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Abstract

Language model (LM) pretraining can learn
various knowledge from text corpora, helping
downstream tasks. However, existing methods
such as BERT model a single document, and
do not capture dependencies or knowledge that
span across documents. In this work, we pro-
pose LinkBERT, an LM pretraining method that
leverages links between documents, e.g., hyper-
links. Given a text corpus, we view it as a graph
of documents and create LM inputs by placing
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Document -----------

[Tidal Basin, Washington D.C.]
The Tidal Basin is a man-made
reservoir located between the
Potomac River and the
Washington Channelin
Washington, D.C. Itis part of
West Potomac Park, is near the
National Mall and is a focal point
of the National Cherry Blossom
Festival held each spring. The
Jefferson Memorial, the Martin
Luther King Jr. Memorial, the
Franklin Delano Roosevelt
Memorial, and the George Mason
Memorial are situated adjacent
to the Tidal Basin.

Percy Liang*

Linked document
(e.g. hyperlink, reference)

[The National Cherry Blossom
Festival] ... Itis a spring
celebration commemorating the
March 27, 1912, gift of Japanese
cherry trees from Mayor of
Tokyo City Yukio Ozaki to the city
of Washington, D.C. Mayor Ozaki
gifted the trees to enhance the
growing friendship between the
United States and Japan. ... Of
the initial gift of 12 varieties of
3,020 trees, the Yoshino Cherry
(70% of total) and Kwanzan
Cherry (13% of total) now
dominate. ...

linked documents in the same context. We then
pretrain the LM with two joint self-supervised
objectives: masked language modeling and our
new proposal, document relation prediction. We
show that LinkBERT outperforms BERT on var-
ious downstream tasks across two domains: the
general domain (pretrained on Wikipedia with
hyperlinks) and biomedical domain (pretrained
on PubMed with citation links). LinkBERT is
especially effective for multi-hop reasoning and
few-shot QA (+5% absolute improvement on
HotpotQA and TriviaQA), and our biomedical
LinkBERT sets new states of the art on various
BioNLP tasks (+7% on BioASQ and USMLE).
We release our pretrained models, LinkBERT
and BioLinkBERT, as well as code and data.!

1 Introduction

Pretrained language models (LMs), like BERT and
GPTs (Devlin et al., 2019; Brown et al., 2020), have
shown remarkable performance on many natural
language processing (NLP) tasks, such as text
classification and question answering, becoming the
foundation of modern NLP systems (Bommasani
etal.,2021). By performing self-supervised learn-
ing, such as masked language modeling (Devlin
et al., 2019), LMs learn to encode various knowl-
edge from text corpora and produce informative
representations for downstream tasks (Petroni et al.,
2019; Bosselut et al., 2019; Raffel et al., 2020).

* Equal senior authorship.

! Available at https://github.com/michiyasunaga/
LinkBERT.

Figure 1: Document links (e.g. hyperlinks) can provide salient
multi-hop knowledge. For instance, the Wikipedia article
“Tidal Basin” (left) describes that the basin hosts “National
Cherry Blossom Festival”. The hyperlinked article (right)
reveals that the festival celebrates “Japanese cherry trees”.
Taken together, the link suggests new knowledge not available
in a single document (e.g. “Tidal Basin has Japanese cherry
trees”), which can be useful for various applications, including
answering a question “What trees can you see at Tidal Basin?”.
We aim to leverage document links to incorporate more
knowledge into language model pretraining.

However, existing LM pretraining methods typ-
ically consider text from a single document in each
input context (Liu et al., 2019; Joshi et al., 2020)
and do not model links between documents. This
can pose limitations because documents often have
rich dependencies (e.g. hyperlinks, references), and
knowledge can span across documents. As an exam-
ple, in Figure 1, the Wikipedia article “Tidal Basin,
Washington D.C.” (left) describes that the basin
hosts “National Cherry Blossom Festival”, and the
hyperlinked article (right) reveals the background
that the festival celebrates “Japanese cherry trees”.
Taken together, the hyperlink offers new, multi-hop
knowledge “Tidal Basin has Japanese cherry
trees”, which is not available in the single article
“Tidal Basin” alone. Acquiring such multi-hop
knowledge in pretraining could be useful for various
applications including question answering. In fact,
document links like hyperlinks and references are
ubiquitous (e.g. web, books, scientific literature),
and guide how we humans acquire knowledge and
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Figure 2: Overview of our approach, LinkBERT. Given a pretraining corpus, we view it as a graph of documents, with links
such as hyperlinks (§4.1). To incorporate the document link knowledge into LM pretraining, we create LM inputs by placing a pair
of linked documents in the same context (/inked), besides the existing options of placing a single document (contiguous) or a pair
of random documents (random) as in BERT. We then train the LM with two self-supervised objectives: masked language modeling
(MLM), which predicts masked tokens in the input, and document relation prediction (DRP), which classifies the relation of
the two text segments in the input (contiguous, random, or linked) (§4.2).

even make discoveries (Margolis et al., 1999).

In this work, we propose LinkBERT, an effective
language model pretraining method that incor-
porates document link knowledge. Given a text
corpus, we obtain links between documents such as
hyperlinks, and create LM inputs by placing linked
documents in the same context, besides the existing
option of placing a single document or random doc-
uments as in BERT. Specifically, as in Figure 2, after
sampling an anchor text segment, we place either (1)
the contiguous segment from the same document,
(2) arandom document, or (3) a document linked
from anchor segment, as the next segment in the in-
put. We then train the LM with two joint objectives:
We use masked language modeling (MLM) to en-
courage learning multi-hop knowledge of concepts
brought into the same context by document links
(e.g. “Tidal Basin” and “Japanese cherry” in Figure
1). Simultaneously, we propose a Document Rela-
tion Prediction (DRP) objective, which classifies the
relation of the second segment to the first segment
(contiguous, random, or linked). DRP encourages
learning the relevance and bridging concepts
(e.g. “National Cherry Blossom Festival”) between
documents, beyond the ability learned in the vanilla
next sentence prediction objective in BERT.

