However, since the relationship between CrIS spectrum and the cloud fraction is nonlinear, the model
tends to slightly overestimate the cloud fractions over low cloud coverage regions and underestimate the values
over high cloud fraction areas. Even so, the proposed model can still be a useful tool for obtaining cloud fraction
information from hyperspectral infrared sounders and has the potential to be used for the numerical weather
prediction and climate models, as well as other cloud studies.

1. Introduction

Clouds play a key role in the Earth’s energy budget (Bretherton et al.,
2005), the hydrological cycle (Sikma and Vila-Guerau de Arellano,
2019) and the atmospheric circulation (Sherwood and Wahrlich, 1999).
Clouds produce precipitation and regulate the balance of energy
entering and leaving the climate system. Cloud fraction is defined as the
proportion of cloud coverage in a satellite pixel or a weather or climate
model grid box. It is one of the most crucial cloud parameters in
modeling the downward radiation at both the Earth’s surface and top of
the atmosphere (Diirr and Philipona, 2004; Chen et al., 2012), and one
of the largest sources of uncertainty in Global Climate Models (Mueller

etal., 2011; Wang et al., 2019). Since cloud fraction is a key factor in the
climate models (Sekiguchi et al., 2003; Chuang et al., 2012; Liu et al.,
2021), an accurate and reliable cloud coverage estimation is essential for
climate studies.

Measurements from satellite infrared sounders provide valuable in-
formation for atmospheric profile retrievals, such as temperature, hu-
midity, clouds, greenhouse gases, and so on. They are also directly
assimilated into numerical weather prediction models (Jones et al.,
2017; Li et al., 2016) and General Circulation models (Aumann et al.,
2009) for weather forecasting, understanding the climate, and fore-
casting climate change. By design, the infrared sounders have a large
footprint (greater than 10 KM in diameter), resulting in their fields of
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view (FOVs) often containing clouds, which can affect the atmospheric
window channels. Many infrared sounder-based cloud cover retrieval
algorithms have been developed for different purposes in the past two
decades (McNally and Watts, 2003; Susskind et al., 2003; Smith and
Taylor, 2004; Li et al., 2004; Eresmaa, 2013; Kahn et al., 2013; Wang
etal,, 2014; Lin et al., 2017; Liu et al., 2020). A widely used cloud cover
retrieval method was developed by Susskind et al. (2003, 2006, 2011,
2014) for the Atmospheric Infrared Sounder (AIRS). In this retrieval
method, the clear and cloudy observations are first identified using a
cloud clearing method (Susskind et al., 2003). Later, the difference be-
tween the radiance of the satellite observations and that of selected
channels in the model fit is used to estimate the effective cloud fraction.
Assuming the cloud emissivity is spectrally flat, channels are selected
that are most sensitive to clouds. This cloud cover retrieval method has
been adopted in the AIRS cloud products (Kahn et al., 2013) and further
extended to the Infrared Atmospheric Sounding Interferometer (IASI), as
well as the Cross-track Infrared Sounder (CrIS) (Susskind et al., 2017;
Christopher et al., 2021). It must be noted that the retrieved effective
cloud fraction is the product of geometric fractional cloud cover and the
cloud emissivity, rather than the real spatial cloud fraction within a
sounder’s FOV (Kahn et al., 2013), as it is difficult to accurately
distinguish them using sounder measurements alone.

In addition to these approaches, the cloud coverage information of
the hyperspectral infrared sounders can also be obtained from an ac-
curate collocated imager. Li et al. (2004) developed an effective AIRS
cloud detection method based on the cloud mask measured from Mod-
erate Resolution Imaging Spectroradiometer (MODIS). In their study,
each AIRS FOV is separately checked by its collocated MODIS cloud
mask to determine whether it is cloudy or not. Similar methods also have
been developed for the IASI (Eresmaa, 2013) and the CrIS (Wang et al.,
2014, 2016) instruments. Since the sounder’s cloud information is ob-
tained from the high spatial resolution (usually around 1 km) imager,
the sub-pixel, or partial cloud detection, as well as the cloud fraction
retrieval for the infrared sounders becomes available. However, it usu-
ally takes a considerable amount of data, time, and computational re-
sources to collocate the spatiotemporal data. To solve this issue, Liu
et al. (2020) recently developed a novel CrIS cloud detection method
based on the deep neural network (DNN). Deep neural network is one of
the most widely used artificial intelligence (AI, Antun et al., 2020) and
big data technologies (Yang et al., 2019) in the analytics of atmospheric
phenomena (Liu et al., 2019; Schlef et al., 2019). Unlike the previous
mentioned cloud-retrieval methods, the CrIS spectra are directly trained
with VIIRS cloud mask for fast and accurate sounder cloud detection.
After the DNN model is constructed, only the CrIS spectra is needed to
determine its cloudy scene, avoiding the complex sounder-imager
collocation pre-processing.

Even though promising results have been achieved when using the
imager’s information to identify infrared sounder’s cloud contamina-
tion, most of these results have focused primarily on the cloud and clear
sky differentiation. The imager’s capability in checking sounder’s sub-
pixel cloud coverage has not been well discussed and explored. Since
the advent of artificial intelligence (AI), researchers have been able to
use machine and deep learning models to investigate complex phe-
nomena in various scientific fields. As one of the most widely used Al
models, deep neural network (DNN) can provide better solutions for
problems with high-dimensional and non-linearity issues that usually
have no direct analytically-derived solutions, such as the feature
extraction for hyperspectral data (Li et al., 2019). As the microphysical
and optical features of clouds are complex, it is hard to directly obtain
the non-linearity relationship between infrared sounder observations
and the cloud fractions using a physical model. Therefore, this paper
innovatively develops a DNN model to automatically estimate the cloud
fraction in hyperspectral infrared sounder FOV observations, using the
CrlS instrument as an example, which provides a new insight for infrared
sounder cloud fraction retrieval. The cloud mask of VIIRS, a
high-resolution imager onboard the same satellite platform as CrIS, is
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utilized as the truth to determine the cloud fraction in CrIS FOVs during
the model training procedure. It is worth noting that the proposed
method could be easily adopted by other hyperspectral infrared
sounders. For example, AIRS could be trained using MODIS measure-
ments, or IASI with Advanced Very-High-Resolution Radiometer
(AVHRR). The results from this study can be further used in partial cloud
detection and improving other cloud parameter retrievals as well as
climate models.

The rest of the paper is organized as follows: Section 2 introduces the
datasets used in this study; the methodology is summarized in Section 3;
Section 4 presents a comprehensive evaluation on the performance of
the cloud fraction retrieval model; and the discussion and conclusions
are finally presented in section 5.

2. Data
2.1. Cross-track infrared sounder

The CrIS is a Fourier transform spectrometer onboard the Suomi
National Polar-Orbiting Operational Environmental Satellite System (S-
NPP) and Joint Polar Satellite System (JPSS-1) satellites, which has
significantly enhanced performance over NOAA’s legacy infrared
sounder — the High Resolution Infrared Radiation Sounders (HIRS). The
CrlS spectrum is measured in three infrared regions by a 3 x 3 gridded
detector with a nadir resolution of 13.5 km: long-wave from 650 to
1095 cm ™!, middle-wave from 1210 to 1750 cm ™, and short-wave from
2155 to 2550 cm ™! (Han et al., 2013). The spectral information of CrIS
channels is shown in Fig. 1.

