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ABSTRACT
Knowledge graphs (KGs) capture knowledge in the form of head–
relation–tail triples and are a crucial component in many AI systems.

There are two important reasoning tasks on KGs: (1) single-hop

knowledge graph completion, which involves predicting individual

links in the KG; and (2), multi-hop reasoning, where the goal is to

predict which KG entities satisfy a given logical query. Embedding-

based methods solve both tasks by first computing an embedding

for each entity and relation, then using them to form predictions.

However, existing scalable KG embedding frameworks only support

single-hop knowledge graph completion and cannot be applied to

the more challenging multi-hop reasoning task. Here we present

Scalable Multi-hOp REasoning (SMORE), the first general framework

for both single-hop and multi-hop reasoning in KGs. Using a single
machine SMORE can perform multi-hop reasoning in Freebase KG

(86M entities, 338M edges), which is 1,500× larger than previously

considered KGs. The key to SMORE’s runtime performance is a

novel bidirectional rejection sampling that achieves a square root

reduction of the complexity of online training data generation. Fur-

thermore, SMORE exploits asynchronous scheduling, overlapping

CPU-based data sampling, GPU-based embedding computation, and

frequent CPU–GPU IO. SMORE increases throughput (i.e., training
speed) over prior multi-hop KG frameworks by 2.2× with minimal

GPU memory requirements (2GB for training 400-dim embeddings

on 86M-node Freebase) and achieves near linear speed-up with the
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number of GPUs. Moreover, on the simpler single-hop knowledge

graph completion task SMORE achieves comparable or even better

runtime performance to state-of-the-art frameworks on both single

GPU and multi-GPU settings.
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1 INTRODUCTION
A knowledge graph (KG) is a heterogeneous graph structure that

captures knowledge encoded in a form of head–relation–tail triples,
where the head and tail are two entities (i.e., nodes) and the relation
is an edge between them (e.g., (Paris, CapitalOf, France)). Knowledge
graphs form the backbone of many AI systems across a wide range

of domains: recommender systems [27, 28], question answering [21,

23] and commonsense reasoning [12, 14].

Reasoning over such KGs consists of two types of tasks: (1)

single-hop link prediction (also known as knowledge graph com-

pletion), where given a head and a relation the goal is to predict

one or more tail entities. For example, given TuringAward–Win–?
(i.e., Who are the Turing Award winners?), the goal is to predict

entities GeoffHinton, DonKnuth, etc.; And, (2) multi-hop reasoning,

where one needs to predict (one or many) of the tails of a multi-

hop logical query. For example, answering “Who are co-authors of

Canadian Turing Award winners?” (Figure 1(A)). Finding answers

to such query requires imputation and prediction of multiple edges

across two parallel paths, while also using logical set operations

(e.g., intersection, union). Figure 1(B) shows the query computation

plan and to determine the entities that are the answers to such a

complex multi-hop query, missing links typically need to be im-

plicitly inferred (Figure 1(C)). Notice that both tasks are closely

related to each other. Knowledge graph completion can be viewed

as a special case of a multi-hop reasoning task when the query
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Figure 1: Query embedding methods aim to answer multi-
hop logical queries (A) by avoiding explicit knowledge graph
traversal and executing the query directly in the embedding
space by following the query computation plan (B). Such
methods are robust against missing links (C).

consists of a single relation (e.g., 1-step path TuringAward–Win–?
vs. more complex structure in Figure 1(B)). Multi-hop reasoning is

a strict generalization of knowledge graph completion with much

broader applicability but with its own set of unique computational

and scalability challenges.

Currently there are no frameworks that support multi-hop rea-

soning on massive Knowledge graphs. For example, among many

recent works on multi-hop reasoning [4, 5, 7, 10, 13, 19, 20, 22, 30]

the largest KG used has only 63K entities and 592K relations. More-

over, while there are scalable frameworks for single-hop KG com-

pletion [11, 15, 31, 32], such frameworks cannot be directly used

for multi-hop reasoning due to the more complex nature of the

multi-hop reasoning task.

Scaling up embedding-based multi-hop KG reasoning methods

is a critical need for many real-world AI applications and remains

largely unexplored. Two significant challenges exist: (1) on the al-

gorithmic side, given a massive KG (with hundreds of millions of

entities), it is no longer feasible to materialize training instances,

and training data needs to be efficiently sampled on the fly with a

high throughput to ensure GPUs are fully utilized. And (2), on the

system side, recent single-hop large-scale KG embedding frame-

works are based on graph-partitioning [11, 15, 31, 32] which is

problematic for multi-hop reasoning. Multi-hop reasoning requires

traversing multiple relations in the graph, which will often span

across multiple partitions.

To combat these challenges, we propose Scalable Multi-hOp REa-
soning (SMORE), the first general framework for single- and multi-

hop reasoning on massive KGs. SMORE performs algorithm-system

co-optimization for scalability. On the algorithmic side, the key
is to efficiently generate training examples online. To generate a

training example with a set of positive and negative entities, we

first instantiate a query on a given KG (Figure 2(B)) from a set of

query logical structures (Figure 2(A)). The root of the instantiated

query represents a known positive (answer) entity. To obtain a set

of negative entities (non-answers), näive execution of the query

computation plan (Figure 1(B)) using KG traversal (Figure 1(C))

to identify positive/negative entities has exponential complexity

with respect to the number of hops of the query. Therefore, we

propose a bidirectional rejection sampling approach to efficiently

obtain high-quality negative entities for the instantiated queries.

The key insight of the training data sampler is to identify the op-
timal node cut (red node in Figure 2(C)) of the computation plan

via dynamic programming, then performing forward KG traversal

(Figure 2(C)) as well as backward verification (Figure 2(D)) simul-

taneously, hence bidirectional rejection sampling. The nodes in

the optimal cut cache the intermediate results from the forward

KG traversal; for backward verification, we propose positive and

negative candidate entities, traverse backward to the optimal cut

and perform rejection sampling based on the overlap of the forward

and backward sets. This reduces the worst case complexity by a

square root, which makes it feasible to generate a training query, a

positive answer entity and negative non-answer entities on the fly.

On the system side, SMORE operates on the full KG directly in

a shared memory environment with multiple GPUs, while storing

embedding parameters in the CPUmemory to overcome the limited

GPU memory. This design choice bypasses the potential drawbacks

of graph partitioning for multi-hop reasoning in current KG em-

bedding systems but also brings efficiency challenges. We design

an asynchronous scheduler to maximize the throughput of GPU

computation, via overlapping sampling, asynchronous embedding

read/write, neural network feed-forward, and optimizer updates,

as depicted in Figure 5. We obtain an efficient implementation that

achieves near linear speed-up with respect to the number of GPUs.

