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Permutation groups with few orbits on the power set. II

By MICHAEL GINTZ (Princeton), MATTHEW KORTJE (Columbus),
MEGAN LAURENCE (Notre Dame), ZILI WANG (Berkeley)

and YONG YANG (San Marcos)

Abstract. We continue the study of permutation groups acting on the power

set P({1, 2, . . . , n}). Permutation groups must have a minimum of n + 1 set-orbits.

Previously in [3], the authors of that paper used GAP to classify permutation groups

with a low number of orbits for permutation groups having n + r set-orbits for some

given 2 ≤ r ≤ 15. We develop improvements to their theory and algorithms in GAP to

classify further cases, from 16 ≤ r ≤ 33.

1. Introduction

We begin with some definitions and notations we will use throughout this

paper. Let Ω = {1, 2, . . . , n}, where n ≥ 2 is some positive integer. Let G be

a subgroup of Sn, whereG acts on Ω with the actionG×Ω → Ω where (g, x) 7→ gx.

The permutation groupG has degree n, and the action ofG on Ω naturally induces

an action of G on P(Ω). This is defined by the mapping G × P(Ω) → P(Ω),

where G acts on subsets of Ω and (g,X) 7→ gX = {gx : x ∈ X}. It is clear

from the definition that G takes a t-element subset of Ω and maps it to another

(perhaps identical) t-element subset, and these orbits under the action shall be

named set-orbits. We will denote the number of t-element set-orbits for some given
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0 ≤ t ≤ n as st(G). Since Ω has at least n+1 different sizes of subsets, it follows

that the total number of set-orbits, which we denote as s(G), will be at least n+1.

Furthermore, we can calculate s(G) by finding the total number of different t-set-

orbits, which is any set-orbit with sets of size t. Thus s(G) =
∑n

t=0
st(G).

If a group G is transitive on Ω, then for any x, y ∈ Ω, there exists g ∈ G such

that gx = y. Thus this motivates the following definition.

Definition 1.1 (Beaumont and Peterson [2]). Given an integer 0 ≤ t ≤ n,

a permutation group G on n letters is called t-set-transitive if for all t-element

subsets S, T ⊆ Ω, there exists g ∈ G such that gS = T .

The minimum number of set-orbits that can be achieved is n+ 1, when G is

t-set-transitive for every possible value of t. Hence we present the next definition.

Definition 1.2 (Beaumont and Peterson [2]). A permutation group G on n

letters is called set-transitive if G is t-set-transitive for all integers 0 ≤ t ≤ n.

With some preliminary definitions out of the way, we now discuss past

progress on this topic and our goal in this paper. We consider the following clas-

sification question:

Given some integer r ≥ 1, what are all permutation groups G such that s(G) =

n+ r, where n is the degree of the permutation group?

Set-transitive groups were studied as early as 1944 by Neumann and Mor-

genstern [6]. The case for set-transitive groups when r = 1 is answered in full

by Beaumont and Peterson in [2]. Their main result was that a group G that does

not contain the alternating group An cannot be ⌊n
2
⌋ set-transitive, and thus not

set-transitive, with exceptions only when n = 5, 6, 9, and proceeded to classify

all such exceptions. In [3], an algorithm using GAP [4] was developed to fully

classify the cases for 2 ≤ r ≤ 15, which will be discussed in greater detail later

in this paper. The issues preventing further classification included the computa-

tional challenges of calculating subgroups of Sn, and determining the number of

set-orbits for a large group. The first issue can be addressed using improved the-

ory, while the second can be addressed with improved algorithms in GAP. In this

paper, we successfully classify all the cases for 16 ≤ r ≤ 33.

2. Lemmas

The following lemmas appeared in [3]. As they were also used in this classi-

fication, we list them here for easy reference.
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Lemma 2.1. Let G be a permutation group on n letters, and let 0 ≤ t ≤ n

be an integer. Then st(G) = sn−t(G).

Lemma 2.2. LetG be a permutation group on n letters, and suppose s(G) =

n+ r.

(1) If r is even, then n is even.

(2) If r is odd and n is even, then sn/2(G) is odd.