2.2. Visible Infrared Imaging Radiometer Suite

The VIIRS, aboard the same platforms (S-NPP and JPSS-1) as CrlS,
extends and improves upon a series of measurements initiated by certain
legacy imagers, such as the AVHRR and MODIS. The VIIRS scans the
earth spectrum in 22 radiance channels from visible (0.412 pm) to the
thermal infrared (12.01 pm) bands (Cao et al., 2013), which includes 5
high spatial resolution bands (I-bands, 0.375 km at nadir), sixteen
moderate spatial resolution bands (M-bands, 0.75 km at nadir), and one
panchromatic day/night band (DNB, 0.75 km throughout the scan). In
addition, it also provides various environmental products of the land,
atmosphere, cryosphere, and ocean on a global scale with a higher
spatial resolution and larger swath. As a key output from the VIIRS
measurements, the VIIRS cloud mask (VCM) is now being widely used in
different earth science studies.

3. Methodology

This study introduces a new CrIS cloud fraction retrieval method
based on the DNN model. Fundamentally, the CrIS sub-pixel cloud
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Fig. 1. Spectral information of CrIS channels.
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information is trained from VIIRS, which requires the CrIS and VIIRS
measurements to be collocated. Then, a series of hidden layers with
different neurons is built to connect the collocated CrIS spectra and
VIIRS cloud mask for CrIS cloud fraction retrieval. After the proposed
model is built, the cloud fraction is directly predicted at each FOV with
all the CrIS channel radiances. Details of each step are summarized as
follows.

3.1. Cloud fraction determination

There are 34 field of regards (FOR) in one cross-track scanline, with
30 of them as Earth views, 2 of them as deep space views and the other 2
as instrument calibration views. In the normal spectral resolution (NSR)
mode, the CrIS collects 1305 radiance channels with different spectral
resolutions at the three infrared bands: 0.625 cm-1 in long-wave, 1.25
cm-1 in middle-wave, and 2.5 cm-1 in short-wave. The CrIS can also be
operated in a full spectral resolution (FSR) mode. Under the FSR mode,
the CrIS measures 2211 radiance channels over the three spectral re-
gions with a spectral resolution of 0.625 cm-1 (Han and Chen, 2017).
This study uses S-NPP CrlS FSR spectral information as the inputs and
later performs a principal component (PC) transformation on the orig-
inal radiances to reduce the number of predictors and thus improve
model efficiency.

The VCM is determined by a series of strict checks (Kopp et al.,
2014), with varying thresholds depending on different observational
conditions. Its output has four flags, which are confidently clear, prob-
ably clear, probably cloudy, and confidently cloudy. The integer values
assigned to these four types are 0, 4, 8 and 12, respectively. The VCM has
a much finer spatial resolution than that of CrIS (0.75 km v.s 13.5 km),
providing us with the opportunity to check CrIS’s sub-pixel cloud
coverage. In this study, the VCM is first collocated with CrIS FOV and
then used to calculate the cloud fraction of CrIS which will be used as the
learning target in the proposed model.

The key to this study is to build the relationship between CrIS spectra
and the cloud fraction determined by the VIIRS cloud mask, which re-
quires the collocation of the VIIRS cloud mask and the CrIS FOVs. The
collocation is a time-consuming process, as it must search all the VIIRS
pixels one-by-one at each CrIS FOV for accurate spatial and temporal
collocation. Wang et al. (2016) developed an accurate collocation al-
gorithm for CrIS and VIIRS based on their line-of-sight (LOS) pointing
vectors at each CrIS FOV. Moreover, it uses a KD-tree searching strategy
during the CrIS and VIIRS data pairing step, to reduces the collocation
time. Previous research has confirmed that both CrIS and VIIRS are
well-geolocation-calibrated instruments (Cao et al., 2013; Wang et al.,
2013, 2017). Their collocation accuracy is at sub-pixel level with error
less than 20 m (Wang et al., 2016). In this study, this collocation method
is utilized to collocate CrIS spectra and the VIIRS cloud mask.

After CrlS is collocated with VIIRS, the VIIRS pixels within CrIS FOV
are then adopted to calculate the cloud fraction of CrlIS using equation
(1),

N (Cloud for VIRS(ycwy>4)

CriSep = i

@
In equation (1), CrlISy is the cloud fraction determined by the VIIRS
cloud mask, N(ciouq) and N are the number of VIIRS cloudy pixels and
total number of VIIRS pixels within CrIS FOV, respectively. Due to the
geometric distortion caused by the scan mirror rotation, the total
number of VIIRS pixels N in each CrIS FOV is not a constant. Instead, it
changes with the scan mirror positions, ranging from around 200 to
1100 in every CrIS scanline. For the total number of cloudy scenes
N(ciouq) determination, only confidently clear pixels are recognized as
clear sky while the others are identified as cloudy in this study. Since
VIIRS has a much finer spatial resolution than CrIS (which can be
considered as a pure unit), the CrISy) estimated from VIIRS provides
accurate subpixel cloud information for CrIS.
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Fig. 2 shows an example of the CrIS and VIIRS collocation and the
cloud fraction determination process. As shown in Fig. 2a with the three
VIIRS reflectance channels composited true color image (R: 0.672 pm, G:
0.555 pm, B: 0.488 pm) as the background, CrIS FOV footprint circled in
orange is larger at the limb and smaller at the nadir positions, which
requires the geometric distortion effect to be precisely considered during
the collocation process. Fig. 2b shows the specific nine CrIS FOVs at the
17th FOR overlapping with the VIIRS true color image, and the corre-
sponding collocated VIIRS cloud mask as well as the CrIS cloud fraction
determined by equation (1) are presented in Fig. 2c and d, respectively.
As clearly shown, only a portion of clouds enter the above three CrIS
FOVs, while the other six CrIS FOVs are completely covered by the
clouds. With assistance from the collocated high spatial resolution
VIIRS, the CrIS cloud fraction information can be accurately estimated at
every FOV. Fig. 2e shows the estimated cloud fraction for a whole CrIS
scanline. As compared with Fig. 2a, the estimated CrIS cloud fraction is
generally consistent with the cloud distributions shown in the VIIRS true
color image.

3.2. DNN model building

After the CrIS cloud fraction is determined, the next step is to develop
an accurate relationship between the CrIS spectra and the cloud fraction.
To establish this connection, a data ensemble with sufficient samples is
required. In order to include the general features and conditions of
clouds, twelve days of the CrIS and VIIRS matched full orbit data pairs,
covering every month (01/12, 02/07, 03/20, 04/03, 05/09, 06/27, 07/
12,08/16,09/05,10/22,11/15, and 12/10) of 2018, are selected as the
training dataset in this study. Moreover, to see if the selected training
dataset is enough, a training dataset sensitivity test is performed by
dividing the original twelve-day training dataset into two other training
datasets, including a four-day dataset selected from different seasons
(01/12, 04/03, 07/12, and 11/15 of 2018), and a six-day dataset
selected every two months (01/12, 03/20, 05/09, 07/12, 09/05, 11/15
of 2018). Three different models are then generated with these training
datasets and tested with the same independent dataset mentioned in
section 3.4. Similar results are observed between these three training
datasets trained models. The data sample change didn’t bring significant
improvement in the results, which implies that the training samples used
in study are sufficient. In addition to the training dataset, an optimized
5-layer neural network, including one input layer which realize the
principal component (PC) transformation, three fully connected hidden
layers, and one output layer, is built to train the CrIS spectra for cloud
fraction estimation. The VIIRS determined CrIS cloud fraction is used as
the learning target for the training as well as the accuracy evaluation.

