SMORE: Knowledge Graph Completion and Multi-hop
Reasoning in Massive Knowledge Graphs

Hongyu Ren* Hanjun Dai" Bo Dai
hyren@cs.stanford.edu hadai@google.com bodai@google.com
Stanford University Google Google

Stanford, CA, USA

Mountain View, CA, USA

Mountain View, CA, USA

Xinyun Chen Denny Zhou Jure Leskovec
xinyun.chen@berkeley.edu dennyzhou@google.com jure@cs.stanford.edu
University of California, Berkeley Google Stanford University

Berkeley, CA, USA

Bellevue, WA, USA

Stanford, CA, USA

Dale Schuurmans
schuurmans@google.com
Google / University of Alberta
Mountain View, CA, USA

ABSTRACT

Knowledge graphs (KGs) capture knowledge in the form of head-
relation—tail triples and are a crucial component in many Al systems.
There are two important reasoning tasks on KGs: (1) single-hop
knowledge graph completion, which involves predicting individual
links in the KG; and (2), multi-hop reasoning, where the goal is to
predict which KG entities satisfy a given logical query. Embedding-
based methods solve both tasks by first computing an embedding
for each entity and relation, then using them to form predictions.
However, existing scalable KG embedding frameworks only support
single-hop knowledge graph completion and cannot be applied to
the more challenging multi-hop reasoning task. Here we present
Scalable Multi-hOp REasoning (SMORE), the first general framework
for both single-hop and multi-hop reasoning in KGs. Using a single
machine SMORE can perform multi-hop reasoning in Freebase KG
(86M entities, 338M edges), which is 1,500% larger than previously
considered KGs. The key to SMORE’s runtime performance is a
novel bidirectional rejection sampling that achieves a square root
reduction of the complexity of online training data generation. Fur-
thermore, SMORE exploits asynchronous scheduling, overlapping
CPU-based data sampling, GPU-based embedding computation, and
frequent CPU-GPU IO. SMORE increases throughput (i.e., training
speed) over prior multi-hop KG frameworks by 2.2x with minimal
GPU memory requirements (2GB for training 400-dim embeddings
on 86M-node Freebase) and achieves near linear speed-up with the

“Both authors contributed equally to this research.
fWork done during Hongyu Ren’s internship at Google Brain.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °22, August 14-18, 2022, Washington, DC, USA.

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08....$15.00

https://doi.org/10.1145/3534678.3539405

1472

number of GPUs. Moreover, on the simpler single-hop knowledge
graph completion task SMORE achieves comparable or even better
runtime performance to state-of-the-art frameworks on both single
GPU and multi-GPU settings.

ACM Reference Format:

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec,
and Dale Schuurmans. 2022. SMORE: Knowledge Graph Completion and
Multi-hop Reasoning in Massive Knowledge Graphs. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD °22), August 14-18, 2022, Washington, DC, USA. ACM, Washington,
DC, USA, 11 pages. https://doi.org/10.1145/3534678.3539405

1 INTRODUCTION

A knowledge graph (KG) is a heterogeneous graph structure that
captures knowledge encoded in a form of head-relation—tail triples,
where the head and tail are two entities (i.e., nodes) and the relation
is an edge between them (e.g., (Paris, CapitalOf, France)). Knowledge
graphs form the backbone of many Al systems across a wide range
of domains: recommender systems [27, 28], question answering [21,
23] and commonsense reasoning [12, 14].

Reasoning over such KGs consists of two types of tasks: (1)
single-hop link prediction (also known as knowledge graph com-
pletion), where given a head and a relation the goal is to predict
one or more tail entities. For example, given TuringAward-Win—?
(i.e., Who are the Turing Award winners?), the goal is to predict
entities GeoffHinton, DonKnuth, etc.; And, (2) multi-hop reasoning,
where one needs to predict (one or many) of the tails of a multi-
hop logical query. For example, answering “Who are co-authors of
Canadian Turing Award winners?” (Figure 1(A)). Finding answers
to such query requires imputation and prediction of multiple edges
across two parallel paths, while also using logical set operations
(e.g., intersection, union). Figure 1(B) shows the query computation
plan and to determine the entities that are the answers to such a
complex multi-hop query, missing links typically need to be im-
plicitly inferred (Figure 1(C)). Notice that both tasks are closely
related to each other. Knowledge graph completion can be viewed
as a special case of a multi-hop reasoning task when the query

KDD ’22, August 14-18, 2022, Washington, DC, USA.

(C) Knowledge Graph 0)
o

(A) Logical Query
Who co-authored with Canadian

5 - LeC
Turing Award winners? =2

Turing Award

Positive Answers

Missing Answers

O
O
O

(B) Query Computation Plan

Turing Award

O Canada
Citizen .
Intersection

Canada

Trudeau

Missing link

Figure 1: Query embedding methods aim to answer multi-
hop logical queries (A) by avoiding explicit knowledge graph
traversal and executing the query directly in the embedding
space by following the query computation plan (B). Such
methods are robust against missing links (C).

consists of a single relation (e.g., 1-step path TuringAward-Win—?
vs. more complex structure in Figure 1(B)). Multi-hop reasoning is
a strict generalization of knowledge graph completion with much
broader applicability but with its own set of unique computational
and scalability challenges.

Currently there are no frameworks that support multi-hop rea-
soning on massive Knowledge graphs. For example, among many
recent works on multi-hop reasoning [4, 5, 7, 10, 13, 19, 20, 22, 30]
the largest KG used has only 63K entities and 592K relations. More-
over, while there are scalable frameworks for single-hop KG com-
pletion [11, 15, 31, 32], such frameworks cannot be directly used
for multi-hop reasoning due to the more complex nature of the
multi-hop reasoning task.

Scaling up embedding-based multi-hop KG reasoning methods
is a critical need for many real-world AI applications and remains
largely unexplored. Two significant challenges exist: (1) on the al-
gorithmic side, given a massive KG (with hundreds of millions of
entities), it is no longer feasible to materialize training instances,
and training data needs to be efficiently sampled on the fly with a
high throughput to ensure GPUs are fully utilized. And (2), on the
system side, recent single-hop large-scale KG embedding frame-
works are based on graph-partitioning [11, 15, 31, 32] which is
problematic for multi-hop reasoning. Multi-hop reasoning requires
traversing multiple relations in the graph, which will often span
across multiple partitions.

To combat these challenges, we propose Scalable Multi-hOp REa-
soning (SMORE), the first general framework for single- and multi-
hop reasoning on massive KGs. SMORE performs algorithm-system
co-optimization for scalability. On the algorithmic side, the key
is to efficiently generate training examples online. To generate a
training example with a set of positive and negative entities, we
first instantiate a query on a given KG (Figure 2(B)) from a set of
query logical structures (Figure 2(A)). The root of the instantiated
query represents a known positive (answer) entity. To obtain a set
of negative entities (non-answers), niive execution of the query
computation plan (Figure 1(B)) using KG traversal (Figure 1(C))
to identify positive/negative entities has exponential complexity
with respect to the number of hops of the query. Therefore, we
propose a bidirectional rejection sampling approach to efficiently
obtain high-quality negative entities for the instantiated queries.

1473

Hongyu Ren, et al.

The key insight of the training data sampler is to identify the op-
timal node cut (red node in Figure 2(C)) of the computation plan
via dynamic programming, then performing forward KG traversal
(Figure 2(C)) as well as backward verification (Figure 2(D)) simul-
taneously, hence bidirectional rejection sampling. The nodes in
the optimal cut cache the intermediate results from the forward
KG traversal; for backward verification, we propose positive and
negative candidate entities, traverse backward to the optimal cut
and perform rejection sampling based on the overlap of the forward
and backward sets. This reduces the worst case complexity by a
square root, which makes it feasible to generate a training query, a
positive answer entity and negative non-answer entities on the fly.

