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ABSTRACT

Embeddings, low-dimensional vector representation of objects, are
fundamental in building modern machine learning systems. In in-
dustrial settings, there is usually an embedding team that trains an
embedding model to solve intended tasks (e.g., product recommen-
dation). The produced embeddings are then widely consumed by
consumer teams to solve their unintended tasks (e.g., fraud detec-
tion). However, as the embedding model gets updated and retrained
to improve performance on the intended task, the newly-generated
embeddings are no longer compatible with the existing consumer
models. This means that historical versions of the embeddings can
never be retired or all consumer teams have to retrain their models
to make them compatible with the latest version of the embeddings,
both of which are extremely costly in practice.

Here we study the problem of embedding version updates and
their backward compatibility. We formalize the problem where the
goal is for the embedding team to keep updating the embedding
version, while the consumer teams do not have to retrain their
models. We develop a solution based on learning backward compat-
ible embeddings, which allows the embedding model version to be
updated frequently, while also allowing the latest version of the em-
bedding to be quickly transformed into any backward compatible
historical version of it, so that consumer teams do not have to re-
train their models. Our key idea is that whenever a new embedding
model is trained, we learn it together with a light-weight backward
compatibility transformation that aligns the new embedding to the
previous version of it. Our learned backward transformations can
then be composed to produce any historical version of embedding.
Under our framework, we explore six methods and systematically
evaluate them on a real-world recommender system application.
We show that the best method, which we call BC-Aligner, main-
tains backward compatibility with existing unintended tasks even
after multiple model version updates. Simultaneously, BC-Aligner
achieves the intended task performance similar to the embedding
model that is solely optimized for the intended task.!

!Code is publicly available at https://github.com/snap-stanford/bc-emb
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1 INTRODUCTION

Embeddings are widely used to build modern machine learning
systems. In the context of recommender systems, embeddings are
used to represent items and to capture similarity between them.
Such embeddings can be then used for many tasks like item recom-
mendations, item relevance prediction, item property prediction,
item sales volume prediction as well as fraud detection [18, 22].
The universality of embeddings and the proliferation of state
of the art methods to generate these embeddings [7] pose an in-
teresting challenge. Many machine learning practitioners develop
embeddings for a specific purpose (e.g., for item recommendation)
but then the embeddings get utilized by many other downstream
consumer teams for their own purposes and tasks. Oftentimes, the
number of such consumer teams is very large and hard to track. At
the same time, the original embedding team aims to further evolve
their embedding model architecture, training data, and training pro-
tocols, with the goal to improve performance on their specific task.
In this process, the embedding team generates new and improved
versions of the embeddings but these are incompatible with exist-
ing downstream consumer models. This means the downstream
consumers of these embeddings must retrain their models to use
the improved embeddings, or choose to stick with the older, poten-
tially poorer embeddings as inputs to their models. To maintain
compatibility with all the existing consumer tasks, the embedding
team needs to maintain all historical versions of their embedding
model, generate all historical versions of the embeddings and make
them available to the consumer teams. This means that the histori-
cal embedding models can never be retired and significant human
and computational resources are wasted. An alternative approach
would be to retire old versions of the embeddings and encourage
the consumer teams to retrain their models and migrate to the new
version of the embeddings. In practice, this is extremely hard. It can
take years before all the consumer teams move to a new version
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Figure 1: Problem formulation. The embedding team trains
embedding model M to solve their intended task T. The con-
sumer teams may then utilize the produced embeddings {zo}
to solve some unintended task Uj using consumer model
Co. The issue arises when the embedding team releases new
improved versions of the embedding model M;, My, ... over
time. At version k, the latest-version embedding model M
produces ver-k embeddings {z;} that are incompatible with
consumer model Cy that is trained on the ver-0 embeddings
{z0}. Our goal is to quickly transform the latest-version em-
bedding z;. into a backward compatible historical version
of it so that existing consumer models can readily use the
transformed embedding without being retrained.

of the embeddings, and the old versions can be retired. In general,
the problem of backward incompatible embeddings slows down
iteration cycles and leads to significant human and computing cost.

Present work: Backward compatible embeddings. Here we
study the problem of evolving embedding models and their back-
ward compatibility (Figure 1). We formalize a realistic setting where
the embedding team works on developing an embedding model M
that is trained to predict a given intended task T (intended for the
embedding team), e.g., item recommendation. Over time, the em-
bedding team adds new training data, keeps experimenting with
different model architectures, embedding dimensions, and hyper-
parameters, which results in evolving versions of the embedding
model, My, M1, Ma, .. ., where we use the subscript to indicate the
version. Given an input data point x, each such embedding model
M; produces its own D;-dimensional embedding z; = M;(x) € RD:,
Notice that at version k, we have k + 1 versions of embeddings
20, 21, - - -, 2§ for the same input data point x. We call z; ver-i em-
bedding of x. In practice, we have a collection of input data points,
for which we use the embedding model to generate the embeddings.
Such embeddings are then stored and shared with other teams. We
use {} to denote the collection of the generated embeddings, e.g.,
{z;.} denotes the collection of ver-k embeddings. Note that {z;}
can be refreshed frequently as new data points arrive, e.g., item
embeddings may be refreshed every day as new items/iteractions
arrive.

At the same time, we have many other consumer teams that
utilize the produced embeddings to solve their unintended tasks (un-
intended for the embedding team), e.g., fraud detection. Consider a
consumer team that started to use the embeddings at some version
Jj. They would use ver-j embeddings to train their consumer model
Cj for their own unintended task Uj. However, later ver-k embed-
dings (k > j) are generally incompatible with consumer model Cj;

3019

Weihua Hu et al.