Lemma 2.3. Given a permutation group G on n letters and an integer

1 ≤ t ≤ n
2
, we have st−1(G) ≤ st(G).

The following results are in [1].

Lemma 2.4. If L ≤ G ≤ Sym(Ω), then s(G) ≤ s(L) ≤ s(G) · |G : L|.

Lemma 2.5. Assume G is intransitive on Ω and has orbits Ω1, . . . ,Ωm. Let

Gi be the restriction of G to Ωi. Then

s(G) ≥ s(G1)× · · · × s(Gm).

Lemma 2.6. Let G be a transitive permutation group acting on a set Ω,

where |Ω| = n. Let (Ω1, . . . ,Ωm) denote a system of imprimitivity of G with

block-size b (1 ≤ b < n; b = 1 if and only if G is primitive; bm = n). Let

Gi = StabG(Ωi), and denote s = s(G1). Then

s(G) ≥

(

s+m− 1

s− 1

)

≥

(

b+m

b

)

.

It should be noted that Lemma 2.2 provides conditions that allow us to avoid

calculating the set-orbits of groups of particular degrees. Lemmas 2.1 and 2.3

can be used to provide lower bounds for the number of set-orbits a groups has.

Lemmas 2.5 and 2.6 provide conditions under which we may eliminate certain

cases for transitive and intransitive groups. Lemma 2.5 is used frequently to con-

sider intransitive cases for a group G on n letters with n ≥ 12.

Using Lemmas 2.1 and 2.3, it is simple to show that if G acts on n letters and

r < n, then G must be transitive. We can show that G must be primitive rather

than just transitive. This greatly reduces the computation necessary to classify

groups on large values of n as there are relatively few primitive groups.

Proposition 2.7. Let ab = cd = n, where a ≤ b and c ≤ d and a < c and

a, b, c, d, n ∈ N. Then
(

a+b
a

)

≤
(

c+d
c

)

.
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Proof. Assume the hypothesis. First, note that by Vandermonde’s Identity

we have

(

a+ b

a

)

=

a
∑

i=0

(

a

a− i

)(

b

i

)

,

(

c+ d

c

)

=

c
∑

k=0

(

c

c− k

)(

d

i

)

.

We proceed by induction on the terms of the sums, up to a, since a < c (we show

that the desired inequality holds for each term in the sum). We note that

(

a

a− 0

)(

b

0

)

= 1 ≤ 1 =

(

c

c− 0

)(

d

0

)

.

Assume the result holds for ℓ < a. That is,
(

a
a−ℓ

)(

b
ℓ

)

≤
(

c
c−ℓ

)(

d
ℓ

)

. We show the

result holds for ℓ+ 1 ≤ a. First note that since a+ b ≥ c+ d, we have

− ℓa− ℓb ≤ −ℓc− ℓd, ab− ℓa− ℓb+ ℓ2 ≤ cd− ℓc− ℓd+ ℓ2,

(a− ℓ)(b− ℓ) ≤ (c− ℓ)(d− ℓ), 1 ≤
(c− ℓ)(d− ℓ)

(a− ℓ)(b− ℓ)
.

Therefore, we have

(

a

a− (ℓ+ 1)

)(

b

ℓ+ 1

)

=
a!b!

(a− (ℓ+ 1))!(ℓ+ 1)!(ℓ+ 1)!(b− (ℓ+ 1))!

≤
a!b!

(a− (ℓ+ 1))!(ℓ+ 1)!(ℓ+ 1)!(b− (ℓ+ 1))!
·
(ℓ+ 1)2(c− ℓ)(d− ℓ)

(ℓ+ 1)2(a− ℓ)(b− ℓ)

=
a!b!

(a− ℓ)![(ℓ)!]2(b− ℓ)!
·
(c− ℓ)(d− ℓ)

(ℓ+ 1)2
=

(

a

a− ℓ

)(

b

ℓ

)

·
(c− ℓ)(d− ℓ)

(ℓ+ 1)2

≤

(

c

c− ℓ

)(

d

ℓ

)

·
(c− ℓ)(d− ℓ)

(ℓ+ 1)2
(by the inductive hypothesis)

=
c!d!

