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A B S T R A C T   

The retrieval of cloud fraction in satellite hyperspectral sounder field of view (FOV) is crucial for numerical 
weather prediction. This study proposes an innovative cloud fraction retrieval model for the hyperspectral 
infrared sounder - Cross-track Infrared Sounder (CrIS). The model is trained with a deep neural network (DNN), 
using the CrIS radiation spectra as the predictors and Visible Infrared Imaging Radiometer Suite (VIIRS) cloud 
mask as the learning target. An ensemble of randomly selected CrIS and VIIRS data are collocated and used as the 
training dataset. An optimized 5-layer neural network is built to establish the relationship between the CrIS 
spectra and the cloud fraction calculated from the VIIRS cloud mask within the CrIS FOV. In order to reduce the 
number of input predictors to enhance the efficiency of the model, a principal component transformation is 
performed on the original CrIS spectra and only the top 77 principal component scores are adopted as the final 
predictors. In general, the cloud fraction retrieved from the proposed DNN model are consistent with truth values 
calculated from the VIIRS cloud mask product. Further analysis on use cases demonstrates a slightly better cloud 
retrieval result during the daytime than that of the nighttime, and ocean retrievals are more accurate than land 
retrievals. However, since the relationship between CrIS spectrum and the cloud fraction is nonlinear, the model 
tends to slightly overestimate the cloud fractions over low cloud coverage regions and underestimate the values 
over high cloud fraction areas. Even so, the proposed model can still be a useful tool for obtaining cloud fraction 
information from hyperspectral infrared sounders and has the potential to be used for the numerical weather 
prediction and climate models, as well as other cloud studies.   

1. Introduction 

Clouds play a key role in the Earth’s energy budget (Bretherton et al., 
2005), the hydrological cycle (Sikma and Vilà-Guerau de Arellano, 
2019) and the atmospheric circulation (Sherwood and Wahrlich, 1999). 
Clouds produce precipitation and regulate the balance of energy 
entering and leaving the climate system. Cloud fraction is defined as the 
proportion of cloud coverage in a satellite pixel or a weather or climate 
model grid box. It is one of the most crucial cloud parameters in 
modeling the downward radiation at both the Earth’s surface and top of 
the atmosphere (Dürr and Philipona, 2004; Chen et al., 2012), and one 
of the largest sources of uncertainty in Global Climate Models (Mueller 

et al., 2011; Wang et al., 2019). Since cloud fraction is a key factor in the 
climate models (Sekiguchi et al., 2003; Chuang et al., 2012; Liu et al., 
2021), an accurate and reliable cloud coverage estimation is essential for 
climate studies. 

Measurements from satellite infrared sounders provide valuable in
formation for atmospheric profile retrievals, such as temperature, hu
midity, clouds, greenhouse gases, and so on. They are also directly 
assimilated into numerical weather prediction models (Jones et al., 
2017; Li et al., 2016) and General Circulation models (Aumann et al., 
2009) for weather forecasting, understanding the climate, and fore
casting climate change. By design, the infrared sounders have a large 
footprint (greater than 10 KM in diameter), resulting in their fields of 
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view (FOVs) often containing clouds, which can affect the atmospheric 
window channels. Many infrared sounder-based cloud cover retrieval 
algorithms have been developed for different purposes in the past two 
decades (McNally and Watts, 2003; Susskind et al., 2003; Smith and 
Taylor, 2004; Li et al., 2004; Eresmaa, 2013; Kahn et al., 2013; Wang 
et al., 2014; Lin et al., 2017; Liu et al., 2020). A widely used cloud cover 
retrieval method was developed by Susskind et al. (2003, 2006, 2011, 
2014) for the Atmospheric Infrared Sounder (AIRS). In this retrieval 
method, the clear and cloudy observations are first identified using a 
cloud clearing method (Susskind et al., 2003). Later, the difference be
tween the radiance of the satellite observations and that of selected 
channels in the model fit is used to estimate the effective cloud fraction. 
Assuming the cloud emissivity is spectrally flat, channels are selected 
that are most sensitive to clouds. This cloud cover retrieval method has 
been adopted in the AIRS cloud products (Kahn et al., 2013) and further 
extended to the Infrared Atmospheric Sounding Interferometer (IASI), as 
well as the Cross-track Infrared Sounder (CrIS) (Susskind et al., 2017; 
Christopher et al., 2021). It must be noted that the retrieved effective 
cloud fraction is the product of geometric fractional cloud cover and the 
cloud emissivity, rather than the real spatial cloud fraction within a 
sounder’s FOV (Kahn et al., 2013), as it is difficult to accurately 
distinguish them using sounder measurements alone. 

In addition to these approaches, the cloud coverage information of 
the hyperspectral infrared sounders can also be obtained from an ac
curate collocated imager. Li et al. (2004) developed an effective AIRS 
cloud detection method based on the cloud mask measured from Mod
erate Resolution Imaging Spectroradiometer (MODIS). In their study, 
each AIRS FOV is separately checked by its collocated MODIS cloud 
mask to determine whether it is cloudy or not. Similar methods also have 
been developed for the IASI (Eresmaa, 2013) and the CrIS (Wang et al., 
2014, 2016) instruments. Since the sounder’s cloud information is ob
tained from the high spatial resolution (usually around 1 km) imager, 
the sub-pixel, or partial cloud detection, as well as the cloud fraction 
retrieval for the infrared sounders becomes available. However, it usu
ally takes a considerable amount of data, time, and computational re
sources to collocate the spatiotemporal data. To solve this issue, Liu 
et al. (2020) recently developed a novel CrIS cloud detection method 
based on the deep neural network (DNN). Deep neural network is one of 
the most widely used artificial intelligence (AI, Antun et al., 2020) and 
big data technologies (Yang et al., 2019) in the analytics of atmospheric 
phenomena (Liu et al., 2019; Schlef et al., 2019). Unlike the previous 
mentioned cloud-retrieval methods, the CrIS spectra are directly trained 
with VIIRS cloud mask for fast and accurate sounder cloud detection. 
After the DNN model is constructed, only the CrIS spectra is needed to 
determine its cloudy scene, avoiding the complex sounder-imager 
collocation pre-processing. 