Embedding team Consumer teams

Version update from k — 1 to k

For any past version j

Consumer model C;
(unintended task U;)

Ver-k-1 emb model M;_;
(intended task T)

Learn backward
transformation B,

Compose learned backward
transformations

Bji1 00 By

Ver-k emb model M;
(intended task T)

Figure 2: An overview of our framework. We train a new
embedding model M and a light-weight backward transfor-
mation function B by optimizing the two training objectives
simultaneously: (1) to solve the intended task T, and (2) to
align ver-k embeddings {z; } to ver-k — 1 embeddings {z;_;}
using By.. We use the latest-version embedding model M to
produce embeddings {z;} and store them. For any existing
consumer model C; requesting a ver-j compatible embed-
ding z;, we compose the learned backward transformations
as Bjyj o --- o By on-the-fly, i.e,zj = Bjy1 0 --- 0 Br(zg).

hence, C; cannot simply use ver-k embeddings as input. So, either
the consumer model C; need to be retrained and recalibrated on
the later ver-k embeddings, or both the old ver-j embeddings have
to be also maintained. Both solutions lead to significant cost and
overhead.

We first formalize the problem where the goal is for the embed-
ding team to keep improving and updating the embedding model,
while the existing consumer teams do not have to retrain their
models when a new version of the embedding model is released.
We then develop a solution based on learning backward compat-
ible embeddings (Figure 2), which allows the embedding model
version to be updated frequently, while also allowing the latest-
version embedding to be quickly transformed into any backward
compatible historical version of it, so that the existing consumer
teams do not have to retrain their models. Our key idea is that
whenever a new embedding model My, is trained, we learn it to-
gether with a light-weight backward (compatibility) transformation
By : RPk — RDPk1 that aligns ver-k embeddings zj. € RK to its
previous version z;_; € RK"1, ie, Bi(z;) ~ zj_;. At version k, we
maintain the learned By as well as all past backward transformation
functions learned so far: By, By, ..., B_;.

Importantly, our learned backward transformations can be com-
posed to approximate any historical version of the embedding.
Specifically, at version k, the latest-version embedding z; can be
transformed to approximate any historical ver-j embedding z;
(j < k) by Bj41 0--- 0 By_y o Br(2x) = zj, where o denotes the
function composition. We call the transformed embedding ver-j
compatible embedding, and denote it as z;. Because z; ~ zj, the
embedding Z; can be used by consumer model C; in a compatible
manner. The backward transformations are fast and lightweight so
they can be applied on-the-fly whenever a consumer team requests
a historical version of the latest-version embedding. Furthermore
our solution is fully inductive: given an unseen input data point
x, the learned backward transformations can be used to quickly
transform the newly-generated ver-k embedding z; = M (x) into
its historically compatible version z; for any j < k.
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At version k, we use the linear model for By and jointly train it
with My to solve the intended task T as well as to encourage By to
align the embedding output of My, to that of My_y, i.e., By o My ~
M;._;. Additionally, we develop a novel loss that suppresses the
amplification of the alignment error caused by the composition of
backward transformations. Altogether, we arrive at our proposed
method, which we call BC-Aligner. In addition, we consider five
other method variants under our framework, with different design
choices of By, loss function, and training strategy of By and M,
some of which includes prior methods [12, 16].

To systematically evaluate different methods, we introduce a re-
alistic experimental setting in the real-world recommender system
application [22]. We consider link prediction as the intended task
T, graph neural networks as the embedding model M, and propose
five different unintended tasks U that are of practical interest. We
empirically show that BC-Aligner provides the best performance
compared to the other method variants including the prior works.
BC-Aligner maintains nearly-perfect backward compatibility with
existing unintended tasks even after multiple rounds of embedding
model updates over time. Simultaneously, BC-Aligner achieves the
intended task performance comparable to the embedding model
that is solely optimized for the intended task.

Overall, our work presents the first step towards solving the
critical problem of incompatibility between the embedding model
and unintended downstream consumer models. We hope our work
spurs an interest in community to solve the new problem setting.

2 PROBLEM SETTING

Here we formalize our problem setting. We ground our application
to recommender systems, though our formulation is general and
applicable to broader application domains that use embeddings to
perform a wide range of tasks, such as computer vision, natural
language processing, search and information retrieval. The new
concepts and terminology introduced in this paper are bolded.

2.1 Terminology and Setting

We consider two types of machine learning tasks: The intended
task T and unintended tasks U. The intended task is the task that
the embedding team originally intended to solve and is solved by
using embeddings produced by a deep learning model, which we
call the embedding model M. This embedding model is trained
to solve the intended task T. At the same time, these embeddings
can be used by many consumer teams to solve their tasks that may
not be originally intended by the embedding team; we call such a
task the unintended task U. Precisely, to solve the unintended task
U, a consumer team trains their consumer model C on top of the
produced embeddings.

The above setting is prevalent in industry, where the produced
embeddings are widely shared within the organization to power
a wide variety of unintended tasks [22]. As a concrete example,
let us consider a recommender system application. The intended
task T could be user-item interaction prediction. We can use a
Graph Neural Network (GNN) [5, 22] as the embedding model M to
generate user and item embeddings, which are then used to produce
the likelihood score that the user will interact with a given item. At
the same time these embeddings can be used by many consumer
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teams to perform their unintended tasks. For instance, a consumer
team can use the item embeddings to build model C to solve the
task U of detecting fraudulent items.

Embedding model version updates. The embedding team up-
dates the embedding model M every once in a while to improve
the performance on the intended task T. We use My, M1, My, . .. to
denote the evolving versions of the embedding model, where M}
is the k-th model version. At version k, we learn M to solve T by
minimizing the objective:

Ly (Mg). (1)

Given single input data x, each ver-k embedding model M
produces ver-k embedding z; = M (x). The collection of the ver-
k embeddings is denoted as {z }, which is computed over current
sets of input data points and may be refreshed as new data arrives.
Moreover, for each version k, we consider a consumer team that uses
ver-k embeddings and consumer model Cy. to solve their unintended
task Uy.

