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Permutation groups with few orbits on the power set. II

By MICHAEL GINTZ (Princeton), MATTHEW KORTJE (Columbus),
MEGAN LAURENCE (Notre Dame), ZILI WANG (Berkeley)
and YONG YANG (San Marcos)

Abstract. We continue the study of permutation groups acting on the power
set 2({1,2,...,n}). Permutation groups must have a minimum of n + 1 set-orbits.
Previously in [3], the authors of that paper used GAP to classify permutation groups
with a low number of orbits for permutation groups having n + r set-orbits for some
given 2 < r < 15. We develop improvements to their theory and algorithms in GAP to
classify further cases, from 16 < r < 33.

1. Introduction

We begin with some definitions and notations we will use throughout this
paper. Let Q = {1,2,...,n}, where n > 2 is some positive integer. Let G be
a subgroup of S,,, where G acts on ) with the action GxQ — Q where (g, z) — gz.
The permutation group G has degree n, and the action of G on §2 naturally induces
an action of G on Z(Q). This is defined by the mapping G x £(Q) — £(Q),
where G acts on subsets of Q and (g,X) — ¢X = {gz : z € X}. It is clear
from the definition that G takes a t-element subset of {2 and maps it to another
(perhaps identical) t-element subset, and these orbits under the action shall be
named set-orbits. We will denote the number of ¢-element set-orbits for some given
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0 <t <nas s(G). Since Q has at least n + 1 different sizes of subsets, it follows
that the total number of set-orbits, which we denote as s(G), will be at least n+1.
Furthermore, we can calculate s(G) by finding the total number of different ¢-set-
orbits, which is any set-orbit with sets of size t. Thus s(G) = Y ;— s¢(G).

If a group G is transitive on (2, then for any x,y € €, there exists g € G such
that gz = y. Thus this motivates the following definition.

Definition 1.1 (BEAUMONT and PETERSON [2]). Given an integer 0 < ¢ < n,
a permutation group G on n letters is called t-set-transitive if for all t-element
subsets S, T C ), there exists g € G such that g5 =1T.

The minimum number of set-orbits that can be achieved is n + 1, when G is
t-set-transitive for every possible value of ¢t. Hence we present the next definition.

Definition 1.2 (Beaumont and Peterson [2]). A permutation group G on n
letters is called set-transitive if G is t-set-transitive for all integers 0 <t < n.

With some preliminary definitions out of the way, we now discuss past
progress on this topic and our goal in this paper. We consider the following clas-
sification question:

Given some integer r > 1, what are all permutation groups G such that s(G) =
n + r, where n is the degree of the permutation group?

Set-transitive groups were studied as early as 1944 by NEUMANN and MOR-
GENSTERN [6]. The case for set-transitive groups when r = 1 is answered in full
by Beaumont and Peterson in [2]. Their main result was that a group G that does
not contain the alternating group A, cannot be | | set-transitive, and thus not
set-transitive, with exceptions only when n = 5,6,9, and proceeded to classify
all such exceptions. In [3], an algorithm using GAP [4] was developed to fully
classify the cases for 2 < r < 15, which will be discussed in greater detail later
in this paper. The issues preventing further classification included the computa-
tional challenges of calculating subgroups of S,,, and determining the number of
set-orbits for a large group. The first issue can be addressed using improved the-
ory, while the second can be addressed with improved algorithms in GAP. In this
paper, we successfully classify all the cases for 16 < r < 33.

2. Lemmas

The following lemmas appeared in [3]. As they were also used in this classi-
fication, we list them here for easy reference.
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Lemma 2.1. Let G be a permutation group on n letters, and let 0 <t <n
be an integer. Then s:(G) = sp—+(G).

Lemma 2.2. Let G be a permutation group on n letters, and suppose s(G) =
n-+r.

(1) Ifr is even, then n is even.
(2) Ifris odd and n is even, then s, /5(G) is odd.

Lemma 2.3. Given a permutation group G on n letters and an integer

1<t <%, we have 5;_1(G) < 5¢(G).

The following results are in [1].
Lemma 2.4. If L < G < Sym(Q), then s(G) < s(L) < s(G) - |G : L.

Lemma 2.5. Assume G is intransitive on 2 and has orbits Q1,...,,,. Let
G; be the restriction of G to ;. Then

$(G) > s(Gy) x -+ x $(Gr).