(c− ℓ)![ℓ!]2(d− ℓ)!
·
(c− ℓ)(d− ℓ)

(ℓ+ 1)2
=

c!d!

(c− (ℓ+ 1))![(ℓ+ 1)!]2(d− (ℓ+ 1))!

=

(

c

c− (ℓ+ 1)

)(

d

ℓ+ 1

)

.

Thus, the result holds. □

Proposition 2.8. For all groups G acting on n elements with s(G) = n+ r

and n > r ≥ 11, G must be a primitive group.
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Proof. First of all, ifG is intransitive, then s1(G) ≥ 2, and using Lemma 2.1

and 2.3 together, we have that s(G) ≥ 2 + 2(n− 1) = 2n > n+ r. Thus G must

be transitive, and now we show G must also be primitive.

Suppose that G is imprimitive, and let (Ω1,Ω2, . . . ,Ωm) denote a non-trivial

system of imprimitivity of G with block size j such that j ≥ 2 and m ≥ 2.

We know that n cannot be a prime, or it would be impossible that n = mj.

In Lemma 2.6, we have that s(G) ≥
(

j+m
j

)

, and we seek to show that
(

j+m
j

)

≥

2n > n + r. Let a = min(j,m) and b = max(j,m). Then for even n, we only

need to consider when a = 2, since Proposition 2.7 guarantees that any other

non-trivial factorization of n yields larger lower bounds. We prove the even case

inductively. For n = 12 = 2× 6, we see that
(

2+6

2

)

= 28 > 24 = 2n. We have our

base case and so suppose the proposition holds for some even n ≥ 12. That is,
(

a+b
2

)

≥ 2n where a = 2 and b = n
2
. Then n+ 2 = a(b+ 1). We have that:

(

a+ b+ 1

2

)

=
1

2
(a+ b+ 1)(a+ b) =

1

2
(a+ b)(a+ b− 1) + (a+ b)

=

(

a+ b

2

)

+ a+ b ≥ 2n+ 4 = 2(n+ 2).

Next, we consider when n is odd, and so n = ab means that b ≥ a ≥ 3, and

that b2 ≥ ab. Since the binomial coefficients
(

n
k

)

form an increasing sequence for

k ≤ n/2, we have that:

(

j +m

j

)

≥

(

j +m

3

)

=

(

a+ b

3

)

=
(a+ b)(a+ b− 1)(a+ b− 2)

6
.

Thus, we may prove that 6
(

a+b
3

)

≥ 6(2n) = 12ab.

6

(

a+ b

3

)

= (a+ b)(a+ b− 1)(a+ b− 2)

= a3 + 3a2b− 3a2 + 3ab2 − 6ab+ 2a+ b3 − 3b2 + 2b

≥ 3a2 + 9ab− 3a2 + 9b2 − 6ab+ 2a+ 3b2 − 3b2 + 2b

= 3ab+ 9b2 + 2a+ 2b > 12ab. □

3. Methods

We give a brief outline of the method used to classify groups with n + r

set-orbits in [3]. The first step consists of bounding the value of n by finding
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the largest value k0 such that 48− n+1

2
≤ k0 ≤ 5

54
n− 1

2
. Then, [3, Theorem 2.7]

implies that the group is not
(

⌊n
2
⌋+ k

)

-set-transitive for all k ≤ k0. This provides

an upper bound on the value of n. Using other results (see [3, Lemma 2.2 and

Corollary 2.6]), several of the remaining values of n can be eliminated. Noting

that if r < n− 4, the group is primitive, and if r < n− 2, the group is transitive,

GAP can be used to search the subgroups of Sn to find all groups with n + r

set-orbits.

One of the difficulties with the previous method is that it becomes compu-

tationally challenging for GAP to compute and check all subgroups of Sn when

n ≥ 12. Using the GAP libraries, the transitive and primitive groups of a certain

degree can be easily checked. In the intransitive cases, we can consider the action

of G on the orbits, which means, in the case where there are two orbits, we have

G = Sk × Sn−k for some positive integer k < n. When k = 1, we can check the

previously calculated tables to determine if there is a subgroup of Sn−1 that will

give the correct number of orbits. For larger values of k, Lemma 2.5 applies to

determine which of these cases is possible; this way, we can avoid calculating the

most undesirable cases when k is large.