Viewing the pretraining corpus as a graph
of documents, LinkBERT is also motivated as
self-supervised learning on the graph, where DRP
and MLM correspond to link prediction and node
feature prediction in graph machine learning (Yang
etal.,2015; Huetal.,2020). Our modeling approach
thus provides a natural fusion of language-based
and graph-based self-supervised learning.

We train LinkBERT in two domains: the general
domain, using Wikipedia articles with hyperlinks
(§4), and the biomedical domain, using PubMed ar-
ticles with citation links (§6). We then evaluate the
pretrained models on a wide range of downstream
tasks such as question answering, in both domains.

LinkBERT consistently improves on baseline LMs
across domains and tasks. For the general domain,
LinkBERT outperforms BERT on MRQA bench-
mark (+4% absolute in F1-score) as well as GLUE
benchmark. For the biomedical domain, LinkBERT
exceeds PubmedBERT (Gu et al., 2020) and sets
new states of the art on BLURB biomedical NLP
benchmark (+3% absolute in BLURB score) and
MedQA-USMLE reasoning task (+7% absolute in
accuracy). Overall, LinkBERT attains notably large
gains for multi-hop reasoning, multi-document
understanding, and few-shot question answering,
suggesting that LinkBERT internalizes significantly
more knowledge than existing LMs by pretraining
with document link information.

2 Related work

Retrieval-augmented LMs. Several works
(Lewis et al., 2020b; Karpukhin et al., 2020; Oguz
et al., 2020; Xie et al., 2022) introduce a retrieval
module for LMs, where given an anchor text
(e.g. question), retrieved text is added to the same
LM context to improve model inference (e.g. an-
swer prediction). These works show the promise of
placing related documents in the same LM context
at inference time, but they do not study the effect of
doing so in pretraining. Guu et al. (2020) pretrain
an LM with a retriever that learns to retrieve text for
answering masked tokens in the anchor text. In con-
trast, our focus is not on retrieval, but on pretraining
a general-purpose LM that internalizes knowledge
that spans across documents, which is orthogonal
to the above works (e.g., our pretrained LM could
be used to initialize the LM component of these
works). Additionally, we focus on incorporating
document links such as hyperlinks, which can offer
salient knowledge that common lexical retrieval
methods may not provide (Asai et al., 2020).

Pretrain LMs with related documents. Several
concurrent works use multiple related documents



to pretrain LMs. Caciularu et al. (2021) place doc-
uments (news articles) about the same topic into the
same LM context, and Levine et al. (2021) place sen-
tences of high lexical similarity into the same con-
text. Our work provides a general method to incor-
porate document links into LM pretraining, where
lexical or topical similarity can be one instance of
document links, besides hyperlinks. We focus on hy-
perlinks in this work, because we find they can bring
in salient knowledge that may not be obvious via
lexical similarity, and yield a more performant LM
(85.5). Additionally, we propose the DRP objective,
which improves modeling multiple documents and
relations between them in LMs (§5.5).

Hyperlinks and citation links for NLP. Hyper-
links are often used to learn better retrieval models.
Chang et al. (2020); Asai et al. (2020); Seonwoo
et al. (2021) use Wikipedia hyperlinks to train
retrievers for open-domain question answering.
Ma et al. (2021) study various hyperlink-aware
pretraining tasks for retrieval. While these works
use hyperlinks to learn retrievers, we focus on using
hyperlinks to create better context for learning
general-purpose LMs. Separately, Calixto et al.
(2021) use Wikipedia hyperlinks to learn multilin-
gual LMs. Citation links are often used to improve
summarization and recommendation of academic
papers (Qazvinian and Radev, 2008; Yasunaga et al.,
2019; Bhagavatula et al., 2018; Khadka et al., 2020;
Cohan et al., 2020). Here we leverage citation net-
works to improve pretraining general-purpose LMs.

Graph-augmented LMs. Several works aug-
ment LMs with graphs, typically, knowledge graphs
(KGs) where the nodes capture entities and edges
their relations. Zhang et al. (2019); He et al. (2020);
Wang et al. (2021b) combine LM training with
KG embeddings. Sun et al. (2020); Yasunaga et al.
(2021); Zhang et al. (2022) combine LMs and graph
neural networks (GNNs) to jointly train on text and
KGs. Different from KGs, we use document graphs
to learn knowledge that spans across documents.

3 Preliminaries

A language model (LM) can be pretrained from a
corpus of documents, X = {X®}. An LM is a com-
position of two functions, fhead(fenc(X)), Where
the encoder fenc takes in a sequence of tokens X =
(z1,z2,...,25,) and produces a contextualized vector
representation for each token, (hi,hg,...;h,). The
head fheaq uses these representations to perform self-
supervised tasks in the pretraining step and to per-
form downstream tasks in the fine-tuning step. We

build on BERT (Devlin et al., 2019), which pretrains
an LM with the following two self-supervised tasks.

Masked language modeling (MLM). Given a
sequence of tokens X, a subset of tokens Y C X
is masked, and the task is to predict the original
tokens from the modified input. Y accounts for
15% of the tokens in X; of those, 80% are replaced
with [MASK], 10% with a random token, and 10%
are kept unchanged.