Lemma 2.6. Let G be a transitive permutation group acting on a set ),
where |Q| = n. Let (Qq,...,Qm) denote a system of imprimitivity of G with
block-size b (1 < b < n; b = 1 if and only if G is primitive; bm = n). Let
G; = Stabg(€);), and denote s = s(G1). Then

s+m—1 b+m

w2 (1))

It should be noted that Lemma 2.2 provides conditions that allow us to avoid
calculating the set-orbits of groups of particular degrees. Lemmas 2.1 and 2.3
can be used to provide lower bounds for the number of set-orbits a groups has.
Lemmas 2.5 and 2.6 provide conditions under which we may eliminate certain
cases for transitive and intransitive groups. Lemma 2.5 is used frequently to con-
sider intransitive cases for a group G on n letters with n > 12.

Using Lemmas 2.1 and 2.3, it is simple to show that if G acts on n letters and
r < n, then G must be transitive. We can show that G must be primitive rather

than just transitive. This greatly reduces the computation necessary to classify
groups on large values of n as there are relatively few primitive groups.

Proposition 2.7. Let ab = c¢d = n, where a < b and ¢ < d and a < ¢ and
a,b,c,d,n € N. Then (“:b) < (Cid).
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PROOF. Assume the hypothesis. First, note that by Vandermonde’s Identity

()-205)0 ()20

We proceed by induction on the terms of the sums, up to a, since a < ¢ (we show
that the desired inequality holds for each term in the sum). We note that

(aiO)@ Shei (Cfo)@-

Assume the result holds for £ < a. That is, (afé) (2) < (ciz) (‘;). We show the
result holds for £ + 1 < a. First note that since a + b > ¢ + d, we have

we have

—Vla — b < —lc — /d, ab—Ea—€b+€2§cd—€c—£d+€2,
(c=0)(d—0)

_ — < — — < .

@=06-H<e-0d-0,  1<E—pip

Therefore, we have

a b B alb!
<a — (0 + 1)) <€+ 1) S (a—(LFEI)EHDIEH Db — (L4 1))

< alb! e+ 1)2(c—0)(d—¥)
Tla—+FI)EFDIEHFDIB -+ (£+1)2(a—L)(b—10)
B a'b! (c=0)d—=¢) ([ a b\ (c—0)(d—-20)
T (@-ONOPROG-0! ((+1)2 <a—€) <z) (0 +1)2
c d\ (c—0)(d—¥) . .
< . £> (() . T (by the inductive hypothesis)
cld! (c=0)(d—-10) cld!

Te—ORd—0! ((+1D2  (c—(+ D))+ D)(d— (€ + 1))

- <c<§+1>)(fi1)'

Thus, the result holds. O

Proposition 2.8. For all groups G acting on n elements with s(G) =n+r
and n >r > 11, G must be a primitive group.
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PROOF. First of all, if G is intransitive, then s;(G) > 2, and using Lemma 2.1
and 2.3 together, we have that s(G) > 2+ 2(n —1) = 2n > n + r. Thus G must
be transitive, and now we show G must also be primitive.

Suppose that G is imprimitive, and let (21,5, ...,Q,,) denote a non-trivial
system of imprimitivity of G with block size j such that j > 2 and m > 2.
We know that n cannot be a prime, or it would be impossible that n = mj.
In Lemma 2.6, we have that s(G) > (jt.m), and we seek to show that (jJ;m) >
2n > n+r. Let a = min(j,m) and b = max(j,m). Then for even n, we only
need to consider when a = 2, since Proposition 2.7 guarantees that any other
non-trivial factorization of n yields larger lower bounds. We prove the even case
inductively. For n = 12 = 2 x 6, we see that (2‘56) = 28 > 24 = 2n. We have our
base case and so suppose the proposition holds for some even n > 12. That is,
(a;b) > 2n where a = 2 and b= 5. Then n + 2 = a(b+ 1). We have that:

<a+g+1> :%(a—l—lﬂ—l)(a—i—b):%(a+b)(a+b—1)+(a+b)

b
<a;r >+a+622n+42(n+2).

Next, we consider when n is odd, and so n = ab means that b > a > 3, and
that b2 > ab. Since the binomial coefficients (Z) form an increasing sequence for
k < n/2, we have that:

<g+m> - <j+m) _ <a+b> _(a+b)(a+bd-1)(at+b-2)

] 3 3 6

Thus, we may prove that 6(“;4’) > 6(2n) = 12ab.