We demonstrate the scalability of SMORE on three multi-hop rea-

soning algorithms (GQE [7], Q2B [19], BetaE [20]), six single-hop

KG completion approaches (TransE [3], RotatE [24], DistMult [29],

ComplEx [26], Q2B [19] and BetaE [20]) on six different benchmark

KGs. The largest is the Freebase KG [2, 31] that contains 86M nodes

and 338M edges, which is about 1, 500× larger than the largest

KG previously considered for multi-hop reasoning. The new sam-

pling technique improves the worst case runtime of enumerative

search by 4 orders of magnitude. On small KGs, SMORE runs 2.2×
faster with 30.6% less GPU memory usage compared to the existing

(non-scalable) multi-hop reasoning framework [18]. SMORE also

supports link prediction. Here SMORE achieves comparable or even

better efficiency with SOTA frameworks (which do not support

multi-hop reasoning) on both single and multi-GPU settings.

SMORE can be deployed in a single-machine environment with

a minimum requirement on the capacity of GPUmemory. For exam-

ple, it uses less than 2GB GPU memory when training a 400 dimen-

sional embedding on the Freebase KG with 86M entities. SMORE’s

throughput scales nearly linearly with the number of GPUs. SMORE

also provides an easy-to-use interface where implementing a new

embedding model takes less than 50 lines of code. SMORE is open

sourced at https://github.com/google-research/smore.

2 MULTI-HOP REASONING ON KG
A knowledge graph (KG) G = (V, E,R) consists of a set of nodes
V , edges E and relations R. Each edge 𝑒 ∈ E represents a triple

(𝑣ℎ, 𝑟 , 𝑣𝑡 ) where 𝑟 ∈ R and 𝑣ℎ, 𝑣𝑡 ∈ V . We are interested in per-

forming multi-hop reasoning on KGs. Multi-hop reasoning queries

include relation traversals as well as several logical operations in-

cluding conjunction (∧), disjunction (∨), existential quantification
(∃) and negation (¬). Here we consider first order logical queries in
their disjunctive normal form [20].
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Figure 2: Overview of the sampling process for query and positive/negative answers. Our system instantiates queries using
query structures from root to leaves. The entity in the root naturally becomes positive answer to the instantiated query. For
negative entities, we propose bidirectional rejection sampling, which has a square root computation complexity compared to
the traversal-based method.

Definition 1 (Logical qeries [20]). A first-order logical (FOL)
query 𝑞 consists of a non-variable anchor entity set V𝑞 ⊆ V , exis-
tentially quantified bound variables 𝑉1, . . . ,𝑉𝑘 and a single target
variable 𝑉? (answer). The disjunctive normal form of a query 𝑞 is
defined as follows:

𝑞 [𝑉?] = 𝑉? . ∃𝑉1, . . . ,𝑉𝑘 : 𝑐1 ∨ 𝑐2 ∨ ... ∨ 𝑐𝑛
• Each 𝑐 represents a conjunction of one or more literals 𝑒 . 𝑐𝑖 =

𝑒𝑖1 ∧ 𝑒𝑖2 ∧ · · · ∧ 𝑒𝑖𝑚 .
• Each 𝑒 represents an atomic formula or its negation. 𝑒𝑖 𝑗 = 𝑟 (𝑣𝑎,𝑉 )
or ¬ 𝑟 (𝑣𝑎,𝑉 ) or 𝑟 (𝑉 ′,𝑉 ) or ¬ 𝑟 (𝑉 ′,𝑉 ), where 𝑣𝑎 ∈ V𝑞 , 𝑉 ∈
{𝑉?,𝑉1, . . . ,𝑉𝑘 }, 𝑉 ′ ∈ {𝑉1, . . . ,𝑉𝑘 }, 𝑉 ≠ 𝑉 ′, 𝑟 ∈ R.

Query computation plan. A query computation plan (Fig-

ure 1(B)) provides a plan for executing the query. The computa-

tion plan consists of nodes V𝑞 ∪ {𝑉1, . . . ,𝑉𝑘 ,𝑉?}, where each node

corresponds to a set of entities on the KG. The edges in the com-

putation plan represent a logical/relational transformation of this

set, including relation projection, intersection, union and comple-

ment/negation. We adopt the same definition of computation plan

as in [20] (details in Appendix A). By following the computation

plan, we may either traverse the KG for answers or embed the given

query. More details can be found in Appendix A.

Contrastive learning for KG embeddings. Given a data sam-

pler D during training, each sample in D is a tuple (𝑞,AG
𝑞 ,N

G
𝑞 ),

which represents a query 𝑞, its answer entities AG
𝑞 ⊆ V and the

negative samples NG
𝑞 ⊆ AG

𝑞 . The contrastive loss Eqn (1) is de-

signed to minimize the distance between the query embedding

and its answers Dist(𝑓𝜃 (𝑞), 𝑓𝜃 (𝑣)), 𝑣 ∈ AG
𝑞 while maximizing the

distance between the query embedding and the negative samples

Dist(𝑓𝜃 (𝑞), 𝑓𝜃 (𝑣 ′)), 𝑣 ′ ∈ NG
𝑞 ,

L (𝜃 ) = − 1

|A|
∑

𝑣∈AG
𝑞

log𝜎 (𝛾 − Dist(𝑓𝜃 (𝑞), 𝑓𝜃 (𝑣)))

− 1

|N |
∑

𝑣′∈NG
𝑞

log𝜎
(
Dist(𝑓𝜃 (𝑞), 𝑓𝜃 (𝑣 ′)) − 𝛾

)
, (1)

where 𝛾 is a hyperparameter that defines the margin and 𝜎 is the

sigmoid function.

We emphasize that due to the multi-hop structure in reasoning,

identifying/computing AG
𝑞 and NG

𝑞 involves complex first-order

logical operations, which are significantly more expensive than

sampling in classical (single link) KG completion tasks, and thus is

the bottleneck for scaling-up. To resolve this, we propose Scalable

Multi-hOp REasoning (SMORE) to scale up single- and multi-hop

KG reasoning methods (Tables 1 and 2), with an efficient sampling

algorithm and parallel training, for a given contrastive loss. Next

we first discuss our efficient training data sampling algorithm.

3 EFFICIENT TRAINING DATA SAMPLING
Unlike in link prediction, where sampling the training data, head–
relation–tail can be quickly performed via dictionary look up [31,

32], sampling training data for multi-hop reasoning is much more

complicated. It involves generating queries 𝑞 by instantiating query

structures, performing KG traversal to find answers AG
𝑞 as well

as negative answers NG
𝑞 , which is computationally expensive. We

propose an efficient way to sample training data for contrastive

learning for multi-hop reasoning. During inference, there are usu-

ally a pre-generated test set or user can input the test query of

interest. This section focuses on efficient sampling during training.