Next sentence prediction (NSP). The NSP task
takes two text segments” (X 4, Xp) as input, and
predicts whether X g is the direct continuation of
X 4. Specifically, BERT first samples X 4 from the
corpus, and then either (1) takes the next segment
Xp from the same document, or (2) samples Xp
from a random document in the corpus. The two
segments are joined via special tokens to form
an input instance, [CLS] X4 [SEP] Xp [SEP],
where the prediction target of [CLS] is whether X p
indeed follows X 4 (contiguous or random).

In this work, we will further incorporate docu-
ment link information into LM pretraining. Our
approach (§4) will build on MLM and NSP.

4 LinkBERT

We present LinkBERT, a self-supervised pretraining
approach that aims to internalize more knowledge
into LMs using document link information.
Specifically, as shown in Figure 2, instead of
viewing the pretraining corpus as a set of documents
X ={X®}, we view it as a graph of documents,
G = (X,€), where £ = {(X, X))} denotes
links between documents (§4.1). The links can
be existing hyperlinks, or could be built by other
methods that capture document relevance. We
then consider pretraining tasks for learning from
document links (§4.2): We create LM inputs by
placing linked documents in the same context
window, besides the existing options of a single
document or random documents. We use the MLM
task to learn concepts brought together in the con-
text by document links, and we also introduce the
Document Relation Prediction (DRP) task to learn
relations between documents. Finally, we discuss
strategies for obtaining informative pairs of linked
documents to feed into LM pretraining (§4.3).

4.1 Document graph

Given a pretraining corpus, we link related docu-
ments so that the links can bring together knowledge
that is not available in single documents. We focus

%A segment is typically a sentence or a paragraph.



on hyperlinks, e.g., hyperlinks of Wikipedia articles
(§5) and citation links of academic articles (§6). Hy-
perlinks have a number of advantages. They provide
background knowledge about concepts that the doc-
ument writers deemed useful—the links are likely
to have high precision of relevance, and can also
bring in relevant documents that may not be obvious
via lexical similarity alone (e.g., in Figure 1, while
the hyperlinked article mentions “Japanese” and
“Yoshino” cherry trees, these words do not appear in
the anchor article). Hyperlinks are also ubiquitous
on the web and easily gathered at scale (Aghajanyan
etal., 2021). To construct the document graph, we
simply make a directed edge (X V), X 1)) if there is
a hyperlink from document X (@) to document X ().
For comparison, we also experiment with a docu-
ment graph built by lexical similarity between docu-
ments. For each document X () , we use the common
TF-IDF cosine similarity metric (Chen et al., 2017;
Yasunaga et al., 2017) to obtain top-k documents
X )’s and make edges (X ), X ()). We use k=5.

4.2 Pretraining tasks

Creating input instances. Several works (Gao
etal., 2021; Levine et al., 2021) find that LMs can
learn stronger dependencies between words that
were shown together in the same context during
training, than words that were not. To effectively
learn knowledge that spans across documents, we
create LM inputs by placing linked documents in
the same context window, besides the existing op-
tion of a single document or random documents.
Specifically, we first sample an anchor text segment
from the corpus (Segment A; X 4 C X ). For the
next segment (Segment B; X ), we either (1) use
the contiguous segment from the same document
(XpCX (i)), (2) sample a segment from a random
document (X C X (4) where j#1), or (3) sample a
segment from one of the documents linked from Seg-
ment A (Xp C XU) where (X, X)) € £). We
then join the two segments via special tokens to form
an input instance: [CLS] X 4 [SEP] Xp [SEP].

Training objectives. To train the LM, we use
two objectives. The first is the MLLM objective to
encourage the LM to learn multi-hop knowledge of
concepts brought into the same context by document
links. The second objective, which we propose, is
Document Relation Prediction (DPR), which clas-
sifies the relation r of segment X 5 to segment X 4
(r € {contiguous,random,linked}). By distinguish-
ing linked from contiguous and random, DRP en-
courages the LM to learn the relevance and existence
of bridging concepts between documents, besides
the capability learned in the vanilla NSP objective.

To predict r, we use the representation of [CLS]
token, as in NSP. Taken together, we optimize:

L= Lyvm+Lore (1)
=—) logp(wi|hi)~log p(r |hres1)  (2)

where x; is each token of the input instance, [CLS]
X 4 [SEP] Xp [SEP], and h; is its representation.

Graph machine learning perspective. Our
two pretraining tasks, MLM and DRP, are also
motivated as graph self-supervised learning on the
document graph. In graph self-supervised learning,
two types of tasks, node feature prediction and
link prediction, are commonly used to learn the
content and structure of a graph. In node feature
prediction (Hu et al., 2020), some features of a node
are masked, and the task is to predict them using
neighbor nodes. This corresponds to our MLM
task, where masked tokens in Segment A can be
predicted using Segment B (a linked document
on the graph), and vice versa. In link prediction
(Bordes et al., 2013; Wang et al., 2021a), the task is
to predict the existence or type of an edge between
two nodes. This corresponds to our DRP task,
where we predict if the given pair of text segments
are linked (edge), contiguous (self-loop edge), or
random (no edge). Our approach can be viewed as
a natural fusion of language-based (e.g. BERT) and
graph-based self-supervised learning.

4.3 Strategy to obtain linked documents

As described in §4.1, §4.2, our method builds links
between documents, and for each anchor segment,
samples alinked document to put together in the LM
input. Here we discuss three key axes to consider
to obtain useful linked documents in this process.

Relevance. Semantic relevance is a requisite
when building links between documents. If links
were randomly built without relevance, LinkBERT
would be same as BERT, with simply two options of
LM inputs (contiguous or random). Relevance can
be achieved by using hyperlinks or lexical similarity
metrics, and both methods yield substantially better
performance than using random links (§5.5).