G(G;:b) — (a+b)a+b—1)(a+b—2)

=a® + 3a%b — 3a® + 3ab® — 6ab+ 2a + b> — 3b2 + 2b
> 3a® + 9ab — 3a® + 9% — 6ab + 2a + 3b% — 3b% + 2b
= 3ab + 9b% + 2a + 2b > 12ab. 0

3. Methods

We give a brief outline of the method used to classify groups with n + r
set-orbits in [3]. The first step consists of bounding the value of n by finding
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the largest value kg such that 48 — "TH < ko< 55—471 — % Then, [3, Theorem 2.7]
implies that the group is not (| %] + k)-set-transitive for all k < ko. This provides
an upper bound on the value of n. Using other results (see [3, Lemma 2.2 and
Corollary 2.6]), several of the remaining values of n can be eliminated. Noting
that if r < n — 4, the group is primitive, and if r < n — 2, the group is transitive,
GAP can be used to search the subgroups of S, to find all groups with n + r
set-orbits.

One of the difficulties with the previous method is that it becomes compu-
tationally challenging for GAP to compute and check all subgroups of S,, when
n > 12. Using the GAP libraries, the transitive and primitive groups of a certain
degree can be easily checked. In the intransitive cases, we can consider the action
of G on the orbits, which means, in the case where there are two orbits, we have
G =Sy X S,,_ for some positive integer k& < n. When k = 1, we can check the
previously calculated tables to determine if there is a subgroup of S,,_; that will
give the correct number of orbits. For larger values of k, Lemma 2.5 applies to
determine which of these cases is possible; this way, we can avoid calculating the
most undesirable cases when k is large.

The second major difficulty involved the need to calculate the number of
set-orbits of a group. This was originally done by calculating s;(G) for 0 < ¢ < n.
Extreme values of ¢ can be calculated quickly, because the number of subsets of 2
of size t is given by (Ttb), but this grows rapidly when ¢ becomes closer to | % ].
We were able to circumvent this obstacle by making estimations for s(G) after
every s¢(G) that gets calculated, thus usually allowing GAP to bypass the most
expensive computations. For example, let us consider the 91-st transitive group
of degree n = 24 listed in GAP, which is G = TransitiveGroup(24,91), and see
how many set-orbits G' can have. Trivially, so(G) = s,(G) = 1, and it turns out
that $1(G) = sp—1(G) = 1 as well. However, s2(G) = s,-2(G) = 8, and using
Lemmas 2.1 and 2.3, this already gives us the bound that s(G) > 2+2+8(24—4) =
164, which immediately exceeds the sizes of r that we look at. These calculations
take mere milliseconds, while trying to even calculate s¢(G) = 1722 takes nearly
half a minute on the same hardware; this is very expensive considering the number
of groups we must do this calculation for.

Our method improves the bound for when a permutation group must be
primitive. For n > r, Proposition 2.8 shows that we only need to consider the
primitive groups. This saves a lot of computation, since the primitive groups
of degree up to 4096 are stored in the GAP library and can be checked easily.
The other issue that we need to address was how to determine intransitive groups
with two orbits which are subgroups of Si x S,_, with k& > 1. The previous
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method brute force searched through all conjugacy classes of S,, and calculation
time became unfeasible for n > 12.

We can resolve this problem easily when k£ = 2. To do this, we can use the
GAP library of transitive groups to form all direct products So x T" where T is
a transitive group on n — 2 letters. We can then find all subgroups of So x T' of
index 1 or 2. In this way, we obtain all groups that project transitively onto the
orbit of n — 2 points. Then GAP can be used to check each possibility. Using
these methods, we have been able to calculate groups with n + r set-orbits for
16 < r < 33.

4. Examples

We explain in detail the calculation of the cases r = 25 and r = 31.

For r = 25, we first use GAP to calculate all groups of degree n < 11 by
a relatively quick brute force search. After applying the first few steps of the
algorithm, the remaining values of n are 12,13, 14,...,30, 37, and 38.