For the input layer, all the CrIS FSR 2211 channel radiances are used
as the predictors. As the radiances measured from hyperspectral infrared
sounders are highly correlated, a de-correlation needs to be performed
on the original CrIS spectra before sending them to the hidden layers for
the purpose of better regression, convergence, and faster prediction. As
such, a PC transformation layer is added between the input and hidden
layers, and the CrIS channel radiances are then converted into the PC
scores CrlS,, through equation (2) (Xu et al., 2018),

CrISye = (CrSypec — CrlSypec) X N™' x ET (2)

where CrlSg,. is the CrIS measured spectral radiances, CriSg,. is the
mean radiances of the CrIS channels of the training dataset and N is the
instrument noises. E are the eigenvectors decomposed from equation (3)
with the training dataset:

S=ExAxE" 3
where S is the covariance matrix of the noise normalized radiances and A

is the diagonal eigenvalue matrix. The symbol x indicates matrix
manipulation. By combining all the above matrices, equation (2) finally
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Fig. 2. Example of the spatiotemporal data collocation between CrIS and VIIRS on Mar. 10, 2019: (a) The true color image of VIIRS overlapping with the footprints
(orange circle) of CrIS in one selected cross-track scanline. Numbers in (a) represent the CrIS FOR position; (b) same as (a) but for the 17th CrIS FOR; (c) the
collocated VIIRS cloud mask within 17th CrIS FOR; (d) the cloud fraction of CrIS calculated from VIIRS cloud mask at the 17th FOR with values ranging from 0 (clear
sky) to 1 (completely cloudy); (e) same as (d) but for a whole CrIS scanline. (For interpretation of the references to color in this figure legend, the reader is referred to

the Web version of this article.)

becomes (4),

CrlSycs = CriSgpe. X Py + Wy 4)

where P, is the PC transformation coefficients and W, is the channel
dependent bias. The PC scores are a set of linearly uncorrelated new
predictors that describe the same variances of the original dataset, and
most of the effective Earth spectral variances are mainly distributed in
the first few principal component scores. By only using the top k prin-
cipal components as further predictors, one can greatly reduce the
dimension and noise of the original inputs. Sensitivity tests and dis-
cussion for the selection of CriS, are conducted in Section 3.3.

The hidden layer uses the PC scores as the inputs and further trans-
forms them into the intermediate results for the output layer using the
learnable parameters (weights and biases). Three fully connected hidden
layers with 64, 128, and 32 neurons in each layer respectively are used
in the DNN model to yield the most accurate prediction. Some general
rules are followed in the selection of hidden layers and neurons. If the
relationship between the predictors and the learning target are
nonlinear and the training dataset has large dimensions, three to five
hidden layers can be used to get an optimum solution. Therefore, three
hidden layers were chosen to build the DNN model, as more hidden
layers would also increase the complexity of the model and may
potentially lead to overfitting. The number of hidden neurons is usually

set between the size of input layer and output layer. However, it can be
more sometimes, which depends on use cases. In this study, the fixed
values of 64, 128 and 32 neurons are used in the three hidden layers
respectively, to capture the nonlinear relationship between CrIS spec-
trum and the cloud fraction. This may seem a little arbitrary but still in a
reasonable neuron selection range.

All of the three hidden layers are activated with the Rectified Linear
Unit (ReLU) activation function for non-linear training,

ReLU(x) = { SJJZ;;‘ ; 8 (5)

where x in equation (5) is the input to a neuron. ReLU is a very simple
function that returns the value directly if it is positive and otherwise
returns zero. This activation function is considered a significant mile-
stone in the field of deep learning and is proven to be an efficient way to
develop very deep neutral networks (Agostinelli et al., 2014). The
neurons within the hidden layers are used to calculate the weights and
biases to minimize the difference between the prediction and the truth
value through forward and backward propagations during the training
process. The output layer is also activated with a ReLU function but was
slightly modified, to correctly map the intermediate results produced by
the last hidden layers to the final cloud fraction with values ranging from
0 to 1. The modified ReLU function ReLUpifieq is similar to the original
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but restricts the value to 1 if the input is higher than 1, because a cloud
fraction output higher than 1.0 is physically unreasonable.

Finally, a total of 3,663,777 CrIS and VIIRS paired data samples are
selected as training data, with a third of them used to estimate model
skill while tuning the hyperparameter. The final model evaluation is
conducted using 1,242,720 independent data samples selected from
different seasons. The model is developed using python 3.7 and ten-
sorflow version 2.8. It is trained on a 64-bit Linux system server with 24
Intel(R) Xeon(R) CPUs running at 2.50 GHz. It usually takes 3—4 min to
train one epoch, and the execution time of the learning procedure is
around 2 days in total. It has to be noted that learning time can be
greatly reduced if it is trained on a Graphical Processing Unit (GPU).
While the prediction part is very fast after the model is successfully built,
as only CrIS spectra is needed to estimate cloud fraction, avoiding the
time intensive pre-processing steps. Using one-day CrIS data as an
example, with approximately three million data samples in daytime and
nighttime, the global cloud fraction information can be obtained within
10 min, demonstrating the model’s strong capability in operational use.

Equation (6) shows how the cloud fraction value is estimated by the
DNN model using CrIS FSR spectra,

Computers and Geosciences 170 (2023) 105268
3.3. Model optimization

The adaptive moment estimation (Adam) and batch gradient descent
(BGD) searching strategy are adopted to optimize the loss function of the
neural network during the model training procedure. As mentioned in
section 3.2, the PC scores of the raw CrIS spectral data are calculated
before being entered into the hidden layers, in order to optimize the
model (e.g., de-correlation, dimensionality reduction, fast convergence
and predication). A two-step sensitivity analysis is performed to deter-
mine the optimized PC predictors for the DNN model. Firstly, the model
is trained and validated with different numbers of PC predictors ranging
in increments of 10 from 10 to 150. As the 10-step sensitivity test line
demonstrates in Fig. 4a, the best performing PC number producing the
lowest mean square error (MSE), calculated from the differences of
model predicted and the truth cloud fraction values of the training
dataset based on one BGD iteration, falls between 60 and 90. After that,
the model MSE shows a slightly increasing trend, which suggests that
adding more PCs as model predictors would not improve the training
accuracy. Based on the 10-step sensitivity test result (Fig. 4a), a further
investigation is conducted by changing the PC numbers from 60 to 90

CrIS.t = ReLU,uiifica(ReLU(ReLU (ReLU (CrlSspec X Py + Wo) X Py + W) X Py + W3)) X Py + W;) x Py + Wy) 6)