Compatibility of embeddings. Different versions j < k of the
embeddings zj, z; may be incompatible because of the difference
between My and M; that generate them. This presents an issue
that consumer model C; trained on ver-j embeddings will not be
compatible with the later ver-k embeddings. Feeding z; into C;
will give random/arbitrary predictions.

To resolve this issue, in Section 3, we develop a cost-efficient
framework to generate ver-j compatible embedding z; from later-
version embedding z; such that feeding z; into C; gives robust
predictive performance. We consider the problem of backward
compatible embedding learning, i.e., learn to produce z; from
z;. for any historical version j < k.

2.2 Generality of our Setting

We show that the above simple problem setting is general enough
to capture complex real-world scenarios.

Complex embedding model evolution. Our assumption on the
evolving embedding model M is minimal: Each model version M
just needs to output an embedding given an input data point. Our
setting, therefore, allows different My ’s to have different internal
model architectures and output dimensionality. For instance, our
setting allows a later-version embedding model to use a more ad-
vanced model architecture.

Evolving training data and loss functions. Not only can differ-
ent My’s have different architectures, they can also be trained on
different data and with different loss functions. All such differences
are absorbed into ver-k-specific objective Ly in Eq. (1). For instance,
our setting allows later-version embedding model to be trained on
more data with an improved loss function.

Multiple different intended tasks. We consider a single shared
intended task T for simplicity, but our setting naturally handles
multiple intended tasks that are different for different embedding
model versions. This is because we only assume each M to be
trained on objective L, which can be designed to solve different
intended tasks for different version k.

Multiple consumer teams. For each version k, we consider a sin-
gle consumer team solving Uy using model Cy. for simplicity. How-
ever, our setting naturally handles multiple consumer teams using
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the same embedding version k. We can simply index the consumer
teams as solving Uy ¢, Uk 1, Uy 2, - - - using models Cy 9, C 1, C 2 - - -»
respectively.

3 METHODOLOGICAL FRAMEWORK

Here we present our framework to learn backward compatible
embeddings. At version k, our framework mainly keeps the latest
ver-k embedding model My and its generated embeddings {z };
hence, we say our framework follows the keep-latest (embedding
model) approach. We start by contrasting it with what we call
keep-all (embedding models).

3.1 Ideal but Costly Baseline: Keep-All

Given unlimited human and computational budget, we can simply
keep all versions of the embedding model My, My, . . ., M and let them
produce embeddings {zo}, {21}, ..., {z¢}. Then, forany j < k, {z;}
can be directly used by consumer model C; in a compatible manner.
We refer to this approach as keep-all (embedding models), which
we formalize below.

Training setting. At version k, we learn each My by minimizing
objective Ly of Eq. (1) to solve the intended task T. Once My is
trained to produce ver-k embeddings, a consumer team trains their
model Cy. on them to solve their unintended task Uy.

Inference setting. At version k, we keep all versions of the embed-
ding model learned so far: My, My, ..., M. To solve the intended
task T, we use the latest-version embedding model M} to produce
embeddings {z;} and store them. In addition, we use all the histor-
ical versions of the embedding model to produce the embeddings
{z0},{z1},...,{zk_1} and store all of them. For any j < k, we can
perform unintended task U; by simply feeding compatible embed-
dings {z;} to consumer model C;.

Issues with Keep-All. The issue with the keep-all approach is that
it is too costly in large-scale applications, e.g., web-scale recom-
mender systems that utilize billions of embeddings [22, 24]. This is
because embeddings need to be produced and stored for every ver-
sion.? The cost of maintaining all versions of the embeddings and
the embedding model quickly grows especially when the embedding
model version is updated frequently. Despite the impracticality, the
keep-all approach sets the high standard in terms of the intended
and unintended task performance, which we try to approximate
with our cost-efficient framework.

3.2 Our Framework: Keep-Latest

Our framework follows the keep-latest approach, where only the
latest-version embedding model and embeddings are kept at any
given timestamp.

Backward transformation. The key to our approach is to learn a
backward (compatibility) transformation By : RPk — RPk-1
that aligns ver-k embedding z;, € RP¥ to its previous version
zr_; € RPk-1, By has to be light-weight so that the alignment can
be performed cheaply on-the-fly. Whenever we update My_; to My,
we learn the backward transformation By, to align the output of My
back to that of Mj._;. At version k, we maintain all the backward

2We assume the inference cost of My is high, which makes it costly to infer ver-k
embedding every time it is requested.
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transformations learned so far: By, ..., Bg. Maintaining By, ..., By
is much cheaper than maintaining and storing all historical versions
of the embeddings {zo}, {z1}, ..., {zr_1}-

The key insight is that we can compose the backward transfor-
mations to align zj into any of its historical version j < k. Let us
introduce the composed backward function Bi = Bj4p 0+ 0 By.
We see that Bﬁ_l = By and Bi aligns ver-k embedding zj. to ver-j
embedding z;. As the alignment may not be perfect in practice, we

say Bi transforms z, into ver-j compatible embedding Zz;:

()

Our aim is to have z; ~ z; so that Z; can be fed into C; to give
robust predictive performance on unintended task Uj.

Zj =B, (z).

Function alignment. We wish to use B, to align z; = My (x) to
Z_1 = Myg_1(x) for every x, which reduces to aligning two func-
tions: B o M. and Mj._;. We introduce function alignment objective
Latign (Bg © Mg, My._1), which encourages the two functions to be
similar, i.e., given same input, produce similar output. We discuss
the specific realization of Lyj;gy in Section 3.2.2.