On the system side, SMORE operates on the full KG directly in
a shared memory environment with multiple GPUs, while storing
embedding parameters in the CPU memory to overcome the limited
GPU memory. This design choice bypasses the potential drawbacks
of graph partitioning for multi-hop reasoning in current KG em-
bedding systems but also brings efficiency challenges. We design
an asynchronous scheduler to maximize the throughput of GPU
computation, via overlapping sampling, asynchronous embedding
read/write, neural network feed-forward, and optimizer updates,
as depicted in Figure 5. We obtain an efficient implementation that
achieves near linear speed-up with respect to the number of GPUs.

We demonstrate the scalability of SMORE on three multi-hop rea-
soning algorithms (GQE [7], Q2B [19], BetaE [20]), six single-hop
KG completion approaches (TransE [3], RotatE [24], DistMult [29],
ComplEx [26], Q2B [19] and BetaFE [20]) on six different benchmark
KGs. The largest is the Freebase KG [2, 31] that contains 86M nodes
and 338M edges, which is about 1,500% larger than the largest
KG previously considered for multi-hop reasoning. The new sam-
pling technique improves the worst case runtime of enumerative
search by 4 orders of magnitude. On small KGs, SMORE runs 2.2X
faster with 30.6% less GPU memory usage compared to the existing
(non-scalable) multi-hop reasoning framework [18]. SMORE also
supports link prediction. Here SMORE achieves comparable or even
better efficiency with SOTA frameworks (which do not support
multi-hop reasoning) on both single and multi-GPU settings.

SMORE can be deployed in a single-machine environment with
a minimum requirement on the capacity of GPU memory. For exam-
ple, it uses less than 2GB GPU memory when training a 400 dimen-
sional embedding on the Freebase KG with 86M entities. SMORE’s
throughput scales nearly linearly with the number of GPUs. SMORE
also provides an easy-to-use interface where implementing a new
embedding model takes less than 50 lines of code. SMORE is open
sourced at https://github.com/google-research/smore.

2 MULTI-HOP REASONING ON KG

A knowledge graph (KG) G = (V, E, R) consists of a set of nodes
V, edges & and relations R. Each edge e € & represents a triple
(vp, r,v;) where r € R and vy, 0y € V. We are interested in per-
forming multi-hop reasoning on KGs. Multi-hop reasoning queries
include relation traversals as well as several logical operations in-
cluding conjunction (A), disjunction (V), existential quantification
(3) and negation (). Here we consider first order logical queries in
their disjunctive normal form [20].

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

Query Instantiation from Structure

KDD ’22, August 14-18, 2022, Washington, DC, USA.

Negative Entities Sampling

(A)

[Bidirectional rejection sampling (Ours)}

(E)

Query
structure

[o; Intersection
0]
Intersection

Turing Award

Sl sample

Neighbor sample Answer

(C) Forward caching

| ©

©

Q(c?)

©)

Q(C)

Cache entities Q)

All positive answers [}

(8) Intersection featon O HE
Instantiating (it l 1
Query BENRD e (D) Backward verification
erEsE & rejection sampling . - ~ O Neg Sample negatives (o) o
outside of this set @)
<;nstantiation from root to leaves | O

’
Cach&titiei‘/—o Pos
! "\

One known positive answer: Radford Neal

Overall Complexity: Q(C)

\

Qe -

C is the degree of a KG

‘——O Neg

Overall Complexity: Q(C?)

Figure 2: Overview of the sampling process for query and positive/negative answers. Our system instantiates queries using
query structures from root to leaves. The entity in the root naturally becomes positive answer to the instantiated query. For
negative entities, we propose bidirectional rejection sampling, which has a square root computation complexity compared to

the traversal-based method.

DEFINITION 1 (LOGICAL QUERIES [20]). A first-order logical (FOL)
query q consists of a non-variable anchor entity set Vg C V, exis-
tentially quantified bound variables V1, ..., V). and a single target
variable V, (answer). The disjunctive normal form of a query q is
defined as follows:

qV2]=Vo . 3V1,..., Vi :c1Vea V.. Ve

e Each c represents a conjunction of one or more literals e. ¢; =
eji1 Neig AN+ Aeim.

o Each e represents an atomic formula or its negation. ejj = r(vg, V)
or = r(vg,V) or r(V',V) or = r(V',V), wherev, € Vg, V €
{Vo.Vi, ... Vi,V e{V,... i, V£V, reR.

Query computation plan. A query computation plan (Fig-
ure 1(B)) provides a plan for executing the query. The computa-
tion plan consists of nodes Vg4 U {V1, ..., Vi, V2}, where each node
corresponds to a set of entities on the KG. The edges in the com-
putation plan represent a logical/relational transformation of this
set, including relation projection, intersection, union and comple-
ment/negation. We adopt the same definition of computation plan
as in [20] (details in Appendix A). By following the computation
plan, we may either traverse the KG for answers or embed the given
query. More details can be found in Appendix A.

Contrastive learning for KG embeddings. Given a data sam-
pler D during training, each sample in D is a tuple (g, ﬂqg , ng),

which represents a query g, its answer entities A € V and the

negative samples ng c ﬂqg . The contrastive loss Eqn (1) is de-
signed to minimize the distance between the query embedding
and its answers Dist(fp(q), fo(v)),v € ﬂqg while maximizing the
distance between the query embedding and the negative samples

Dist(fy(q), fo(0")), 0" € N7,

LO)=-7 Y logo (v~ Dist(fy(g) fo(®)
ueﬂg
- ZNgloga(Dist(fe<q>,fa<v'>>—y), 1)
ve q

1474

where y is a hyperparameter that defines the margin and o is the
sigmoid function.

We emphasize that due to the multi-hop structure in reasoning,
identifying/computing ﬂqg and ng involves complex first-order
logical operations, which are significantly more expensive than
sampling in classical (single link) KG completion tasks, and thus is
the bottleneck for scaling-up. To resolve this, we propose Scalable
Multi-hOp REasoning (SMORE) to scale up single- and multi-hop
KG reasoning methods (Tables 1 and 2), with an efficient sampling
algorithm and parallel training, for a given contrastive loss. Next
we first discuss our efficient training data sampling algorithm.

3 EFFICIENT TRAINING DATA SAMPLING

Unlike in link prediction, where sampling the training data, head-
relation—tail can be quickly performed via dictionary look up [31,
32], sampling training data for multi-hop reasoning is much more
complicated. It involves generating queries g by instantiating query
structures, performing KG traversal to find answers ﬂqg as well

as negative answers ng , which is computationally expensive. We
propose an efficient way to sample training data for contrastive
learning for multi-hop reasoning. During inference, there are usu-
ally a pre-generated test set or user can input the test query of
interest. This section focuses on efficient sampling during training.

3.1 Instantiating query structure

A query logical structure (Figure 3) specifies the backbone of a
query g, including the types of operation (intersection, relation
projection, negation, union) and its structure. It can be seen as an
abstraction of the query computation plan, where anchor nodes
and relation types are not grounded. Instantiating a query structure
requires specifying a relation r € R for each edge in the structure,
as well as the anchor entities Vy (blue nodes in Figure 3).