Next, we determine the possible transitive groups. For n = 12 = 2 x 6 and
n =14 = 2x7, Lemma 2.6 gives us bounds for s(G) to be 28 and 36, respectively,
and these are not sufficient to eliminate those imprimitive cases. Thus, we have
to use the GAP libraries to calculate all transitive groups of degree 12 and 14.
This only results in one transitive group of degree 12, listed below. Since n = 13
is a prime, any transitive groups of degree 13 must also be primitive, and we
may check by hand that all transitive groups of degree 15 < n < 25 must also
be primitive if they are to have no more than n + r set-orbits. After searching
through all such primitive groups, we find that My, acting on 24 points gives
24 + 25 = 49 set-orbits.

All that remains is to check the intransitive cases of 12 < n < 25. Take
the case when n = 13, in which case we are looking for 38 set-orbits. Applying
Lemma 2.5 to all possibilities for an action with 3 orbits on 2 gives a contradiction.
If we assume that G has two orbits on €2, then G will be a subgroup of S; x Sia
or So x Sy1. Using GAP to calculate the subgroups of So x S;1 as outlined in
Section 3 yields no new groups. If we have a subgroup of S; X S12, we must have
a subgroup of Si5 acting on 13 points that acts on 12 points with 19 = 12 + 7
set-orbits. By [3], we see that M;; will satisfy these conditions. We use GAP to
check that Mj; acting on 13 points does indeed give 38 set-orbits. We can apply
this same process to the remaining values of n. GAP finds three new subgroups
of So x Syp for n = 14 only when the group splits intransitively into 2 orbits.
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The last two groups found are in n = 25, which are So4 and Aoy acting transitively
on 24 elements and trivially on 1 element. This finishes the calculation for r = 25.

The calculations for checking higher values of r are similar, except for when
finding subgroups of intransitive subgroups of lower values of n. For example,
when r = 31 and n = 13, subgroups of Sz x Sig need to be checked, and this
is done by searching for subgroups of index 1,2,3,6. In general, a subgroup of
Sk X S,_x must have index dividing k!. This is still computationally feasible for
lower values of k < 4, and the classification can continue until at least r = 33.
However, for larger values of k, this is equivalent to brute force searching all
conjugacy classes of subgroups of Sy.

We list our results for r = 25,31, and a few other select values of r below.
The remaining results may be obtained through [5]. One thing to note is that
two non-isomorphic groups may have the same structure description, while two
isomorphic groups may have different descriptions (although we have taken care
to eliminate isomorphic redundancies in our listed results). As such, these groups
should really be reconstructed in GAP using their generators, or selected from
the output of our list functions in our GAP code, if one wishes to work with
a particular group.

We first list our notation for the GAP code of groups:

* nPi denotes the i-th primitive group of degree n in GAP libraries.
e nT'% denotes the i-th transitive group of degree n in GAP libraries.

* nSi denotes the i-th conjugacy class in the list generated by
ConjugacyClassesSubgroups(SymmetricGroup(n)).

¢ nLyi denotes the i-th group in the list generated by IntransitivePartition(n, f).

Groups with n 4 16 set-orbits

n G Order GAP ID
6 Cy 4 659

8 C7 x Cs 21 8S137

8 (Cs x Cy) x Cy 32 85173

8 Cs % (Cy x C9) 32 85179

8 Ci5 x Cy 60 85220

8 C3 x (C5 x Cy) 60 85221

8 ((Cg X 02) X CQ) X CQ 64 85224

8 Co X As 120 85255

Table 1 — Continued on next page
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Continued from previous page

Groups with n 4 16 set-orbits
n G Order GAP ID
8 Ss x (C5 x Cy) 120 85258
8 GL(2,4) 180 85266
8 C3 X Sj 360 85279
8 C3 x S5 360 85280
8 S3 x As 360 85281
8 S5 X Ss3 720 85289
12 | (As x As) x Cy 14400 12P278
12 | ((C3 x Cy x Cy x Cy x C3) x Ag) x Cy 23040 12P286
12 | ((C2 x Cy x Cy x Co x C) x Ag) X Cy 23040 12P287
12 | (A5 x As) x Dg 28800 12P288
12 | ((C3 x Cy x Oy x Oy x Co) x Ag) x (Cy x Ca) | 46080 12P293
12 | (Ag x Ag) x Co 259200 12P296
12 | (Ag X Ag) X (Cq x Co) 518400 12P297
12 | (Ag x Ag) x Cy 518400 12P298
12 | (Ag x Ag) X Dg 1036800 12P299
12 | My, 7920
16 | (Cy x Cy x Cy x C) X Ag 322560 16P11
16 | As 15!/2
16 | Sis 15!