Even though promising results have been achieved when using the 
imager’s information to identify infrared sounder’s cloud contamina
tion, most of these results have focused primarily on the cloud and clear 
sky differentiation. The imager’s capability in checking sounder’s sub- 
pixel cloud coverage has not been well discussed and explored. Since 
the advent of artificial intelligence (AI), researchers have been able to 
use machine and deep learning models to investigate complex phe
nomena in various scientific fields. As one of the most widely used AI 
models, deep neural network (DNN) can provide better solutions for 
problems with high-dimensional and non-linearity issues that usually 
have no direct analytically-derived solutions, such as the feature 
extraction for hyperspectral data (Li et al., 2019). As the microphysical 
and optical features of clouds are complex, it is hard to directly obtain 
the non-linearity relationship between infrared sounder observations 
and the cloud fractions using a physical model. Therefore, this paper 
innovatively develops a DNN model to automatically estimate the cloud 
fraction in hyperspectral infrared sounder FOV observations, using the 
CrIS instrument as an example, which provides a new insight for infrared 
sounder cloud fraction retrieval. The cloud mask of VIIRS, a 
high-resolution imager onboard the same satellite platform as CrIS, is 

utilized as the truth to determine the cloud fraction in CrIS FOVs during 
the model training procedure. It is worth noting that the proposed 
method could be easily adopted by other hyperspectral infrared 
sounders. For example, AIRS could be trained using MODIS measure
ments, or IASI with Advanced Very-High-Resolution Radiometer 
(AVHRR). The results from this study can be further used in partial cloud 
detection and improving other cloud parameter retrievals as well as 
climate models. 

The rest of the paper is organized as follows: Section 2 introduces the 
datasets used in this study; the methodology is summarized in Section 3; 
Section 4 presents a comprehensive evaluation on the performance of 
the cloud fraction retrieval model; and the discussion and conclusions 
are finally presented in section 5. 

2. Data 

2.1. Cross-track infrared sounder 

The CrIS is a Fourier transform spectrometer onboard the Suomi 
National Polar-Orbiting Operational Environmental Satellite System (S- 
NPP) and Joint Polar Satellite System (JPSS-1) satellites, which has 
significantly enhanced performance over NOAA’s legacy infrared 
sounder – the High Resolution Infrared Radiation Sounders (HIRS). The 
CrIS spectrum is measured in three infrared regions by a 3 × 3 gridded 
detector with a nadir resolution of 13.5 km: long-wave from 650 to 
1095 cm−1, middle-wave from 1210 to 1750 cm−1, and short-wave from 
2155 to 2550 cm−1 (Han et al., 2013). The spectral information of CrIS 
channels is shown in Fig. 1. 

2.2. Visible Infrared Imaging Radiometer Suite 

The VIIRS, aboard the same platforms (S-NPP and JPSS-1) as CrIS, 
extends and improves upon a series of measurements initiated by certain 
legacy imagers, such as the AVHRR and MODIS. The VIIRS scans the 
earth spectrum in 22 radiance channels from visible (0.412 μm) to the 
thermal infrared (12.01 μm) bands (Cao et al., 2013), which includes 5 
high spatial resolution bands (I-bands, 0.375 km at nadir), sixteen 
moderate spatial resolution bands (M-bands, 0.75 km at nadir), and one 
panchromatic day/night band (DNB, 0.75 km throughout the scan). In 
addition, it also provides various environmental products of the land, 
atmosphere, cryosphere, and ocean on a global scale with a higher 
spatial resolution and larger swath. As a key output from the VIIRS 
measurements, the VIIRS cloud mask (VCM) is now being widely used in 
different earth science studies. 

3. Methodology 

This study introduces a new CrIS cloud fraction retrieval method 
based on the DNN model. Fundamentally, the CrIS sub-pixel cloud 

Fig. 1. Spectral information of CrIS channels.  
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information is trained from VIIRS, which requires the CrIS and VIIRS 
measurements to be collocated. Then, a series of hidden layers with 
different neurons is built to connect the collocated CrIS spectra and 
VIIRS cloud mask for CrIS cloud fraction retrieval. After the proposed 
model is built, the cloud fraction is directly predicted at each FOV with 
all the CrIS channel radiances. Details of each step are summarized as 
follows. 

3.1. Cloud fraction determination 

There are 34 field of regards (FOR) in one cross-track scanline, with 
30 of them as Earth views, 2 of them as deep space views and the other 2 
as instrument calibration views. In the normal spectral resolution (NSR) 
mode, the CrIS collects 1305 radiance channels with different spectral 
resolutions at the three infrared bands: 0.625 cm-1 in long-wave, 1.25 
cm-1 in middle-wave, and 2.5 cm-1 in short-wave. The CrIS can also be 
operated in a full spectral resolution (FSR) mode. Under the FSR mode, 
the CrIS measures 2211 radiance channels over the three spectral re
gions with a spectral resolution of 0.625 cm–1 (Han and Chen, 2017). 
This study uses S-NPP CrIS FSR spectral information as the inputs and 
later performs a principal component (PC) transformation on the orig
inal radiances to reduce the number of predictors and thus improve 
model efficiency. 

The VCM is determined by a series of strict checks (Kopp et al., 
2014), with varying thresholds depending on different observational 
conditions. Its output has four flags, which are confidently clear, prob
ably clear, probably cloudy, and confidently cloudy. The integer values 
assigned to these four types are 0, 4, 8 and 12, respectively. The VCM has 
a much finer spatial resolution than that of CrIS (0.75 km v.s 13.5 km), 
providing us with the opportunity to check CrIS’s sub-pixel cloud 
coverage. In this study, the VCM is first collocated with CrIS FOV and 
then used to calculate the cloud fraction of CrIS which will be used as the 
learning target in the proposed model. 