A naive way to instantiate a query (construct a concrete query
given its logical structure) is to first ground the anchor entities by
randomly sampling entities in the KG, and then randomly select
relations r € R for all the relation projection edges. However, in
most cases such randomly generated queries have no answers in

KDD ’22, August 14-18, 2022, Washington, DC, USA.

Hongyu Ren, et al.

Table 1: Three multi-hop KG reasoning models supported by SMORE.

Model Embedding Space Relation Projection Intersection Negation Distance
GQE[7] qeR%veR? q+r DeepSet ({gi}) - llq - vl
2d d Cen(q) = Y; a; © Cen(q;) . .
PBIO] qcRveR a Off(g) = min({Off(q0)}) © o(DeepSet ({Ofi(g:)})) @itout + adistin
BetaE [20] q€ R, veRY MLP(q,r) q = [(X wiai, X, wipi)] % KL(Beta(v);Beta(q))
oo, 22 00, 000, 00% 0O
000000099 60” 88” 00P° " 00” oo” 00P®
P2 3p 2i 3i ip pi 2u 2u
o0, 22 oe 000}, 000 T TS \
O‘O’p O“O'p O"O;\@_O O"@D O'@p g @ anchor (Q intermediate __. jptersection n) '}
o O | @ answer @ @ node Y. union LN negatloni
2in 3in inp pni pin oo '

Figure 3: Different query structures and their optimal node cuts (shaded nodes) used by our bidirectional rejection sampling,.

Table 2: Six single-hop models supported by SMORE.

Model Embedding Space Distance
TransE [3] hteR? reRr? [[h+r1—t|
RotatE [24] hteCirecd lhor—t|

DistMult [29] h,te R9reR? —<hort>

hteCd recd
hteR? reRM
h,teRd,reRd

ComplEx [26]
Q2B [19]
BetaE [20]

—Re(<hort>)
distoyt + adistj,
KL (Beta(t); Beta(MLP(h,1)))

the KG as sampled entities may not even have relations of prede-
termined types, and intersections of random entities will almost
always be empty. This means such samples have to be rejected
and the sampling process has to start all over again. Such a naive
method leads to huge computation cost.

Instead, we instantiate a query structure via reverse directional
sampling, i.e., we first ground the root node (i.e., the answer node)
and then proceed towards the anchors. This is the reverse process
of KG traversal for answers (Section 2). The main benefit of reverse
sampling is that it can always instantiate a given query structure
(Appendix C). Reverse directional sampling uses depth-first search
(DFS) over the query structure from the root (answer) to the leaves
(anchor entities). During the DFS, each node on the query structure
is grounded to an entity on the KG and an edge to a relation on the
KG associated with the previously grounded entity. An example of
the process is shown in Figure 2(B).

Reverse sampling procedure can always obtain valid queries
(with non-empty answer set). Another advantage of the above
sampling process is that, the overall complexity is O(C|q|), same
as the complexity of DFS, where |g| indicates the maximum depth
of a path (from root to leaves) in the query structure, and C is
the maximum degree of entities in the KG. The sampling process
returns the instantiated query g, the anchor entities Vy, and a single

positive answer ag € .?[qg (the instantiated entity at root).

3.2 Negative sampling
After the instantiating (node/edge grounding) the query structure,
we obtain the tuple (g, Vg, {aq}) as a positive sample while we still

need ng to optimize Eqn (1). We find that a single answer entity is
sufficient in each step of stochastic training, while typically we need
k= ng | in Eqn (1) to be thousands for negative samples in the

1475

contrastive learning objective. Next we explain how to efficiently
obtain a set of negative entities ng (i.e., non-answers).

A naive approach samples negative entities (non-answers) at
random from the KG, independent of the query q. However, notice
that a valid query may have many answers entities in the order
of 0(Cl4l). Such an approach implies that many of the sampled
negatives are actually answers to the query, which would lead to
noisy training data that confuses the model. An alternative would
be to execute the query g and perform KG traversal to obtain all
the answers Ay (as presented in Section 2). We could then obtain
negative samples ng by simply sampling from (V\ﬂqg . Although
it is possible to re-order the relation projection operations to get
better scheduling, in the worst case, |ﬂg | is still in the order of

o(claly, regardless of the query scheduling. Thus, such exhaustive
traversal is prohibitive for negative sampling on large KGs.

Our solution: Bidirectional rejection sampling. Since ng
does not have to contain all the non-answer entities during stochas-
tic training, we propose to exploit rejection sampling to locate a
subset of negative entities efficiently. That is to say, starting with a
random proposal v € V, we only need to check whether v € ﬂqg,

rather than to enumerate the entire ﬂqg . Inspired by bidirectional
search, our key insight is to obtain a node cut (formally defined in
Def. 2) on the query computation plan, i.e., a subset of nodes that
cut all the paths between each leaf node and the root node. Then we
perform bidirectional search. We first start the traversal from the
leaves (anchors) to the node cut and cache the entities we obtained
in traversal, which we term forward caching (Figure 2(C)). We then
sample negative entities, traverse from the root to the node cut
and verify whether they are true negatives by checking the overlap
of the cached entities and the traversed set. We term the second
process backward verification (Figure 2(D)).

DEFINITION 2 (NODE cUT). A node cut cq of a query q is a set of
nodes in the computation plan, such that every path between anchor
node (leaf) and answer node (root) contains exactly one node in cq. A
node cut is also minimal, i.e., no subset ofcq can be a node cut.

We illustrate this idea in Figure 2. Given a two-hop query “Who
co-authored papers with Canadian Turing Award winners?”, we set
the node after the intersection operation (red node) as the single

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

’ Worker-1 Worker-2 \
1 v
: 2 2 % : Shared memory G : 2 2 2 :
1 : : :
1 L — D !
: D, Async Read 1 1 Async Read 2 :
1 : : 1
1 | ' 1
1 | | 1
| ! - '
H Async! Async :
l op ! Mo, @l |
1 ! ! o 1
! GPU-L b . GPU-2 1
' ' 1 H ! 1
0Ly ' l oL] ;0L .
', 96p E H _,/ a6y \ i Op 1
S---dt—————=f—----- AllReduce ------- N e e ! e’

Figure 4: Overall training paradigm of SMORE.

node in the node cut. Then we can obtain the set of “Canadian
Turing Award winners” via forward traversal and cache the inter-
mediate results (i.e., Bengio). Overall this process requires O(C)
computation/memory cost, where C is the degree of the KG. Then
given a candidate negative entity v, one can spend O(C) cost to
verify whether the set of co-authors of v overlaps with the cached
entities in the node cut. In our implementation we propose constant
number of candidate negative entities, thus the overall computation
cost would be O(C), which is a reduction of square root from O(C?)
using exhaustive traversal.

Next, we calculate the computation cost for any given node cut
cg> and then we propose an efficient algorithm to find the optimal
node cut, i.e., one with the lowest cost in bidirectional search.

Given a reasoning path P(y_vs) = [v0 = vg,01,...,0 = V5] in
the query computation plan that starts from an anchor node (leaf)
vg € Vg and ends at the answer node (root) V», for a node cut cq>
by definition there exists a unique node v; € cq N P(,_ v;)- Then
the worst-case computation/memory cost for negative sampling
for reasoning path P(,_ y,) can be estimated as cost(cq, P(q,, 1)) =
max {C i ct-i }, i.e., the maximum cost of forward traversal or back-
ward verification. The optimal scheduling is recast as

né(iln maxy, ey, cost(cq, Py, v5))

@
As the computation plan is a tree, we propose to solve the above
optimization problem with dynamic programming (DP). This can
be solved in a linear time w.r.t. |g|, and construct the node cut using
the function o(-). We provide the details in Appendix C. Example
query structures and their corresponding optimal node cuts are
shown in Figure 3'.

s.t. cq is a node cut of q.

