
ACM Communications in Computer Algebra, TBA TBA

Computing exact nonlinear reductions of dynamical models

Antonio Jiménez-Pastor

LIX, CNRS, École Polytechnique
Institute Polytechnique de Paris

Palaiseau, France, 92160
jimenezpastor@lix.polytechnique.fr

Gleb Pogudin

LIX, CNRS, École Polytechnique
Institute Polytechnique de Paris

Palaiseau, France, 92160
gleb.pogudin@polytechnique.edu

Abstract

Dynamical systems are commonly used to represent real-world processes. Model reduction techniques
are among the core tools for studying dynamical systems models, they allow to reduce the study of a
model to a simpler one. In this poster, we present an algorithm for computing exact nonlinear reductions,
that is, a set of new rational function macro-variables which satisfy a self-consistent ODE system with
the dynamics defined by algebraic functions. We report reductions found by the algorithm in models
from the literature.

1 Introduction

Dynamical systems are frequently used to model phenomena in the life sciences and engineering. It is
well-known that even relatively small dynamical systems may have very complicated dynamics (e.g., the
celebrated Lorenz system), and, as the dimension grows, studying a model becomes more and more com-
plicated.

One standard way of dealing with high-dimensional models is to use model reduction: replace a model
with a simpler one which preserves, at least approximately, some features of the original model. Perhaps,
the most commonly used tools are the ones for approximate reduction (see, e.g. [14]). However, such
reductions typically introduce approximation errors and may destroy intrinsic structural properties of the
model. Therefore, it may be beneficial to complement the approximate reduction techniques with the exact
ones. The existing methods for exact model reduction include:

• Finding first integrals (i.e., conserved quantities). Indeed, a first integral h of the system can be viewed
as a reduction to a one-dimensional system h′ = 0. A number of algorithms has been proposed to
find the first integrals, e.g. [16, 4, 13, 15].

• Finding exact reductions among linear projections. Efficient algorithms and publicly available soft-
ware exist for this problem, see [5, 11] and references therein.

• The invariance of the system with respect to a group action can be used to perform exact reduction.
An efficient algorithm was proposed in [7] for the case of scaling transformations, extending the
celebrated Buckingham π-theorem.

In this paper, we present an algorithm that, given an ansatz of the form of a rational function involving
the state variables of the system and unknown coefficients, finds the constraints on the values of the
coefficients, under which this function can be completed to a nontrivial nonlinear reduction. This allows us
to find reductions of more general form than possible using the approaches mentioned above (see examples
in Section 4). On the other hand, our algorithm relies on polynomial system solving, so it cannot tackle
very large systems that can be analyzed using these less general approaches.

1

Computing exact nonlinear reductions of dynamical models TBA

Once the coefficients are chosen and a reduction is built, our algorithm may perform additional
reparametrization of the resulting reduction aiming at simplifying the new variables and reduced system.

We give a high-level description of our algorithm and show some interesting reductions found by our
implementation for models from the literature.

2 Problem statement

Let k ⊂ C be a constructive field. We consider a rational dynamical system, that is, a system of differential
equations

x′ = f(x) (1)

in variables x = (x1, . . . , xn), where f = (f1, . . . , fn) is a tuple of rational functions f1, . . . , fn ∈ k(x). The
integer n will be referred to as the dimension of (1).

Our main goal is to find exact reductions of (1). Informally speaking, reduction is a list of rational
functions y1(x), . . . , ym(x) with m < n such that y1, . . . , ym satisfy a self-contained system of the form (1)
but possible with algebraic functions in the right-hand side. That is, there exist algebraic functions
g1(y), . . . , gm(y) such that, for every solution x∗ of (1), the functions y1(x

∗), . . . , ym(x∗) satisfy

y′1 = g1(y), . . . , y
′
m = gm(y)

after a suitable choice of branches for g1, . . . , gm. In practice, it frequently happens (see Section 4) that the
right-hand side of the reduced system is rational as well. We give a formal algebraic definition of reduction
below.

Definition 1 (Lie derivative) Since (1) defines a vector field, for every rational function h ∈ k(x) we
can define the Lie derivative with respect to (1):

L(h) :=
n∑

i=1

fi
∂h

∂xi
.

Definition 2 (Reduction) A list y1, . . . , ym ∈ k(x) of k-algebraically independent rational functions with
m < n will be called a reduction of (1) if, for every 1 ⩽ i ⩽ m, L(yi) is algebraic over the field k(y1, . . . , ym).

Remark 1 The definition above can be easily adapted to the case when one looks for rational (resp.,
polynomial) reduction: one should just replace algebraicity of L(yi) over k(y1, . . . , ym) by the containment
L(yi) ∈ k(y1, . . . , ym) (resp., L(yi) ∈ k[y1, . . . , ym]). But the corresponding algorithmic problem of finding
such reductions seems to be very challenging, and we are not aware of any practical solution.