Training setting. We propose to add the function alignment ob-
jective Lyjigy, to the original objective Ly for solving T:

L (M) + A - Lyjign (B © Mg, My—1), 3)

where A > 0 is a trade-off hyper-parameter. At version k, parame-
ters of M and By are learned, and the parameters of the previous
version Mj._; are fixed. Once My and By are learned, we can safely
discard M._; because Mj_; can be approximately reproduced by
By o M.

Inference setting. At version k, we only need to maintain the
latest-version embedding model My, and a series of transformation
functions learned so far: By, . . ., Bg. Consider an ideal situation after
minimizing Eq. (3), where we have the perfect function alignment
for every version until version k. Then, we have the following single-
step equations:

Br oMy =Mg_q, Bp_ioMp_1 =Mg_o,..., BioM; =My. (4)

In this ideal situation, we see that the composed backward func-
tion in Eq. (2) can exactly reproduce any historical version of the
embedding model M;(j < k) as

(©)

In practice, each equation in Eq. (4) only holds approximately, and
the approximation error of Eq. (5) increases for smaller j or larger k
due to more accumulation of the single-step approximation errors
in Eq. (4). In our experiments, however, we find that the approxi-
mation error stays relatively stable over time and only increases
sub-linearly with larger k (i.e., using later-version embedding model
to approximate Mp). In Section 3.2.2, we mathematically analyze
the approximation error and provide a possible explanation for the
robust approximation performance even after multiple rounds of
model updates.

B] o My = M;.

Inductive capability. Eq. (5), or more realistically, Bi o My = Mj,
implies that our framework is fully inductive. Given unseen data x,
we can first obtain its latest ver-k embedding z; and store it. Then,
ver-j compatible embedding z; for any j can be quickly obtained by
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Bi(zk) and is expected to be similar to the actual ver-j embedding
zj = Mj(x). Importantly, Z; is obtained on-the-fly without being
stored nor requiring the past model M;. In our experiments, we
utilize this inductive capability of Bi to transform embeddings
unseen during training.

3.2.1 Choices of B. We want backward transformation By to be
light-weight. Here we consider two natural choices.

Linear. We use By (z;) = Wjzy, where W), € RPe-1%Dk jg 5
learnable weight matrix. In this case, Eq. (2) is written as

;j = Wizk, 6)
where W{C =Wj--Wie RP*Dk is pre-computed for every j.
NoTrans. As a baseline, we also consider not applying any trans-
formation to zj. In other words, our backward transformation
functions are all identity functions. This means that when training
My, the produced ver-k embedding zy is learned to be directly sim-
ilar to its previous version zj_;. Therefore, z; is directly backward

compatible with z;_; and any of its historical version z;. In the
case of Dy > Dy._;, we simply take the first Di._; elements of zj.

Remark on limited expressiveness of NoTrans. NoTrans seems
like a very natural solution to our problem as it enforces z; to be
directly similar to z;_; (e.g., by minimizing Euclidean distance be-
tween embeddings zj and z;_4). However, NoTrans is not desirable
when the embeddings suitable for performing the intended task
T change over time as a result of distribution shift. For instance,
in recommender systems, users’ interests and items’ popularity
change over time, so we want their embeddings to also change
over time, which is discouraged in the NoTrans case. In contrast,
the Linear case allows z; to be different from z;_;. The additional
expressiveness is crucial for z; to perform well on the intended
task T, as we will show in our experiments.

3.2.2  Choices of Lyjign and Preventing Error Amplification. Single-
step alignment loss. The role of the alignment objective Lyjigy
is to make By o M}, similar to M_;. We enforce the alignment on
a set of data points X = {x}, which we assume to be given. For
instance, in recommender systems, X can simply be all the users
and items. Then, our alignment objective becomes:

1

Latign (B © My, My_1) = X

D 1By © Mye(x) = My ()|
xeX

D Bk (zi) = 2 I

xeX

PN

xeX

-
1X]

1
= Xl (7

where 6 (x) = By (zx) — zj_1 is the single-step alignment error
between By (z;) and z;_; on a data point x.

While natural, it is unclear how well the single-step alignment
loss of Eq. (7) enforces the small multi-step alignment error 6{( (x) =

Bi (zx)—zj, where j < k—1.Below we mathematically characterize
their relation.
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Error amplification. Let us focus on the linear case of Eq. (6). Then,
the multi-step alignment error on a single data point x becomes:

®)

We note that Eq. (8) cannot be optimized directly because the keep-
latest approach assumes M; and z; are no longer kept when M is
being developed. However, we learn from Eq. (7) that all the his-
torical backward transformation weights W1, Wa, ..., W_{, have
been learned to minimize the L2 norm of the single-step alignment
errors, 81(x), 82(x), ..., 8x_1(x), respectively.

6ch(x) = Wizk - zj.

We can rewrite the multi-step alignment error 5’ (x) in Eq. (8)
using the single-step alignment errors, §;+1(x), 8j+2(x), ..., 8 (x):

81 (x) = Wl_ (Wizp) -z
=Wi_ (2 + 8k(x) - 2j

= {Wf;_z (Wi-12k-1) — Zj} + W£_15k(X)

= (Whizin = 25) + Wy 8jaa(0) 4+ W] 8(x)

©)

From Eq. (9), we see that the single-step errors are not simply added
up but are potentially amplified by the historical backward trans-
formation weights. We call this error amplification. Minimizing
the single-step error does not necessarily lead to the smaller ampli-
fied error, causing the large multi-step alignment error of Eq. (8) in
practice. This in turn deteriorates the unintended task performance.

= 8j01(x) + wjiﬂ(sm(x) ok WIS (x).