4 EFFICIENT TRAINING SYSTEM

SMORE is built for a shared memory environment with multi-cores
and multi-GPUs. It combines the usage of CPU and GPU, where
the dense matrix computations are deployed on GPUs, and the
sampling operations are on CPUs.

4.1 Distributed training paradigm

Here we give a high-level introduction to the distributed training.
Most of the KG embedding methods would maintain an embedding

! Although query structures considered in current literature are small enough to find
the optimal cut with brute force, our DP significantly improves efficiency when query
structures are large.

1476

KDD ’22, August 14-18, 2022, Washington, DC, USA.

matrix 0g € RIVIXd where d is the embedding dimension which
can typically be 512 or larger. For a large KG with more than millions
of entities, the embeddings 0 cannot be stored in GPUs, since most
GPUs would have 16GB or lower memory. Thus similar as recent
works [31], we put the embedding matrix on shared CPU memory,
while putting a copy of other parameters 6p = 0 \ 0g, e.g., neural
logical operators, in each individual GPU.
We launch one worker process per GPU device. For simplicity,
we use subscript w as an index of a worker. Worker w gets the
shared access to g and local GPU copy of dense parameters 6p.
Each worker repeats the following stages as shown in Figure 4:
(1) Collect a mini-batch of training samples {D; },, from D,,, which
is the sampler.

(2) Load relevant entity embeddings from CPU to GPU;

(3) Compute gradients locally, and perform gradient A11Reduce
using %g—DW, Update local copy 0p.

(4) Update shared 0 asynchronously with %LTEW'
In the shared memory with multi-GPU scenario, the heavy CPU/GPU
memory read/write with 0 is necessary for every round of stochas-
tic gradient update. This significantly lowers the FLOPS on GPU
devices if we execute the above stages in a serialized way. So we
design the asynchronous pipeline that is covered in Section 4.2.
The different storage location of parameters also brings differ-
ent read/update mechanisms. For the embedding parameters 0,
as only a tiny portion will be accessed during each iteration in
stochastic training, the asynchronous update on the shared CPU
memory would still result in a convergent behavior [16]. Unlike
link prediction models, most multi-hop reasoning models are ad-
ditionally equipped with dense neural logical operators, used in
all batches and iterations. To minimize the loss of performance of
multi-GPU training of these dense parameters, we choose to syn-
chronously update p with the A11Reduce operation implemented
with NVIDIA Collective Communication Library (NCCL).

4.2 Asynchronous design

In this section, we present the asynchronous mechanism for pipelin-
ing the stages in each stochastic gradient update. The stages can be
virtually categorized into four kinds of meta-threads, where each
kind of meta-thread may consist of multiple CPU threads or CUDA
streams. These meta-threads run concurrently, with possible syn-
chronization events for pending resources, as illustrated in Figure 5.
Below we will elaborate each type of meta-thread individually.

Multi-thread sampler. Each worker w maintains one sampler
D, that has access to the shared KG. The sampler contains a thread
pool for sampling queries and the corresponding positive/negative
answers in parallel. The data sampler works concurrently with the
other meta-threads. The pre-fetching mechanism will obtain sam-
ples for the next mini-batch while training happens using current
batch on other threads. So if the sampler is efficient enough, then
the runtime can almost be ignored.

Sparse embedding read/write. For the embedding matrix 6,
we will create a single background thread with a CUDA stream for
embedding read and write. Specifically, when loading the embed-
ding of some entities into GPU, the background thread first loads
that into a pinned memory area, then the CUDA asynchronous
stream will perform pinned memory to GPU memory copy [6].

KDD ’22, August 14-18, 2022, Washington, DC, USA.

Hongyu Ren, et al.

Sampler- Query @y Query . CcPU . . . CUDA stream
Generation Generation Generation

:) hind | Concurrent
Embedding Read” & Read " i Update Read™ Read 1][2] Batch index : Events
R/W Anchor Answers } Embedding ' Anchor ! Answers
I I
I .
. [11 [Dense (1] Densenll [21 2] CPU-> Pinned ->
NNeuralk Backwd ~ Grad Param Backwd @ Read: RSNy
etwor 1 AIIreduce Update
1] 2 o
Sparse Adam” Adam™ Scatter Update @ wiite: GPU-> [Rinned:=>
Optimizer Stats: Stats: Sparse Adam Stats: Stats: Pinned CPU

R/W Anchor Answers Grad NES

)
1 1 1

Anchor

Answers

Figure 5: SMORE pipeline of a single worker process.

Table 3: KG statistics with number of entities, relations, training, validation and test edges.

Dataset Entities | Relations | Training Edges | Validation Edges | Test Edges | Total Edges
FB400k 409,829 918 1,075,837 537,917 537,917 2,151,671
ogbl-wikikg2 | 2,500,604 535 16,109,182 429,456 598,543 17,137,181
Freebase 86,054,151 14,824 304,727,650 16,929,318 16,929,308 338,586,276

This read operator is non-blocking, and will not be synchronized
until the CUDA operator in the main CUDA stream asks for it. The
write operation works similarly but in the reverse direction. It is
also possible to have multiple background threads. Right part of
Figure 5 illustrates the idea.

Dense computation. The feed-forward of model fy starts when

training data (q, Vy, ﬂqg , ng) is ready and the embedding of the
anchor entities V; is fetched into GPU. The embeddings of ﬂqg and

ng can be fetched as late as when we compute the loss function, in
order to overlap the computation and memory copy. After obtaining

'Z‘CTW and ‘Zg—;", the asynchronous update for 6

the local gradients
will be invoked first w1thout blocking, and at the same time the
AllReduce operation will start, followed by the dense parameter
update of Op on the GPU.

Sparse optimizer with asynchronous read/write. Different

from 6p, only a small set of rows of g will be involved in each sto-

NE AS
chastic update. So we only keep track of 0, Va ,0p 7,07 and their
gradients, i.e., the embeddings that are relevant to positive/negative

and anchor entities. Once the back-propagation is finished, we will

scatter 812’ 2Ly and ai‘; into a single continuous memory,
E 90,7 a0, 1

due to the potential overlap among the sets Vy, ng and .?qu . We
use Adam for SMORE, thus we need to additionally keep the first
and second order moments of gradients in CPU. They are treated
in the same way as 0, and thus will have the same asynchronous
read/write behavior as discussed above. Every time a set of embed-
dings is retrieved from 0g, the optimizer will also start to pre-fetch
the corresponding first/second order moments in a different back-
ground thread (“Adam Stats” in Figure 5).

5 EXPERIMENTAL RESULTS

Here we evaluate SMORE on KG completion and multi-hop reason-
ing tasks on KG. The task is to answer multi-hop complex logical
queries on KGs using various query embeddings. Besides the three
small KGs used in prior works [19, 20], we propose a novel set of

1477

multi-hop reasoning benchmarks on three extremely large KGs
with more than 86 million nodes and 338 million edges. We first
demonstrate the scalability of SMORE on query sampling, multi-gpu
speedup, GPU utilization over the three large KGs where all existing
implementations fail. Additionally, we compare our single-hop KG
completion runtime with state-of-the-art frameworks DGL-KE [31],
Pytorch-Biggraph (PBG) [11] and Marius [15]. Then we evaluate
the end-to-end training performance of SMORE on multi-hop rea-
soning over small as well as large KGs. This includes (1) calibration
of the performance of three prior works GQE [7], Q2B [19] and
BetaE [20] using SMORE framework on the three small KGs; (2) a
thorough evaluation of the query embedding models on the three
large KGs where prior implementation [18] is not applicable.