We will illustrate the definition on a couple of examples.

Example 1 ([1, Example 4.1.9]) Consider the following dynamical system:
x′ = xz
y′ = yz
z′ = −x2 − y2

(2)

Then, the functions f = z and g = x2 + y2 are a reduction of (2) since:

L(f) = −g, L(g) = 2fg.

Therefore, for every solution (x, y, z) of (2), the values of f and g satisfy the reduced system

f ′ = −g, g′ = 2fg.

2

A. Jiménez-Pastor, G. Pogudin

Example 2 Consider the following dynamical system:{
x′ = −2x2y
y′ = x2y3 + y

(3)

Then, the function f = xy is a reduction of (3) since:

L(f) = f3 − 2f2 + f,

and the reduced system will be f ′ = f3 − 2f2 + f .

3 Sketch of the algorithm

3.1 General idea behind the algorithm

Our algorithm is based on the following observation.

Proposition 1 Consider system (1) of dimension n. Let y1, . . . , ym ∈ k(x) be a reduction of (1). Then
there exists r ⩽ m such that

y1, L(y1), . . . , Lr−1(y1)

is also a reduction of (1). Furthermore, any element Li(y1) of this reduction is algebraic over k(y1, . . . , ym).

This proposition implies that every reduction contains a “subreduction” of the form y,L(y), . . . ,Lr−1(y)
for some y ∈ k(x). Moreover, using the differential primitive element theorem [12], one can show that any
reduction with nonconstant dynamics is equivalent to a reduction of this form. Our approach is the
following:

1. We fix a positive integer r ⩾ 1 and an ansatz y ∈ k(a,x), where a is a vector of unknown coefficients.

2. We express the fact that “y,L(y), . . . ,Lr−1(y) contains a reduction” as a polynomial system on the
ansatz coefficients a (Section 3.2).

3. We analyze the solution set of this polynomial system and consider y’s resulting from different prime
components.

4. For each of the constructed y’s, we form the corresponding reduction y,L(y), . . . ,Ls−1(y) and apply
our simplification procedure to it in order to make the resulting reduction easier to interpret and
compute with (Section 3.3).

5. For each of the computed reductions, we produce the reduced ODE system.

3.2 Formulating the existence of reduction via a polynomial system

Consider any y ∈ k(x) and positive integer r ⩾ 1. The definition of reduction implies that the func-
tions y,L(y), . . . ,Lr−1(y) contains a reduction if and only if Lr(y) is algebraic over k(y,L(y), . . . ,Lr−1(y)).
Furthermore, one can show that this is equivalent to y,L(y), . . . ,Lr(y) being algebraically dependent.
Algebraic dependence in k(x) can be verified using the following lemma (which follows from [6, Theo-
rem 16.14]):

Lemma 1 Let y1, . . . , ym ∈ k(x) be rational functions. They are algebraically dependent over k if and only
if the rank of the matrix

(∇y1 | ∇y2 | . . . | ∇ym) ,

where ∇y =
(

∂y
∂x1

, . . . , ∂y
∂xn

)T
, is less than m.

3

Computing exact nonlinear reductions of dynamical models TBA

With this lemma at hand, we can search for such y using an ansatz :

y(a,x) ∈ k(a,x), (4)

where a is the tuple of new indeterminates. The above discussion implies that y can be completed to a
reduction of dimension at most r if and only if the following matrix has rank less than r + 1:

J = (∇y | ∇L(y) | . . . | ∇Lr(y))T .

This rank inequality is equivalent to all (r + 1)× (r + 1) minors of J to be zero. The entries of J belong
to k(a,x), the minors are zero if their numerators are zero polynomials in x. Thus, the coefficients w.r.t.
x of these numerators provide a system of polynomial equations on a such that, if we take a solution of it,
we get a function y∗ ∈ k(x) such that {Li(y∗) | i = 0, . . . , s− 1} is a reduction of (1) for some s ⩽ r.

Let A ⊂ k[a] be the ideal generated by the constructed polynomial system. In order to get the
components of the solution variety, we use triangular sets [8, 9, 17]. Once we have one of these components,
we can plug a generic point from it to the ansatz and obtain a reduction by computing necessary Lie
derivatives.

3.3 Computing simpler generators

In the previous subsection, we have described a method to obtain a reduction y1, . . . , ym for a system
of the form (1). In this subsection, we will describe a method allowing to simplify the set of new vari-
ables while obtaining an equivalent reduction. More precisely, for a reduction y1, . . . , ym ∈ k(x) with
algebraically independent y1, . . . , ym, we try to obtain an equivalent reduction z1, . . . , zm ∈ k(x) such that
k(y1, . . . , ym) = k(z1, . . . , zm) and each zi is either equal to yi or is a polynomial of small degree.