Salience. Besides relevance, another factor to con-
sider (salience) is whether the linked document can
offer new, useful knowledge that may not be obvious
to the current LM. Hyperlinks are potentially more
advantageous than lexical similarity links in this
regard: LMs are shown to be good at recognizing
lexical similarity (Zhang et al., 2020), and hyper-
links can bring in useful background knowledge that



may not be obvious via lexical similarity alone (Asai
et al., 2020). Indeed, we empirically find that using
hyperlinks yields a more performant LM (§5.5).

Diversity. In the document graph, some docu-
ments may have a very high in-degree (e.g., many
incoming hyperlinks, like the “United States” page
of Wikipedia), and others a low in-degree. If we uni-
formly sample from the linked documents for each
anchor segment, we may include documents of high
in-degree too often in the overall training data, los-
ing diversity. To adjust so that all documents appear
with a similar frequency in training, we sample a
linked document with probability inversely propor-
tional to its in-degree, as done in graph data mining
literature (Henzinger et al., 2000). We find that this
technique yields a better LM performance (§5.5).

5 Experiments

We experiment with our proposed approach in the
general domain first, where we pretrain LinkBERT
on Wikipedia articles with hyperlinks (§5.1) and
evaluate on a suite of downstream tasks (§5.2). We
compare with BERT (Devlin et al., 2019) as our base-
line. We experiment in the biomedical domain in §6.

5.1 Pretraining setup

Data. We use the same pretraining corpus used
by BERT: Wikipedia and BookCorpus (Zhu et al.,
2015). For Wikipedia, we use the WikiExtractor? to
extract hyperlinks between Wiki articles. We then
create training instances by sampling contiguous,
random, or linked segments as described in §4, with
the three options appearing uniformly (33%, 33%,
33%). For BookCorpus, we create training instance
by sampling contiguous or random segments (50%,
50%) as in BERT. We then combine the training
instances from Wikipedia and BookCorpus to train
LinkBERT. In summary, our pretraining data is
the same as BERT, except that we have hyperlinks
between Wikipedia articles.

Implementation. We pretrain LinkBERT of
three sizes, -tiny, -base and -large, following the
configurations of BERT;iny (4.4M parameters),
BERTyase (110M params), and BERT 516 (340M
params) (Devlinet al., 2019; Turc et al., 2019). We
use -tiny mainly for ablation studies.

For -tiny, we pretrain from scratch with ran-
dom weight initialization. We use the AdamW
(Loshchilov and Hutter, 2019) optimizer with
(B1,52) = (0.9,0.98), warm up the learning rate
for the first 5,000 steps and then linearly decay it.

*https://github.com/attardi/wikiextractor

We train for 10,000 steps with a peak learning rate
5e-3, weight decay 0.01, and batch size of 2,048
sequences with 512 tokens. Training took 1 day on
two GeForce RTX 2080 Ti GPUs with fp16.

For -base, we initialize LinkBERT with the
BERTyase checkpoint released by Devlin et al.
(2019) and continue pretraining. We use a peak
learning rate 3e-4 and train for 40,000 steps. Other
training hyperparameters are the same as -tiny.
Training took 4 days on four A100 GPUs with fp16.

For -large, we follow the same procedure as
-base, except that we use a peak learning rate of 2e-4.
Training took 7 days on eight A100 GPUs with fp16.

Baselines. We compare LinkBERT with BERT.
Specifically, for the -tiny scale, we compare with
BERT ¢ iny, which we pretrain from scratch with the
same hyperparameters as LinkBERT 3,y The only
difference is that LinkBERT uses document links
to create LM inputs, while BERT does not.

For -base scale, we compare with BERT}5e, for
which we take the BERTy,, ¢ release by Devlin et al.
(2019) and continue pretraining it with the vanilla
BERT objectives on the same corpus for the same
number of steps as LinkBERT 5 ge.-

For -large, we follow the same procedure as -base.

5.2 Evaluation tasks

We fine-tune and evaluate LinkBERT on a suite of
downstream tasks.

Extractive question answering (QA). Given a
document (or set of documents) and a question as
input, the task is to identify an answer span from
the document. We evaluate on six popular datasets
from the MRQA shared task (Fisch et al., 2019):
HotpotQA (Yang et al., 2018), TriviaQA (Joshi
etal., 2017), NaturalQ (Kwiatkowski et al., 2019),
SearchQA (Dunn et al., 2017), NewsQA (Trischler
et al., 2017), and SQuAD (Rajpurkar et al., 2016).
As the MRQA shared task does not have a public
test set, we split the dev set in half to make new
dev and test sets. We follow the fine-tuning method
BERT (Devlin et al., 2019) uses for extractive QA.
More details are provided in Appendix B.

GLUE. The General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018)
is a popular suite of sentence-level classification
tasks. Following BERT, we evaluate on ColLA
(Warstadt et al., 2019), SST-2 (Socher et al., 2013),
MRPC (Dolan and Brockett, 2005), QQP, STS-B
(Cer et al., 2017), MNLI (Williams et al., 2017),
ONLI (Rajpurkar et al., 2016), and RTE (Dagan
et al., 2005; Haim et al., 2006; Giampiccolo
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HotpotQA TriviaQA SearchQA NaturalQ NewsQA SQuAD Avg. GLUE score
BERT¢iny 49.8 434 50.2 58.9 41.3 56.6 50.0 BERT¢iny 64.3
LinkBERT 1y 54.6 50.0 58.6 60.3 42.8 58.0 54.1 LinkBERT 5y 64.6
BERThase 76.0 70.3 74.2 76.5 65.7 88.7 75.2 BERThgase 79.2
LinkBERTpase 78.2 73.9 76.8 78.3 69.3 90.1 77.8 LinkBERTpase 79.6
BERT1arge 78.1 73.7 78.3 79.0 70.9 91.1 78.5 BERT arge 80.7
LinkBERT1arge 80.8 78.2 80.5 81.0 72.6 92.7 81.0 LinkBERT 1arge 81.1
Table 1: Performance (F1) on MRQA question answering datasets. LinkBERT Table 2: Performance on the

consistently outperforms BERT on all datasets across the -tiny, -base, and -large scales.
The gain is especially large on datasets that require reasoning with multiple documents

in the context, such as HotpotQA, TriviaQA, SearchQA.