5.1 Experimental setup

Task setup. Following the standard experimental setup [19], given
an incomplete KG, the goal is to train query embedding methods
to discover missing answers of complex logical queries. Following
the standard evaluation metrics, we adopt mean reciprocal rank
(MRR) with the filtered setting as our metric, which is same across
all previous works.

Datasets. We used the three datasets FB15k, FB15k-237, NELL
from Ren and Leskovec [20]. These three KGs are small-scale with
at most 60k entities. To create a set of large-scale multi-hop KG
reasoning benchmarks, we further sample queries on three large
KGs: FB400k, ogbl-wikikg2 and Freebase. Ogbl-wikikg2 is a KG from
the Open Graph Benchmark [8]. FB400k is a subset of Freebase [2]
which is derived based on a knowledge graph question answering
dataset ComplexWebQuestion (CWQ) [25]. We further look at the
complete Freebase KG used in DGL-KE. For FB15k, FB15k-237 and
NELL, we directly take the validation and test queries from Ren
and Leskovec [20]. For ogbl-wikikg2 and Freebase, we randomly
sample validation and test queries using the official edge splits. We
consider the same 14 query structures proposed in BetaE [20]. For
FB400k, we directly take the SPARQL annotations of the validation
and test questions in the CWQ as our validation and test queries.

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs KDD ’°22, August 14-18, 2022, Washington, DC, USA.

Table 4: Performance of SMORE compared to KGReasoning package [18] on small KGs. Under the same model configura-
tions and hyperparameters, SMORE achieves similar MRR (25.67 vs. 25.65) but with significant speed-up (2.2x faster train-

ing/throughput) and GPU memory saving (-30.6%).

Dataset | Model MRR (%) Training queries (x512/Sec) GPU Memory (MB)
KGReasoning SMORE | KGReasoning SMORE KGReasoning SMORE
BetaE 41.6 40.39 12.93 45.66 4022 1942
FB15k Q2B 38.0 41.54 53.43 104.20 2146 1616
GQE 28.0 30.60 55.67 118.05 2126 1778
BetaE 20.9 19.67 12.92 45.46 4010 1876
FB15k-237 Q2B 20.1 20.42 55.82 107.05 2138 1582
GQE 16.3 15.68 61.89 120.17 2116 1738
BetaE 24.6 23.17 10.24 35.82 4852 3014
NELL995 Q2B 22.9 21.84 40.69 85.71 2406 2172
GQE 18.6 17.53 41.32 68.81 3062 2922
Average 25.67 25.65 38.32 81.21 (+2.2X) 2986 2071 (-30.6%)
2p Ip 200 ogb-wikikg2 Freebase
9 0.04 exhaustive traversal 2 0.04 exhaustive traversal —175 1-GPU | 4175 1-GPU
§ 0.02 bidirectional (ours) é 0.0 bidirectional (ours) E 150 2:2;3 § 150 j:ggﬂ
s 4 é 125 8GPU | 5125 8-GPU
§ 0.00 § 0.00 5100 E 100
= —0.02 5002 g 75 g 75
E _0.04 £E _0.04 g ;g g ;g
—0.04 -0.02 0.00 0.02 0.04 —0.04 -0.02 0.00 0.02 0.04 0 0
Branching factor C Branching factor C GQE QzB BetaE GQE Q28 BetaE

Figure 6: Speed-up of our bidirectional sampler over a naive Figure7:SMORE enjoys almost linear speed-up with respect to
sampler that performs KG traversal, on 2p, ip and pni query the number of GPUs, on both ogbl-wikikg2 and Freebase KGs,
structures (Figure 3). Our bidirectional sampling is signifi- and across multiple embedding methods GQE, Q2B and BetaE.

cantly more efficient than the baseline.

Table 5: Runtime performance on Freebase KG. *Results
taken from Mohoney et al. [15] with the same GPUs.

Epoch Time (s)
1-GPU | 2-GPU 4-GPU 8-GPU
Marius [15]* 727 - - -

System

DGL-KE [31]* - 1068 542 277
PBG [11]* 3060 | 1400 515 419
SMORE 760 411 224 121

Table 6: Speed and GPU memory of SMORE on the three
large KGs with embedding dimension = 400 and per device
batch size = 512. Our system design enables the (almost)
graph-size agnostic speed and GPU memory usage.

Model Dataset Queries (x1K/Sec) | GPU Mem (MB)
FB400k 123 1,872
BetaE | ogbl-wikikg2 121 1,860
Freebase 118 2,014
FB400k 135 1,796
Q2B | ogbl-wikikg2 130 1,776
Freebase 116 2,382
FB400k 189 1,726
GQE | ogbl-wikikg2 195 1,750
Freebase 188 2,056

557 1p 2p — 3p — pi — ip — pni inp up
0 100 200 300 400
Time/s

Figure 8: GPU utilization with different query structures on
Freebase with BetaE [20].

Statistics of all the datasets can be found in Table 3. The KGs we use
here are up to 1500 larger than those considered by prior work.
Software and training details. We implement all models in
Python 3.8 using Pytorch 1.9 [17] with customized CUDA ops,
and the samplers in C++ with multithreading. The machine has
8 NVIDIA V100 GPUs, 96x 2.00 GHz CPUs and 600GB RAM. All
models have same embedding dimension for fair comparison.

5.2 Scalability

Speedup of bidirectional sampler. We verify the speed-up of
the proposed bidirectional sampler over naive exhaustive traversal
one in Figure 6 (more results on other query structures can be
found in Appendix E). We test different query structures where the
bidirectional sampler is expected to achieve a square root reduction
of the computation cost compared with traversal. We vary the

1478

KDD ’22, August 14-18, 2022, Washington, DC, USA.

Hongyu Ren, et al.

FB400k ogb-wikikg2 FB15k-237
0.20
Table 7: MRR results (%) on large KGs 0.501 0.40
with different methods all trained us- 0.451 0.35 0.18
. L0 .
ing SMORE. 0 101 0.30 0.16
Dataset\ Model | GQE Q2B BetaE 0-351 o 04
2 ?1:4001(0 € 36QO2 5% 71 53 20 0.301 random bidirectional (ours) exhaustive traversal
ogbl-wikikg2 3201 4188 44.42 Ok 200k 400k 600k 800k Ok 200k 400k 600k 800k Ok 200k400k600k800k 1m
Freebase 80-71 85.67 8433 Training Steps Training Steps Training Steps

Figure 9: Accuracy (MRR) of different Q2B models trained using different samplers.

We observe that our bidirectional sampler leads to more accurate models.

Table 8: Percentage of queries that span multiple partitions.

2i
20.7

3i
28.8

4i
35.5

pi
25.3

ip
26

4p
30.7

3p
253

2p
18.8

1p
115

up
26

constant C, i.e., the maximum expansion of each relation, and plot
the time for sampling a minibatch of 1024 queries as the function
of C using the Freebase KG. We can see the traversal approach runs
out of the time limit quickly as C grows, while our sampler stays
significantly more efficient across all query structures (Figure 3).