Multi-step alignment loss. To suppress the error amplification,
here we develop the multi-step alignment loss. We see from the last
term of Eq. (9) that the error 8 (x) made at version k (learning
M. and W) gets amplified by Wi_ , in the multi-step error ‘Sljc (x).
Our multi-step alignment loss explicitly suppresses the amplified
error for every j =0,...,k—2,k—1:

e (Iwe el o+ [wh2seco| + [wiztoeco| )

(10)

where we note that W]]zj = I. Thus, our multi-step alignment loss
ensures the error 6 (x) made at version k would not get amplified
when we compute its historical version z; for any j < k.

The final multi-step alignment loss is the average of Eq. (10)
over x € X, analogous to Eq. (7). Although Eq. (10) contains k
terms, computing the loss itself is often much cheaper than comput-
ing embedding z, so Eq. (10) adds negligible computational cost
compared to the single-step loss of Eq. (7).

Remark on the NoTrans case. We note that NoTrans method
does not suffer from the error amplification. To see this, we can
replace all the weight matrices in Eq. (9) with identity matrices,
resulting in the simple additive accumulation of the non-amplified
errors. However, NoTrans suffers from the limited expressiveness,
as discussed in Section 3.2.1.

Remark on Error Accumulation. As shown in Eq. (9), both the
Linear and NoTrans would suffer from the additive accumulation
of the single-step errors. However, in practice, the L2 norm of the
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Table 1: A set of all 6 method variants we consider under our
framework. We vary transformation function (linear vs. no
transformation), alignment loss function (single- vs. multi-
step) and alignment (joint vs. posthoc)®.

Trans function / Lyjign Joint-Align Posthoc-Align

Weihua Hu et al.

Table 2: Statistics of 3 different dynamic datasets we use.

Dataset Feature stats

#Users #ltems #Interact. #Brands #Sub cat.
Musical Instruments 27,530 10,611 231,312 391 349
Video Games 55,223 17,389 496,315 330 149
Grocery 127,496 41,280 1,143,063 1,806 774

Joint-Lin-SLoss
Joint-Lin-MLoss
(BC-Aligner)

Joint-NoTrans [16]

Post-Lin-SLoss [11]
Post-Lin-MLoss

Linear / Single-Step-Loss
Linear / Multi-Step-Loss

NoTrans / Single-Step-Loss Non-BC

multi-step error grows gradually (Figure 3). As a result, the unin-
tended task performance stays robust even after multiple rounds
of embedding version updates (Figure 4)

3.2.3 Choices of Training Strategies of Br.. We consider two strate-
gies to train By via Eq. (3).

Joint-Align. We jointly train By with M to minimize Eq. (3).
Posthoc-Align. We first train My to minimize Ly. We then fix M
and train By to minimize Lyjig, in a post-hoc manner.

3.24 Method Variants. In all, we explore six different method vari-
ants under our framework, as shown in Table 1. We note that the
techniques used in some method variants were already presented
by prior works in different contexts. Specifically, the Joint-NoTrans
was originally presented by [16] in the context of backward com-
patible representation learning in open-set image recognition. The
Posthoc-Lin-SLoss is broadly adopted in cross-lingual word embed-
ding alignment [11]. Details discussion are in Section 6.
Empirically, we will show that these two variants are outper-
formed by the best method under our framework, namely Joint-
Lin-MLoss. We give a special name to this method, BC-Aligner.

4 EVALUATION FRAMEWORK

Here we present an evaluation framework to measure the success
of the keep-latest approach presented in Section 3. We consider
a series of embedding model updates, My, - - - , Mg to improve the
performance of the intended task T. At the same time, consumer
teams train their models to solve their unintended tasks. Without
loss of generally, we consider multiple consumer teams that use
ver-0 embeddings (generated by Mp) to solve their unintended tasks.

We provide three summary metrics calculated at every version
k=0,1,...,K. To make the comparisons meaningful, we assume
the keep-all and keep-latest approaches share the same base objec-
tive L and model architecture M. for every k.

(1) Degradation of intended task performance compared to
keep-all. The keep-all approach provides an upper bound in terms
of the intended task T performance, as M is solely optimized for L.
Note, however, that this upper bound is impractical to achieve in
most settings, as the keep-all approach is prohibitively costly. The
keep-latest approach (and potentially other approaches) needs to
maintain backward compatibility in addition to optimizing for Ly,
which could deteriorate its intended task performance. Therefore

3The NoTrans model does not require the multi-step alignment loss. The combination of
the NoTrans model and the Posthoc-Align does not guarantee backward compatibility,
as the identity has no parameter to learn in the post-hoc alignment stage; hence, we
call it “Non-BC”.
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we measure the intended task performance degradation compared
to My, trained solely with Ly.

(2) Degradation of unintended task performance compared
to keep-all. The keep-all approach also provides an upper bound
in terms of the unintended task Uy performance. This is because
consumer model Cy is optimized to perform well on ver-0 embed-
dings, which can be directly produced by the keep-all approach
via kept Mp. On the other hand, at version k, the keep-latest ap-
proach does not have access to My and can only approximate z
by backward compatible embedding Zzj. Therefore, we measure
the unintended task Uy performance degradation when using ver-0
compatible embedding Zzy instead of the actual ver-0 embedding zy.

(3) Embedding alignment error. Metric (2) above is dependent
on the choice of the unintended task Uy, which may not cover the
entire spectrum of unintended tasks for which the embeddings
can be used. It is therefore useful to have task-agnostic metric that
generally correlates well with a wide range of unintended tasks. To
this end, we propose to measure the embedding alignment error
between zj (e.g., we use By o -+ o By (z;) in our methods) and
the actual zy. We calculate it as the L2 distance between zy and z,
which we then average over a set of data points.

5 EXPERIMENTS

We evaluate our methods following the evaluation protocol pre-
sented in Section 4. We start with introducing a new benchmark in
Section 5.1. Then, we present experimental results in Section 5.2.