The key to this study is to build the relationship between CrIS spectra 
and the cloud fraction determined by the VIIRS cloud mask, which re
quires the collocation of the VIIRS cloud mask and the CrIS FOVs. The 
collocation is a time-consuming process, as it must search all the VIIRS 
pixels one-by-one at each CrIS FOV for accurate spatial and temporal 
collocation. Wang et al. (2016) developed an accurate collocation al
gorithm for CrIS and VIIRS based on their line-of-sight (LOS) pointing 
vectors at each CrIS FOV. Moreover, it uses a KD-tree searching strategy 
during the CrIS and VIIRS data pairing step, to reduces the collocation 
time. Previous research has confirmed that both CrIS and VIIRS are 
well-geolocation-calibrated instruments (Cao et al., 2013; Wang et al., 
2013, 2017). Their collocation accuracy is at sub-pixel level with error 
less than 20 m (Wang et al., 2016). In this study, this collocation method 
is utilized to collocate CrIS spectra and the VIIRS cloud mask. 

After CrIS is collocated with VIIRS, the VIIRS pixels within CrIS FOV 
are then adopted to calculate the cloud fraction of CrIS using equation 
(1), 

CrIS(cf ) =
N(Cloud,for VIIRS(VCM)≥4)

N
(1)  

In equation (1), CrIS(cf) is the cloud fraction determined by the VIIRS 
cloud mask, N(Cloud) and N are the number of VIIRS cloudy pixels and 
total number of VIIRS pixels within CrIS FOV, respectively. Due to the 
geometric distortion caused by the scan mirror rotation, the total 
number of VIIRS pixels N in each CrIS FOV is not a constant. Instead, it 
changes with the scan mirror positions, ranging from around 200 to 
1100 in every CrIS scanline. For the total number of cloudy scenes 
N(Cloud) determination, only confidently clear pixels are recognized as 
clear sky while the others are identified as cloudy in this study. Since 
VIIRS has a much finer spatial resolution than CrIS (which can be 
considered as a pure unit), the CrIS(cf) estimated from VIIRS provides 
accurate subpixel cloud information for CrIS. 

Fig. 2 shows an example of the CrIS and VIIRS collocation and the 
cloud fraction determination process. As shown in Fig. 2a with the three 
VIIRS reflectance channels composited true color image (R: 0.672 μm, G: 
0.555 μm, B: 0.488 μm) as the background, CrIS FOV footprint circled in 
orange is larger at the limb and smaller at the nadir positions, which 
requires the geometric distortion effect to be precisely considered during 
the collocation process. Fig. 2b shows the specific nine CrIS FOVs at the 
17th FOR overlapping with the VIIRS true color image, and the corre
sponding collocated VIIRS cloud mask as well as the CrIS cloud fraction 
determined by equation (1) are presented in Fig. 2c and d, respectively. 
As clearly shown, only a portion of clouds enter the above three CrIS 
FOVs, while the other six CrIS FOVs are completely covered by the 
clouds. With assistance from the collocated high spatial resolution 
VIIRS, the CrIS cloud fraction information can be accurately estimated at 
every FOV. Fig. 2e shows the estimated cloud fraction for a whole CrIS 
scanline. As compared with Fig. 2a, the estimated CrIS cloud fraction is 
generally consistent with the cloud distributions shown in the VIIRS true 
color image. 

3.2. DNN model building 

After the CrIS cloud fraction is determined, the next step is to develop 
an accurate relationship between the CrIS spectra and the cloud fraction. 
To establish this connection, a data ensemble with sufficient samples is 
required. In order to include the general features and conditions of 
clouds, twelve days of the CrIS and VIIRS matched full orbit data pairs, 
covering every month (01/12, 02/07, 03/20, 04/03, 05/09, 06/27, 07/ 
12, 08/16, 09/05, 10/22, 11/15, and 12/10) of 2018, are selected as the 
training dataset in this study. Moreover, to see if the selected training 
dataset is enough, a training dataset sensitivity test is performed by 
dividing the original twelve-day training dataset into two other training 
datasets, including a four-day dataset selected from different seasons 
(01/12, 04/03, 07/12, and 11/15 of 2018), and a six-day dataset 
selected every two months (01/12, 03/20, 05/09, 07/12, 09/05, 11/15 
of 2018). Three different models are then generated with these training 
datasets and tested with the same independent dataset mentioned in 
section 3.4. Similar results are observed between these three training 
datasets trained models. The data sample change didn’t bring significant 
improvement in the results, which implies that the training samples used 
in study are sufficient. In addition to the training dataset, an optimized 
5-layer neural network, including one input layer which realize the 
principal component (PC) transformation, three fully connected hidden 
layers, and one output layer, is built to train the CrIS spectra for cloud 
fraction estimation. The VIIRS determined CrIS cloud fraction is used as 
the learning target for the training as well as the accuracy evaluation. 