GPU memory, utilization and end-to-end training speed.
Here we show the scalability of SMORE on all six KGs. We first
compare SMORE with prior implementation [18] on the three small
benchmark datasets created in Ren and Leskovec [20]. As shown
in the last two columns in Table 4, SMORE significantly improves
the efficiency of end-to-end training of various query embeddings
since SMORE adopts a query sampling scheme that shares the neg-
ative samples for a sampled batch of queries. Specifically, SMORE
increases the speed by 119.4% and reduces GPU memory usage by
30.6% on average. Then we scale query embeddings up to the three
large KGs. As shown in Table 6, given the same embedding dimen-
sion and batch size, our system design allows for (almost) graph-size
agnostic speed and GPU-memory usage across all methods.

In Figure 8 we show the GPU utilization of BetaE with different
multi-hop query structures on Freebase. We plot the average uti-
lization of 8 GPUs with smoothing of 10 seconds. More complex
queries like 3p and pni have higher fluctuation due to the variance
of sampling time. However as these queries also require more neu-
ral ops which in turn brings up the GPU utilization. Generally our
system can keep a high GPU utilization for all query structures.

Multi-GPU speed up. We illustrate the speed-up of training
on {1, 2, 4, 8} GPUs with different methods on ogbl-wikikg2 and
Freebase datasets in Figure 7. Overall the speed grows almost lin-
early w.r.t. the number of GPUs, which shows the effectiveness
of our asynchronous training and the communication overhead is
negligible. Also the computationally heavier approaches like BetaE
would benefit more from multi-GPU on SMORE.

Graph partitioning leads to lossy queries. Various prior large-
scale KG embedding systems consider graph partitioning. However,
since our system focuses on complex queries, with graph partition-
ing, a large number of queries will thus span multiple partitions.
We conducted experiments on the largest Freebase KG to prove this
using the state-of-the-art graph partitioning algorithm METIS [9].
Below we show the percentage of queries that would be lost (i.e.,

1479

a query that spans multiple partitions) if we partition the graph
into 8 parts. We find that 1p (i.e., a 1-hop link) suffers the least
while multi-hop queries may suffer greatly (more than 3x than 1p).
This shows that although graph partitioning is a viable option for
prior large-scale KG link prediction systems, it is not for multi-hop
reasoning. This validates the necessity of our design choice.

KG completion runtime. Here we compare the single-hop link
prediction (KG completion) runtime performance with state-of-the-
art large-scale KG frameworks including Marius, DGL-KE and PBG.
We report the results for ComplEx model with 100 embedding
dimension on Freebase. We use the same multi-GPU V100 configu-
ration as in Marius, and the current official release versions are also
the same. So for baseline results we reuse the table 7 from Mohoney
etal. [15]. As shown in Table 5, SMORE achieves significantly faster
runtime in 1-GPU setting than PBG, while being slightly slower
than Marius. Also it scales better than the other systems, while
Marius does not officially support multi-GPU parallel training func-
tionality at the current stage. Given that SMORE adopts the design
choice of synchronized gradient update for dense parameters, and
we do not partition the graph for the sake of multi-hop reasoning,
it is nontrivial to be still comparable in the single-hop case.

5.3 Predictive performance

Calibration on small KGs. We first calibrate SMORE for GQE,
Q2B, and BetaFE on three small benchmark datasets created in BetaFE.
As shown in Table 4, SMORE achieves overall comparable perfor-
mance as the models trained on a fixed set of training queries using
a single GPU. Specifically, SMORE achieves comparable results for
GQE and BetaE respectively while is able to further improve the
performance of Q2B on FB15k with 3.54% increase in MRR.
Query answering on large KGs. We also benchmark the em-
bedding models on three large KGs FB400k, ogbl-wikikg2 and Free-
base. As shown in Table 7, on ogbl-wikikg2, BetaE performs the
best among all the other baselines. On both FB400k and Freebase,
box embedding model Q2B achieves the best results. For all these
methods, the baseline implementation [18] cannot scale to such
massive KGs due to limited memory and computationally expen-
sive exhaustive query sampling. Our system SMORE easily scales
query embeddings to these large KGs using an asynchronous design
with sparse embedding and optimizer. The three KGs serve as an
important benchmark for future multi-hop KG reasoning models.
Performance with different samplers. We compare the per-
formance of Q2B trained with different samplers, i.e., the naive sam-

pler (exhaustive traversal), bidirectional sampler (bidirectional)

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

and randomly sampling KG entities as negative answers (random)
on FB15k-237, FB400k and ogbl-wikikg2. As shown in Figure 9, ran-
dom sampling performs the worst since random negative sampling
does not guarantee that the sampled entities are truly the nega-
tive (non-answer) entities. bidirectional performs comparable
or even better than exhaustive traversal, as it can choose much
larger C during query sampling. Note that exhaustive traversal
is very slow on large graphs, and it requires months for the baseline
implementation with exhaustive traversal sampler to train a model
with the same number of queries on ogbl-wikikg?2.

6 CONCLUSION

We present SMORE, the first general framework for both single- and
multi-hop reasoning that scales up a plenty of different embedding
methods with multi-GPU support to KGs with 86M nodes and
338M edges. It performs the algorithm-system co-optimization for
scalability. Our work can also serve as the benchmark for future
research on large-scale multi-hop KG reasoning.

ACKNOWLEDGMENTS

We thank Theo Rekatsinas, Rok Sosic, Xikun Zhang, Serena Chang,
Michael Xie and Sharmila Nangi for providing feedback on our
manuscript, Jason Mahoney and Roger Waleffe for discussions on
Marius, Matthias Fey for discussions on sparse embeddings. We
also gratefully acknowledge the support of DARPA under Nos.
HR00112190039 (TAMI), N660011924033 (MCS); ARO under Nos.
W911NF-16-1-0342 (MURI), W911NF-16-1-0171 (DURIP); NSF under
Nos. OAC-1835598 (CINES), OAC-1934578 (HDR), CCF-1918940 (Ex-
peditions), NIH under No. 3U54HG010426-04S1 (HuBMAP), Stan-
ford Data Science Initiative, Wu Tsai Neurosciences Institute, Ama-
zon, Docomo, Hitachi, Intel, JPMorgan Chase, Juniper Networks,
KDDI, NEC, Toshiba, and UnitedHealth Group. Hongyu Ren is
supported by the Masason Foundation Fellowship, the Apple PhD
Fellowship and the Baidu Scholarship.

REFERENCES

[1] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. 2021.
Complex Query Answering with Neural Link Predictors. In International Confer-
ence on Learning Representations (ICLR).

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In ACM SIGMOD international conference on Management of data
(SIGMOD). ACM.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Advances in Neural Information Processing Systems (NeurIPS).

Xuelu Chen, Ziniu Hu, and Yizhou Sun. 2021. Fuzzy Logic based Logical Query
Answering on Knowledge Graph. In International Conference on Machine Learning
(ICML).

Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chan-
dan K Reddy. 2021. Probabilistic Entity Representation Model for Chain Reasoning
over Knowledge Graphs. In Advances in Neural Information Processing Systems
(NeurlPS).

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. 2021. GN-
NAutoScale: Scalable and Expressive Graph Neural Networks via Historical
Embeddings. In International Conference on Machine Learning (ICML).

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec.
2018. Embedding Logical Queries on Knowledge Graphs. In Advances in Neural
Information Processing Systems (NeurIPS).

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. In Advances in Neural Information Processing
Systems (NeurIPS).

[2

[

(3]

(5

=

(6

=

1480

KDD ’22, August 14-18, 2022, Washington, DC, USA.

[9] George Karypis and Vipin Kumar. 1995. METIS-unstructured graph partitioning
and sparse matrix ordering system, version 2.0. (1995).