The second major difficulty involved the need to calculate the number of

set-orbits of a group. This was originally done by calculating st(G) for 0 ≤ t ≤ n.

Extreme values of t can be calculated quickly, because the number of subsets of Ω

of size t is given by
(

n
t

)

, but this grows rapidly when t becomes closer to ⌊n
2
⌋.

We were able to circumvent this obstacle by making estimations for s(G) after

every st(G) that gets calculated, thus usually allowing GAP to bypass the most

expensive computations. For example, let us consider the 91-st transitive group

of degree n = 24 listed in GAP, which is G = TransitiveGroup(24, 91), and see

how many set-orbits G can have. Trivially, s0(G) = sn(G) = 1, and it turns out

that s1(G) = sn−1(G) = 1 as well. However, s2(G) = sn−2(G) = 8, and using

Lemmas 2.1 and 2.3, this already gives us the bound that s(G) ≥ 2+2+8(24−4) =

164, which immediately exceeds the sizes of r that we look at. These calculations

take mere milliseconds, while trying to even calculate s6(G) = 1722 takes nearly

half a minute on the same hardware; this is very expensive considering the number

of groups we must do this calculation for.

Our method improves the bound for when a permutation group must be

primitive. For n > r, Proposition 2.8 shows that we only need to consider the

primitive groups. This saves a lot of computation, since the primitive groups

of degree up to 4096 are stored in the GAP library and can be checked easily.

The other issue that we need to address was how to determine intransitive groups

with two orbits which are subgroups of Sk × Sn−k with k > 1. The previous
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method brute force searched through all conjugacy classes of Sn and calculation

time became unfeasible for n > 12.

We can resolve this problem easily when k = 2. To do this, we can use the

GAP library of transitive groups to form all direct products S2 × T where T is

a transitive group on n − 2 letters. We can then find all subgroups of S2 × T of

index 1 or 2. In this way, we obtain all groups that project transitively onto the

orbit of n − 2 points. Then GAP can be used to check each possibility. Using

these methods, we have been able to calculate groups with n + r set-orbits for

16 ≤ r ≤ 33.

4. Examples

We explain in detail the calculation of the cases r = 25 and r = 31.

For r = 25, we first use GAP to calculate all groups of degree n ≤ 11 by

a relatively quick brute force search. After applying the first few steps of the

algorithm, the remaining values of n are 12, 13, 14, . . . , 30, 37, and 38.

Next, we determine the possible transitive groups. For n = 12 = 2 × 6 and

n = 14 = 2×7, Lemma 2.6 gives us bounds for s(G) to be 28 and 36, respectively,

and these are not sufficient to eliminate those imprimitive cases. Thus, we have

to use the GAP libraries to calculate all transitive groups of degree 12 and 14.

This only results in one transitive group of degree 12, listed below. Since n = 13

is a prime, any transitive groups of degree 13 must also be primitive, and we

may check by hand that all transitive groups of degree 15 ≤ n ≤ 25 must also

be primitive if they are to have no more than n + r set-orbits. After searching

through all such primitive groups, we find that M24 acting on 24 points gives

24 + 25 = 49 set-orbits.

All that remains is to check the intransitive cases of 12 ≤ n ≤ 25. Take

the case when n = 13, in which case we are looking for 38 set-orbits. Applying

Lemma 2.5 to all possibilities for an action with 3 orbits on Ω gives a contradiction.

If we assume that G has two orbits on Ω, then G will be a subgroup of S1 × S12

or S2 × S11. Using GAP to calculate the subgroups of S2 × S11 as outlined in

Section 3 yields no new groups. If we have a subgroup of S1 × S12, we must have

a subgroup of S12 acting on 13 points that acts on 12 points with 19 = 12 + 7

set-orbits. By [3], we see that M11 will satisfy these conditions. We use GAP to

check that M11 acting on 13 points does indeed give 38 set-orbits. We can apply

this same process to the remaining values of n. GAP finds three new subgroups

of S2 × S12 for n = 14 only when the group splits intransitively into 2 orbits.
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The last two groups found are in n = 25, which are S24 and A24 acting transitively

on 24 elements and trivially on 1 element. This finishes the calculation for r = 25.