3.1 Instantiating query structure
A query logical structure (Figure 3) specifies the backbone of a

query 𝑞, including the types of operation (intersection, relation

projection, negation, union) and its structure. It can be seen as an

abstraction of the query computation plan, where anchor nodes

and relation types are not grounded. Instantiating a query structure

requires specifying a relation 𝑟 ∈ R for each edge in the structure,

as well as the anchor entities V𝑞 (blue nodes in Figure 3).

A naïve way to instantiate a query (construct a concrete query

given its logical structure) is to first ground the anchor entities by

randomly sampling entities in the KG, and then randomly select

relations 𝑟 ∈ R for all the relation projection edges. However, in

most cases such randomly generated queries have no answers in
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Table 1: Three multi-hop KG reasoning models supported by SMORE.
Model Embedding Space Relation Projection Intersection Negation Distance

GQE [7] q ∈ R𝑑 , v ∈ R𝑑 q + r DeepSet({qi}) - ∥q − v∥

Q2B [19] q ∈ R2𝑑 , v ∈ R𝑑 q + r Cen(𝑞) = ∑
𝑖 a𝑖 ⊙ Cen(𝑞𝑖 )

- distout + 𝛼distin
Off(𝑞) = min({Off(𝑞𝑖 )}) ⊙ 𝜎 (DeepSet({Off(𝑞𝑖 )}))

BetaE [20] q ∈ R𝑑 , v ∈ R𝑑 MLP(q, r) q = [(∑𝑤𝑖𝛼𝑖 ,
∑
𝑤𝑖𝛽𝑖 )] 1

q KL(Beta(v);Beta(q))

Figure 3: Different query structures and their optimal node cuts (shaded nodes) used by our bidirectional rejection sampling.

Table 2: Six single-hop models supported by SMORE.

Model Embedding Space Distance

TransE [3] h, t ∈ R𝑑 , r ∈ R𝑑 ∥h + r − t∥
RotatE [24] h, t ∈ C𝑑 ,r ∈ C𝑑 ∥h ◦ r − t∥
DistMult [29] h, t ∈ R𝑑 ,r ∈ R𝑑 − < h ◦ r, t >
ComplEx [26] h, t ∈ C𝑑 , r ∈ C𝑑 −Re(< h ◦ r, t >)

Q2B [19] h, t ∈ R𝑑 , r ∈ R2𝑑 distout + 𝛼distin
BetaE [20] h, t ∈ R𝑑 , r ∈ R𝑑 KL(Beta(t);Beta(MLP(h, r)))

the KG as sampled entities may not even have relations of prede-

termined types, and intersections of random entities will almost

always be empty. This means such samples have to be rejected

and the sampling process has to start all over again. Such a naïve

method leads to huge computation cost.

Instead, we instantiate a query structure via reverse directional
sampling, i.e., we first ground the root node (i.e., the answer node)
and then proceed towards the anchors. This is the reverse process

of KG traversal for answers (Section 2). The main benefit of reverse

sampling is that it can always instantiate a given query structure

(Appendix C). Reverse directional sampling uses depth-first search

(DFS) over the query structure from the root (answer) to the leaves

(anchor entities). During the DFS, each node on the query structure

is grounded to an entity on the KG and an edge to a relation on the

KG associated with the previously grounded entity. An example of

the process is shown in Figure 2(B).

Reverse sampling procedure can always obtain valid queries

(with non-empty answer set). Another advantage of the above

sampling process is that, the overall complexity is 𝑂 (𝐶 |𝑞 |), same

as the complexity of DFS, where |𝑞 | indicates the maximum depth

of a path (from root to leaves) in the query structure, and 𝐶 is

the maximum degree of entities in the KG. The sampling process

returns the instantiated query𝑞, the anchor entitiesV𝑞 , and a single

positive answer 𝑎𝑞 ∈ AG
𝑞 (the instantiated entity at root).

3.2 Negative sampling
After the instantiating (node/edge grounding) the query structure,

we obtain the tuple (𝑞,V𝑞,
{
𝑎𝑞

}
) as a positive sample while we still

needNG
𝑞 to optimize Eqn (1). We find that a single answer entity is

sufficient in each step of stochastic training, while typically we need

𝑘 = |NG
𝑞 | in Eqn (1) to be thousands for negative samples in the

contrastive learning objective. Next we explain how to efficiently

obtain a set of negative entities NG
𝑞 (i.e., non-answers).

A naïve approach samples negative entities (non-answers) at

random from the KG, independent of the query 𝑞. However, notice

that a valid query may have many answers entities in the order

of 𝑂 (𝐶 |𝑞 |). Such an approach implies that many of the sampled

negatives are actually answers to the query, which would lead to

noisy training data that confuses the model. An alternative would

be to execute the query 𝑞 and perform KG traversal to obtain all

the answers AG
𝑞 (as presented in Section 2). We could then obtain

negative samples NG
𝑞 by simply sampling from V\AG

𝑞 . Although

it is possible to re-order the relation projection operations to get

better scheduling, in the worst case, |AG
𝑞 | is still in the order of

𝑂 (𝐶 |𝑞 |), regardless of the query scheduling. Thus, such exhaustive

traversal is prohibitive for negative sampling on large KGs.

Our solution: Bidirectional rejection sampling. Since NG
𝑞

does not have to contain all the non-answer entities during stochas-

tic training, we propose to exploit rejection sampling to locate a

subset of negative entities efficiently. That is to say, starting with a

random proposal 𝑣 ∈ V , we only need to check whether 𝑣 ∈ AG
𝑞 ,

rather than to enumerate the entire AG
𝑞 . Inspired by bidirectional

search, our key insight is to obtain a node cut (formally defined in

Def. 2) on the query computation plan, i.e., a subset of nodes that
cut all the paths between each leaf node and the root node. Then we

perform bidirectional search. We first start the traversal from the

leaves (anchors) to the node cut and cache the entities we obtained

in traversal, which we term forward caching (Figure 2(C)). We then

sample negative entities, traverse from the root to the node cut

and verify whether they are true negatives by checking the overlap

of the cached entities and the traversed set. We term the second

process backward verification (Figure 2(D)).

Definition 2 (Node cut). A node cut 𝑐𝑞 of a query 𝑞 is a set of
nodes in the computation plan, such that every path between anchor
node (leaf) and answer node (root) contains exactly one node in 𝑐𝑞 . A
node cut is also minimal, i.e., no subset of 𝑐𝑞 can be a node cut.