For the input layer, all the CrIS FSR 2211 channel radiances are used 
as the predictors. As the radiances measured from hyperspectral infrared 
sounders are highly correlated, a de-correlation needs to be performed 
on the original CrIS spectra before sending them to the hidden layers for 
the purpose of better regression, convergence, and faster prediction. As 
such, a PC transformation layer is added between the input and hidden 
layers, and the CrIS channel radiances are then converted into the PC 
scores CrISpcs through equation (2) (Xu et al., 2018), 

CrISpcs =
(
CrISspec − CrISspec

)
× N−1 × ET (2)  

where CrISspec is the CrIS measured spectral radiances, CrISspec is the 
mean radiances of the CrIS channels of the training dataset and N is the 
instrument noises. E are the eigenvectors decomposed from equation (3) 
with the training dataset: 

S = E × Λ × ET (3)  

where S is the covariance matrix of the noise normalized radiances and Λ 
is the diagonal eigenvalue matrix. The symbol × indicates matrix 
manipulation. By combining all the above matrices, equation (2) finally 
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becomes (4), 

CrISpcs = CrISspec × P0 + W0 (4)  

where P0 is the PC transformation coefficients and W0 is the channel 
dependent bias. The PC scores are a set of linearly uncorrelated new 
predictors that describe the same variances of the original dataset, and 
most of the effective Earth spectral variances are mainly distributed in 
the first few principal component scores. By only using the top k prin
cipal components as further predictors, one can greatly reduce the 
dimension and noise of the original inputs. Sensitivity tests and dis
cussion for the selection of CrISpcs are conducted in Section 3.3. 

The hidden layer uses the PC scores as the inputs and further trans
forms them into the intermediate results for the output layer using the 
learnable parameters (weights and biases). Three fully connected hidden 
layers with 64, 128, and 32 neurons in each layer respectively are used 
in the DNN model to yield the most accurate prediction. Some general 
rules are followed in the selection of hidden layers and neurons. If the 
relationship between the predictors and the learning target are 
nonlinear and the training dataset has large dimensions, three to five 
hidden layers can be used to get an optimum solution. Therefore, three 
hidden layers were chosen to build the DNN model, as more hidden 
layers would also increase the complexity of the model and may 
potentially lead to overfitting. The number of hidden neurons is usually 

set between the size of input layer and output layer. However, it can be 
more sometimes, which depends on use cases. In this study, the fixed 
values of 64, 128 and 32 neurons are used in the three hidden layers 
respectively, to capture the nonlinear relationship between CrIS spec
trum and the cloud fraction. This may seem a little arbitrary but still in a 
reasonable neuron selection range. 

All of the three hidden layers are activated with the Rectified Linear 
Unit (ReLU) activation function for non-linear training, 

ReLU(x) =

{
0, for x < 0
x, for x ≥ 0 (5)  

where x in equation (5) is the input to a neuron. ReLU is a very simple 
function that returns the value directly if it is positive and otherwise 
returns zero. This activation function is considered a significant mile
stone in the field of deep learning and is proven to be an efficient way to 
develop very deep neutral networks (Agostinelli et al., 2014). The 
neurons within the hidden layers are used to calculate the weights and 
biases to minimize the difference between the prediction and the truth 
value through forward and backward propagations during the training 
process. The output layer is also activated with a ReLU function but was 
slightly modified, to correctly map the intermediate results produced by 
the last hidden layers to the final cloud fraction with values ranging from 
0 to 1. The modified ReLU function ReLUmodified is similar to the original 

Fig. 2. Example of the spatiotemporal data collocation between CrIS and VIIRS on Mar. 10, 2019: (a) The true color image of VIIRS overlapping with the footprints 
(orange circle) of CrIS in one selected cross-track scanline. Numbers in (a) represent the CrIS FOR position; (b) same as (a) but for the 17th CrIS FOR; (c) the 
collocated VIIRS cloud mask within 17th CrIS FOR; (d) the cloud fraction of CrIS calculated from VIIRS cloud mask at the 17th FOR with values ranging from 0 (clear 
sky) to 1 (completely cloudy); (e) same as (d) but for a whole CrIS scanline. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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but restricts the value to 1 if the input is higher than 1, because a cloud 
fraction output higher than 1.0 is physically unreasonable. 

Finally, a total of 3,663,777 CrIS and VIIRS paired data samples are 
selected as training data, with a third of them used to estimate model 
skill while tuning the hyperparameter. The final model evaluation is 
conducted using 1,242,720 independent data samples selected from 
different seasons. The model is developed using python 3.7 and ten
sorflow version 2.8. It is trained on a 64-bit Linux system server with 24 
Intel(R) Xeon(R) CPUs running at 2.50 GHz. It usually takes 3–4 min to 
train one epoch, and the execution time of the learning procedure is 
around 2 days in total. It has to be noted that learning time can be 
greatly reduced if it is trained on a Graphical Processing Unit (GPU). 
While the prediction part is very fast after the model is successfully built, 
as only CrIS spectra is needed to estimate cloud fraction, avoiding the 
time intensive pre-processing steps. Using one-day CrIS data as an 
example, with approximately three million data samples in daytime and 
nighttime, the global cloud fraction information can be obtained within 
10 min, demonstrating the model’s strong capability in operational use. 

Equation (6) shows how the cloud fraction value is estimated by the 
DNN model using CrIS FSR spectra,  

In equation (6), a CrIS spectrum CrISspec is first converted to its CrISpcs 
with P0 and W0. Then the CrISpcs is further transformed to the inter
mediate results through three ReLU activated hidden layers using the 
model trained coefficients P1, P2, P3 and W1, W2, W3. The outputs from 
last hidden layer are finally converted to the cloud fraction using P4 and 
W4 and the modified ReLU. All model coefficients are determined by the 
training dataset during the training process. The proposed CrIS cloud 
fraction retrieval framework is illustrated in Fig. 3. The implemented 
code of the DNN model is shared in GitHub with a detailed README file 
to describe the whole procedure: https://github.com/qian9834/Cloud- 
fraction-retrieval. 