The calculations for checking higher values of r are similar, except for when

finding subgroups of intransitive subgroups of lower values of n. For example,

when r = 31 and n = 13, subgroups of S3 × S10 need to be checked, and this

is done by searching for subgroups of index 1, 2, 3, 6. In general, a subgroup of

Sk × Sn−k must have index dividing k!. This is still computationally feasible for

lower values of k ≤ 4, and the classification can continue until at least r = 33.

However, for larger values of k, this is equivalent to brute force searching all

conjugacy classes of subgroups of Sk.

We list our results for r = 25, 31, and a few other select values of r below.

The remaining results may be obtained through [5]. One thing to note is that

two non-isomorphic groups may have the same structure description, while two

isomorphic groups may have different descriptions (although we have taken care

to eliminate isomorphic redundancies in our listed results). As such, these groups

should really be reconstructed in GAP using their generators, or selected from

the output of our list functions in our GAP code, if one wishes to work with

a particular group.

We first list our notation for the GAP code of groups:

• nPi denotes the i-th primitive group of degree n in GAP libraries.

• nTi denotes the i-th transitive group of degree n in GAP libraries.

• nSi denotes the i-th conjugacy class in the list generated by

ConjugacyClassesSubgroups(SymmetricGroup(n)).

• nLf i denotes the i-th group in the list generated by IntransitivePartition(n,f).

Groups with n+ 16 set-orbits

n G Order GAP ID

6 C4 4 6S9

8 C7 ⋊ C3 21 8S137

8 (C8 ⋊ C2)⋊ C2 32 8S173

8 C8 ⋊ (C2 × C2) 32 8S179

8 C15 ⋊ C4 60 8S220

8 C3 × (C5 ⋊ C4) 60 8S221

8 ((C8 ⋊ C2)⋊ C2)⋊ C2 64 8S224

8 C2 ⋊ A5 120 8S255

Table 1 – Continued on next page
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Continued from previous page

Groups with n+ 16 set-orbits

n G Order GAP ID

8 S3 × (C5 ⋊ C4) 120 8S258

8 GL(2, 4) 180 8S266

8 C3 ⋊ S5 360 8S279

8 C3 × S5 360 8S280

8 S3 × A5 360 8S281

8 S5 × S3 720 8S289

12 (A5 × A5)⋊ C4 14400 12P278

12 ((C2 × C2 × C2 × C2 × C2)⋊ A6)⋊ C2 23040 12P286

12 ((C2 × C2 × C2 × C2 × C2)⋊ A6)⋊ C2 23040 12P287

12 (A5 × A5)⋊D8 28800 12P288

12 ((C2 ×C2 ×C2 ×C2 ×C2)⋊A6)⋊ (C2 ×C2) 46080 12P293

12 (A6 × A6)⋊ C2 259200 12P296

12 (A6 × A6)⋊ (C2 × C2) 518400 12P297

12 (A6 × A6)⋊ C4 518400 12P298

12 (A6 × A6)⋊D8 1036800 12P299

12 M11 7920

16 (C2 × C2 × C2 × C2)⋊ A8 322560 16P11

16 A15 15!/2

16 S15 15!

Table 1

Groups with n+ 17 set-orbits

n G Order GAP ID

7 D10 10 7S32

7 C10 10 7S34

7 A4 12 7S37

7 A4 12 7S40

7 C12 12 7S41

7 C3 ⋊ C4 12 7S44

7 D20 20 7S54

Table 2 – Continued on next page
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Continued from previous page