Bhushan Kotnis, Carolin Lawrence, and Mathias Niepert. 2021. Answering
complex queries in knowledge graphs with bidirectional sequence encoders. In
AAAI Conference on Artificial Intelligence (AAAI).

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large-scale graph
embedding system. In Conference on Machine Learning and Systems (MLSys).
Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang Ren. 2019. Kagnet:
Knowledge-aware graph networks for commonsense reasoning. In Empirical
Methods in Natural Language Processing (EMNLP).

Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, and Hanghang Tong. 2021.
Neural-Answering Logical Queries on Knowledge Graphs. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD).

Shangwen Lv, Daya Guo, Jingjing Xu, Duyu Tang, Nan Duan, Ming Gong, Linjun
Shou, Daxin Jiang, Guihong Cao, and Songlin Hu. 2020. Graph-based reasoning
over heterogeneous external knowledge for commonsense question answering.
In AAAI Conference on Artificial Intelligence (AAAI).

[15] Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2021. Marius: Learning Massive Graph Embeddings on a Single
Machine. In 15th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 21).

Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J Wright. 2011. Hogwild!:
A lock-free approach to parallelizing stochastic gradient descent. In Advances in
Neural Information Processing Systems (NeurIPS).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems (NeurIPS).

Hongyu Ren. 2021. Snap-stanford KGReasoning: Multi-hop Reasoning on KGs.
https://github.com/snap-stanford/KGReasoning.

Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020. Query2box: Reasoning over
Knowledge Graphs in Vector Space using Box Embeddings. In International
Conference on Learning Representations (ICLR).

Hongyu Ren and Jure Leskovec. 2020. Beta Embeddings for Multi-Hop Logical
Reasoning in Knowledge Graphs. In Advances in Neural Information Processing
Systems (NeurIPS).

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. 2020. Improving multi-hop
question answering over knowledge graphs using knowledge base embeddings.
In Annual Meeting of the Association for Computational Linguistics (ACL).
Haitian Sun, Andrew O Arnold, Tania Bedrax-Weiss, Fernando Pereira, and
William W Cohen. 2020. Faithful Embeddings for Knowledge Base Queries. In
Advances in Neural Information Processing Systems (NeurIPS).

Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. 2019. Pullnet: Open
domain question answering with iterative retrieval on knowledge bases and text.
In Empirical Methods in Natural Language Processing (EMNLP).

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-
edge graph embedding by relational rotation in complex space. In International
Conference on Learning Representations (ICLR).

Alon Talmor and Jonathan Berant. 2018. The web as a knowledge-base for an-
swering complex questions. In Annual Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL).

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In International
Conference on Machine Learning (ICML).

Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep
knowledge-aware network for news recommendation. In Proceedings of the Inter-
national World Wide Web Conference (WWW).

Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, and
Guihai Chen. 2019. Dual graph attention networks for deep latent representation
of multifaceted social effects in recommender systems. In Proceedings of the
International World Wide Web Conference (WWW).

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Em-
bedding entities and relations for learning and inference in knowledge bases. In
International Conference on Learning Representations (ICLR).

Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. 2021. ConE:
Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs. In Advances
in Neural Information Processing Systems (NeurIPS).

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong,
Zheng Zhang, and George Karypis. 2020. Dgl-ke: Training knowledge graph
embeddings at scale. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval.

Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. 2019. Graphvite: A high-
performance cpu-gpu hybrid system for node embedding. In Proceedings of the
International World Wide Web Conference (WWW).

(10]

(1]

[12

=
&

[14

[16

[17

(18

[19]

[20

[21]

~
£,

[23

[24

[25

[26

[27

[28

™~
20,

[30

[31

[32

KDD ’22, August 14-18, 2022, Washington, DC, USA.

A QUERY COMPUTATION PLAN

As shown in Figure 2, the computation plan of a query consists of

nodes Vg U {V1,..., Vi, V»}. Note each node of the computation

plan corresponds to a set of entities on the KG. The edges on the
computation plan represent a logical/relational transformation of
this set:

(1) Relation Projection: Given a set of entities S C V and rela-
tion type r € R, compute adjacent entities U,esA,(v) related
toSviar: Ay(v) = {0’ € V: (v,r,0) € E}

(2) Intersection: Given sets of entities {51, So, ..
their intersection N7, S;.

.,Sp}, compute

(3) Complement/Negation: Given a set of entities S C V, com-

pute its complement S = V' \ S.
Using De Morgan’s laws, UL | S; is equivalent to ﬂ;’zlg, union op-
eration can be replaced with three negation and one intersection
operations.

Traversing the KG using the computation plan to find an-
swers. Conceptually, (assuming no noise, no missing relations in
the KG) a logical query can be answered by traversing the edges of
the KG. For a valid query, the computation plan is a tree, where the
anchor entity set, (Vq, are the leaves and the target variable V; is
the single root, representing the set of answer entities (Figure 1(C)).
Following the computation plan, we start with the anchor entities,
traverse the KG and execute logical operators towards the root node.

The answers ﬂqg to the query g are stored in the root node after
the KG traversal. Note that this conceptual traversal would have
exponential computational complexity with respect to the number
of hops and also cannot handle noisy or missing relations in the
KG, which are both very common in real-world KGs (Figure 1(C)).

Embedding-based “traversal” of the KG. Embedding-based
reasoning methods avoid explicit KG traversal. Instead, they start
with the embeddings of anchored entities, and then apply a se-
quence of neural logical operators according to the query com-
putation plan. This way we obtain the embedding of the query
where each embedding-based logical operator (e.g., negation) takes
the current input embedding and transforms it into a new output
embedding. Such operators are then combined according to the
query structure. The answers to the query q are then entities v that
are embedded close to the final query embedding. The distance
is measured by a pre-defined function Dist(fy(q), fy(v)), where
fo(q) and fy(v) represents the query and entity embedding respec-
tively. Note the distance function Dist(-, -) is tailored to different
embedding space and model design fy (see Table 1 and Appendix B).

B MULTI-HOP REASONING MODELS AND
NEURAL LOGICAL OPERATORS

Our SMORE covers three published works, i.e., GQE [7], Q2B [19]
and BetaE [20]. In order to perform logical reasoning in the em-
bedding space, all methods design a projection operator £ and
intersection operator 7. As introduced in Section 2, P represents
a mapping from a set of entities (represented by an embedding)
to another set of entities (also represented by an embedding) with
one relation, i.e., P : RIxR — Rd, assuming the embedding
dimension is d. The 7 takes as input multiple embeddings and out-
puts the embedding that represents the intersected set of entities:

1481

Hongyu Ren, et al.

I :RYx ... xR — RY Different models may have different
instantiations of these two operators.

GQE [7] embeds a query g to a point in the vector space by
iteratively following the computation plan of the query. Query2box
(Q2B) [19] proposes to embed queries as hyperrectangles with a
center embedding and an offset embedding. BetaFE [20] further pro-
poses to embed queries as Beta distributions so that it can faithfully
handle conjunction and negation operation in distribution space
with KL-divergence as distance.

B.1 Comparison with neural link predictor [1]

Here we discuss the neural link predictor [1], which uses fuzzy logic
to answer complex queries. It either requires online optimization for
test query answering or traverses the KG with beam search, which
is hard to scale to large KGs with their own unique challenges. In
this paper, we focus on scaling up query embedding methods and
leave scaling fuzzy-logic-based methods as future work.

C REVERSE DIRECTIONAL SAMPLING

Following prior work [19, 20], we use reverse directional sampling

to construct queries from a KG. The overall instantiation process

corresponds to a depth-first search where at each step we aim to
ground a node/edge on the query structure with an entity/relation
from the KG. Here we use one example to illustrate the whole idea.