We illustrate this idea in Figure 2. Given a two-hop query “Who
co-authored papers with Canadian Turing Award winners?”, we set
the node after the intersection operation (red node) as the single
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Figure 4: Overall training paradigm of SMORE.

node in the node cut. Then we can obtain the set of “Canadian

Turing Award winners” via forward traversal and cache the inter-

mediate results (i.e., Bengio). Overall this process requires 𝑂 (𝐶)
computation/memory cost, where 𝐶 is the degree of the KG. Then

given a candidate negative entity 𝑣 , one can spend 𝑂 (𝐶) cost to
verify whether the set of co-authors of 𝑣 overlaps with the cached

entities in the node cut. In our implementation we propose constant

number of candidate negative entities, thus the overall computation

cost would be𝑂 (𝐶), which is a reduction of square root from𝑂 (𝐶2)
using exhaustive traversal.

Next, we calculate the computation cost for any given node cut

𝑐𝑞 , and then we propose an efficient algorithm to find the optimal

node cut, i.e., one with the lowest cost in bidirectional search.

Given a reasoning path 𝑃 (𝑣𝑎,𝑉?) = [𝑣0 = 𝑣𝑎, 𝑣1, . . . , 𝑣𝑡 = 𝑉?] in
the query computation plan that starts from an anchor node (leaf)

𝑣𝑎 ∈ V𝑞 and ends at the answer node (root) 𝑉?, for a node cut 𝑐𝑞 ,

by definition there exists a unique node 𝑣𝑖 ∈ 𝑐𝑞 ∩ 𝑃 (𝑣𝑎,𝑉?) . Then
the worst-case computation/memory cost for negative sampling

for reasoning path 𝑃 (𝑣𝑎,𝑉?) can be estimated as cost(𝑐𝑞, 𝑃 (𝑣𝑎,𝑉?) ) =
max

{
𝐶𝑖 ,𝐶𝑡−𝑖

}
, i.e., the maximum cost of forward traversal or back-

ward verification. The optimal scheduling is recast as

min

𝑐𝑞
max𝑣𝑎 ∈V𝑞

cost(𝑐𝑞, 𝑃 (𝑣𝑎,𝑉?) )

s.t. 𝑐𝑞 is a node cut of 𝑞. (2)

As the computation plan is a tree, we propose to solve the above

optimization problem with dynamic programming (DP). This can

be solved in a linear time w.r.t. |𝑞 |, and construct the node cut using
the function 𝑜 (·). We provide the details in Appendix C. Example

query structures and their corresponding optimal node cuts are

shown in Figure 3
1
.

4 EFFICIENT TRAINING SYSTEM
SMORE is built for a shared memory environment with multi-cores

and multi-GPUs. It combines the usage of CPU and GPU, where

the dense matrix computations are deployed on GPUs, and the

sampling operations are on CPUs.

4.1 Distributed training paradigm
Here we give a high-level introduction to the distributed training.

Most of the KG embedding methods would maintain an embedding

1
Although query structures considered in current literature are small enough to find

the optimal cut with brute force, our DP significantly improves efficiency when query

structures are large.

matrix 𝜃𝐸 ∈ R |V |×𝑑
, where 𝑑 is the embedding dimension which

can typically be 512 or larger. For a large KGwithmore thanmillions

of entities, the embeddings 𝜃𝐸 cannot be stored in GPUs, since most

GPUs would have 16GB or lower memory. Thus similar as recent

works [31], we put the embedding matrix on shared CPU memory,

while putting a copy of other parameters 𝜃𝐷 = 𝜃 \ 𝜃𝐸 , e.g., neural
logical operators, in each individual GPU.

We launch one worker process per GPU device. For simplicity,

we use subscript 𝑤 as an index of a worker. Worker 𝑤 gets the

shared access to 𝜃𝐸 and local GPU copy of dense parameters 𝜃𝐷 .

Each worker repeats the following stages as shown in Figure 4:

(1) Collect a mini-batch of training samples {𝐷𝑖 }𝑤 fromD𝑤 , which

is the sampler.

(2) Load relevant entity embeddings from CPU to GPU;

(3) Compute gradients locally, and perform gradient AllReduce

using
𝜕L𝑤

𝜕𝜃𝐷
. Update local copy 𝜃𝐷 .

(4) Update shared 𝜃𝐸 asynchronously with
𝜕L𝑤

𝜕𝜃𝐸
.

In the sharedmemorywithmulti-GPU scenario, the heavyCPU/GPU

memory read/write with 𝜃𝐸 is necessary for every round of stochas-

tic gradient update. This significantly lowers the FLOPS on GPU

devices if we execute the above stages in a serialized way. So we

design the asynchronous pipeline that is covered in Section 4.2.

The different storage location of parameters also brings differ-

ent read/update mechanisms. For the embedding parameters 𝜃𝐸 ,

as only a tiny portion will be accessed during each iteration in

stochastic training, the asynchronous update on the shared CPU

memory would still result in a convergent behavior [16]. Unlike

link prediction models, most multi-hop reasoning models are ad-

ditionally equipped with dense neural logical operators, used in

all batches and iterations. To minimize the loss of performance of

multi-GPU training of these dense parameters, we choose to syn-

chronously update 𝜃𝐷 with the AllReduce operation implemented

with NVIDIA Collective Communication Library (NCCL).

4.2 Asynchronous design
In this section, we present the asynchronous mechanism for pipelin-

ing the stages in each stochastic gradient update. The stages can be

virtually categorized into four kinds of meta-threads, where each
kind of meta-thread may consist of multiple CPU threads or CUDA

streams. These meta-threads run concurrently, with possible syn-

chronization events for pending resources, as illustrated in Figure 5.

Below we will elaborate each type of meta-thread individually.

Multi-thread sampler. Each worker𝑤 maintains one sampler

D𝑤 that has access to the shared KG. The sampler contains a thread

pool for sampling queries and the corresponding positive/negative

answers in parallel. The data sampler works concurrently with the

other meta-threads. The pre-fetching mechanism will obtain sam-

ples for the next mini-batch while training happens using current

batch on other threads. So if the sampler is efficient enough, then

the runtime can almost be ignored.

Sparse embedding read/write. For the embedding matrix 𝜃𝐸 ,

we will create a single background thread with a CUDA stream for

embedding read and write. Specifically, when loading the embed-

ding of some entities into GPU, the background thread first loads

that into a pinned memory area, then the CUDA asynchronous

stream will perform pinned memory to GPU memory copy [6].
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Figure 5: SMORE pipeline of a single worker process.