Groups with n+ 17 set-orbits

n G Order GAP ID

7 C5 ⋊ C4 20 7S55

7 (C6 × C2)⋊ C2 24 7S59

7 C3 ×D8 24 7S64

7 (C6 × C2)⋊ C2 24 7S65

7 C4 × S3 24 7S66

7 D24 24 7S69

7 D8 × S3 48 7S79

7 S5 60 7S80

7 S5 120 7S86

8 (C2 × C2 × C2)⋊ C4 32 8S171

8 A4 × A4 144 8S260

8 (A4 × A4)⋊ C2 288 8S274

8 S4 × A4 288 8S275

8 S4 × S4 576 8S284

9 (S3 × S3)⋊ C2 72 9S388

10 C2 × A8 40320 10S1586

10 S8 40320 10S1587

10 C2 × S8 80640 10S1589

11 A6 ⋊ C2 720 11S2795

11 (A6.C2)⋊ C2 1440 11S2913

12 C2.((C2 × C2 × C2 × C2)⋊ A5) 3840 12P256

12 ((C2 × C2 × C2 × C2 × C2)⋊ S5)⋊ C2 7680 12P270

12 (C2 × C2 × C2 × C2 × C2)⋊ A6 11520 12P277

12 (A5 × A5)⋊ (C2 × C2) 14400 12P279

12 (C2 × C2 × C2 × C2 × C2)⋊ S6 23040 12P285

13 PSL(3, 3) 5616 13P7

17 A16 16!/2

17 S16 16!

Table 2
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Groups with n+ 18 set-orbits

n G Order GAP ID

6 C3 3 6S6

6 C4 4 6S11

6 C2 × C2 4 6S13

6 S3 6 6S18

6 C6 6 6S20

6 D8 8 6S25

6 D12 12 6S32

8 ((C2 × C2 × C2 × C2)⋊ C3)⋊ C2 96 8S248

10 ((C3 × C3)⋊Q8)⋊ C3 216 10S1326

10 (((C3 × C3)⋊Q8)⋊ C3)⋊ C2 432 10S1432

12 (C2 × C2 × C2 × C2 × C2)⋊ S5 3840 12T257

18 A17 17!/2

18 S17 17!

Table 3

Groups with n+ 19 set-orbits

n G Order GAP ID

5 C2 2 5S2

7 D12 12 7S47

8 C8 ⋊ C2 16 8S111

8 QD16 16 8S122

8 (C2 × C2 × C2)⋊ C4 32 8S174

8 (C2 × C2 × C2 × C2)⋊ C3 48 8S197

8 (C2 × C2 × C2)⋊ (C2 × C2)⋊ C2 64 8S223

9 C9 ⋊ C3 27 9S249

9 (C3 × C3)⋊ C4 36 9S281

9 ((C3 × C3)⋊ C3)⋊ C2 54 9S349

9 (C3 × C3)⋊ C6 54 9S353

9 C3 ⋊ S5 360 9S501

9 C3 × S5 360 9S502

9 S5 × S3 720 9S529

Table 4 – Continued on next page
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Continued from previous page

Groups with n+ 19 set-orbits

n G Order GAP ID

9 C3 × A6 1080 9S532

9 S3 × A6 2160 9S541

9 C3 × S6 2160 9S542

9 A6 ⋊ S3 2160 9S543

9 S6 × S3 4320 9S546

11 C11 ⋊ C10 110 11S1913

11 A6.C2 720 11S2790

11 C2 × PSL(2, 8) 1008 11S2836

11 C2 × (PSL(2, 8)⋊ C3) 3024 11S2981

11 S9 362880 11S3088

11 C2 × A9 362880 11S3089

11 C2 × S9 725760 11S3090

19 A18 18!/2

19 S18 18!

Table 4

Groups with n+ 20 set-orbits

n G Order GAP ID

8 (C2 × C2 × C2)⋊ (C2 × C2) 32 8S166

8 (C2 × C2 × C2 × C2)⋊ C2 32 8S167

8 S5 120 8S254

8 A5 360 8S278

8 S6 720 8S288

10 C2 × ((C2 × C2 × C2)⋊ C7) 112 10S1132

10 C2 × ((C2 × C2 × C2)⋊ (C7 ⋊ C3)) 336 10S1394

10 C2 × (PSL(3, 2)⋊ C2) 672 10S1476

10 C2 × ((C2 × C2 × C2)⋊ PSL(3, 2) 2688 10S1394

20 S19 19!/2

20 A19 19!

Table 5
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Groups with n+ 21 set-orbits