For doing so, we will use again an ansatz approach. We choose a degree bound d, and consider z to be
a general polynomial of degree at most d in x with undetermined coefficients. Next we want to check if one
of the y1, . . . , ym can be replaced by z. This is equivalent to the fact that y1, . . . , ym, z are algebraically
dependent. Using Lemma 1, we know this is equivalent to the matrix J = (∇y1|∇y2| . . . |∇ym|∇z)T having
the rank less than m + 1, so all the (m + 1) × (m + 1) minors of this matrix must vanish. As we did
previously, we now take the numerators and coefficients w.r.t. x, obtaining a system of equations in the
ansatz coefficients.

However, this system differs from the system obtain in Section 3.2 since the ansatz coefficients appear
only in ∇z. Hence, the system we obtain is linear in the ansatz variables. We can, therefore, obtain a
basis of solutions for this system.

For each linearly independent solution, we can then compute a concrete function z∗ that we know is
algebraically dependent with y1, . . . , ym. If we now solve the linear system

∇z∗ = v(x)

∇y1
...

∇ym

 ,

we know that we can exchange for z∗ any of the yi if the i-th component of v(x) is not zero.
This process only involves linear algebra and can be the repeated as many times as desired increasing

the degree bound d if necessary.

3.4 Computing the new equations

Up to this point, we have only considered the problem of deciding when a set of algebraically independent
functions y1, . . . , ym ∈ k(x) is a reduction for a dynamical system (1). By definition of reduction, this means
that there are algebraic functions g1, . . . , gm over k(y1, . . . , ym) such that L(yi) = gi for i = 1, . . . ,m. The
minimal polynomials of gi is the minimal polynomial for L(yi) over k(y1, . . . , ym) and can be computed,
for example, using [10, Algorithm 3.2].

4

A. Jiménez-Pastor, G. Pogudin

4 Examples

Reduction in Examples 1 and 2 were found using our algorithm. In this section we will show a couple of
larger examples. Examples 1 and 3 were taken from a collection of ODE models used in [16].

Example 3 (Phytoplankton model) The following dynamical system model of the usage of carbon by
the phytoplankton during the photosynthesis process has been studied in [2, Section 6]:

x′1 = 1− x1 − ax1x2
x′2 = −bx2 + 2x2x3
x′3 = ax1 − bx23

(5)

If we set up a quadratic ansatz and apply the procedure described in Section 3.2 for one Lie derivative,
we obtain that for any constant α, the function y = α(x1 + x2x3) is a reduction of (5). No further
simplification was possible, so our algorithm will produce the following equation for y:

y′ = α− y.

This reduction (for α = 1) was proven in [2, Property 4] and now we can find it automatically.

Example 4 (Ordered Phosphorylation) Let us consider the following dynamical system:
x′1 = −2Kx1x2 + kx3,
x′2 = −2Kx1x2 − kx2x3 + kx3 + 2kx4,
x′3 = 2Kx1x2 −Kx2x3 − kx3 + 2kx4,
x′4 = Kx2x3 − 2kx4,

(6)

where the k and K are scalar parameters. This model is a result of the reduction of the 227-dimensional
model from [3] using the software CLUE [11] which searches for the new variables as linear combinations
of the original ones.

If we apply the methodology of Section 3.2 to the linear ansatz z = a1x1+a2x2+a3x3+a4x4 and r = 3
derivations, we obtain that z,L(z),L2(z) is a reduction of (6) if and only if the ansatz variables satisfy the
equation

a1 − 2a3 + a4 = 0.

For example, we can take the function z∗ = x2 and applying Section 3.4 we obtain the following reduced
system for y1 = z∗, y2 = L(z∗) and y3 = L2(z∗):

y′1 = y2
y′2 = y3

y′3 =
−2Ky32+y23

y2

(7)

We can see that the equations for y′2 and y′3 do not involve y1, so this system can be further reduced by
removing the first equation.

If we write y2 and y3 explicitly in terms of the state variables, we will obtain:

y2 = −2Kx1x2 − kx2x3 + kx3 + 2kx4
y3 = 4K2x21x2 + (4K2 − 2kK)x1x

2
2 + 4kKx1x2x3

+kKx22x3 + k2x2x
2
3 + 2kKx1x2

−2kKx1x3 + (k2 − kK)x2x3 − k2x23
−4kKx1x4 − 2k2x2x4 − 2k2x3x4
−k2x3 − 2k2x4

5

Computing exact nonlinear reductions of dynamical models TBA

The size of the expression motivates us to use the simplification algorithm from Section 3.3.
We obtain the following simpler functions:

z1 = 2x1 + x2 + x3, z2 = 2x1x2 + x2x3 +
k

K
(2x1 + x2 − 2x4) .

