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ABSTRACT

This work introduces a computational method for designing
ceramic scaffolds fabricated via direct ink writing (DIW) for max-
imum bone growth, whereby the deposited rods are curvilinear. A
mechanobiological model of bone adaptation is used to compute
bone growth into the scaffold, taking into account the shape of the
defect, the applied loading, and the density distribution of bone
in which the scaffold is implanted. The method ensures smooth,
continuously varying rod contours are produced which are ideal
for the DIW process. The method uses level sets of radial basis
functions to fully define the scaffold geometry with a small number
of design variables, minimizing the optimization’s computational
cost. Effective elastic and diffusive properties of the scaffold as a
function of the scaffold design and the bone density are obtained
from previously constructed surrogates. These property surro-
gates are in turn used to perform bone adaptation simulations
of the scaffold-bone system. Design sensitivities of the bone in-
growth within the scaffold are efficiently obtained using a finite
difference scheme implemented in parallel. A demonstration of
the methodology on a scaffold implanted in a pig mandible is pre-
sented. The scaffold is optimized to maximize bone ingrowth with
geometric constraints to conform to the manufacturing process.

Keywords: bone scaffold, design, optimization, bone
growth, curvilinear, direct ink writing

1. INTRODUCTION

Bone scaffolds are porous structures designed to offer an
alternative to natural bone for use in bone grafting [1]. Bone
grafting is a surgical procedure in which donor bone is implanted
to replace bone that is too severely compromised to heal on its
own [2]. This damage may be caused by trauma or disease, or
may be congenital. In essence, a bone graft fills the damaged
region, or the bone defect, providing the necessary support for
new bone to grow [3].
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In the face of increasing demand, the current sources of graft
material have serious limitations [4]. The preferred source is the
patient, in which case the procedure is known as an autograft
[3]. However, only so much material can be removed before the
functionality of the donor bone is compromised, limiting their
use to smaller defects [1, 5]. Moreover, autografts require that
the patient undergo a surgery to remove the bone in addition to
the implantation surgery, adding the potential for complications
at the donor site [1, 5, 6]. The primary alternative to autografts
are allografts. In an allograft, the source of bone is a donor other
than the person receiving the graft [5]. Allografts only require a
single surgery on the patient and are not subject to the same defect
size restrictions as autografts. However, allografts are plagued
by a shortage of donor material, and elevated risks of disease
transfer and rejection by the patient [2, 5]. Moreover, both forms
of graft are very expensive [7].

In light of the limitations of these two options, significant
research efforts have been devoted to bone substitutes in recent
years. Their clinical application remains limited, owing prin-
cipally to difficulties in their design and manufacture [8]. This
difficulty stems from the complex and frequently conflicting re-
quirements any bone substitute must meet. Bone growth requires
the growth of new blood vessels into the defect to facilitate the
transport of nutrients, cells, and waste to and from the healthy
bone surrounding the defect (the growth front) [9, 10]. Thus,
to ensure that the defect fully heals, a certain level of porosity
must be maintained by the scaffold. Simultaneously, a degree
of mechanical compliance must be maintained, as bone growth
typically requires stimulation in the form of mechanical loading
to occur [9, 11]. Opposing these goals is the need for structural
stability of the scaffold. Mechanical failure of the scaffold in vivo
is not acceptable. Furthermore, excessive deformation impedes
angiogenesis, slows the formation of bone, and results in a pro-
longed healing period [2, 12]. In vivo studies also suggest that too
much local strain also affects cell differentiation at the defect site,
favoring the formation of fibrous tissue over bone [13]. Adding to
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FIGURE 1: Top view of a computer-aided design (CAD) model
of a curvilinear scaffold

these requirements, as bone grows into the scaffold, the scaffold’s
properties change. Thus it is not guaranteed that a design which
conducive to bone growth at implantation will remain so as time
progresses [8].