n G Order GAP ID

6 C2 × C2 × C2 8 6S21

7 C6 6 7S21

7 C6 × C2 12 7S35

7 D12 12 7S39

7 C2 × C2 × S3 24 7S58

9 C2 × (C7 ⋊ C6) 84 9S402

9 (((C2 × C2 × C2)⋊ (C2 × C2))⋊ C3)⋊ C2 192 9S465

9 (((C2 × C2 × C2 × C2)⋊ C2)⋊ C2)⋊ C3 192 9S467

9 A4 × (C5 ⋊ C4) 240 9S488

9 C5 ⋊ (A4 ⋊ C4) 240 9S489

9 (((C2 × C2 × C2 × C2)⋊ C3)⋊ C2)⋊ C3 288 9S493

9 C2 × PSL(3, 2) 336 9S498

9 ((((C2×C2×C2)⋊(C2×C2))⋊C3)⋊C2)⋊C2 384 9S507

9 S4 × (C5 ⋊ C4) 480 9S517

9 (A4 × A4)⋊ C4 576 9S519

9 ((((C2×C2×C2×C2)⋊C3)⋊C2)⋊C3)⋊C2 576 9S521

9 A4 × A5 720 9S526

9 (S4 × S4)⋊ C2 1152 9S533

9 S5 × A4 1440 9S536

9 S4 × A5 1440 9S537

9 A5 ⋊ S4 1440 9S538

9 S5 × S4 2880 9S545

10 PSL(3, 2)⋊ C2 336 10S1391

12 S10 3628800 12S10716

12 C2 × A10 362880 12S10718

12 C2 × S10 7257600 12S10719

14 PSL(2, 13)⋊ C2 2184 14T39

21 A20 20!/2

21 S20 20!

Table 6
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Groups with n+ 25 set-orbits

n G Order GAP ID

7 C5 5 7S14

7 S3 6 7S18

7 C3 × C3 9 7S31

7 D10 10 7S33

7 (C3 × C3)⋊ C2 18 7S50

7 C3 × S3 18 7S52

7 S3 × S3 36 7S72

8 C2 × S4 48 8S206

8 C2 × C2 × A4 48 8S208

9 ((C2 × C2 × C2 × C2)⋊ C3)⋊ C2 96 9S403

10 (C2 × C2)⋊ (A5 ⋊ S3) 1440 10S1533

10 A4 × S5 1440 10S1536

10 S4 × S5 2880 10S1559

10 A6 × A4 4320 10S1562

10 (C2 × C2)⋊ (A6 ⋊ S3) 8640 10S1572

10 S6 × A4 8640 10S1573

10 A6 × S4 8640 10S1574

10 S6 × S4 17280 10S1582

11 C3 × A8 60480 11S3075

11 C3 × S8 120960 11S3081

11 C3 ⋊ S8 120960 11S3082

11 S3 × A8 120960 11S3083

11 S8 × S3 241920 11S3086

12 (C2×C2×C2×C2×C2×C2)⋊((C3×C3)⋊C3) 3456 12T252

13 M11 7920 13L1162

14 C2 × S12 958003200 14L22

14 C2 × A12 479001600 14L246

14 S12 479001600 14L247

24 M24 244823040 24P1

25 A24 24!/2

25 S24 24!

Table 7
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Groups with n+ 31 set-orbits