Table 3: KG statistics with number of entities, relations, training, validation and test edges.
Dataset Entities Relations Training Edges Validation Edges Test Edges Total Edges
FB400k 409,829 918 1,075,837 537,917 537,917 2,151,671

ogbl-wikikg2 2,500,604 535 16,109,182 429,456 598,543 17,137,181

Freebase 86,054,151 14,824 304,727,650 16,929,318 16,929,308 338,586,276

This read operator is non-blocking, and will not be synchronized

until the CUDA operator in the main CUDA stream asks for it. The

write operation works similarly but in the reverse direction. It is

also possible to have multiple background threads. Right part of

Figure 5 illustrates the idea.

Dense computation. The feed-forward of model 𝑓𝜃 starts when

training data (𝑞,V𝑞,AG
𝑞 ,N

G
𝑞 ) is ready and the embedding of the

anchor entitiesV𝑞 is fetched into GPU. The embeddings ofAG
𝑞 and

NG
𝑞 can be fetched as late as when we compute the loss function, in

order to overlap the computation andmemory copy. After obtaining

the local gradients
𝜕L𝑤

𝜕𝜃𝐸
and

𝜕L𝑤

𝜕𝜃𝐷
, the asynchronous update for 𝜃𝐸

will be invoked first without blocking, and at the same time the

AllReduce operation will start, followed by the dense parameter

update of 𝜃𝐷 on the GPU.

Sparse optimizer with asynchronous read/write. Different
from 𝜃𝐷 , only a small set of rows of 𝜃𝐸 will be involved in each sto-

chastic update. So we only keep track of 𝜃
V𝑞

𝐸
, 𝜃

NG
𝑞

𝐸
, 𝜃

AG
𝑞

𝐸
and their

gradients, i.e., the embeddings that are relevant to positive/negative

and anchor entities. Once the back-propagation is finished, we will

scatter
𝜕L𝑤

𝜕𝜃
V𝑞
𝐸

,
𝜕L𝑤

𝜕𝜃
NG
𝑞

𝐸

and
𝜕L𝑤

𝜕𝜃
AG
𝑞

𝐸

into a single continuous memory,

due to the potential overlap among the sets V𝑞 , NG
𝑞 and AG

𝑞 . We

use Adam for SMORE, thus we need to additionally keep the first

and second order moments of gradients in CPU. They are treated

in the same way as 𝜃𝐸 , and thus will have the same asynchronous

read/write behavior as discussed above. Every time a set of embed-

dings is retrieved from 𝜃𝐸 , the optimizer will also start to pre-fetch

the corresponding first/second order moments in a different back-

ground thread (“Adam Stats” in Figure 5).

5 EXPERIMENTAL RESULTS
Here we evaluate SMORE on KG completion and multi-hop reason-

ing tasks on KG. The task is to answer multi-hop complex logical

queries on KGs using various query embeddings. Besides the three

small KGs used in prior works [19, 20], we propose a novel set of

multi-hop reasoning benchmarks on three extremely large KGs

with more than 86 million nodes and 338 million edges. We first

demonstrate the scalability of SMORE on query sampling, multi-gpu

speedup, GPU utilization over the three large KGs where all existing

implementations fail. Additionally, we compare our single-hop KG

completion runtime with state-of-the-art frameworks DGL-KE [31],

Pytorch-Biggraph (PBG) [11] and Marius [15]. Then we evaluate

the end-to-end training performance of SMORE on multi-hop rea-

soning over small as well as large KGs. This includes (1) calibration

of the performance of three prior works GQE [7], Q2B [19] and

BetaE [20] using SMORE framework on the three small KGs; (2) a

thorough evaluation of the query embedding models on the three

large KGs where prior implementation [18] is not applicable.

5.1 Experimental setup
Task setup. Following the standard experimental setup [19], given

an incomplete KG, the goal is to train query embedding methods

to discover missing answers of complex logical queries. Following

the standard evaluation metrics, we adopt mean reciprocal rank

(MRR) with the filtered setting as our metric, which is same across

all previous works.

Datasets.We used the three datasets FB15k, FB15k-237, NELL

from Ren and Leskovec [20]. These three KGs are small-scale with

at most 60k entities. To create a set of large-scale multi-hop KG

reasoning benchmarks, we further sample queries on three large

KGs: FB400k, ogbl-wikikg2 and Freebase. Ogbl-wikikg2 is a KG from

the Open Graph Benchmark [8]. FB400k is a subset of Freebase [2]

which is derived based on a knowledge graph question answering

dataset ComplexWebQuestion (CWQ) [25]. We further look at the

complete Freebase KG used in DGL-KE. For FB15k, FB15k-237 and

NELL, we directly take the validation and test queries from Ren

and Leskovec [20]. For ogbl-wikikg2 and Freebase, we randomly

sample validation and test queries using the official edge splits. We

consider the same 14 query structures proposed in BetaE [20]. For

FB400k, we directly take the SPARQL annotations of the validation

and test questions in the CWQ as our validation and test queries.
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Table 4: Performance of SMORE compared to KGReasoning package [18] on small KGs. Under the same model configura-
tions and hyperparameters, SMORE achieves similar MRR (25.67 vs. 25.65) but with significant speed-up (2.2× faster train-
ing/throughput) and GPU memory saving (-30.6%).

Dataset Model

MRR (%) Training queries (x512/Sec) GPU Memory (MB)

KGReasoning SMORE KGReasoning SMORE KGReasoning SMORE

FB15k

BetaE 41.6 40.39 12.93 45.66 4022 1942

Q2B 38.0 41.54 53.43 104.20 2146 1616

GQE 28.0 30.60 55.67 118.05 2126 1778

FB15k-237

BetaE 20.9 19.67 12.92 45.46 4010 1876

Q2B 20.1 20.42 55.82 107.05 2138 1582

GQE 16.3 15.68 61.89 120.17 2116 1738

NELL995

BetaE 24.6 23.17 10.24 35.82 4852 3014

Q2B 22.9 21.84 40.69 85.71 2406 2172

GQE 18.6 17.53 41.32 68.81 3062 2922

Average 25.67 25.65 38.32 81.21 (+2.2×) 2986 2071 (-30.6%)

Figure 6: Speed-up of our bidirectional sampler over a naïve
sampler that performs KG traversal, on 2p, ip and pni query
structures (Figure 3). Our bidirectional sampling is signifi-
cantly more efficient than the baseline.

Figure 7: SMORE enjoys almost linear speed-upwith respect to
the number of GPUs, on both ogbl-wikikg2 and Freebase KGs,
and across multiple embedding methods GQE, Q2B and BetaE.

Table 5: Runtime performance on Freebase KG. *Results
taken from Mohoney et al. [15] with the same GPUs.