3.3. Model optimization 

The adaptive moment estimation (Adam) and batch gradient descent 
(BGD) searching strategy are adopted to optimize the loss function of the 
neural network during the model training procedure. As mentioned in 
section 3.2, the PC scores of the raw CrIS spectral data are calculated 
before being entered into the hidden layers, in order to optimize the 
model (e.g., de-correlation, dimensionality reduction, fast convergence 
and predication). A two-step sensitivity analysis is performed to deter
mine the optimized PC predictors for the DNN model. Firstly, the model 
is trained and validated with different numbers of PC predictors ranging 
in increments of 10 from 10 to 150. As the 10-step sensitivity test line 
demonstrates in Fig. 4a, the best performing PC number producing the 
lowest mean square error (MSE), calculated from the differences of 
model predicted and the truth cloud fraction values of the training 
dataset based on one BGD iteration, falls between 60 and 90. After that, 
the model MSE shows a slightly increasing trend, which suggests that 
adding more PCs as model predictors would not improve the training 
accuracy. Based on the 10-step sensitivity test result (Fig. 4a), a further 
investigation is conducted by changing the PC numbers from 60 to 90 

with a 1-step equal interval, to find the final PC predictors for the DNN 
model (Fig. 4b). Due to the stochastic characteristic of deep learning 
models, the optimized PC number with lowest MSE varies slightly in 
different set of training experiments even with the exact same parame
ters. Therefore, the sensitivity test repeats the second step 20 times (blue 
dish lines in Fig. 4b) and uses their mean value (black solid lines in Fig. 4 
(b)) to determine the best number of PC predictors. As the results show, 
a PC number of 77 produces the lowest MSE on average. Therefore, this 
study cuts off the CrIS principal component scores at 77 (red arrow line 
in Fig. 4b), and only the top 77 CrISpcs are used as the final predictors of 
the DNN model. 

The DNN model is then trained with the selected PC predictors on a 
series of epochs until the MSE levels off, after the lowest point of MSE. 
To achieve this goal, this study adopts an adaptive learning rate strategy. 
Using 100 epochs as a training group, the model yielding the lowest MSE 

Fig. 3. Flow chart of CrIS cloud fraction retrieval framework based on DNN model.  

CrIScf = ReLUmodified(ReLU(ReLU(ReLU(CrISspec × P0 + W0
)

× P1 + W1
)

× P2 + W2
))

× P3 + W3
)

× P4 + W4
)

(6)   
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within the group is chosen. After one training group is finished, the 
model is further trained based on the best result (lowest MSE) of the last 
training group, with an adjusted learning rate decayed by half of the 
previous one. The training procedure is finally terminated when the MSE 
of the validation plateaus. The choice of the starting learning rate is 
arbitrary. In this study, it is set as 0.001 at the beginning. Fig. 5 shows 
the lowest model MSE as a function of the training group on the training 
data (red line) and validation (blue line) data separately. As clearly 
shown, the training MSE keeps decreasing as more training is conducted. 
However, the validation MSE stays relatively consistent after 6th 
training group. This suggests that the model may have learned the 
training dataset after the 6th training group, and additional training has 
no significant improvement upon the validation dataset. It is therefore 
unnecessary to conduct more training after this point. In addition, it is 
reasonable to see a lower validation MSE as compared with the training 
result, since the model uses a dropout regularization (the neuron 
dropout rate is 5%) at each hidden layer to avoid potential over-fitting. 
The dropout is only activated during the training phase but deactivated 
when evaluating on the validation data, resulting in a better function in 
the latter case. Finally, the model is determined at the 60th epoch of the 
8th training group which yields the lowest validation MSE of 0.0152 

among all of the total 800 training epochs. 

3.4. Model accuracy analysis 

The accuracy of the proposed DNN model is analyzed based on a test 
(or holdout) dataset with 1,242,720 data samples in total selected from 
four different seasons of Feb. 15, May 15, Jul. 10 and Nov. 10 of 2018. 
The test data for this accuracy analysis is different from the validation 
data mentioned in previous sections. It is an independent dataset which 
has not been used during the model training, and it can thus produce an 
unbiased estimate of final DNN model’s performance. In addition to the 
MSE discussed at the training stage, the Pearson’s correlation coefficient 
(R) is also adopted as a metric to evaluate the model accuracy by 
measuring the correlation between the model prediction and truth. 

As shown in Fig. 6, the predicted CrIS cloud fraction is mostly 
distributed near the 1:1 diagonal line (black dish line) with high prob
ability density. The fitting line (solid red line) with a slope of 1.002 and 
very tiny bias of 0.007, nearly overlaps the diagonal line, indicating a 
very solid correlation between the model prediction and truth. Addi
tionally, the reliable performance of the DNN model can be illustrated 
with its low MSE of 0.021 and high R value of 0.924. As compared with 
Fig. 6, the MSE calculated from the test data is only slightly higher than 
that calculated from both the training and validation data during the 
training process, indicating that the model is well trained with neither 
significant under-fitting nor over-fitting. 

Fig. 4. Sensitivity test result on the input PC number. (a) 10-step (b) 1-step.  

Fig. 5. The lowest model MSE per training group on the training and valida
tion datasets. 

Fig. 6. Probability density plot of the DNN model predicted and truth cloud 
fractions. The red solid line and black dish line are the fitting line and 1:1 di
agonal line, respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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Fig. 7 shows the differences between DNN predicted cloud fraction 
and the truth cloud fraction. The blue dot and vertical error bar repre
sent the mean and standard deviation of their differences in the corre
sponding bins (the bin size is 0.05), respectively. As shown, the 1-sigma 
uncertainty at each bin is not identical, ranging from 0.108 to 0.182. The 
uncertainty in the low cloud fraction regions (partially thin cloudy 
scenes) is overall slightly higher than that in the high cloud fraction, 
where the scenes are almost fully covered by clouds. This is because the 
spectral features of thin cloud and clear sky are very similar to each 
other. Moreover, the mixed strong surface signals can increase the 
complexity of the spectra observed in the thin partially cloudy scenes, 
which may result in a higher retrieval uncertainty in these areas. 
Another result that can be identified from Fig. 7 is that the DNN model 
tends to overestimate the cloud fraction with values less than 0.5, 
especially for those very thin partially cloudy scenes. The average 
overestimation is around 0.078 for cloud fraction less than 0.1. On the 
other hand, cloud fraction with values over 0.5 are likely to be under
estimated. The largest negative difference between model predictions 
and the truth values are located near 1.0 with an average underesti
mation of 0.085. The main explanation for this is that the relationship 
between CrIS spectra and the cloud fraction is nonlinear, which results 
in the predictions from the DNN model systematically overestimating 
the actual values for one range and underestimating them for another. 
Another possible reason for the underestimation is that the modified 
ReLU function in the output layer forces all the output to be smaller than 
or equal to 1.0, so that some potential overestimation results have been 
eliminated. We should also be aware that cutting off PCs may potentially 
reduce the model accuracy, because the abandoned PCs may also 
contain some cloud fraction related information. However, considering 
the effectiveness of PCA on reducing the data complexity of hyper
spectral infrared sounders, conducting PC transformation is worthwhile 
as it indeed optimizes the model inputs. Nevertheless, the predictions 
agree well with the considered truth values with a high correlation co
efficient of 0.924, as shown in Fig. 5. 