n G Order GAP ID

8 D8 8 7S29

8 (C4 × C2) : C2 16 8S107

8 C2 × C2 × S3 24 8S162

8 (C2 × C2 × C2 × C2) : C2 32 8S177

9 C7 : C6 42 9S309

9 C3 × C3 × S3 54 9S350

9 C3 × ((C3 × C3) : C2) 54 9S351

9 C5 × A4 60 9S358

9 (C3 × A4) : C2 72 9S371

9 C3 × S4 72 9S372

9 (C3 × C3 × C3) : C4 108 9S418

9 (C3 × C3 × C3) : (C2 × C2) 108 9S420

9 C3 × ((C3 × C3) : C4) 108 9S421

9 C3 × S3 × S3 108 9S422

9 C3 × S3 × S3 108 9S423

9 ((C3 × C3) : C2)× S3 108 9S424

9 C5 : S4 120 9S430

9 C5 × S4 120 9S431

9 A4 ×D10 120 9S432

9 S3 × S4 144 9S441

9 C2 × ((C3 × A4) : C2) 144 9S442

9 S4 × S3 144 9S445

9 C6 × S4 144 9S446

9 S3 × S4 144 9S447

9 PSL(3, 2) 168 9S461

9 (C3 × C3 × C3) : D8 216 9S471

9 C3 × ((S3 × S3) : C2) 216 9S472

9 C3 × ((C3 × C3) : C4) 216 9S473

9 (C3 × C3 × C3) : D8 216 9S474

9 (C3 × C3 × C3) : D8 216 9S475

9 S3 × S3 × S3 216 9S476

9 S4 ×D10 240 9S485

9 C2 × S4 × S3 288 9S494

9 ((S3 × S3) : C2)× S3 432 9S509

Table 8 – Continued on next page
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Continued from previous page

Groups with n+ 31 set-orbits

n G Order GAP ID

11 (((C3 × C3) : Q8) : C3) : C2 432 11S2613

11 C2 × (((C3 × C3) : Q8) : C3) 432 11S2622

11 (C5 × C5) : ((C4 × C4) : C2) 800 11S2800

11 C2 × ((((C3 × C3) : Q8) : C3) : C2) 864 11S2816

11 (C2 × C2 × C2 × C2) : S5 1920 11S2928

11 C2 × ((C2 × C2 × C2 × C2) : A5) 1920 11S2930

11 S5 × (C5 : C4) 2400 11S2955

11 C2 × ((C2 × C2 × C2 × C2) : S5) 3840 11S2994

11 A5 : S5 7200 11S3022

11 (A5 × A5) : C2 7200 11S3023

11 S5 × A5 7200 11S3025

11 A6 × (C5 : C4) 7200 11S3028

11 A6 : (C5 : C4) 7200 11S3029

11 (A5 × A5) : C4 14400 11S3047

11 (A5 × A5) : (C2 × C2) 14400 11S3049

11 S5 × S5 14400 11S3050

11 S6 × (C5 : C4) 14400 11S3051

11 A6 × A5 21600 11S3064

11 (A5 × A5) : D8 28800 11S3065

11 A5 : S6 43200 11S3072

11 S6 × A5 43200 11S3073

11 A6 × S5 43200 11S3074

11 S6 × S5 86400 11S3080

12 S6 : C2 1440 12L2100

13 PSL(2, 11) 660 12T179

13 S10 × S3 10!×3! 13L33

13 C3 × S10 10!×3!/2 13L34

13 A10 × S3 10!×3!/2 13L37

13 A10 : S3 10!×3!/2 13L39

13 C3 × A10 10!×3!/4 13L310

15 A8 20160 15P4

17 C2 × S15 15!×2 17L22

17 C2 × A15 15! 17L24

Table 8 – Continued on next page
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Continued from previous page

Groups with n+ 31 set-orbits

n G Order GAP ID

17 S15 15! 17L25

17 PSL(2, 16) : C4 16320 17P8

31 A30 30!/2

31 S30 30!

Table 8

5. Conclusion

While studying the previous method and trying to extend it, we made some

observations regarding the results. When 11 ≤ r ≤ 33, we noticed that a permu-

tation group had degree at most r. Specifically, Ar−1 and Sr−1 acting transitively

on r − 1 points and trivially on 1 point seemed to be the highest degree groups

that gave n+ r set-orbits. This leads us to conjecture that for r ≥ 11, there is no

permutation group of degree n > r that will give n+ r set-orbits. While we were

unable to prove this, we know from Proposition 2.8 that if any group existed,

it would have to be primitive.

There were a few computational challenges that caused difficulty in the clas-

sification. Calculating s(G) is expensive when the size of the group is large, but

has a relatively low number of set-orbits. This is because st(G) has relatively

small values until t grows close to ⌊n
2
⌋ and making estimations for s(G) becomes

ineffective. Specifically, the M24 group takes an unreasonable amount of time to

calculate. Additionally, calculating all subgroups of Sk × Sn−k is still infeasible

for larger k.

If one wants to extend the classification beyond r = 33, the computational

limitations would be the greatest challenge. A more theoretical limitation would

be determining an efficient method of finding all permutation groups whose orbits

split into different cases.
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