5.1 Recommender System Benchmark

5.1.1  Overview. We consider evolving user-item bipartite graph
datasets in recommender systems, where new users/items and their
interactions appear over time. As the intended task, we consider
the standard user-item link prediction task, and use GNNs trained
on this task as the embedding model that generate user/item em-
beddings. To simulate the phenomenon of increasing dataset sizes
and model capabilities over time, we consider larger GNN models
trained on more edges over time. We consider five different unin-
tended tasks that are of interest to practitioners. Below we explain
the benchmark in more details.

5.1.2  Datasets. We use public Amazon Product Reviews dataset*
that contains timestamped Amazon product reviews, spanning May
1996 - July 2014 [13]. The entire dataset is partitioned according to
the categories of products/items. In our experiments, we use the
datasets from three categories: Musical Instruments, Video Games,
and Grocery. Each item has brand and subcategory features, that can
be expressed as multi-hot vectors. User features are not available
in this dataset. Dataset statistics is summarized in Table 2.

4 Available at https://jmcauley.ucsd.edu/data/amazon/
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Table 3: Results over 3 dataset. Absolute performance of the Keep-All is included in brackets. For all the metrics, the relative
degradation is computed after the average is taken across different timestamps and the five unintended tasks. We see from the
3rd column that the BC-Aligner provides the best trade-off between the intended and unintended task performance, yielding

the closest performance to the costly Keep-All approach.

(1) Intented task  (2) Unintended task (1)+(2) (3) Emb
Dataset Approach  Method Degradation from  Degradation from  Degradation from  Align
Keep-All (%) T Keep-All (%) T Keep-All (%) T Error |
Keep-All Keep-All (Abs. perf.) -0.00 (12.13) -0.00 (68.66) -0.00 0.00
Keep-Mo Fix-M, -26.81 -0.00 -26.81 0.00
Finetune-M [3] -7.69 -7.46 -15.15 1.01
Non-BC -0.00 -26.45 -26.45 2.61
Musical Post-Lin-SLoss [11] -0.00 -10.25 -10.25 1.27
Instruments Keep-Latest Post-Lin-MLoss -0.00 -14.43 -14.43 1.34
Joint-NoTrans [16] -9.00 -0.80 -9.80 0.41
Joint-Lin-SLoss -3.67 -1.07 -4.74 0.48
BC-Aligner -2.96 -0.65 -3.62 0.38
Keep-All Keep-All (Abs. perf.) -0.00 (12.69) -0.00 (72.76) -0.00 -0.00
Keep-Mp Fix-M, -25.55 -0.00 -25.55 0.00
Finetune-M [3] -10.61 -6.72 -17.32 0.87
Non-BC -0.00 -30.81 -30.81 2.65
Video Post-Lin-SLoss [11] -0.00 -8.25 -8.25 1.10
Games Keep-Latest Post-Lin-MLoss -0.00 -14.56 -14.56 2.51
Joint-NoTrans [16] -9.12 -0.62 -9.74 0.32
Joint-Lin-SLoss -3.98 -1.03 -5.01 0.40
BC-Aligner -3.35 -0.59 -3.94 0.28
Keep-All Keep-All (Abs. perf) -0.00 (7.78) -0.00 (65.82) -0.00 -0.00
Keep-Mo Fix-M, -27.79 -0.00 -27.79 0.00
Finetune-M [3] -24.74 -5.52 -30.26 1.12
Non-BC -0.00 -22.07 -22.07 2.69
Grocery Post-Lin-SLoss [11] -0.00 -6.36 -6.36 1.30
Keep-Latest Post-Lin-MLoss -0.00 -15.69 -15.69 4.84
Joint-NoTrans [16] -11.31 -0.33 -11.64 0.18
Joint-Lin-SLoss -2.90 -2.17 -5.07 0.52
BC-Aligner -3.21 -0.07 -3.28 0.13
—e— Keep-All —e— Joint-NoTrans —@— Joint-Lin-SLoss —e— BC-Aligner
) Intended task performance over time @ Unintended task performance over time &) Embedding alignment error over time
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Figure 3: Performance over time. For the sub-figures (1) and (2), we plot the relative performance degradation from Keep-All in

the y-axis (closer to zero, the better).

The datasets can be naturally modeled as evolving graphs, where
nodes represent users/items, and each edge with a timestamp rep-
resents a user-item interaction, i.e., a user review an item at the
particular timestamp. We scale the timestamp between 0 and 1,
representing the ratio of edges observed so far, e.g., a timestamp of
0.6 means 60% of edges have been observed until that timestamp.
This allows us to compare methods across the datasets.

We consider embedding models to be updated at ty = 0.5,¢; =
0.6, ...tg = 0.9, K = 4. In total, five versions of the embedding model
are developed. We use Ej. to denote the set of all edges up to f.
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5.1.3 Intended Task. As the intended task, we consider the stan-
dard link prediction in recommender systems. [19]. At every times-
tamp #; for k = 0,..., K, we train My on Ej. and use it to predict on
the edges between time t;. and g, i.e., Ex,q \ Eg, where tg1 =1
by construction. We follow the same strategy as [6, 19] to train and
evaluate M. Specifically, given user/item embeddings generated
by My, we use the dot product to score the user-item interaction
and use the BPR loss [14] to train My. We then evaluate My on
Epy1 \ Ex using Recall@50.

5.1.4 Embedding Models. We use the GraphSAGE models [5] as
our core embedding models. To simulate the updates in model
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Figure 4: Unintended task performance degradation of BC-
Aligner compared to Keep-All (dotted line) over time. The
performance degradation of each unintended task stays rela-
tively stable over time.

architecture over time, we start with a small GraphSAGE mode
at tp and make it larger (both deeper and wider) over time. Please
refer to Appendix A.1 for more details.