In equation (6), a CrIS spectrum CrlSg,. is first converted to its CrlSy,
with Py and Wy. Then the CrISy is further transformed to the inter-
mediate results through three ReLU activated hidden layers using the
model trained coefficients P;, Py, P3 and Wy, W, W3. The outputs from
last hidden layer are finally converted to the cloud fraction using P4 and
W, and the modified ReLU. All model coefficients are determined by the
training dataset during the training process. The proposed CrIS cloud
fraction retrieval framework is illustrated in Fig. 3. The implemented
code of the DNN model is shared in GitHub with a detailed README file
to describe the whole procedure: https://github.com/qian9834/Cloud-
fraction-retrieval.

with a 1-step equal interval, to find the final PC predictors for the DNN
model (Fig. 4b). Due to the stochastic characteristic of deep learning
models, the optimized PC number with lowest MSE varies slightly in
different set of training experiments even with the exact same parame-
ters. Therefore, the sensitivity test repeats the second step 20 times (blue
dish lines in Fig. 4b) and uses their mean value (black solid lines in Fig. 4
(b)) to determine the best number of PC predictors. As the results show,
a PC number of 77 produces the lowest MSE on average. Therefore, this
study cuts off the CrlS principal component scores at 77 (red arrow line
in Fig. 4b), and only the top 77 CrIS,.; are used as the final predictors of
the DNN model.

The DNN model is then trained with the selected PC predictors on a
series of epochs until the MSE levels off, after the lowest point of MSE.
To achieve this goal, this study adopts an adaptive learning rate strategy.
Using 100 epochs as a training group, the model yielding the lowest MSE
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within the group is chosen. After one training group is finished, the
model is further trained based on the best result (lowest MSE) of the last
training group, with an adjusted learning rate decayed by half of the
previous one. The training procedure is finally terminated when the MSE
of the validation plateaus. The choice of the starting learning rate is
arbitrary. In this study, it is set as 0.001 at the beginning. Fig. 5 shows
the lowest model MSE as a function of the training group on the training
data (red line) and validation (blue line) data separately. As clearly
shown, the training MSE keeps decreasing as more training is conducted.
However, the validation MSE stays relatively consistent after 6th
training group. This suggests that the model may have learned the
training dataset after the 6th training group, and additional training has
no significant improvement upon the validation dataset. It is therefore
unnecessary to conduct more training after this point. In addition, it is
reasonable to see a lower validation MSE as compared with the training
result, since the model uses a dropout regularization (the neuron
dropout rate is 5%) at each hidden layer to avoid potential over-fitting.
The dropout is only activated during the training phase but deactivated
when evaluating on the validation data, resulting in a better function in
the latter case. Finally, the model is determined at the 60th epoch of the
8th training group which yields the lowest validation MSE of 0.0152

among all of the total 800 training epochs.

3.4. Model accuracy analysis

The accuracy of the proposed DNN model is analyzed based on a test
(or holdout) dataset with 1,242,720 data samples in total selected from
four different seasons of Feb. 15, May 15, Jul. 10 and Nov. 10 of 2018.
The test data for this accuracy analysis is different from the validation
data mentioned in previous sections. It is an independent dataset which
has not been used during the model training, and it can thus produce an
unbiased estimate of final DNN model’s performance. In addition to the
MSE discussed at the training stage, the Pearson’s correlation coefficient
(R) is also adopted as a metric to evaluate the model accuracy by
measuring the correlation between the model prediction and truth.

As shown in Fig. 6, the predicted CrIS cloud fraction is mostly
distributed near the 1:1 diagonal line (black dish line) with high prob-
ability density. The fitting line (solid red line) with a slope of 1.002 and
very tiny bias of 0.007, nearly overlaps the diagonal line, indicating a
very solid correlation between the model prediction and truth. Addi-
tionally, the reliable performance of the DNN model can be illustrated
with its low MSE of 0.021 and high R value of 0.924. As compared with
Fig. 6, the MSE calculated from the test data is only slightly higher than
that calculated from both the training and validation data during the
training process, indicating that the model is well trained with neither
significant under-fitting nor over-fitting.
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Fig. 6. Probability density plot of the DNN model predicted and truth cloud
fractions. The red solid line and black dish line are the fitting line and 1:1 di-
agonal line, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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and standard deviation of the difference in the corresponding interval (0.05),
respectively. (For interpretation of the references to color in this figure legend,
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Fig. 7 shows the differences between DNN predicted cloud fraction
and the truth cloud fraction. The blue dot and vertical error bar repre-
sent the mean and standard deviation of their differences in the corre-
sponding bins (the bin size is 0.05), respectively. As shown, the 1-sigma
uncertainty at each bin is not identical, ranging from 0.108 to 0.182. The
uncertainty in the low cloud fraction regions (partially thin cloudy
scenes) is overall slightly higher than that in the high cloud fraction,
where the scenes are almost fully covered by clouds. This is because the
spectral features of thin cloud and clear sky are very similar to each
other. Moreover, the mixed strong surface signals can increase the
complexity of the spectra observed in the thin partially cloudy scenes,
which may result in a higher retrieval uncertainty in these areas.
Another result that can be identified from Fig. 7 is that the DNN model
tends to overestimate the cloud fraction with values less than 0.5,
especially for those very thin partially cloudy scenes. The average
overestimation is around 0.078 for cloud fraction less than 0.1. On the
other hand, cloud fraction with values over 0.5 are likely to be under-
estimated. The largest negative difference between model predictions
and the truth values are located near 1.0 with an average underesti-
mation of 0.085. The main explanation for this is that the relationship
between CrIS spectra and the cloud fraction is nonlinear, which results
in the predictions from the DNN model systematically overestimating
the actual values for one range and underestimating them for another.
Another possible reason for the underestimation is that the modified
ReLU function in the output layer forces all the output to be smaller than
or equal to 1.0, so that some potential overestimation results have been
eliminated. We should also be aware that cutting off PCs may potentially
reduce the model accuracy, because the abandoned PCs may also
contain some cloud fraction related information. However, considering
the effectiveness of PCA on reducing the data complexity of hyper-
spectral infrared sounders, conducting PC transformation is worthwhile
as it indeed optimizes the model inputs. Nevertheless, the predictions
agree well with the considered truth values with a high correlation co-
efficient of 0.924, as shown in Fig. 5.

4. Use case study

The performance of the proposed cloud fraction retrieval model is
investigated on a series of independent use cases selected from 2018 to
2019, all of which are excluded from the training dataset to prevent bias
in error estimates.