4. Use case study 

The performance of the proposed cloud fraction retrieval model is 
investigated on a series of independent use cases selected from 2018 to 
2019, all of which are excluded from the training dataset to prevent bias 
in error estimates. 

4.1. Oct. 30, 2018 

Fig. 8 shows the daytime global cloud distribution maps of Oct. 30, 
2018. As presented in the VIIRS true color image (Fig. 8a), more than 
60% of the global land and ocean areas are covered by clouds. This can 

also be identified in Fig. 8b, the truth CrIS cloud fraction map, that was 
determined by the VIIRS cloud mask. The purely clear sky and partially 
thin cloudy scenes (blue areas with cloud fraction less than 0.2) are 
mainly located over the land part of the coastal areas of United States, 
southern Argentina, Sahara Desert, southern Africa, southwest Asia, 
north India, northwest China, and large portions of Australia and 
Antarctica. Given the retrieval results produced by the proposed DNN 
model (shown in Fig. 8c) compared to that of Fig. 8b, the DNN model 
accurately predicts the majority of the cloud fraction. Their difference 
map shown in Fig. 8d further confirms that the cloud fraction retrieved 
from the DNN model agree well with the truth values on a global scale. 
However, relatively larger difference values are observed over the 
partially thin cloudy areas. As mentioned, this is possibly due to the 
strong surface signals, which makes it hard for the model to correctly 
classify thin clouds. In addition, as clearly shown in Fig. 8e, the MSE in 
high latitude regions (greater than ±60◦) are larger than that in the low 
latitude regions. This may be attributed to the relatively low accuracy of 
cloud mask product of VIIRS (which is adopted as the learning target) 
over high latitude areas, which are ~88% in snow covered land and 72% 
in Antarctic and Greenland (Zhou et al., 2019). The inaccurate inputs 
from VIIRS in these scenarios will introduce inaccuracy to the model 
during training, thus reducing the model’s ability to correctly estimate 
cloud fraction over these areas. In addition, both VIIRS and CrIS have 
larger instrument noises over the cold scenes, which may also reduce the 
accuracy over the high latitude regions. Fig. 8f shows the histogram of 
the differences between the model prediction and truth. As shown, their 
residuals are almost uniformly distributed around the zero line, with a 
mean of −0.007 and standard deviation of 0.134, and most of them are 
less than 0.2 (~91%) and 0.1 (~74%). The quantitative relationship 
between the model predictions and truth is illustrated in Fig. 8g. A 
favorable correlation of 0.929 between the CrIS predicted and VIIRS 
determined cloud fraction is obtained for this particular case. The day
time MSE is 0.018, which is slightly lower than that of the model value 
as discussed in section 3.4. All these statistics demonstrate that the 
proposed DNN model works very well for the daytime cloud fraction 
retrievals. 

The investigation on the model nighttime performance is also con
ducted in this study, and the results are presented in Fig. 9. Since the 
reflectance channels are not available at night, the VIIRS moderate 
resolution band 14 (M14 at 8.55 μm) brightness temperature is used as 
the reference image (Fig. 9a) for this discussion. Essentially, the lower 
the brightness temperature, the more likely the scene is contaminated by 
clouds, especially over low latitude regions, such as those in tropical 
areas which might be covered by deep convective clouds. As indicated 
by the truth CrIS cloud fraction in Fig. 9b and compared with the model 
prediction in Fig. 9c, it is encouraging to see that the results retrieved 
from the DNN model are consistent with the truth values over nighttime 
observations. Similar to the daytime case, their larger differences are 
mainly observed over the poles and other snow-covered regions (as 
shown in Fig. 9d and e), partially due to the relatively poor performance 
of VIIRS cloud mask. Specifically, for those of the low latitude areas, the 
model MSE is quite small and mostly distributed between 0.01 and 0.02. 
However, the MSE values in high latitude areas are much higher, with 
the maximum values (~0.08) at around ±80◦. This suggests that the 
model performance is reduced over the high latitude areas, and it should 
be used with caution in these regions. The statistical result in Fig. 9f 
show a tiny negative bias of −0.013, suggesting that the nighttime 
retrieval result is slightly underestimated. This can also be identified 
from the positive offset of the fitting line (solid red line) shown in 
Fig. 9g. The standard deviation is 0.151 also implies that the overall 
uncertainty of the nighttime retrieval results is slightly higher than that 
of the daytime (0.134). Regardless, the metrics shown in Fig. 9g still 
suggest a high similarity between the model predictions and truth. Ac
cording to the colored probability density plot, the fitting line is nearly 
coincident with the 1:1 line, revealing a relatively accurate estimation 
from the DNN model as compared with truth. The low MSE (0.023) and 