System

Epoch Time (s)

1-GPU 2-GPU 4-GPU 8-GPU

Marius [15]* 727 - - -

DGL-KE [31]* - 1068 542 277

PBG [11]* 3060 1400 515 419

SMORE 760 411 224 121

Table 6: Speed and GPU memory of SMORE on the three
large KGs with embedding dimension = 400 and per device
batch size = 512. Our system design enables the (almost)
graph-size agnostic speed and GPU memory usage.

Model Dataset Queries (x1K/Sec) GPU Mem (MB)

BetaE

FB400k 123 1,872

ogbl-wikikg2 121 1,860

Freebase 118 2,014

Q2B

FB400k 135 1,796

ogbl-wikikg2 130 1,776

Freebase 116 2,382

GQE

FB400k 189 1,726

ogbl-wikikg2 195 1,750

Freebase 188 2,056

Figure 8: GPU utilization with different query structures on
Freebase with BetaE [20].

Statistics of all the datasets can be found in Table 3. The KGs we use

here are up to 1500× larger than those considered by prior work.

Software and training details. We implement all models in

Python 3.8 using Pytorch 1.9 [17] with customized CUDA ops,

and the samplers in C++ with multithreading. The machine has

8 NVIDIA V100 GPUs, 96x 2.00 GHz CPUs and 600GB RAM. All

models have same embedding dimension for fair comparison.

5.2 Scalability
Speedup of bidirectional sampler. We verify the speed-up of

the proposed bidirectional sampler over naïve exhaustive traversal

one in Figure 6 (more results on other query structures can be

found in Appendix E). We test different query structures where the

bidirectional sampler is expected to achieve a square root reduction

of the computation cost compared with traversal. We vary the
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Table 7: MRR results (%) on large KGs
with different methods all trained us-
ing SMORE.

Dataset \ Model GQE Q2B BetaE

FB400k 36.02 51.74 50.50

ogbl-wikikg2 32.91 41.88 44.42
Freebase 80.71 85.67 84.33

Figure 9: Accuracy (MRR) of different Q2B models trained using different samplers.
We observe that our bidirectional sampler leads to more accurate models.

Table 8: Percentage of queries that span multiple partitions.

1p 2p 3p 4p 2i 3i 4i ip pi up
11.5 18.8 25.3 30.7 20.7 28.8 35.5 26 25.3 26

constant 𝐶 , i.e., the maximum expansion of each relation, and plot

the time for sampling a minibatch of 1024 queries as the function

of𝐶 using the Freebase KG. We can see the traversal approach runs

out of the time limit quickly as 𝐶 grows, while our sampler stays

significantly more efficient across all query structures (Figure 3).

GPU memory, utilization and end-to-end training speed.
Here we show the scalability of SMORE on all six KGs. We first

compare SMORE with prior implementation [18] on the three small

benchmark datasets created in Ren and Leskovec [20]. As shown

in the last two columns in Table 4, SMORE significantly improves

the efficiency of end-to-end training of various query embeddings

since SMORE adopts a query sampling scheme that shares the neg-

ative samples for a sampled batch of queries. Specifically, SMORE

increases the speed by 119.4% and reduces GPU memory usage by

30.6% on average. Then we scale query embeddings up to the three

large KGs. As shown in Table 6, given the same embedding dimen-

sion and batch size, our system design allows for (almost) graph-size

agnostic speed and GPU-memory usage across all methods.

In Figure 8 we show the GPU utilization of BetaE with different

multi-hop query structures on Freebase. We plot the average uti-

lization of 8 GPUs with smoothing of 10 seconds. More complex

queries like 3p and pni have higher fluctuation due to the variance

of sampling time. However as these queries also require more neu-

ral ops which in turn brings up the GPU utilization. Generally our

system can keep a high GPU utilization for all query structures.

Multi-GPU speed up. We illustrate the speed-up of training

on {1, 2, 4, 8} GPUs with different methods on ogbl-wikikg2 and

Freebase datasets in Figure 7. Overall the speed grows almost lin-

early w.r.t. the number of GPUs, which shows the effectiveness

of our asynchronous training and the communication overhead is

negligible. Also the computationally heavier approaches like BetaE

would benefit more from multi-GPU on SMORE.

Graphpartitioning leads to lossy queries.Various prior large-
scale KG embedding systems consider graph partitioning. However,

since our system focuses on complex queries, with graph partition-

ing, a large number of queries will thus span multiple partitions.

We conducted experiments on the largest Freebase KG to prove this

using the state-of-the-art graph partitioning algorithm METIS [9].

Below we show the percentage of queries that would be lost (i.e.,

a query that spans multiple partitions) if we partition the graph

into 8 parts. We find that 1p (i.e., a 1-hop link) suffers the least

while multi-hop queries may suffer greatly (more than 3x than 1p).

This shows that although graph partitioning is a viable option for

prior large-scale KG link prediction systems, it is not for multi-hop

reasoning. This validates the necessity of our design choice.

KG completion runtime.Here we compare the single-hop link

prediction (KG completion) runtime performance with state-of-the-

art large-scale KG frameworks including Marius, DGL-KE and PBG.

We report the results for ComplEx model with 100 embedding

dimension on Freebase. We use the same multi-GPU V100 configu-

ration as in Marius, and the current official release versions are also

the same. So for baseline results we reuse the table 7 from Mohoney

et al. [15]. As shown in Table 5, SMORE achieves significantly faster

runtime in 1-GPU setting than PBG, while being slightly slower

than Marius. Also it scales better than the other systems, while

Marius does not officially support multi-GPU parallel training func-

tionality at the current stage. Given that SMORE adopts the design

choice of synchronized gradient update for dense parameters, and

we do not partition the graph for the sake of multi-hop reasoning,

it is nontrivial to be still comparable in the single-hop case.

5.3 Predictive performance
Calibration on small KGs. We first calibrate SMORE for GQE,

Q2B, and BetaE on three small benchmark datasets created in BetaE.

As shown in Table 4, SMORE achieves overall comparable perfor-

mance as the models trained on a fixed set of training queries using

a single GPU. Specifically, SMORE achieves comparable results for

GQE and BetaE respectively while is able to further improve the

performance of Q2B on FB15k with 3.54% increase in MRR.

Query answering on large KGs.We also benchmark the em-

bedding models on three large KGs FB400k, ogbl-wikikg2 and Free-

base. As shown in Table 7, on ogbl-wikikg2, BetaE performs the

best among all the other baselines. On both FB400k and Freebase,

box embedding model Q2B achieves the best results. For all these

methods, the baseline implementation [18] cannot scale to such

massive KGs due to limited memory and computationally expen-

sive exhaustive query sampling. Our system SMORE easily scales

query embeddings to these large KGs using an asynchronous design

with sparse embedding and optimizer. The three KGs serve as an

important benchmark for future multi-hop KG reasoning models.