SQuAD  SQuAD distract
BERThase 88.7 85.9
LinkBERTbase 90.1 89.6

Table 3: Performance (F1) on SQuAD when distracting
documents are added to the context. While BERT incurs a
large drop in F1, LinkBERT does not, suggesting its robustness
in understanding document relations.

HotpotQA TriviaQA NaturalQ SQuAD

64.8 59.2 64.8 79.6
70.5 66.0 70.2 82.8

BERTbase
LinkBERTvase

Table 4: Few-shot QA performance (F1) when 10% of fine-
tuning data is used. LinkBERT attains large gains, suggesting
that it internalizes more knowledge than BERT in pretraining.

HotpotQA TriviaQA NaturalQ SQuUAD

LinkBERT¢ 5y 54.6 50.0 60.3 58.0
No diversity 53.5 48.0 60.0 57.8
Change hyperlink to TF-IDF ~ 50.0 48.2 59.6 57.6
Change hyperlink to random 49.8 434 58.9 56.6

Table 5: Ablation study on what linked documents to feed
into LM pretraining (§4.3).

HotpotQA TriviaQA NaturalQ SQuAD 335/;]?
LinkBERTyase 78.2 73.9 78.3 90.1 89.6
No DRP 76.5 72.5 77.0 89.3 87.0

Table 6: Ablation study on the document relation prediction
(DRP) objective in LM pretraining (§4.2).

et al., 2007), and report the average score. More
fine-tuning details are provided in Appendix B.

5.3 Results

Table 1 shows the performance (F1 score) on
MRQA datasets. LinkBERT substantially outper-
forms BERT on all datasets. On average, the gain is
+4.1% absolute for the BERT 1,y scale, +2.6% for
the BERT a5 scale, and +2.5% for the BERT 1 5g¢
scale. Table 2 shows the results on GLUE, where
LinkBERT performs moderately better than BERT.
These results suggest that LinkBERT is especially
effective at learning knowledge useful for QA tasks
(e.g. world knowledge), while keeping performance
on sentence-level language understanding.

5.4 Analysis

We further study when LinkBERT is especially
useful in downstream tasks.

GLUE benchmark. LinkBERT
attains comparable or moderately
improved performance.

Improved multi-hop reasoning. In Table 1,
we find that LinkBERT obtains notably large
gains on QA datasets that require reasoning with
multiple documents, such as HotpotQA (+5% over
BERT¢1ny), TriviaQA (+6%) and SearchQA (+8%),
as opposed to SQuAD (+1.4%) which just has
a single document per question. To further gain
qualitative insights, we studied in what QA exam-
ples LinkBERT succeeds but BERT fails. Figure
3 shows a representative example from HotpotQA.
Answering the question needs 2-hop reasoning:
identify “Roden Brothers were taken over by Birks
Group” from the first document, and then “Birks
Group is headquartered in Montreal” from the sec-
ond document. While BERT tends to simply predict
an entity near the question entity (“Toronto” in the
first document, which is just 1-hop), LinkBERT
correctly predicts the answer in the second docu-
ment (“Montreal”). Our intuition is that because
LinkBERT is pretrained with pairs of linked docu-
ments rather than purely single documents, it better
learns how to flow information (e.g., do attention)
across tokens when multiple related documents
are given in the context. In summary, these results
suggest that pretraining with linked documents
helps for multi-hop reasoning on downstream tasks.

Improved understanding of document rela-
tions. While the MRQA datasets typically use
ground-truth documents as context for answering
questions, in open-domain QA, QA systems need to
use documents obtained by a retriever, which may
include noisy documents besides gold ones (Chen
etal., 2017; Dunn et al., 2017). In such cases, QA
systems need to understand the document relations
to perform well (Yang et al., 2018). To simulate
this setting, we modify the SQuAD dataset by
prepending or appending 1-2 distracting documents
to the original document given to each question.
Table 3 shows the result. While BERT incurs a large
performance drop (-2.8%), LinkBERT is robust to
distracting documents (-0.5%). This result suggests
that pretraining with document links improves
the ability to understand document relations and



HotpotQA example

Question: Roden Brothers were taken over in 1953 by a group
headquartered in which Canadian city?

Doc A: Roden Brothers was founded June 1, 1891 in Toronto, Ontario,
Canada by Thomas and Frank Roden. In the 1910s the firm became
known as Roden Bros. Ltd. and were later taken over by Henry Birks
and Sons in 1953. ... In 1974 Roden Bros. Ltd. publistred the book,
"Rich Cut Glass" with Clock House Publicatierisin Peterborough,
Ontario, which was a reprint of th edition published by Roden
Bros., Toronto.

Doc B: Birks Group (formerly Birks & Mayors) is a designer,
manufacturer and retailer of jewellery, timepieces, silverware and gifts,
with stores and manufacturing facilities located in Canada and the
United States. As of June 30, 2015, it operates stores under three
different retail banners: ... The company is headquartered in Montreal,
Quebec, with American corporate offices located in Tamarac, Florida.