Finally, applying Section 3.4, we obtain the following reduced system:{
z′1 = 2kz1 − 2Kz2
z′2 = kz1 −Kz1z2 + 3k2

K z1 − 3kz2

which is polynomial unlike (7).

Acknowledgements

This work was supported by the Paris Ile-de-France region (via project “XOR”). GP was partially supported
by NSF grants DMS-1853482, DMS-1760448, and DMS-1853650. We are grateful to Mirco Tribastone for
helpful discussions and, in particular, for suggesting Example 4.

References

[1] J. M. Alongi and G. S. Nelson. Recurrence and topology. American Mathematical Society, Providence,
RI, 2012.

[2] O. Bernard and J.-L. Gouzé. Global qualitative description of a class of nonlinear dynami-
cal systems. Artificial Intelligence, 136(1):29–59, 2002. ISSN 0004-3702. doi: https://doi.org/
10.1016/S0004-3702(01)00169-2. URL https://www.sciencedirect.com/science/article/pii/

S0004370201001692.

[3] N. Borisov, B. Kholodenko, J. Faeder, and A. Chistopolsky. Domain-oriented reduction of rule-
based network models. IET Systems Biology, 2(5):342–351, 2008. URL https://doi.org/10.1049/

iet-syb:20070081.

[4] A. Bostan, G. Chéze, T. Cluzeau, and J.-A. Weil. Efficient algorithms for computing rational first
integrals and Darboux polynomials of planar polynomial vector fields. Mathematics of Computation,
85:1393–1425, 2016. URL https://doi.org/10.1090/mcom/3007.

[5] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. ERODE: A tool for the evaluation
and reduction of ordinary differential equations. In A. Legay and T. Margaria, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 310–328, 2017. ISBN 978-3-662-
54580-5.

[6] D. Eisenbud. Commutative algebra. Graduate Texts in Mathematics. Springer, New York, NY, 1
edition, Feb. 1999.

[7] E. Hubert and G. Labahn. Scaling invariants and symmetry reduction of dynamical systems.
Foundations of Computational Mathematics, 13:479–516, 2013. URL https://doi.org/10.1007/

s10208-013-9165-9.

[8] M. Kalkbrener. A generalized euclidean algorithm for computing triangular representations of al-
gebraic varieties. Journal of Symbolic Computation, 15(2):143–167, 1993. ISSN 0747-7171. doi:
https://doi.org/10.1006/jsco.1993.1011. URL https://www.sciencedirect.com/science/article/

pii/S0747717183710114.

6

A. Jiménez-Pastor, G. Pogudin

[9] Y. Lu. Searching dependency between algebraic equations: an algorithm applied to automated rea-
soning. 1994.

[10] J. Müller-Quade and S. R. Basic algorithms for rational function fields. Journal of Symbolic Compu-
tation, 27(2):143–170, 1999. URL https://doi.org/10.1006/jsco.1998.0246.

[11] A. Ovchinnikov, I. Pérez Verona, G. Pogudin, and M. Tribastone. CLUE: exact maximal reduction
of kinetic models by constrained lumping of differential equations. Bioinformatics, 37(19):3385–3385,
2021. URL https://doi.org/10.1093/bioinformatics/btab258.

[12] G. Pogudin. A primitive element theorem for fields with commuting derivations and automorphisms.
Selecta Mathematica, 27, 2019. URL https://doi.org/10.1007/s00029-019-0504-9.

[13] M. Prelle and M. F. Singer. Elementary first integrals of differential equations. Transac-
tions of American Mathematical Society, 279:215–229, 1983. URL https://doi.org/10.1090/

S0002-9947-1983-0704611-X.

[14] W. H. A. Schilders, H. A. Vorst, and J. Rommes. Model Order Reduction: Theory, Research Aspects
and Applications. Springer Berlin, Heidelberg, 2008. ISBN 978-3-540-78840-9. URL https://doi.

org/10.1007/978-3-540-78841-6.

[15] D. Schlomiuk. Elementary first integrals and algebraic invariant curves of differential equations. In
Exposition. Math, volume 11, pages 433–454, 1993.

[16] A. Sogokon, S. Mitsch, Y. K. Tan, K. Cordwell, and A. Platzer. Pegasus: Sound continu-
ous invariant generation. Form. Methods Syst. Des., 58(1):5–41, 2022. ISSN 0925-9856. doi:
10.1007/s10703-020-00355-z. Special issue for selected papers from FM’19.

[17] D. Wang. Computing triangular systems and regular systems. Journal of Symbolic Computation,
30(2):221–236, 2000. ISSN 0747-7171. doi: https://doi.org/10.1006/jsco.1999.0355. URL https:

//www.sciencedirect.com/science/article/pii/S0747717199903553.

7