5.1.5 Methods and Baselines. We consider the six methods under
our framework, as depicted in Table 1. They all follow the cost-
efficient Keep-Latest approach. For the joint-training methods, we
set A = 16 in Eq. (3) unless otherwise specified.

We also consider the following two cost-efficient baseline meth-
ods that only keep the ver-0 embedding model M (as opposed to the
latest embedding model); we group the methods under Keep-Mp.

Fix-My. We train My at timestamp f( and fix its parameters through-
out the subsequent timestamps. For all the timestamps, the same
My is used to perform the link prediction task as well as to generate
the embeddings for the unintended tasks. As ver-0 embeddings
are always produced, there is no backward compatibility issue for
Fix-My. However, the method always uses My and cannot benefit
from additional data and better model architectures available in the
future. This will impact performance on the intended task T.

Finetune-M,. We also consider a method more advanced than the
Fix-Mj, originally introduced by [3]. Specifically, we train My at
timestamp #o. Then, in the subsequent timestamp #; with 1 < k,
we finetune Mj._; to obtain M. Note that fine-tuning allows My
to learn from more data over time. However, the approach cannot
benefit from improved model architecture over time, as fine-tuning
is not possible for different model architectures.

We evaluate the methods against the costly Keep-All approach
by measuring the performance degradation and the embedding
alignment error explained in Section 4. We specifically consider

the relative performance degradation in %, which is calculated as
100- (Perf—Peereep,An)

PeereepfAll
interest. The value should be negative in most cases (as Perf Keep—All

is the upper bound); the closer to zero, the better. The trained My
is exactly the same across all the methods, as all the methods train
My using only Ly and the same random seed.

Note that at every timestamp, we encounter new data (e.g., ex-
isting users/items with more interactions, new users/items), which
are never seen at previous timestamps. As our embedding model

, where Perf is the performance of a method of
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and transformations are inductive, we can generate backward com-
patible embeddings zy on the new data and make its prediction.

5.1.6  Unintended Tasks. We prepare five unintended binary classi-
fication tasks that include prediction on users, items, and user-item
interactions. We utilize the review rating information in design-
ing the unintended tasks, which is not used by the intended link
prediction task. For all the tasks, we use 1-hidden-layer MLPs and
evaluate the performance using ROC-AUC. Refer to Appendix A.2
for details.

User activity prediction: Predict whether a given user will
interact with at least a single item in the near future.

User positive activity prediction: Predict if a given user
will have at least one positive interaction in the near future.
Item rating avg prediction: Predict whether the average
rating of a given item until the near future will be above a
threshold.

Item rating std prediction: Predict whether the standard
deviation of the ratings of a given item until the near future
will be above a threshold.

Edge rating prediction: Predict whether a given user will
give a positive rating to a given item.

5.2 Results

In Table 3, we summarize the averaged results of different methods
on the three metrics presented in Section 4, namely, (1) intended task
degradation, (2) unintended task degradation, and (3) alignment
error. We use the simple addition of intended task degradation and
unintended task degradation as the unified metric to capture the
trade-off between the intended and unintended task performance.

First, we observe high correlation between the unintended task
degradation and alignment error; the smaller the unintended task
performance degradation is, the smaller the embedding alignment
error is. This validates our claim that alignment error can be used
as a general proxy for unintended task performance degradation.

Second, Non-BC suffers from large unintended task degradation
and alignment error, as the new versions of the embedding model
are not trained to be backward compatible.

Third, we see that Fix-My suffers from large intended task degra-
dation, indicating that it is highly sub-optimal to not update the
embedding model over time to improve the intended task perfor-
mance. The more advanced Finetune-Mj [3] still suffers from large
intended task degradation due to its inability of adopting the new
model architectures over time. Moreover, the unintended task per-
formance of Finetune-M, degrades by 5-7%, implying that fine-
tuned embedding models are generally no longer compatible with
the original model.

Fourth, Post-Lin-SLoss [11] performs poorly on unintended task,
degrading the performance by 6-10%. This is likely due to the large
embedding alignment error.

Fifth, Joint-NoTrans [16] provides the small unintended task
degradation and alignment error, but falls short on the intended task,
degrading its performance by 9-11%. Compared to Joint-NoTrans,
Joint-Lin-SLoss produces gives smaller intended task degradation.
However, Joint-Lin-SLoss performs relatively poorly on unintended
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Figure 5: Performance as a function of the trade-off hyper-parameter A. For sub-figures (1) and (2), we plot the relative

degradation from Keep-All (closer to zero, the better).

tasks, degrading the performance by 1-2%. As we will see in Fig-
ure 3, this is possibly due to the amplification of the single-step
embedding alignment error.

Overall, BC-Aligner provides the best trade-off between the
intended and unintended task performance, only suffering from
around 3% (resp. 0.5%) degradation in the intended (resp. unin-
tended) task performance. It also achieves the smallest embedding
approximation error among all the methods.

From now on, we consider the Musical Instruments dataset for all
results. We focus on the three methods that give the most promising
averaged results: Joint-NoTrans, Joint-Lin-SLoss, and BC-Aligner.

Results over time. Figure 3 shows the intended task degradation,
unintended task degradation, and alignment error over time. For
all the metrics, we observe that BC-Aligner provides the best per-
formance across almost all the timestamps. In Figure 3 (3), we see
the sharp increase in the embedding alignment error over time
for Joint-Lin-Sloss. This is likely due to the error amplification, as
the single-step error (the error at t = 0.6) is comparable across
the methods. Indeed, once the multi-step alignment loss is used in
BC-Aligner, the embedding alignment error increases less sharply.

Results on each unintended task performance over time. Fig-
ure 4 shows the performance degradation of each unintended task
over time, when BC-Aligner is used. We see that the degradation
from Keep-All is relatively stable over time.