LinkBERT predicts: “Montreal” (v')  BERT predicts: “Toronto” (X )

Figure 3: Case study of multi-hop reasoning on HotpotQA.
Answering the question needs to identify “Roden Brothers
were taken over by Birks Group” from the first document,
and then “Birks Group is headquartered in Montreal” from
the second document. While BERT tends to simply predict
an entity near the question entity (“Toronto” in the first
document), LinkBERT correctly predicts the answer in the
second document (“Montreal”).

relevance. In particular, our intuition is that the
DRP objective helps the LM to better recognize
document relations like (anchor document, linked
document) in pretraining, which helps to recognize
relations like (question, right document) in down-
stream QA tasks. We indeed find that ablating the
DRP objective from LinkBERT hurts performance
(§5.5). The strength of understanding document
relations also suggests the promise of applying
LinkBERT to various retrieval-augmented methods
and tasks (e.g. Lewis et al. 2020b), either as the
main LM or the dense retriever component.

Improved few-shot QA performance. We also
find that LinkBERT is notably good at few-shot
learning. Concretely, for each MRQA dataset, we
fine-tune with only 10% of the available training
data, and report the performance in Table 4. In this
few-shot regime, LinkBERT attains more signifi-
cant gains over BERT, compared to the full-resource
regime in Table 1 (on NaturalQ, 5.4% vs 1.8% abso-
lute in F1, or 15% vs 7% in relative error reduction).
This result suggests that LinkBERT internalizes
more knowledge than BERT during pretraining,
which supports our core idea that document links
can bring in new, useful knowledge for LMs.

5.5 Ablation studies

We conduct ablation studies on the key design
choices of LinkBERT.

What linked documents to feed into LMs? We
study the strategies discussed in §4.3 for obtaining
linked documents: relevance, salience, and diversity.

Table 5 shows the ablation result on MRQA datasets.
First, if we ignore relevance and use random doc-
ument links instead of hyperlinks, we get the same
performance as BERT (-4.1% on average; “random’
in Table 5). Second, using lexical similarity links
instead of hyperlinks leads to 1.8% performance
drop (“TF-IDF”). Our intuition is that hyperlinks
can provide more salient knowledge that may not be
obvious from lexical similarity alone. Nevertheless,
using lexical similarity links is substantially better
than BERT (+2.3%), confirming the efficacy of
placing relevant documents together in the input
for LM pretraining. Finally, removing the diversity
adjustment in document sampling leads to 1% per-
formance drop (“No diversity”). In summary, our
insight is that to create informative inputs for LM
pretraining, the linked documents must be seman-
tically relevant and ideally be salient and diverse.

’

Effect of the DRP objective. Table 6 shows the
ablation result on the DRP objective (§4.2). Re-
moving DRP in pretraining hurts downstream QA
performance. The drop is large on tasks with multi-
ple documents (HotpotQA, TriviaQA, and SQuAD
with distracting documents). This suggests that
DREP facilitates LMs to learn document relations.

6 Biomedical LinkBERT (BioLinkBERT)

Pretraining LMs on biomedical text is shown
to boost performance on biomedical NLP tasks
(Beltagy et al., 2019; Lee et al., 2020; Lewis
et al., 2020a; Gu et al., 2020). Biomedical LMs
are typically trained on PubMed, which contains
abstracts and citations of biomedical papers. While
prior works only use their raw text for pretraining,
academic papers have rich dependencies with each
other via citations (references). We hypothesize
that incorporating citation links can help LMs learn
dependencies between papers and knowledge that
spans across them.

With this motivation, we pretrain LinkBERT on
PubMed with citation links (§6.1), which we term
BioLinkBERT, and evaluate on biomedical down-
stream tasks (§6.2). As our baseline, we follow and
compare with the state-of-the-art biomedical LM,
PubmedBERT (Gu et al., 2020), which has the same
architecture as BERT and is trained on PubMed.

6.1 Pretraining setup

Data. We use the same pretraining corpus used
by PubmedBERT: PubMed abstracts (21GB).* We

*https://pubmed.ncbi.nlm.nih.gov. We use papers
published before Feb. 2020 as in PubmedBERT.
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use the Pubmed Parser” to extract citation links be-
tween articles. We then create training instances by
sampling contiguous, random, or linked segments
as described in §4, with the three options appearing
uniformly (33%, 33%, 33%). In summary, our pre-
training data is the same as PubmedBERT, except
that we have citation links between PubMed articles.

Implementation. We pretrain BioLinkBERT of
-base size (110M params) from scratch, following
the same hyperparamters as the PubmedBERT} 55
(Gu et al., 2020). Specifically, we use a peak
learning rate 6e-4, batch size 8,192, and train for
62,500 steps. We warm up the learning rate in
the first 10% of steps and then linearly decay it.
Training took 7 days on eight A100 GPUs with fp16.

Additionally, while the original PubmedBERT
release did not include the -large size, we pretrain
BioLinkBERT of the -large size (340M params)
from scratch, following the same procedure as
-base, except that we use a peak learning rate of 4e-4
and warm up steps of 20%. Training took 21 days
on eight A100 GPUs with fp16.

Baselines. We compare BioLinkBERT with
PubmedBERT released by Gu et al. (2020).

6.2 Evaluation tasks

For downstream tasks, we evaluate on the BLURB
benchmark (Gu et al., 2020), a diverse set of biomed-
ical NLP datasets, and MedQA-USMLE (Jin et al.,
2021), a challenging biomedical QA dataset.