Table 1

Groups with n + 17 set-orbits
n G Order GAP ID
7 D1 10 7532
7 Cho 10 7534
7 Ay 12 7537
7 Ay 12 7540
7 C12 12 7541
7 C3 xCy 12 7544
7 Dog 20 7554

Table 2 — Continued on next page
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Continued from previous page

Groups with n 4 17 set-orbits
n G Order GAP ID
7 Cs x Cy 20 7555
7 (Cs x Cq) x Cy 24 7S59
7 Cs3 x Dg 24 7564
7 (Cs x Ca) x Cy 24 7565
7 C4 X 53 24 7566
7 Doy 24 7569
7 Dg x S3 48 7S79
7 S5 60 7580
7 Ss 120 7586
8 (Co x Oy x Ca) x Cy 32 8S171
8 | Asx Ay 144 85260
8 (Ag x Ag) x Cy 288 85274
8 S4 x Ay 288 85275
8 S4 xSy 576 85284
9 [ (S5 xS3) x Cs 72 95388
10 | Cy x Ag 40320 1051586
10 | Sg 40320 1051587
10 | Cy x Sg 80640 1051589
11 | Ag x Cy 720 1152795
11 | (A6.C2) x Ca 1440 1152913
12 | C5.((Ce x Cy x Oy x C3) x As) 3840 12P256
12 | ((C3 x Cy x Cy x Cy x C3) X S5) x Cy 7680 12P270
12 | (Cy x Cy x Cy x Cy x C3) X Ag 11520 12P277
12 | (A5 x As) x (Cy x Cy) 14400 12P279
12 | (C3 x O3 x Cy x Cy x C3) x Sg 23040 12P285
13 | PSL(3,3) 5616 13P7
17 | A 161/2
17 | Sis 16!

Table 2
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Groups with n + 18 set-orbits
n G Order GAP ID
6 Cs 3 656
6 Cy 4 6511
6 Cs x Cy 4 6513
6 S3 6 6518
6 Cs 6 6520
6 Dy 8 6525
6 Dy, 12 6532
8 ((Co x Cy x Cy x C) x C3) x Cy 96 85248
10 | ((C3 x C3) x Qg) x Cs 216 1051326
10 | (((C3 x C3) x Q) x C3) x Cy 432 1051432
12 | (Cy x Cy x Cy x Cy x Cy) x Sk 3840 12T257
18 | Ay 171/2
18 | Syi7 17!
Table 3
Groups with n 4+ 19 set-orbits
n G Order GAP ID
5 Cs 2 552
7 Dy, 12 7547
8 Cs x Cy 16 8S111
8 QD1 16 85122
8 (Cy x Oy x Cq) x Cy 32 85174
8 (Cy x Cy x Cy x Cg) x Cs 48 85197
8 (Cy x Oy x O3) X (Cy x Cq) x Cy 64 85223
9 Cy x C3 27 95249
9 (C3 x C3) x Cy 36 95281
9 ((C5 x C3) x C3) x Cy 54 95349
9 (Cg X Cg) X C@ 54 95353
9 C3 X Ss 360 95501
9 C3 x Sj 360 95502
9 S5 x S3 720 95529

Table 4 — Continued on next page
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Continued from previous page

Groups with n 4 19 set-orbits
n G Order GAP ID
9 Cs3 x Ag 1080 95532
9 S3 x Ag 2160 95541
9 C3 x Sg 2160 95542
9 Ag % S3 2160 95543
9 Sg X S3 4320 95546
11 | C11 x Cyp 110 1151913
11 | Ag.Co 720 1152790
11 | Cy x PSL(2,8) 1008 1152836
11 | Cy x (PSL(2,8) x Cs) 3024 1152981
11 | Sg 362880 1153088
11 | O3 x Ag 362880 1153089
11 | C3 x Sg 725760 1153090
19 | Asg 18!/2
19 | Sis 18!

Table 4

Groups with n 4 20 set-orbits
n G Order GAP ID
8 (Cy x Cy x C3) x (Cy x C3) 32 85166
8 (CQ X CQ X CQ X 02) X 02 32 85167
8 Ss 120 85254
8 As 360 85278
8 S¢ 720 85288
10 | Oy x ((Cy x Cy x Co) x C7) 112 1051132
10 | Oy x ((Cy x Cq x C) x (C7 x C3)) 336 1051394
10 | Cy x (PSL(3,2) x Cs) 672 1051476
10 | Cy x ((C2 x Cy x Cq) x PSL(3,2) 2688 1051394
20 | Si9 19!/2
20 | Ao 19!