4.1. Oct. 30, 2018

Fig. 8 shows the daytime global cloud distribution maps of Oct. 30,
2018. As presented in the VIIRS true color image (Fig. 8a), more than
60% of the global land and ocean areas are covered by clouds. This can
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also be identified in Fig. 8b, the truth CrIS cloud fraction map, that was
determined by the VIIRS cloud mask. The purely clear sky and partially
thin cloudy scenes (blue areas with cloud fraction less than 0.2) are
mainly located over the land part of the coastal areas of United States,
southern Argentina, Sahara Desert, southern Africa, southwest Asia,
north India, northwest China, and large portions of Australia and
Antarctica. Given the retrieval results produced by the proposed DNN
model (shown in Fig. 8c) compared to that of Fig. 8b, the DNN model
accurately predicts the majority of the cloud fraction. Their difference
map shown in Fig. 8d further confirms that the cloud fraction retrieved
from the DNN model agree well with the truth values on a global scale.
However, relatively larger difference values are observed over the
partially thin cloudy areas. As mentioned, this is possibly due to the
strong surface signals, which makes it hard for the model to correctly
classify thin clouds. In addition, as clearly shown in Fig. 8e, the MSE in
high latitude regions (greater than £60°) are larger than that in the low
latitude regions. This may be attributed to the relatively low accuracy of
cloud mask product of VIIRS (which is adopted as the learning target)
over high latitude areas, which are ~88% in snow covered land and 72%
in Antarctic and Greenland (Zhou et al., 2019). The inaccurate inputs
from VIIRS in these scenarios will introduce inaccuracy to the model
during training, thus reducing the model’s ability to correctly estimate
cloud fraction over these areas. In addition, both VIIRS and CrIS have
larger instrument noises over the cold scenes, which may also reduce the
accuracy over the high latitude regions. Fig. 8f shows the histogram of
the differences between the model prediction and truth. As shown, their
residuals are almost uniformly distributed around the zero line, with a
mean of —0.007 and standard deviation of 0.134, and most of them are
less than 0.2 (~91%) and 0.1 (~74%). The quantitative relationship
between the model predictions and truth is illustrated in Fig. 8g. A
favorable correlation of 0.929 between the CrIS predicted and VIIRS
determined cloud fraction is obtained for this particular case. The day-
time MSE is 0.018, which is slightly lower than that of the model value
as discussed in section 3.4. All these statistics demonstrate that the
proposed DNN model works very well for the daytime cloud fraction
retrievals.

The investigation on the model nighttime performance is also con-
ducted in this study, and the results are presented in Fig. 9. Since the
reflectance channels are not available at night, the VIIRS moderate
resolution band 14 (M14 at 8.55 pm) brightness temperature is used as
the reference image (Fig. 9a) for this discussion. Essentially, the lower
the brightness temperature, the more likely the scene is contaminated by
clouds, especially over low latitude regions, such as those in tropical
areas which might be covered by deep convective clouds. As indicated
by the truth CrIS cloud fraction in Fig. 9b and compared with the model
prediction in Fig. Oc, it is encouraging to see that the results retrieved
from the DNN model are consistent with the truth values over nighttime
observations. Similar to the daytime case, their larger differences are
mainly observed over the poles and other snow-covered regions (as
shown in Fig. 9d and e), partially due to the relatively poor performance
of VIIRS cloud mask. Specifically, for those of the low latitude areas, the
model MSE is quite small and mostly distributed between 0.01 and 0.02.
However, the MSE values in high latitude areas are much higher, with
the maximum values (~0.08) at around +80°. This suggests that the
model performance is reduced over the high latitude areas, and it should
be used with caution in these regions. The statistical result in Fig. 9f
show a tiny negative bias of —0.013, suggesting that the nighttime
retrieval result is slightly underestimated. This can also be identified
from the positive offset of the fitting line (solid red line) shown in
Fig. 9g. The standard deviation is 0.151 also implies that the overall
uncertainty of the nighttime retrieval results is slightly higher than that
of the daytime (0.134). Regardless, the metrics shown in Fig. 9g still
suggest a high similarity between the model predictions and truth. Ac-
cording to the colored probability density plot, the fitting line is nearly
coincident with the 1:1 line, revealing a relatively accurate estimation
from the DNN model as compared with truth. The low MSE (0.023) and
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Fig. 8. Daytime of Oct. 30, 2018. (a) The VIIRS true color imagery; (b) Truth CrIS cloud fraction calculated using VIIRS cloud mask; (c) CrIS cloud fraction predicted
by the proposed model; (d) Difference between (c) and (b); (e) The model MSE distribution over different latitude; (f) the histogram of (d); (g) Probability density plot
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Fig. 9. Same as Fig. 8 but for the nighttime of Oct. 30, 2018. Particularly, the VIIRS M14 brightness temperature is used as the reference image in (a) instead of the
true color image, as the reflectance channels are not available at night. The “N/O + L” in (f) and (g) represents all of the nighttime (N) ocean (O) and land (L) data.
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Table 1
Test metrics of the model accuracy on Oct. 30, 2018.
Date Metrics Daytime Nighttime Total
Land Ocean Globe Land Ocean Globe
10/30/2018 MSE 0.029 0.011 0.018 0.035 0.018 0.023 0.020
R 0.908 0.944 0.929 0.896 0.916 0.914 0.922

high R (0.914) further confirms that the model performs very well for
nighttime observations.

Table 1 presents detailed quantitative comparisons between results
calculated from the daytime and nighttime data. In general, the DNN
model achieves a higher accuracy over daytime than nighttime, with a
lower MSE (0.018 vs 0.023) and higher R (0.929 vs 0.914). The lower
accuracy observed in the nighttime case is likely due to the weaker
signal received by CrIS at nighttime, which makes the spectral contrast
among FOVs much smaller. A similar mechanism can occur in the VIIRS
instrument, leading to a relatively lower accuracy of the nighttime cloud
mask as well as truth cloud fraction. Furthermore, the model tends to
exhibit better performance over the ocean than the land areas. The
averaged (day and night) MSE and correlation coefficient over ocean are
0.015 and 0.930, respectively, while over land they are 0.032 and 0.902,
respectively. The main explanation for this is that the surface cover over
land is more heterogenous than that of the ocean, which increases the
complexity of the satellite observed spectra over land. In addition, the
mixed-pixel issue (inhomogeneous scene) over land also increases the
difficulty of accurate cloud identification.

4.2. Other cases

One week of the global CrIS and VIIRS data selected from Jun 1 to
Jun. 7, 2020, are further analyzed in the following study, to evaluate the
robust performance of the DNN model, with results summarized in
Table 2.

The accuracy metrics shown in Table 2 demonstrate that the pro-
posed cloud fraction retrieval model produces reliable and robust pre-
dictions for a continuous seven days. For the daytime, the model MSE
has little fluctuation, with values ranging from 0.015 to 0.018 over land,
and from 0.012 to 0.014 over ocean in this one-week analysis. The cloud
fraction correlation coefficient between DNN model predictions and the
truth values is relatively high and stable for all the daytime cases,
averaging 0.944. The model MSE at nighttime has a slightly larger
variation than the daytime MSE, fluctuating between 0.040 and 0.053
over land, and between 0.019 and 0.023 over ocean. The mean corre-
lation coefficient at nighttime is 0.904 with values ranging from 0.889 to
0.913. Overall, the global (all ocean, land, daytime, and nighttime)

mean MSE and correlation coefficient are 0.021 and 0.922 respectively
for these selected continuous use cases, which are comparable to the
model metrics (0.021 and 0.924) as discussed in the previous section. All
tests demonstrate the stability of the DNN model and illustrate its po-
tential to be an effective tool for cloud fraction retrieval.

Even though the seasonal impacts have been considered in the
training dataset selection, it is still worthwhile to determine whether the
seasonal change impacts the cloud fraction retrieval result. Table 3
shows the accuracy metrics calculated with the data randomly selected
from different seasons of Feb. 15, 2018, May. 15, 2018, Jun. 10, 2018,
and Nov. 10, 2018. The results show that the model overall accuracy has
a small variation, with MSE ranging from 0.020 to 0.022 and the Pear-
son’s r from 0.921 to 0.931 in different seasons. These tests demonstrate
that the DNN model overall is stable and the seasonal impact in general
is small.