Previous works have used computational optimization tech-
niques to design the scaffold and attempt to address these chal-
lenges. Most of these works have focused on the mechanical
properties of the scaffold (cf. [14-24]). The biological require-
ments of bone growth tend to be treated as structural constraints,
if considered at all [8]. Several authors have employed transient
finite-element-based mechanobiological simulations to investi-
gate the effect of scaffold geometry on bone growth over time
[10, 25-32]. In [10], a scaffold unit cell is optimized so that the
rate of bone growth is matched to the rate of scaffold resorption.
The goal is to ensure an adequate measure of mechanical stimu-
lus and support is available throughout the bone growth process.
Mechanobiological considerations are incorporated in the design
of optimized scaffolds in [31], which focuses on the optimization
of the rod diameter of a rhombicuboctahedral unit cell with the
objective of maximizing bone growth before the combined bone-
scaffold is so stiff that it inhibits further growth. [30] seeks to
optimize a periodic unit cell for bone growth, subject to a con-
straint on scaffold compliance. This work incorporates analytical
sensitivities of a transient bone growth model to perform gradient
based topology optimization of the unit cell.

The authors of this paper recently formulated a computa-
tional design method for scaffolds fabricated via DIW and with
rectilinear rods [32]. This method maximizes volume bone in-
growth while maintaining a specified level of stiffness at im-
plantation. A transient mechanobiological simulation is used to
determine bone growth in the scaffold from the time of implan-
tation to a specified time. This simulation is subsequently used
to create surrogates of bone growth and as-implanted stiffness as
a function of scaffold design parameters. The scaffold optimiza-
tion is then performed on these surrogates. This methodology
is suitable for periodic scaffolds, as only a small number of de-
sign parameters is considered and thus the number of simulations
required to construct the surrogate models is computationally
feasible. However, for designs that require more parameters and
offer potentially better growth performance, such as non-periodic
designs arising from the use of curvilinear rods, the number of
simulations needed to construct the surrogates makes the compu-
tational cost prohibitive.

In this paper, we build on our previous work by designing
scaffolds with curvilinear rods, cf. Fig. 1. The directrices of the
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FIGURE 2: An 8mm diameter ceramic scaffold manufactured via
direct ink writing (DIW) [35].

curvilinear rods are defined as level sets of an implicit surface
defined using radial basis functions (RBFs). The advantage of
this choice of geometric representation is that it can render a wide
variety of curvilinear designs with a compact representation, i.e.,
with relatively few design variables. Moreover, the level sets of
the RBF surface are smooth with the appropriate choice of basis
function [33]. This facilitates the manufacturing of the scaffold
by DIW by avoiding the need for abrupt changes in printing ve-
locity and flow rate [34]. As in our previous work, the objective
function consists of maximizing bone growth, which is evaluated
via the mechanobiological simulation. The scaffold is treated
as a homogenized solid, whose effective properties are extracted
from surrogates built prior to the optimization using numerical
homogenization and geometry projection techniques. The prop-
erty surrogates are not only a function of the scaffold geometric
parameters, but of the amount of bone growth. Therefore, the
effective properties at a given location within the scaffold and
at a given time are a function of the local scaffold geometry
and the amount of bone ingrowth from the previous time step.
We employ a finite difference scheme to efficiently compute de-
sign sensitivities so that we can employ efficient gradient-based
optimizers for the design. This scheme is implemented using par-
allel computing for efficiency. Thanks to the compactness of our
curvilinear design representation, the proposed method can si-
multaneously perform the primal mechanobiological simulation
and all the simulations corresponding to individual perturbations
of the design parameters needed to compute the design sensitiv-
ities. The proposed method also imposes geometric constraints
in the optimization to ensure the optimized scaffold design is
manufacturable via DIW.