Table 5
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Groups with n + 21 set-orbits
n G Order GAP ID
6 Cy x Cy x Cy 8 6521
7 Cs 6 7521
7 Cs x Cy 12 7535
7 Do 12 7539
7 Cy x Cy x S5 24 7S58
9 Cy x (C7 x Cg) 84 95402
9 (((Cy x Oy x C9) x (Cy x C3)) x C3) x Cy | 192 95465
9 (((Co x Cy x Oy x Cg) x Cy) x Cy) x C3 192 95467
9 Ay X (C5 x Cy) 240 95488
9 Cs % (Ag x Cy) 240 95489
9 (((Co x Cy x Oy x Cg) x C3) x Cy) x C3 288 95493
9 Cy x PSL(3,2) 336 95498
9 ((Cax CyxCa)x(Cax Cy))xC5)xCe)xCy | 384 95507
9 S4 X (C5 x Cy) 480 95517
9 (Ay x Ay) x Cy 576 95519
9 ((Ca3x Cyx Cax Ca) xC3) xCay)xCq)xCs | 576 9S521
9 Ay x As 720 95526
9 (S4 x Sq) x Oy 1152 95533
9 Sy x Ay 1440 95536
9 Sy X As 1440 95537
9 As xSy 1440 95538
9 S5 X Sy 2880 95545
10 | PSL(3,2) x Cs 336 1051391
12 | Sig 3628800 12510716
12 | Cy x Aqg 362880 12510718
12 | C3 x Syg 7257600 12510719
14 | PSL(2,13) x Cy 2184 14T39
21 | Ag 201/2
21 | Sao 20!

Table 6



250 M. Gintz, M. Kortje, M. Laurence, Z. Wang and Y. Yang
Groups with n + 25 set-orbits

n G Order GAP ID
7 Cs 5 7514
7 S3 6 7518
7 C3 x Cs 9 7531
7 Dy 10 7533
7 (C3 x C3) x Cy 18 7S50
7 C3 x S3 18 7552
7 S3 x S3 36 7572
8 Cs x Sy 48 85206
8 Cy x Oy x Ay 48 85208
9 ((Cq x Cy x Cy x Cg) x C5) x Cy 96 95403
10 | (Cy x C3) x (A5 x S3) 1440 1051533
10 | Ay x Ss 1440 1051536
10 | S4 x S5 2880 1051559
10 | Ag x Ay 4320 1051562
10 | (Cy x C3) x (Ag x S3) 8640 1051572
10 | Sg x Ay 8640 1051573
10 | Ag x Sy 8640 1051574
10 | Sg x S4 17280 1051582
11 | C3 x Ag 60480 11S3075
11 | C3 x Sg 120960 11S3081
11 | C5 x Sg 120960 1153082
11 | S3 x Ag 120960 1153083
11 | Sg x S3 241920 1153086
12 | (CaxCyxCayxCoyxCyxCa)x((C3xC3)xCy) | 3456 127252
13 | My 7920 131,162
14 | C3 x Sy9 958003200 | 14152
14 | Cy x Ao 479001600 | 141046
14 | Si2 479001600 | 141947
24 | Moy 244823040 | 24P1
25 | Aoy 241/2
25 | So4 24!

Table 7
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Groups with n 4 31 set-orbits