As shown in Figure 2, if we aim to instantiate an ip query from

the query structure, we start the instantiation process from the

root node, where we randomly sample an entity from the KG, here
being Neal. Following the query structure, we aim to ground the
edge that points to the root, and we sample a relation type from
the KG that points to the entity Neal, e.g., Co-author. Then we
ground the next node, which has the relation Co-author with Neal,

e.g., Bengio. In the next step, since the edge is a logical operation

Intersection, we may directly ground the next node with the

same entity Bengio, and we sample another relation on the KG the

relates to Bengio, e.g., Win, and finally reaches the anchor entity

(leaf) by sampling an entity on KG that has the relation Win with

Bengio, e.g., Turing Award. The overall complexity of this process

is linear with respect to the number of hops of a query (structure).
Dynamic programming for optimal node cut. As the com-

putation plan of q is a tree, we propose to solve the above optimiza-
tion problem in Eqn (2) with dynamic programming (DP). Before
presenting the algorithm, we first need to understand the cost of
each operation, so as to only model the dominating cost in the
dynamic programming. We consider the following operations:

e Relation projection: this operation enlarges the current set of
entities by a factor of C (the maximum node degree) in the worst
case. Thus the total cost would grows exponentially with the
number of relation projection operations in a reasoning path.

o Intersection / Union: if we maintain the set of entities as a sorted

list, intersection / union of the two sets only takes linear time

w.r.t the number of entities in both sets. Thus it will not be the

limiting factor in the overall computation cost if we only merge

a constant number of sets together.

Negation / Complement: The computation cost of a single set

complement operation O(|V]), i.e.,, the total number of enti-

ties in the KG. However, we can delay the complement oper-
ation to the next step on the computation plan, i.e., perform

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs KDD ’°22, August 14-18, 2022, Washington, DC, USA.

ip inp pni up

8 0.04 exhaustive traversal | § 0,04 exhaustive traversal | § 0,04 exhaustive traversal | ¢ 0,04 exhaustive traversal
o bidirectional (ours) o bidirectional (ours) T bidirectional (ours) o bidirectional (ours)
2 002 2 002 2 002 2 002
< < < <
S 0.00 S 0.00 S 0.00 S 0.00
— — — -
~ —0.02 ~ —0.02 ~ —=0.02 ~ =0.02
3 1) v v
£ _0.04 £ _0.04 E 004 £ 0.04

—0.04 -0.02 0.00 0.02 0.04 -0.04 —-0.02 0.00 0.02 0.04 —0.04 -0.02 0.00 0.02 0.04 —0.04 -0.02 0.00 0.02 0.04

Branching factor C Branching factor C Branching factor C Branching factor C

Figure 10: Speedup of bidirectional rejection sampler over exhaustive search based sampler, on different query structures.

complement+union/intersection simultaneously. This reduces
the complexity from O(V) to that of an intersection operation.
For example in (—a) A b, instead of first finding the comple-
ment of a (of complexity |O(V)[) and then do A (of complexity
O(|V —a|+|b|)), we can directory do set difference b —a (of com-
plexity O(|a| + |b|). The only exception is the relation projection
after the negation immediately. However there are other equiv-
alent forms for this expression and thus we explicitly exclude
such possibility in constructing the query structure.
With the analysis above, the bottleneck is the maximum number of
relation projections in any reasoning path (i.e., a path that connects
a leaf/anchor entity v € Vg and the root/answer entity V7).
We first define a set of functions:
e u(v): number of projections in the path from node v to root V»;
e s(v): the maximum length of path from v to any anchors. The
“length” is measured by the number of projections on that path.
e 0(v): the optimal cost of resolving all the reasoning paths that
includes v. Note this cost only cares the dominating one under
the big-O notation, not the cost of entire search/reasoning.
Note that the “cost” are measured in the logarithmic scale, as we
only care the dominating order of the polynomials in the complexity
calculation. We use p(v) to denote the parent of node v, and ch(v)
to denote the set of children. When v only has one child node, then
we overload ch(v) to denote that specific child. Then we can work
on the recursion as below:

u(v) = u(p(v)) +IsRel(v — p(v))
u(v), ifoeVy

o(v) = min{ mﬁz()o(z),max{u(v),s(v)}}, else

0, ifoeVy

s(0) = maXzech(v) s(2),
if edges between v and ch(v) are A or V
s(ch(v)) + NotNeg(ch(v) — v), else

IsRel(v — p(v)) returns 1 if the edge between v and p(v) represents
a relation projection and 0 otherwise; NotNeg(ch(v) — v) returns
1 if the edge between ch(v) and v is not negation and 0 otherwise.
After solving the above DP, we can construct the node cut from
solution o(-) in a top-down direction:
e Iffor any node v we have max, ¢ p(y) 0(2) larger than max {u(v), s(v)},
then we add v to node cut;
e Otherwise, we do the check recursively for z € ch(v).
The above procedure works linearly w.r.t. the size of g, which is
good enough for large queries containing hundreds of operations.
Example query structures and their optimal node cuts are shown in

1482

Figure 3. Note the structures considered in the current literature are
small enough to find the optimal cut with the brute force algorithms.
But our DP can greatly improve the efficiency when the query
structures are large enough in certain applications.

D FURTHER OPTIMIZATION OF SMORE

In addition to the above optimized system design for SMORE, there
are several other important optimization that further speeds up the
training, which we highlight below.

Sharing negative samples. Although with the asynchronous
design we can overlap the embedding R/W with GPU computation,
it is still important to keep the size of memory exchange small.
Inspired by Zheng et al. [31], we share the negative answers among
the queries in a mini-batch. Each mini-batch data is formatted
as (N, {(qi,(ti,ﬂqi}?il ,Mask), where N C V are the shared
negative answers for all queries. Mask € {0, I}MX‘N lis an indicator
matrix. Mask; j specifies whether the j-th entity in N is a negative
sample for g;.

Customized CUDA distance kernel. Given M queries and
negative answer candidates N, the computation of M X | N| pairs of
distances is model dependent. While distances like inner-product or
L2 can be implemented with efficient matrix multiplication, geome-
tries designed for multi-hop reasoning like box or beta distribution
requires more complicated distance metrics like KL divergence. We
provide a generic interface to parallelize the computation with cus-
tomized CUDA kernel, which also enables the operation fusion to
reduce GPU memory consumption.

E ADDITIONAL RESULTS ON
BIDIRECTIONAL REJECTION SAMPLER

Figure 10 shows the speed-up of bidirectional rejection sampler
over exhaustive samplers on several more query structures. Ours is
consistently significantly better than exhaustive traversal.

F BASELINE CODE

Following Marius [15], we adopt the same official release of DGL-KE
and PBG. For Marius, we use the release at https://github.com/marius-
team/marius/tree/osdi2021.

	Abstract
	1 Introduction
	2 Multi-hop reasoning on KG
	3 Efficient training data sampling
	3.1 Instantiating query structure
	3.2 Negative sampling

	4 Efficient training system
	4.1 Distributed training paradigm
	4.2 Asynchronous design

	5 Experimental results
	5.1 Experimental setup
	5.2 Scalability
	5.3 Predictive performance

	6 Conclusion
	Acknowledgments
	References
	A Query computation plan
	B Multi-hop reasoning models and neural logical operators
	B.1 Comparison with neural link predictor arakelyan2020complex

	C Reverse directional sampling
	D Further optimization of SMORE
	E Additional results on bidirectional rejection sampler
	F Baseline code