5. Discussion and conclusion

While cloud fraction information is critical for climate models as well
as various meteorological applications, an efficient cloud fraction
retrieval method is still needed. We propose a novel cloud fraction
retrieval framework by leveraging the state-to-art AI deep neural
network models, to estimate the cloud fraction within a single FOV of
the infrared hyperspectral sounder (CrIS) at high efficiency and auto-
mation. Through analysis of model performance on a test dataset
covering all seasonal conditions and several other individual use cases,
the proposed model is proven to accurately retrieve cloud fraction under
different spatiotemporal domains.

In general, the model achieves a high cloud fraction retrieval accu-
racy, with a low MSE of 0.02 and high R of 0.924, as compared with the
truth calculated from the VIIRS cloud mask. Moreover, the model tends
to have better results during daytime than nighttime with MSE values of
0.014 vs 0.030. The better performance in the daytime is because the
signal received by the instrument in the daytime is much stronger than
that of the nighttime, enabling both the CrIS and VIIRS to capture more
information of the clear sky as well as cloud features, and thus making
their spectra much easier to be distinguished during the daytime.
Furthermore, the model performs better over ocean than land with MSE

Table 2
Test metrics of the model accuracy from Jun. 01, 2020 to Jun. 07, 2020.
Date Metrics Daytime Nighttime Total
Land Ocean Globe Land Ocean Globe
06/01/2020 MSE 0.015 0.014 0.014 0.044 0.023 0.030 0.022
R 0.951 0.934 0.944 0.875 0.902 0.897 0.920
06/02/2020 MSE 0.016 0.014 0.014 0.052 0.022 0.033 0.023
R 0.949 0.930 0.942 0.842 0.905 0.889 0.915
06/03/2020 MSE 0.017 0.013 0.014 0.048 0.019 0.029 0.021
R 0.944 0.935 0.943 0.854 0.918 0.902 0.923
06/04/2020 MSE 0.017 0.012 0.014 0.04 0.019 0.025 0.019
R 0.943 0.937 0.944 0.881 0.921 0.913 0.929
06/05/2020 MSE 0.018 0.013 0.014 0.050 0.019 0.029 0.021
R 0.943 0.938 0.945 0.851 0.921 0.900 0.922
06/06/2020 MSE 0.016 0.013 0.014 0.048 0.019 0.029 0.021
R 0.950 0.937 0.946 0.861 0.921 0.903 0.924
06/07/2020 MSE 0.017 0.013 0.014 0.053 0.019 0.030 0.022
R 0.947 0.937 0.945 0.844 0.924 0.900 0.922
Mean MSE 0.017 0.013 0.014 0.048 0.020 0.030 0.021
R 0.946 0.936 0.944 0.858 0.915 0.904 0.922
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Table 3
Test metrics of the model accuracy for data selected from different seasons.
Date Metrics Daytime Nighttime Total
Land Ocean Globe Land Ocean Globe
02/15/2018 MSE 0.030 0.015 0.021 0.042 0.014 0.023 0.022
R 0.906 0.925 0.921 0.878 0.943 0.925 0.923
05/15/2018 MSE 0.018 0.013 0.015 0.047 0.021 0.031 0.022
R 0.943 0.935 0.944 0.863 0.907 0.898 0.921
07/10/2018 MSE 0.014 0.015 0.015 0.034 0.021 0.025 0.020
R 0.958 0.927 0.945 0.903 0.904 0.916 0.931
11/10/2018 MSE 0.027 0.011 0.017 0.039 0.016 0.022 0.020
R 0.909 0.940 0.927 0.883 0.933 0.922 0.925

values of 0.017 vs 0.033, which can be attributed to simpler surface
coverage and less signal disturbance from the surrounding environment.
The DNN model overestimates the cloud fraction over areas with low
cloud coverage and underestimates those over areas with high cloud
coverage. This is because the relationship between the model predictors
(CrIS spectra) and the cloud fraction values is nonlinear. In addition,
larger uncertainty is observed over thin cloudy areas, possibly because
the spectra of clear sky and thin cloud are similar with each other,
making it hard for the model to correctly predict these two scenarios.
Moreover, a lower model accuracy is also observed over high-latitude
regions covered by snow or ice. The main explanation for this is that
the accuracy of VIIRS cloud mask is relatively low over these areas,
therefore, reducing the model’s ability to retrieve cloud fraction over
these areas.

Following the work presented in this paper, future work will focus on
improving the following aspects to increase the model’s performance:

1) Improving the training dataset. The CrIS and VIIRS data has recently
been reprocessed with optimal algorithms through their life cycle
(Zou et al., 2020; Chen et al., 2021), and the accuracies of both have
been improved. Therefore, the model will be retrained with updated
data soon to see if its performance can be further improved.
Improving the model. First, more sensitivity tests will be conducted
to tune the parameters and optimize the model, such as the use of a
more complex neural network during training or different combi-
nations of neurons, PC numbers and epochs. Additionally, the model
will be trained under different situations so that the model perfor-
mance will be improved over low accuracy areas. This can be ach-
ieved, for example, by training the model for land, ocean, daytime,
and nighttime scenarios separately.

2

—

Lastly, the methodology described in this study can be easily adapted
to other similar instruments, such as AIRS and IASI. Additionally, this
methodology can be utilized for other non-hyperspectral satellite in-
strument pairs as well, provided that the lower and higher spatial res-
olution instruments could be accurately collocated together in a similar
way as described in this paper. The retrieval model detailed in this paper
can be particularly useful in partial cloud detection. Currently, the
infrared sounder data serving in NWPs and GCMs can be classified as
clear sky or cloudy, whereas partially cloudy scenes are undeterminable.
However, this information is crucial for climate models, as the influence
of partially cloudy scenes produces very different radiative forcing ef-
fects of the atmosphere than that of the scenes covered by cloud entirely.
Further investigation of the partial cloud detection method could pro-
mote the application of the proposed cloud retrieval methodology in an
operational mode for various applications, such as big spatiotemporal
remote sensing data analytics and prediction accuracies improvement
for GCMs and NWPs.

6. Computer code availability

Our cloud-fraction-retrieval model training and testing codes, and
trained cloud-fraction-retrieval model for CrIS are available in a GitHub

repository at: https://github.com/qian9834/Cloud-fraction-retrieval.
git.
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7. Abbreviations

Al Artificial Intelligence
AIRS Atmospheric Infrared Sounder

AVHRR Advanced Very-High-Resolution Radiometer
CrIS Cross-track Infrared Sounder

DNB Day/Night Band

DNN Deep neural network

FOR Field of Regards

FOV Field of View

FSR Full Spectral Resolution

HIRS High Resolution Infrared Radiation Sounders
IASI Infrared Atmospheric Sounding Interferometer
JPSS-1  Joint Polar Satellite System

LOS Line of Sight

MODIS Moderate Resolution Imaging Spectroradiometer
NSR Normal Spectral Resolution

PC Principal Component

ReLU Rectified Linear Unit

S-NPP  Suomi National Polar-Orbiting Operational Environmental
Satellite System
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VCM
VIIRS

VIIRS Cloud Mask
Visible Infrared Imaging Radiometer Suite

References

Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P., 2014. Learning Activation Functions
to Improve Deep Neural Networks arXiv preprint arXiv:1412.6830.

Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C., 2020. On instabilities of deep
learning in image reconstruction and the potential costs of Al Proc. Natl. Acad. Sci.
USA 117 (48), 30088-30095.

Aumann, H.H., Manning, E., Barnet, C., Maddy, E., Blackwell, W., 2009. An anomaly
correlation skill score for the evaluation of the performance of hyperspectral infrared
sounders. In: Atmospheric and Environmental Remote Sensing Data Processing and
Utilization V: Readiness for GEOSS III, vol. 7456. International Society for Optics
and Photonics, 74560T. August.

Bretherton, C.S., Blossey, P.N., Khairoutdinov, M., 2005. An energy-balance analysis of
deep convective self-aggregation above uniform SST. J. Atmos. Sci. 62 (12),
4273-4292.

Cao, C.Y., Xiong, J., Blonski, S., Liu, Q.H., Uprety, S., Shao, X., Bai, Y., Weng, F.Z., 2013.
Suomi NPP VIIRS sensor data record verification, validation, and long-term
performance monitoring. J. Geophys. Res. Atmos. 118 (22), 11664-11678.

Chen, L., Yan, G., Wang, T., Ren, H., Calbo, J., Zhao, J., McKenzie, R., 2012. Estimation
of surface shortwave radiation components under all sky conditions: modeling and
sensitivity analysis. Remote Sens. Environ. 123, 457-469.

Chen, Y., Iturbide-Sanchez, F., Tremblay, D., Tobin, D., Strow, L., Wang, L., Mooney, D.
L., Johnson, D., Predina, J., Suwinski, L., Revercomb, H.E., 2021. Reprocessing of
Suomi NPP CrIS sensor data records to improve the radiometric and spectral long-
term accuracy and stability. IEEE Trans. Geosci. Rem. Sens. 60, 1-14.

Christopher, D.B., Divakarla, M., Gambacorta, A., Iturbide-Sanchez, F., Nalli, N.R.,
Pryor, K., Tan, C., Wang, T., Warner, J., Zhang, X., Zhu, T., 2021. NOAA unique
combined atmospheric processing system (NUCAPS) algorithm theoretical basis
document. Version 3.0 Available at: https://www.star.nesdis.noaa.gov/jpss/docume
nts/ATBD/ATBD_NUCAPS v3.1.pdf. (Accessed June 2021).

Chuang, C.C., Kelly, J.T., Boyle, J.S., Xie, S., 2012. Sensitivity of aerosol indirect effects
to cloud nucleation and autoconversion parameterizations in short-range weather
forecasts during the May 2003 aerosol IOP. J. Adv. Model. Earth Syst. 4, M09001.

Diirr, B., Philipona, R., 2004. Automatic cloud amount detection by surface longwave
downward radiation measurements. J. Geophys. Res. Atmos. 109 (D5).

Eresmaa, Reima, 2013. Imager-assisted cloud detection for assimilation of infrared
atmospheric sounding interferometer radiances. Q. J. R. Meteorol. Soc. 140,
2342-2352.

Han, Y., Chen, Y., 2017. Calibration algorithm for cross-track infrared sounder full
spectral resolution measurements. IEEE Trans. Geosci. Rem. Sens. 56 (2),
1008-1016.

Han, Y., Revercomb, H., Cromp, M., Gu, D., Johnson, D., Mooney, D., Scott, D., Strow, L.,
Bingham, G., Borg, L., Chen, Y., 2013. Suomi NPP CrIS measurements, sensor data
record algorithm, calibration and validation activities, and record data quality.

J. Geophys. Res. Atmos. 118 (22), 12-734.

Jones, T.A., Koch, S., Li, Z., 2017. Assimilating synthetic hyperspectral sounder
temperature and humidity retrievals to improve severe weather forecasts. Atmos.
Res. 186, 9-25.

Kahn, B.H., Irion, F.W., Dang, V.T., Manning, E.M., Nasiri, S.L., Naud, C.M., Blaisdell, J.
M., Schreier, M.M., Yue, Q., Bowman, K.W., Fetzer, E.J., 2013. The atmospheric
infrared sounder version 6 cloud products. Atmos. Chem. Phys. 13, 14477-14543.

Kopp, T.J., Thomas, W., Heidinger, A.K., Botambekov, D., Frey, R.A., Hutchison, K.D.,
Iisager, B.D., Brueske, K., Reed, B., 2014. The VIIRS Cloud Mask: progress in the first
year of S-NPP toward a common cloud detection scheme. J. Geophys. Res. Atmos.
119 (5), 2441-2456.

Li, J., Menzel, W.P., Sun, F., Schmit, T.J., Gurka, J., 2004. AIRS subpixel cloud
characterization using MODIS cloud products. J. Appl. Meteorol. 43 (8), 1083-1094.

Li, J., Wang, P., Han, H., Li, J., Zheng, J., 2016. On the assimilation of satellite sounder
data in cloudy skies in numerical weather prediction models. J. Meteorol. Res. 30
(2), 169-182.

Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., Benediktson, J.A., 2019. Deep learning
for hyperspectral image classification: an overview. IEEE Trans. Geosci. Rem. Sens.
57 (9), 6690-6709.

Lin, L., Zou, X., Weng, F., 2017. Combining CrIS double CO2 bands for detecting clouds
located in different layers of the atmosphere. J. Geophys. Res. Atmos. 122 (3),
1811-1827.

12

Computers and Geosciences 170 (2023) 105268

Liu, Q., Li, Y., Yu, M., Chiu, L.S., Hao, X., Duffy, D.Q., Yang, C., 2019. Daytime rainy
cloud detection and convective precipitation delineation based on a deep neural
Network method using GOES-16 ABI images. Rem. Sens. 11 (21), 2555.

Liu, Q., Xu, H., Sha, D., Lee, T., Duffy, D.Q., Walter, J., Yang, C., 2020. Hyperspectral
infrared sounder cloud detection using deep neural network model. Geosci. Rem.
Sens. Lett. IEEE 19 (2022), 5500705.

Liu, Q., Chiu, L.S., Hao, X., Yang, C., 2021. Spatiotemporal trends and variations of the
rainfall amount, intensity, and frequency in TRMM multi-satellite precipitation
analysis (TMPA) data. Rem. Sens. 13 (22), 4629.

McNally, A.P., Watts, P.D., 2003. A cloud detection algorithm for high-spectral-
resolution infrared sounders. Q. J. R. Meteorol. Soc.: A j. atmos. sci. appl. meteorol.
phys. oceanogr. 129 (595), 3411-3423.

Mueller, B., Seneviratne, S.I., Jimenez, C., Corti, T., Hirschi, M., Balsamo, G., Ciais, P.,
Dirmeyer, P., Fisher, J.B., Guo, Z., Jung, M., 2011. Evaluation of global observations-
based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 38
(6).

Schlef, K.E., Moradkhani, H., Lall, U., 2019. Atmospheric circulation patterns associated
with extreme United States floods identified via machine learning. Sci. Rep. 9 (1),
1-12.