BLURB consists of five named entity recog-
nition tasks, a PICO (population, intervention,
comparison, and outcome) extraction task, three
relation extraction tasks, a sentence similarity task,
a document classification task, and two question
answering tasks, as summarized in Table 7. We
follow the same fine-tuning method and evaluation
metric used by PubmedBERT (Gu et al., 2020).

MedQA-USMLE is a 4-way multi-choice QA
task that tests biomedical and clinical knowledge.
The questions are from practice tests for the US
Medical License Exams (USMLE). The questions
typically require multi-hop reasoning, e.g., given
patient symptoms, infer the likely cause, and then
answer the appropriate diagnosis procedure (Figure
4). We follow the fine-tuning method in Jin et al.
(2021). More details are provided in Appendix B.

MMLU-professional medicine is a multi-choice
QA task that tests biomedical knowledge and reason-
ing, and is part of the popular MMLU benchmark

Shttps://github.com/titipata/pubmed_parser

PubMed- BioLink- BioLink-
BERTvase BERThase | BERT1arge

Named entity recognition

BC5-chem (Lietal., 2016) 93.33 93.75 94.04

BC5-disease (Lictal., 2016) 85.62 86.10 86.39

NCBI-disease (Dogan et al., 2014) 87.82 88.18 88.76

BC2GM (Smithetal., 2008) 84.52 84.90 85.18

JNLPBA (Kim et al., 2004) 80.06 79.03 80.06
PICO extraction

EBM PICO (Nyeetal.,2018) 73.38 73.97 74.19
Relation extraction

ChemProt (Krallinger etal., 2017) 77.24 77.57 79.98

DDI (Herrero-Zazo et al., 2013) 82.36 82.72 83.35

GAD (Bravoetal., 2015) 82.34 84.39 84.90
Sentence similarity

BIOSSES (Sogancioglu et al., 2017) 92.30 93.25 93.63
Document classification

HoC (Bakeretal., 2016) 82.32 84.35 84.87
Question answering

PubMedQA @inetal, 2019) 55.84 70.20 72.18

BioASQ (Nentidis etal., 2019) 87.56 91.43 94.82
BLURB score | 8110 83.39 | 8430

Table 7: Performance on BLURB benchmark. BioLinkBERT
attains improvement on all tasks, establishing new state of
the art on BLURB. Gains are notably large on document-level
tasks such as PubMedQA and BioASQ.

Methods Acc. (%)
BioBERT1arge (Lee etal., 2020) 36.7
QAGNN (Yasunagaetal., 2021) 38.0
GreaseLM (Zhang et al., 2022) 38.5
PubmedBERTvase (Guetal., 2020) 38.1
BioLinkBERTyase (Ours) 40.0
BioLinkBERT1arge (Ours) 44.6

Table 8: Performance on MedQA-USMLE. BioLinkBERT
outperforms all previous biomedical LMs.

Methods Acc. (%)
GPT-3 (175B params) (Brown et al., 2020) 38.7
UnifiedQA (11B params) (Khashabi et al., 2020) 43.2
BioLinkBERT14rg (Ours) 50.7

Table 9: Performance on MMLU-professional medicine.
BioLinkBERT significantly outperforms the largest general-
domain LM or QA model, despite having just 340M parameters.

(Hendrycks et al., 2021) that is used to evaluate mas-
sive language models. We take the BioLinkBERT
fine-tuned on the above MedQA-USMLE task, and
evaluate on this task without further adaptation.

6.3 Results

BLURB. Table 7 shows the results on BLURB.
BioLinkBERT},.5e outperforms PubmedBERTy 0
on all task categories, attaining a performance
boost of +2% absolute on average. Moreover,
BioLinkBERT1.rge provides a further boost of
+1%. In total, BioLinkBERT outperforms the
previous best by +3% absolute, establishing a new
state of the art on the BLURB leaderboard. We see a
trend that gains are notably large on document-level
tasks such as question answering (+7% on BioASQ
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MedQA-USMLE example

Need multi-hop reasoning

Three days after undergoing a laparoscopic Whipple's procedure, a

43-year-old woman has swelling of her right leg. ... She was diagnosed
with pancreatic cancer 1 month ago. ... Her temperature is 38°C (100.4°
F), pulse is 90/min, and blood pressure is 118/78 mm Hg. Examination
shows mild swelling of the right thigh to the ankle; there is no

erythema or pitting edema. ... Which of the following is the most
appropriate next step in management?

(A) CT pulmonary angiography (B) Compression ultrasonography !
(C) D-dimer level (D) 2 sets of blood cultures

LinkBERT predicts: B (v') PubmedBERT predicts: D (X )

Leg swelling, pancreatic cancer
v
Deep vein thrombosis

Compression ultrasonography

(next step for diagnosis)

Knowledge learned via document links

Doc A: ... Pancreatic cancer can induce deep
Ssymptom vein thrombosisin leg... (eg. Ansarietal. 2015)
Reference

possible cause

Doc B: ... Deep vein thrombosis is tested by
compression ultrasonography ...

(e.g. Piovella et al. 2002

Figure 4: Case study of multi-hop reasoning on MedQA-USMLE. Answering the question (left) needs 2-hop reasoning (center):
from the patient symptoms described in the question (leg swelling, pancreatic cancer), infer the cause (deep vein thrombosis),
and then infer the appropriate diagnosis procedure (compression ultrasonography). While the existing PubmedBERT tends to
simply predict a choice that contains a word appearing in the question (“blood” for choice D), BioLinkBERT correctly predicts
the answer (B). Our intuition is that citation links bring relevant documents together in the same context in pretraining (right),
which readily provides the multi-hop knowledge needed for the reasoning (center).

and PubMedQA). This result is consistent with the
general domain (§5.3) and confirms that LinkBERT
helps to learn document dependencies better.