Performance with different samplers.We compare the per-

formance of Q2B trained with different samplers, i.e., the naïve sam-

pler (exhaustive traversal), bidirectional sampler (bidirectional)
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and randomly sampling KG entities as negative answers (random)
on FB15k-237, FB400k and ogbl-wikikg2. As shown in Figure 9, ran-

dom sampling performs the worst since random negative sampling

does not guarantee that the sampled entities are truly the nega-

tive (non-answer) entities. bidirectional performs comparable

or even better than exhaustive traversal, as it can choose much

larger𝐶 during query sampling. Note that exhaustive traversal
is very slow on large graphs, and it requires months for the baseline

implementation with exhaustive traversal sampler to train a model

with the same number of queries on ogbl-wikikg2.

6 CONCLUSION
We present SMORE, the first general framework for both single- and

multi-hop reasoning that scales up a plenty of different embedding

methods with multi-GPU support to KGs with 86M nodes and

338M edges. It performs the algorithm-system co-optimization for

scalability. Our work can also serve as the benchmark for future

research on large-scale multi-hop KG reasoning.
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A QUERY COMPUTATION PLAN
As shown in Figure 2, the computation plan of a query consists of

nodes V𝑞 ∪ {𝑉1, . . . ,𝑉𝑘 ,𝑉?}. Note each node of the computation

plan corresponds to a set of entities on the KG. The edges on the

computation plan represent a logical/relational transformation of

this set:

(1) Relation Projection: Given a set of entities 𝑆 ⊆ V and rela-

tion type 𝑟 ∈ R, compute adjacent entities ∪𝑣∈𝑆𝐴𝑟 (𝑣) related
to 𝑆 via 𝑟 : 𝐴𝑟 (𝑣) ≡ {𝑣 ′ ∈ V : (𝑣, 𝑟, 𝑣 ′) ∈ E}.

(2) Intersection: Given sets of entities {𝑆1, 𝑆2, . . . , 𝑆𝑛}, compute

their intersection ∩𝑛
𝑖=1
𝑆𝑖 .

(3) Complement/Negation: Given a set of entities 𝑆 ⊆ V , com-

pute its complement 𝑆 ≡ V \ 𝑆 .
Using De Morgan’s laws, ∪𝑛

𝑖=1
𝑆𝑖 is equivalent to ∩𝑛

𝑖=1
𝑆 , union op-

eration can be replaced with three negation and one intersection

operations.

Traversing the KG using the computation plan to find an-
swers. Conceptually, (assuming no noise, no missing relations in

the KG) a logical query can be answered by traversing the edges of

the KG. For a valid query, the computation plan is a tree, where the

anchor entity set, V𝑞 , are the leaves and the target variable 𝑉? is

the single root, representing the set of answer entities (Figure 1(C)).

Following the computation plan, we start with the anchor entities,

traverse the KG and execute logical operators towards the root node.

The answers AG
𝑞 to the query 𝑞 are stored in the root node after

the KG traversal. Note that this conceptual traversal would have

exponential computational complexity with respect to the number

of hops and also cannot handle noisy or missing relations in the

KG, which are both very common in real-world KGs (Figure 1(C)).

Embedding-based “traversal” of the KG. Embedding-based

reasoning methods avoid explicit KG traversal. Instead, they start

with the embeddings of anchored entities, and then apply a se-

quence of neural logical operators according to the query com-

putation plan. This way we obtain the embedding of the query

where each embedding-based logical operator (e.g., negation) takes
the current input embedding and transforms it into a new output

embedding. Such operators are then combined according to the

query structure. The answers to the query 𝑞 are then entities 𝑣 that

are embedded close to the final query embedding. The distance

is measured by a pre-defined function Dist(𝑓𝜃 (𝑞), 𝑓𝜃 (𝑣)), where
𝑓𝜃 (𝑞) and 𝑓𝜃 (𝑣) represents the query and entity embedding respec-

tively. Note the distance function Dist(·, ·) is tailored to different

embedding space and model design 𝑓𝜃 (see Table 1 and Appendix B).

B MULTI-HOP REASONING MODELS AND
NEURAL LOGICAL OPERATORS

Our SMORE covers three published works, i.e., GQE [7], Q2B [19]

and BetaE [20]. In order to perform logical reasoning in the em-

bedding space, all methods design a projection operator P and

intersection operator I. As introduced in Section 2, P represents

a mapping from a set of entities (represented by an embedding)

to another set of entities (also represented by an embedding) with

one relation, i.e., P : R𝑑 × R → R𝑑 , assuming the embedding

dimension is 𝑑 . The I takes as input multiple embeddings and out-

puts the embedding that represents the intersected set of entities:

I : R𝑑 × · · · × R𝑑 → R𝑑 . Different models may have different

instantiations of these two operators.

GQE [7] embeds a query 𝑞 to a point in the vector space by

iteratively following the computation plan of the query. Query2box

(Q2B) [19] proposes to embed queries as hyperrectangles with a

center embedding and an offset embedding. BetaE [20] further pro-

poses to embed queries as Beta distributions so that it can faithfully

handle conjunction and negation operation in distribution space

with 𝐾𝐿-divergence as distance.

B.1 Comparison with neural link predictor [1]
Here we discuss the neural link predictor [1], which uses fuzzy logic

to answer complex queries. It either requires online optimization for

test query answering or traverses the KG with beam search, which

is hard to scale to large KGs with their own unique challenges. In

this paper, we focus on scaling up query embedding methods and

leave scaling fuzzy-logic-based methods as future work.

C REVERSE DIRECTIONAL SAMPLING
Following prior work [19, 20], we use reverse directional sampling

to construct queries from a KG. The overall instantiation process

corresponds to a depth-first search where at each step we aim to

ground a node/edge on the query structure with an entity/relation

from the KG. Here we use one example to illustrate the whole idea.

As shown in Figure 2, if we aim to instantiate an ip query from

the query structure, we start the instantiation process from the

root node, where we randomly sample an entity from the KG, here

being Neal. Following the query structure, we aim to ground the

edge that points to the root, and we sample a relation type from

the KG that points to the entity Neal, e.g., Co-author. Then we

ground the next node, which has the relation Co-authorwith Neal,
e.g., Bengio. In the next step, since the edge is a logical operation

Intersection, we may directly ground the next node with the

same entity Bengio, and we sample another relation on the KG the

relates to Bengio, e.g., Win, and finally reaches the anchor entity

(leaf) by sampling an entity on KG that has the relation Win with
Bengio, e.g., Turing Award. The overall complexity of this process

is linear with respect to the number of hops of a query (structure).