Averaged results with varying A. Figure 5 shows how the trade-
off parameter A in Eq. (3) affects the three metrics. We consider
A€ {1,2,4,8,16,32}, and the results are averaged over timestamps
and unintended tasks. As we increase 4, all the methods have larger
degradation in the intended task performance, smaller degradation
in the unintended task performance, and smaller embedding align-
ment error, as expected. For fixed A, BC-Aligner often gives the
best or comparable performance compared to the other methods.
In practice, A should be chosen based on the trade-off one wants to
achieve between the intended and unintended task performance.

6 RELATED WORK

Backward compatible representation learning. Our problem
formulation shares a similar motivation as [16], which considers
backward compatible representation learning for open-set image
recognition. Meng et al. [10], Shen et al. [16] update the embedding
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model so that embeddings computed by the updated model are
directly comparable to those generated by the previous model. Our
work differs from this work in two aspects. First, Shen et al. [16]
only considers a single task of interest (face recognition), while our
work considers a more practical scenario of having both intended
and unintended tasks and evaluates the trade-offs between the two.
Second, Shen et al. [16] mainly consider single-step backward com-
patibility, while we focus on multi-step backward compatibility. We
show that our novel multi-step alignment loss achieves very small
degradation of unintended task performance even after multiple
version updates.

Embedding alignment. Our work builds on cross-lingual em-
bedding alignment methods, where source word embeddings are
aligned to target embeddings by learning a linear transformation
function [1, 2, 9, 12, 15, 20, 21]. Tagowski et al. [17] applies the
embedding alignment technique to the graph domain, where they
align a set of node2vec embeddings [4] learned over different snap-
shots of an evolving graph. However, all these methods assume the
embeddings are fixed, which could result in a large alignment error
if two sets of pretrained embeddings are very distinct [23]. Unlike
these methods, we jointly learn the embeddings along with the back-
ward transformation function, achieving much better alignment
performance and better unintended task performance.

7 CONCLUSION

In this paper, we formulated the practical problem of learning back-
ward compatible embeddings. We presented a cost-efficient frame-
work to achieve the embedding backward compatibility even after
multiple rounds of updates of the embedding model version. Un-
der the framework, we proposed a promising method, BC-Aligner,
that achieves a better trade-off between the intended and unin-
tended task performance compared to prior approaches. There are
numerous future directions to investigate. For instance, the trade-
off could be further improved by using more expressive backward
transformation functions with non-linearity. It is also of interest to
assume some partial knowledge about the unintended tasks (e.g.,
the pre-trained consumer models are accessible to the embedding
team) to actually improve the unintended task performance without
re-training the consumer models. Finally, it is useful to apply our
framework to other applications domains, such as those involving
sentence and image embeddings.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 Embedding Models

We evolve the GraphSAGE embedding models as follows. For the
Musical Instruments and Video Games, we start with a 2-layer
GraphSAGE model with the hidden dimensionality of 256 at fg.
Then, we increase the layer size to 3 at t2 and increase the hidden
dimensionality by 64 at every timestamp. For the Grocery dataset,
we use smaller models due to the limited GPU memory; we start
with a 1-layer GraphSAGE model with hidden diemensionality of
256 at tp. Then, we increase the layer size to 2 at t; and increase
the hidden dimensionality by 64 until ¢,. All the models are trained
for 500 epochs with Adam [8], with a learning rate of 0.001, and
the weight decay of 0.01.

A.2 Unintended Tasks

In designing unintended tasks, we utilize the review rating infor-
mation associated with each edge, which takes an integer value
of between 1 and 5. Below we explain each unintended task, how
training is performed on ver-0 embeddings and how predictions
are made at each timestamp. We let Vk(user) and Vk(ltem) denote the

set of users and items appearing at least once in Ej.
e User activity prediction: Given a user embedding obtained
at t;, we predict whether the user will interact with at least
a single item between t;. and t,;. At training time, we train
on users in Vo(user) at t(, and validate on users in Vl(user) at
1. At test time t, 2 < k, we make predictions on users in

V(user).
k

o User positive activity prediction: The task is the same as
the above, except that we predict whether a user will have
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at least one positive interaction with an item (i.e, rating > 4)
or not.

e Item rating avg prediction: Given an item embedding ob-
tained at t;, predict the average rating of the item until fz,
where we only consider items that receive more than 10
reviews until t.. We binarize the average rating by thresh-
olding it at the median value at ty. At training time fo, we
train on items in Vo(ltem) for the average item rating until #o
and validate on the average item rating until ;. At test time
tr, 1 < k, we make predictions on items in V(ltem).

e Item rating std prediction: The task is the same as the
above, except that we predict the standard deviation of the
item ratings. The standard deviation is binarized by thresh-
olding at 1.

o Edge rating prediction: Given a pair of user and item em-
beddings at #;, predict whether the user gives a positive
rating (i.e., > 4) to the item between t; and fg,. At training
time #p, we train on edges in Ey and validate on edges in
Ej \ Ep. At test time #;, 1 < k < K, we make predictions on
edgesin Epyq \ Eg.

Note that the test prediction for the first two tasks is performed
for t,2 < k, while the test prediction for the last three tasks is
performed for t;,1 < k. This is because the first two tasks are

predicting future activity of existing users.
All the tasks are binary classification, and we use ROC-AUC

on the test set series as the performance metric. All consumer
models are 1-hidden-layer MLP models and are trained on ver-0
embeddings generated by M. For each task, we tune the hidden
embedding dimensionality from {128, 256, 512, 1024}, the dropout
ratio from {0, 0.25,0.5}, and performed early-stopping based on
performance on the validation set. We report the unintended task
performance averaged over 10 random seeds.
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