MedQA-USMLE. Table 8 shows the results.
BioLinkBERT},se Obtains a 2% accuracy boost
over PubmedBERTyase, and BioLinkBERT:arge
provides an additional +5% boost. In total, Bi-
oLinkBERT outperforms the previous best by +7%
absolute, setting a new state of the art. To further
gain qualitative insights, we studied in what QA
examples BioLinkBERT succeeds but the baseline
PubmedBERT fails. Figure 4 shows a representative
example. Answering the question (left) needs 2-hop
reasoning (center): from the patient symptoms
described in the question (leg swelling, pancreatic
cancer), infer the cause (deep vein thrombosis),
and then infer the appropriate diagnosis procedure
(compression ultrasonography). We find that while
the existing PubmedBERT tends to simply predict
a choice that contains a word appearing in the
question (“blood” for choice D), BioLinkBERT
correctly predicts the answer (B). Our intuition is
that citation links bring relevant documents and
concepts together in the same context in pretraining
(right),® which readily provides the multi-hop
knowledge needed for the reasoning (center). Com-
bined with the analysis on HotpotQA (§5.4), our
results suggest that pretraining with document links
consistently helps for multi-hop reasoning across
domains (e.g., general documents with hyperlinks
and biomedical articles with citation links).

MMLU-professional medicine. Table 9 shows
the performance. Despite having just 340M parame-

®For instance, as in Figure 4 (right), Ansari et al. (2015) in
PubMed mention that pancreatic cancer can induce deep vein
thrombosis in leg, and it cites a paper in PubMed, Piovella et al.
(2002), which mention that deep vein thrombosis is tested by
compression ultrasonography. Placing these two documents
in the same context yields the complete multi-hop knowledge
needed to answer the question (“pancreatic cancer” — “deep
vein thrombosis” — “compression ultrasonography”).

ters, BioLinkBERT 5, achieves 50% accuracy on
this QA task, significantly outperforming the largest
general-domain LM or QA models such as GPT-3
175B params (39% accuracy) and UnifiedQA 11B
params (43% accuracy). This result shows that
with an effective pretraining approach, a small
domain-specialized LM can outperform orders of
magnitude larger language models on QA tasks.

7 Conclusion

We presented LinkBERT, a new language model
(LM) pretraining method that incorporates docu-
ment link knowledge such as hyperlinks. In both
the general domain (pretrained on Wikipedia with
hyperlinks) and biomedical domain (pretrained on
PubMed with citation links), LinkBERT outper-
forms previous BERT models across a wide range
of downstream tasks. The gains are notably large
for multi-hop reasoning, multi-document under-
standing and few-shot question answering, suggest-
ing that LinkBERT effectively internalizes salient
knowledge through document links. Our results sug-
gest that LinkBERT can be a strong pretrained LM
to be applied to various knowledge-intensive tasks.
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https://github.com/michiyasunaga/
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https://worksheets.
codalab.org/worksheets/
0x7a6ab9c8d06a41d191335b270da2902e.
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A Ethics, limitations and risks

We outline potential ethical issues with our work
below. First, LiInkBERT is trained on the same
text corpora (e.g., Wikipedia, Books, PubMed)
as in existing language models. Consequently,
LinkBERT could reflect the same biases and toxic
behaviors exhibited by language models, such as
biases about race, gender, and other demographic
attributes (Sheng et al., 2020).

Another source of ethical concern is the use of
the MedQA-USMLE evaluation (Jin et al., 2021).
While we find this clinical reasoning task to be an
interesting testbed for LinkBERT and for multi-hop
reasoning in general, we do not encourage users
to use the current models for real world clinical
prediction.

B Fine-tuning details

We apply the following fine-tuning hyperparameters
to all models, including the baselines.

MRQA. For all the extractive question answering
datasets, we use max_seq_length = 384 and a
sliding window of size 128 if the lengths are longer
than max_seq_length.

For the -tiny scale (BERTy;ny, LinkBERT j4y),
we choose learning rates from {5e-5, le-4, 3e-4},
batch sizes from {16, 32, 64}, and fine-tuning
epochs from {5, 10}.

For -base (BERTpase, LInkBERTy.se), we
choose learning rates from {2e-5, 3e-5}, batch sizes
from {12, 24}, and fine-tuning epochs from {2, 4}.

For -large (BERT1arge, LinkBERT14rge), We
choose learning rates from {1e-5, 2e-5}, batch sizes
from {16, 32}, and fine-tuning epochs from {2, 4}.

GLUE. Weusemax_seq_length=128.

For the -tiny scale (BERT} 4y, LinkBERT ¢35y ),
we choose learning rates from {5e-5, le-4, 3e-4},
batch sizes from {16, 32, 64}, and fine-tuning
epochs from {5, 10}.

For -base and -large (BERTy 56, LinkBERT 55,
BERT1arge, LINKBERT 21 ), We choose learning
rates from {5e-6, le-5, 2e-5, 3e-5, 5e-5}, batch sizes
from {16, 32, 64} and fine-tuning epochs from 3-10.

BLURB. We use max_seq_length =512 and
choose learning rates from { 1e-5, 2e-5, 3e-5, Se-5,
6e-5}, batch sizes from {16, 32, 64} and fine-tuning
epochs from 1-120.

MedQA-USMLE. We use max_seq_length
=512 and choose learning rates from { le-5, 2e-5,
3e-5}, batch sizes from {16, 32, 64} and fine-tuning
epochs from 1-6.