Sekiguchi, M., Nakajima, T., Suzuki, K., Kawamoto, K., Higurashi, A., Rosenfeld, D.,
Sano, I., Mukai, S., 2003. A study of the direct and indirect effects of aerosols using
global satellite data sets of aerosol and cloud parameters. J. Geophys. Res. 108
(D22), 4699.

Sherwood, S.C., Wahrlich, R., 1999. Observed evolution of tropical deep convective
events and their environment. Mon. Weather Rev. 127 (8), 1777-1795.

Sikma, M., Vila-Guerau de Arellano, J., 2019. Substantial reductions in cloud cover and
moisture transport by dynamic plant responses. Geophys. Res. Lett. 46 (3),
1870-1878.

Smith, J.A., Taylor, J.P., 2004. Initial cloud detection using the EOF components of high-
spectral-resolution infrared sounder data. J. Appl. Meteorol. 43 (1), 196-210.

Susskind, J., Barnet, C.D., Blaisdell, J.M., 2003. Retrieval of atmospheric and surface
parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans.
Geosci. Rem. Sens. 41 (2), 390-409.

Susskind, J., Barnet, C., Blaisdell, J., Iredell, L., Keita, F., Kouvaris, L., Molnar, G.,
Chahine, M., 2006. Accuracy of geophysical parameters derived from Atmospheric
Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional
cloud cover. J. Geophys. Res. Atmos. 111 (D9).

Susskind, J., Blaisdell, J.M., Iredell, L., Keita, F., 2011. Improved temperature sounding
and quality control methodology using AIRS/AMSU data: the AIRS science team
version 5 retrieval algorithm. IEEE Trans. Geosci. Rem. Sens. 49 (3), 883-907.

Susskind, J., Blaisdell, J.M., Iredell, L., 2014. Improved methodology for surface and
atmospheric soundings, error estimates, and quality control procedures: the
atmospheric infrared sounder science team version-6 retrieval algorithm. J. Appl.
Remote Sens. 8 (1), 084994,

Susskind, J., Kouvaris, L., Blaisdell, J.M., Iredell, L., 2017. Analysis of CrIS/ATMS using
AIRS version-7 retrieval and QC methodology. December. In: AGU Fall Meeting
Abstracts. A12B-05.

Wang, L., Tremblay, D.A., Han, Y., Esplin, M., Hagan, D.E., Predina, J., Suwinski, L.,
Jin, X., Chen, Y., 2013. Geolocation assessment for CrIS sensor data records.

J. Geophys. Res. Atmos. 118 (22), 12-690.

Wang, P., Li, J., Li, J., Li, Z., Schmit, T.J., Bai, W., 2014. Advanced infrared sounder
subpixel cloud detection with imagers and its impact on radiance assimilation in
NWP. Geophys. Res. Lett. 41, 1773-1780.

Wang, L., Chen, Y., Han, Y., 2016. Impacts of field of view configuration of Cross-track
Infrared Sounder on clear-sky observations. Appl. Opt. 55 (25), 7113-7119.

Wang, L., Zhang, B., Tremblay, D., Han, Y., 2017. Improved scheme for Cross-track
Infrared Sounder geolocation assessment and optimization. J. Geophys. Res. Atmos.
122 (1), 519-536.

Wang, T., Luo, J., Liang, J., Wang, B., Tian, W., Chen, X., 2019. Comparisons of AGRI/
FY-4A cloud fraction and cloud top pressure with MODIS/Terra measurements over
East Asia. J. Meteorol. Res. 33 (4), 705-719.

Xu, H., Chen, Y., Wang, L., 2018. Cross-track infrared sounder spectral gap filling toward
improving intercalibration uncertainties. IEEE Trans. Geosci. Rem. Sens. 57 (1),
509-519.

Yang, C., Yu, M,, Li, Y., Hu, F., Jiang, Y., Liu, Q., Sha, D., Xu, M., Gu, J., 2019. Big Earth
data analytics: a survey. Big Earth Data 3 (2), 83-107.

Zhou, Lihang, Divakarla, Murty, Liu, Xingpin, Layns, Arron, Goldberg, Mitch, 2019. An
Overview of the Science Performances and Calibration/Validation of Joint Polar
Satellite System Operational Products. Rem. Sens. 11, 698.

Zou, C.Z., Zhou, L., Lin, L., Sun, N., Chen, Y., Flynn, L.E., Zhang, B., Cao, C., Iturbide-
Sanchez, F., Beck, T., Yan, B., 2020. The reprocessed Suomi NPP satellite
observations. Rem. Sens. 12 (18), 2891.


http://refhub.elsevier.com/S0098-3004(22)00217-5/sref1
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref1
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref2
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref2
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref2
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref3
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref3
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref3
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref3
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref3
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref4
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref4
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref4
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref5
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref5
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref5
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref6
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref6
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref6
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref7
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref7
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref7
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref7
https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_NUCAPS_v3.1.pdf
https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_NUCAPS_v3.1.pdf
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref9
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref9
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref9
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref10
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref10
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref11
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref11
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref11
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref12
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref12
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref12
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref13
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref13
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref13
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref13
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref14
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref14
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref14
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref15
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref15
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref15
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref16
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref16
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref16
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref16
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref17
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref17
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref18
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref18
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref18
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref19
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref19
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref19
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref20
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref20
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref20
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref21
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref21
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref21
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref22
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref22
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref22
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref23
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref23
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref23
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref24
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref24
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref24
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref25
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref25
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref25
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref25
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref26
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref26
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref26
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref27
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref27
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref27
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref27
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref28
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref28
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref29
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref29
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref29
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref30
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref30
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref31
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref31
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref31
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref32
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref32
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref32
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref32
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref33
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref33
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref33
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref34
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref34
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref34
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref34
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref35
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref35
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref35
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref36
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref36
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref36
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref37
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref37
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref37
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref38
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref38
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref39
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref39
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref39
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref40
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref40
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref40
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref41
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref41
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref41
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref42
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref42
http://refhub.elsevier.com/S0098-3004(22)00217-5/optSQbZJN96KK
http://refhub.elsevier.com/S0098-3004(22)00217-5/optSQbZJN96KK
http://refhub.elsevier.com/S0098-3004(22)00217-5/optSQbZJN96KK
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref43
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref43
http://refhub.elsevier.com/S0098-3004(22)00217-5/sref43

	Cross-track infrared sounder cloud fraction retrieval using a deep neural network
	1 Introduction
	2 Data
	2.1 Cross-track infrared sounder
	2.2 Visible Infrared Imaging Radiometer Suite

	3 Methodology
	3.1 Cloud fraction determination
	3.2 DNN model building
	3.3 Model optimization
	3.4 Model accuracy analysis

	4 Use case study
	4.1 Oct. 30, 2018
	4.2 Other cases

	5 Discussion and conclusion
	6 Computer code availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	7. Abbreviations
	References