Dynamic programming for optimal node cut. As the com-

putation plan of 𝑞 is a tree, we propose to solve the above optimiza-

tion problem in Eqn (2) with dynamic programming (DP). Before

presenting the algorithm, we first need to understand the cost of

each operation, so as to only model the dominating cost in the

dynamic programming. We consider the following operations:

• Relation projection: this operation enlarges the current set of

entities by a factor of𝐶 (the maximum node degree) in the worst

case. Thus the total cost would grows exponentially with the

number of relation projection operations in a reasoning path.

• Intersection / Union: if we maintain the set of entities as a sorted

list, intersection / union of the two sets only takes linear time

w.r.t the number of entities in both sets. Thus it will not be the

limiting factor in the overall computation cost if we only merge

a constant number of sets together.

• Negation / Complement: The computation cost of a single set

complement operation O(|V|), i.e., the total number of enti-

ties in the KG. However, we can delay the complement oper-

ation to the next step on the computation plan, i.e., perform
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Figure 10: Speedup of bidirectional rejection sampler over exhaustive search based sampler, on different query structures.

complement+union/intersection simultaneously. This reduces

the complexity from O(V) to that of an intersection operation.

For example in (¬𝑎) ∧ 𝑏, instead of first finding the comple-

ment of 𝑎 (of complexity |O(V)|) and then do ∧ (of complexity

O(|V −𝑎 | + |𝑏 |)), we can directory do set difference 𝑏−𝑎 (of com-

plexity O(|𝑎 | + |𝑏 |). The only exception is the relation projection

after the negation immediately. However there are other equiv-

alent forms for this expression and thus we explicitly exclude

such possibility in constructing the query structure.

With the analysis above, the bottleneck is the maximum number of

relation projections in any reasoning path (i.e., a path that connects

a leaf/anchor entity 𝑣 ∈ V𝑞 and the root/answer entity 𝑉?).

We first define a set of functions:

• 𝑢 (𝑣): number of projections in the path from node 𝑣 to root 𝑉?;

• 𝑠 (𝑣): the maximum length of path from 𝑣 to any anchors. The

“length” is measured by the number of projections on that path.

• 𝑜 (𝑣): the optimal cost of resolving all the reasoning paths that

includes 𝑣 . Note this cost only cares the dominating one under

the big-O notation, not the cost of entire search/reasoning.

Note that the “cost” are measured in the logarithmic scale, as we

only care the dominating order of the polynomials in the complexity

calculation. We use 𝑝 (𝑣) to denote the parent of node 𝑣 , and 𝑐ℎ(𝑣)
to denote the set of children. When 𝑣 only has one child node, then

we overload 𝑐ℎ(𝑣) to denote that specific child. Then we can work

on the recursion as below:

𝑢 (𝑣) = 𝑢 (𝑝 (𝑣)) + IsRel(𝑣 → 𝑝 (𝑣))

𝑜 (𝑣) =

𝑢 (𝑣), if 𝑣 ∈ V𝑞

min

{
max

𝑧∈𝑐ℎ (𝑣)
𝑜 (𝑧),max {𝑢 (𝑣), 𝑠 (𝑣)}

}
, else

𝑠 (𝑣) =


0, if 𝑣 ∈ V𝑞

max𝑧∈𝑐ℎ (𝑣) 𝑠 (𝑧),
if edges between 𝑣 and 𝑐ℎ(𝑣) are ∧ or ∨

𝑠 (𝑐ℎ(𝑣)) + NotNeg(𝑐ℎ(𝑣) → 𝑣), else

IsRel(𝑣 → 𝑝 (𝑣)) returns 1 if the edge between 𝑣 and 𝑝 (𝑣) represents
a relation projection and 0 otherwise; NotNeg(𝑐ℎ(𝑣) → 𝑣) returns
1 if the edge between 𝑐ℎ(𝑣) and 𝑣 is not negation and 0 otherwise.

After solving the above DP, we can construct the node cut from

solution 𝑜 (·) in a top-down direction:

• If for any node 𝑣 wehavemax𝑧∈𝑐ℎ (𝑣) 𝑜 (𝑧) larger thanmax {𝑢 (𝑣), 𝑠 (𝑣)},
then we add 𝑣 to node cut;

• Otherwise, we do the check recursively for 𝑧 ∈ 𝑐ℎ(𝑣).
The above procedure works linearly w.r.t. the size of 𝑞, which is

good enough for large queries containing hundreds of operations.

Example query structures and their optimal node cuts are shown in

Figure 3. Note the structures considered in the current literature are

small enough to find the optimal cut with the brute force algorithms.

But our DP can greatly improve the efficiency when the query

structures are large enough in certain applications.

D FURTHER OPTIMIZATION OF SMORE
In addition to the above optimized system design for SMORE, there

are several other important optimization that further speeds up the

training, which we highlight below.

Sharing negative samples. Although with the asynchronous

design we can overlap the embedding R/W with GPU computation,

it is still important to keep the size of memory exchange small.

Inspired by Zheng et al. [31], we share the negative answers among

the queries in a mini-batch. Each mini-batch data is formatted

as

(
N ,

{
(𝑞𝑖 ,V𝑞𝑖 ,A𝑞𝑖

}𝑀
𝑖=1

, 𝑀𝑎𝑠𝑘

)
, where N ⊂ V are the shared

negative answers for all queries.𝑀𝑎𝑠𝑘 ∈ {0, 1}𝑀×|N |
is an indicator

matrix.𝑀𝑎𝑠𝑘𝑖, 𝑗 specifies whether the 𝑗-th entity inN is a negative

sample for 𝑞𝑖 .

Customized CUDA distance kernel. Given 𝑀 queries and

negative answer candidatesN , the computation of𝑀 × |N | pairs of
distances is model dependent. While distances like inner-product or

L2 can be implemented with efficient matrix multiplication, geome-

tries designed for multi-hop reasoning like box or beta distribution

requires more complicated distance metrics like KL divergence. We

provide a generic interface to parallelize the computation with cus-

tomized CUDA kernel, which also enables the operation fusion to

reduce GPU memory consumption.

E ADDITIONAL RESULTS ON
BIDIRECTIONAL REJECTION SAMPLER

Figure 10 shows the speed-up of bidirectional rejection sampler

over exhaustive samplers on several more query structures. Ours is

consistently significantly better than exhaustive traversal.

F BASELINE CODE
FollowingMarius [15], we adopt the same official release of DGL-KE

and PBG. ForMarius, we use the release at https://github.com/marius-
team/marius/tree/osdi2021.
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