n G Order GAP ID
8 Dg 8 7529
8 (Cy x Cy) : Cy 16 85107
8 Cy x Cq x S5 24 85162
8 (Cy x Oy x Cy x Cq) : Cy 32 8S177
9 Cr: Cg 42 95309
9 C3 x C3 x S3 54 95350
9 Cs5 x ((C5 x C3) : Cy) 54 95351
9 Cs x Ay 60 95358
9 (C5 x Ag) : Cy 72 95371
9 Cs3 x Sy 72 95372
9 (C3 x C3 xC3):Cy 108 95418
9 (C5 x C3 x C3) : (Cg x Cy) 108 95420
9 C3 x ((C5 x C3) : Cy) 108 95421
9 C3 x S3 x S3 108 95422
9 C3 x S3 X S3 108 95423
9 ((C5 x C3): C3) x S3 108 95424
9 Cs: Sy 120 95430
9 Cs x Sy 120 95431
9 Ay X Dyg 120 95432
9 S3 x Sy 144 95441
9 Cay x ((C5 x Ay) : Cy) 144 95442
9 S4 X Ss 144 95445
9 Cs X Sy 144 95446
9 S3 X Sy 144 95447
9 PSL(3,2) 168 95461
9 (C3 x O3 x C3) : Dg 216 95471
9 C3 x ((S3 x S3) : C3) 216 95472
9 Cs5 x ((C5 x C3) : Cy) 216 95473
9 (C3 x O3 x C3) : Dg 216 95474
9 (C5 x C3 x C3) : Dg 216 95475
9 S3 x Sg x S3 216 95476
9 S4 X D1g 240 95485
9 Cs x Sy X S3 288 95494
9 ((S5 x S3) : C3) x S3 432 95509

Table 8 — Continued on next page
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Groups with n 4 31 set-orbits

n G Order GAP ID
11 | (((Cs x C3) : Qs) : C3) : Cy 432 1152613
11 [ Cy x (((C3 x C3) : Qs) : Cs3) 432 1152622
11 | (C5 x C5): ((Cy x Cy) : Ca) 800 1152800
11 | Ca x (((C3 x C3) : Qs) : C3) : Cs) 864 1152816
11 (Cg X CQ X 02 X 02) : S5 1920 1152928
11 | Cy x ((Ca x Ca x Cy x Ca) : As) 1920 1152930
11 | S5 x (C5 : Cy) 2400 1152955
11 | O3 x ((C2 x Cy x Cy x C3) : S5) 3840 1152994
11 | A5:Ss 7200 1153022
11 | (As x A5) : C2 7200 1153023
11 | S5 x As 7200 1153025
11 | Ag x (Cs : Cy) 7200 1153028
11 | Ag: (C5: Cy) 7200 1153029
11 | (As x As): Cy 14400 1153047
11 | (A5 x As) : (Cy x Cs) 14400 1153049
11 | S5 %S5 14400 1153050
11 | Se x (Cs : Cy) 14400 1153051
11 | Ag X Aj 21600 1153064
11 | (A5 x As) : Dg 28800 1153065
11 | A5 :Se 43200 1153072
11 | S x As 43200 1153073
11 | Ag x S5 43200 1153074
11 | Se x S5 86400 1153080
12 | Sg: Co 1440 1215100
13 | PSL(2,11) 660 12T179
13 510 X 53 10!x 3! 13L33
13 | Cs x Sio 10/x31/2 13L34
13 | Ajp X S3 10!%x3!/2 13L37
13 | Awo:Ss 10!x31/2 13L39
13 [ 05 x Aqg 10/x3!/4 | 13L310
15 | Ag 20160 15P4

17 | Cs x Si5 15!x2 17152
17 CQ x A1s 15! 17124

Table 8 — Continued on next page
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Groups with n 4 31 set-orbits
n G Order GAP ID
17 | Sis 15! 17155
17 | PSL(2,16) : Cy4 16320 17P8
31 | Asp 30!/2
31 | Sso 30!
Table 8

5. Conclusion

While studying the previous method and trying to extend it, we made some
observations regarding the results. When 11 < r < 33, we noticed that a permu-
tation group had degree at most r. Specifically, A,._; and S,_; acting transitively
on r — 1 points and trivially on 1 point seemed to be the highest degree groups
that gave n + r set-orbits. This leads us to conjecture that for r > 11, there is no
permutation group of degree n > r that will give n + r set-orbits. While we were
unable to prove this, we know from Proposition 2.8 that if any group existed,
it would have to be primitive.

There were a few computational challenges that caused difficulty in the clas-
sification. Calculating s(G) is expensive when the size of the group is large, but
has a relatively low number of set-orbits. This is because s;(G) has relatively
small values until ¢ grows close to |5 | and making estimations for s(G) becomes
ineffective. Specifically, the My, group takes an unreasonable amount of time to
calculate. Additionally, calculating all subgroups of Sy x S,,_j is still infeasible
for larger k.

If one wants to extend the classification beyond r = 33, the computational
limitations would be the greatest challenge. A more theoretical limitation would
be determining an efficient method of finding all permutation groups whose orbits
split into different cases.
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