Fig. 7. Distribution of difference between predicted and truth cloud fractions 
as a function of cloud fraction. Blue dot and error bar indicates the mean bias 
and standard deviation of the difference in the corresponding interval (0.05), 
respectively. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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Fig. 8. Daytime of Oct. 30, 2018. (a) The VIIRS true color imagery; (b) Truth CrIS cloud fraction calculated using VIIRS cloud mask; (c) CrIS cloud fraction predicted 
by the proposed model; (d) Difference between (c) and (b); (e) The model MSE distribution over different latitude; (f) the histogram of (d); (g) Probability density plot 
of the model prediction and truth. The “D/O + L” in (f) and (g) represents all of the daytime (D) ocean (O) and land (L) data. The red solid line and black dish line in 
(g) are the fitting line and 1:1 diagonal line. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 9. Same as Fig. 8 but for the nighttime of Oct. 30, 2018. Particularly, the VIIRS M14 brightness temperature is used as the reference image in (a) instead of the 
true color image, as the reflectance channels are not available at night. The “N/O + L” in (f) and (g) represents all of the nighttime (N) ocean (O) and land (L) data. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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high R (0.914) further confirms that the model performs very well for 
nighttime observations. 

Table 1 presents detailed quantitative comparisons between results 
calculated from the daytime and nighttime data. In general, the DNN 
model achieves a higher accuracy over daytime than nighttime, with a 
lower MSE (0.018 vs 0.023) and higher R (0.929 vs 0.914). The lower 
accuracy observed in the nighttime case is likely due to the weaker 
signal received by CrIS at nighttime, which makes the spectral contrast 
among FOVs much smaller. A similar mechanism can occur in the VIIRS 
instrument, leading to a relatively lower accuracy of the nighttime cloud 
mask as well as truth cloud fraction. Furthermore, the model tends to 
exhibit better performance over the ocean than the land areas. The 
averaged (day and night) MSE and correlation coefficient over ocean are 
0.015 and 0.930, respectively, while over land they are 0.032 and 0.902, 
respectively. The main explanation for this is that the surface cover over 
land is more heterogenous than that of the ocean, which increases the 
complexity of the satellite observed spectra over land. In addition, the 
mixed-pixel issue (inhomogeneous scene) over land also increases the 
difficulty of accurate cloud identification. 

4.2. Other cases 

One week of the global CrIS and VIIRS data selected from Jun 1 to 
Jun. 7, 2020, are further analyzed in the following study, to evaluate the 
robust performance of the DNN model, with results summarized in 
Table 2. 

The accuracy metrics shown in Table 2 demonstrate that the pro
posed cloud fraction retrieval model produces reliable and robust pre
dictions for a continuous seven days. For the daytime, the model MSE 
has little fluctuation, with values ranging from 0.015 to 0.018 over land, 
and from 0.012 to 0.014 over ocean in this one-week analysis. The cloud 
fraction correlation coefficient between DNN model predictions and the 
truth values is relatively high and stable for all the daytime cases, 
averaging 0.944. The model MSE at nighttime has a slightly larger 
variation than the daytime MSE, fluctuating between 0.040 and 0.053 
over land, and between 0.019 and 0.023 over ocean. The mean corre
lation coefficient at nighttime is 0.904 with values ranging from 0.889 to 
0.913. Overall, the global (all ocean, land, daytime, and nighttime) 

mean MSE and correlation coefficient are 0.021 and 0.922 respectively 
for these selected continuous use cases, which are comparable to the 
model metrics (0.021 and 0.924) as discussed in the previous section. All 
tests demonstrate the stability of the DNN model and illustrate its po
tential to be an effective tool for cloud fraction retrieval. 

Even though the seasonal impacts have been considered in the 
training dataset selection, it is still worthwhile to determine whether the 
seasonal change impacts the cloud fraction retrieval result. Table 3 
shows the accuracy metrics calculated with the data randomly selected 
from different seasons of Feb. 15, 2018, May. 15, 2018, Jun. 10, 2018, 
and Nov. 10, 2018. The results show that the model overall accuracy has 
a small variation, with MSE ranging from 0.020 to 0.022 and the Pear
son’s r from 0.921 to 0.931 in different seasons. These tests demonstrate 
that the DNN model overall is stable and the seasonal impact in general 
is small. 

5. Discussion and conclusion 

While cloud fraction information is critical for climate models as well 
as various meteorological applications, an efficient cloud fraction 
retrieval method is still needed. We propose a novel cloud fraction 
retrieval framework by leveraging the state-to-art AI deep neural 
network models, to estimate the cloud fraction within a single FOV of 
the infrared hyperspectral sounder (CrIS) at high efficiency and auto
mation. Through analysis of model performance on a test dataset 
covering all seasonal conditions and several other individual use cases, 
the proposed model is proven to accurately retrieve cloud fraction under 
different spatiotemporal domains. 

In general, the model achieves a high cloud fraction retrieval accu
racy, with a low MSE of 0.02 and high R of 0.924, as compared with the 
truth calculated from the VIIRS cloud mask. Moreover, the model tends 
to have better results during daytime than nighttime with MSE values of 
0.014 vs 0.030. The better performance in the daytime is because the 
signal received by the instrument in the daytime is much stronger than 
that of the nighttime, enabling both the CrIS and VIIRS to capture more 
information of the clear sky as well as cloud features, and thus making 
their spectra much easier to be distinguished during the daytime. 
Furthermore, the model performs better over ocean than land with MSE 

Table 1 
Test metrics of the model accuracy on Oct. 30, 2018.  

Date Metrics Daytime Nighttime Total 

Land Ocean Globe Land Ocean Globe 

10/30/2018 MSE 0.029 0.011 0.018 0.035 0.018 0.023 0.020 
R 0.908 0.944 0.929 0.896 0.916 0.914 0.922  

Table 2 
Test metrics of the model accuracy from Jun. 01, 2020 to Jun. 07, 2020.  

Date Metrics Daytime Nighttime Total 

Land Ocean Globe Land Ocean Globe 

06/01/2020 MSE 0.015 0.014 0.014 0.044 0.023 0.030 0.022 
R 0.951 0.934 0.944 0.875 0.902 0.897 0.920 

06/02/2020 MSE 0.016 0.014 0.014 0.052 0.022 0.033 0.023 
R 0.949 0.930 0.942 0.842 0.905 0.889 0.915 

06/03/2020 MSE 0.017 0.013 0.014 0.048 0.019 0.029 0.021 
R 0.944 0.935 0.943 0.854 0.918 0.902 0.923 

06/04/2020 MSE 0.017 0.012 0.014 0.04 0.019 0.025 0.019 
R 0.943 0.937 0.944 0.881 0.921 0.913 0.929 

06/05/2020 MSE 0.018 0.013 0.014 0.050 0.019 0.029 0.021 
R 0.943 0.938 0.945 0.851 0.921 0.900 0.922 

06/06/2020 MSE 0.016 0.013 0.014 0.048 0.019 0.029 0.021 
R 0.950 0.937 0.946 0.861 0.921 0.903 0.924 

06/07/2020 MSE 0.017 0.013 0.014 0.053 0.019 0.030 0.022 
R 0.947 0.937 0.945 0.844 0.924 0.900 0.922 

Mean MSE 0.017 0.013 0.014 0.048 0.020 0.030 0.021 
R 0.946 0.936 0.944 0.858 0.915 0.904 0.922  
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values of 0.017 vs 0.033, which can be attributed to simpler surface 
coverage and less signal disturbance from the surrounding environment. 
The DNN model overestimates the cloud fraction over areas with low 
cloud coverage and underestimates those over areas with high cloud 
coverage. This is because the relationship between the model predictors 
(CrIS spectra) and the cloud fraction values is nonlinear. In addition, 
larger uncertainty is observed over thin cloudy areas, possibly because 
the spectra of clear sky and thin cloud are similar with each other, 
making it hard for the model to correctly predict these two scenarios. 
Moreover, a lower model accuracy is also observed over high-latitude 
regions covered by snow or ice. The main explanation for this is that 
the accuracy of VIIRS cloud mask is relatively low over these areas, 
therefore, reducing the model’s ability to retrieve cloud fraction over 
these areas. 

Following the work presented in this paper, future work will focus on 
improving the following aspects to increase the model’s performance:  

1) Improving the training dataset. The CrIS and VIIRS data has recently 
been reprocessed with optimal algorithms through their life cycle 
(Zou et al., 2020; Chen et al., 2021), and the accuracies of both have 
been improved. Therefore, the model will be retrained with updated 
data soon to see if its performance can be further improved.  

2) Improving the model. First, more sensitivity tests will be conducted 
to tune the parameters and optimize the model, such as the use of a 
more complex neural network during training or different combi
nations of neurons, PC numbers and epochs. Additionally, the model 
will be trained under different situations so that the model perfor
mance will be improved over low accuracy areas. This can be ach
ieved, for example, by training the model for land, ocean, daytime, 
and nighttime scenarios separately. 

Lastly, the methodology described in this study can be easily adapted 
to other similar instruments, such as AIRS and IASI. Additionally, this 
methodology can be utilized for other non-hyperspectral satellite in
strument pairs as well, provided that the lower and higher spatial res
olution instruments could be accurately collocated together in a similar 
way as described in this paper. The retrieval model detailed in this paper 
can be particularly useful in partial cloud detection. Currently, the 
infrared sounder data serving in NWPs and GCMs can be classified as 
clear sky or cloudy, whereas partially cloudy scenes are undeterminable. 
However, this information is crucial for climate models, as the influence 
of partially cloudy scenes produces very different radiative forcing ef
fects of the atmosphere than that of the scenes covered by cloud entirely. 
Further investigation of the partial cloud detection method could pro
mote the application of the proposed cloud retrieval methodology in an 
operational mode for various applications, such as big spatiotemporal 
remote sensing data analytics and prediction accuracies improvement 
for GCMs and NWPs. 

6. Computer code availability 

Our cloud-fraction-retrieval model training and testing codes, and 
trained cloud-fraction-retrieval model for CrIS are available in a GitHub 

repository at: https://github.com/qian9834/Cloud-fraction-retrieval. 
git. 
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7. Abbreviations 

AI Artificial Intelligence 
AIRS Atmospheric Infrared Sounder 
AVHRR Advanced Very-High-Resolution Radiometer 
CrIS Cross-track Infrared Sounder 
DNB Day/Night Band 
DNN Deep neural network 
FOR Field of Regards 
FOV Field of View 
FSR Full Spectral Resolution 
HIRS High Resolution Infrared Radiation Sounders 
IASI Infrared Atmospheric Sounding Interferometer 
JPSS-1 Joint Polar Satellite System 
LOS Line of Sight 
MODIS Moderate Resolution Imaging Spectroradiometer 
NSR Normal Spectral Resolution 
PC Principal Component 
ReLU Rectified Linear Unit 
S-NPP Suomi National Polar-Orbiting Operational Environmental 

Satellite System 

Table 3 
Test metrics of the model accuracy for data selected from different seasons.  

Date Metrics Daytime Nighttime Total 

Land Ocean Globe Land Ocean Globe 

02/15/2018 MSE 0.030 0.015 0.021 0.042 0.014 0.023 0.022 
R 0.906 0.925 0.921 0.878 0.943 0.925 0.923 

05/15/2018 MSE 0.018 0.013 0.015 0.047 0.021 0.031 0.022 
R 0.943 0.935 0.944 0.863 0.907 0.898 0.921 

07/10/2018 MSE 0.014 0.015 0.015 0.034 0.021 0.025 0.020 
R 0.958 0.927 0.945 0.903 0.904 0.916 0.931 

11/10/2018 MSE 0.027 0.011 0.017 0.039 0.016 0.022 0.020 
R 0.909 0.940 0.927 0.883 0.933 0.922 0.925  
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