The rest of this manuscript is organized as follows. Section
2 and Section 3 present the details of the formulation and the
computational implementation, respectively. Section 2 describes
the formulation of the proposed method, including the defini-
tion of curvilinear geometry, the geometric constraints, and an
overview of the bone growth model. Section 3 presents details
of the computer implementation, including the parallel compu-
tation of finite difference sensitivities. The proposed method is
demonstrated through the design of a scaffold in a pig mandible in
Section 4. We present our conclusions from this work in Section
S.
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2. FORMULATION

The details of portions of the formulation, including the
mechanobiological simulation and the construction of effective
property surrogates, are largely identical to those employed in
our previous work [32]. As such, this section only discusses
those elements of the formulation at a high level for brevity,
and provides a detailed exposition for the novel aspects of the
proposed method.

2.1 Scaffold Geometry

2.1.1 Geometric representation requirements. We start
our formulation by describing how we represent the curvilinear
scaffolds. While our representation can potentially accommo-
date other processes, it is tailored DIW fabrication. In DIW, the
scaffold is constructed from biocompatible ceramic inks using
robotic deposition techniques. This method works by extruding
and depositing a colloidal ceramic suspension, or ink, out of a
robotically positioned nozzle [36]. While extrudable, the suspen-
sion maintains its shape and can bridge small gaps without the
aid of support material. The shape of the scaffold is then built up
layer by layer, similar to conventional fused deposition modeling
(FDM) printers for plastics. To ensure a bond between alternating
layers, they are printed such that the rods overlap by some amount,
which can be controlled in the manufacturing. Once the structure
is complete, the part is sintered. When sintered, overlaps between
rods form fully fused joints. A rectilinear scaffold fabricated in
this manner is shown in Fig. 2. We assume that the distortion of
the rod cross sections at rod intersections is negligible, and that
the rods are of a uniform circular cross-section. Moreover, we
restrict our efforts to scaffolds whose layers are planar; that is,
the rod height within a layer is constant.

To optimize curvilinear scaffolds, a suitable mathematical
representation is necessary. Ideally, such a representation would
be compact, requiring a small number of design variables to con-
trol the geometry without unduly restricting the design space.
This compactness enables a feasible computational cost for the
optimization. Furthermore, the representation must accommo-
date the necessary manufacturability and biological constraints.
The DIW process cannot accommodate rods on the same layer
intersecting, either with themselves or other rods. Of particu-
lar importance is the rod center-to-center spacing / (see Fig. 5)
within a layer. During fabrication, this spacing cannot exceed
a certain maximum size or the unsintered rods will sag. After
implantation, the rod spacing cannot be too small or tissue will
not be able to grow into the scaffold. Therefore, / must be readily
computed from the geometric representation everywhere within
the scaffold. Futhermore, any design representation must define
the contours of two rod layers. Curvilinear scaffolds are com-
posed of repetitions of two complimentary layers that we shall
refer to as the primary and alternate. Fig. 3 shows the primary and
alternate layers of the scaffold from Fig. 1. The rods of these two
layers need to run across each other, tying the scaffold rods to-
gether into a unified structure. The rods of primary and alternate
layers should preferably be perpendicular to each other at their
intersections. This requirement is motivated by the fact that for
a given level of overlap between adjacent layers, perpendicular
intersections of rods minimize the amount of surface area lost to
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the intersection. This is undesirable since bone requires exposed
surface to grow on [9]. Since bone defects have irregular shapes,
the final requirement on the geometric representation is that it
should conform to arbitrary shapes.

FIGURE 3: Two layers of a curvilinear scaffold with the primary
rod layer colored blue-green and the alternate layer colored in
magenta

2.1.2 Radial basis function interpolants. A represention
of the scaffold via level sets of a surface constructed using 2D RBF
interpolants satisfies the requirements outlined in the previous
section. A radial basis function interpolant can be defined as

f(@) = po+p u+ Y wig(d(ci,w), ()
i=1

where ¢ is a radial basis function, and d(c;,u) is a suitable
measure of distance between the evaluation point u and ¢; is the
center of the ith RBF. For this paper, d(c;, u) is the L? norm, and
¢ is the thin-plate spline ¢(r) = r?In(r)[33]. The values of py,
p, w; in 1 are constants determined by the fitting process, and n
is the number of RBFs used by the interpolant. The procedure
for calculating these constants to fit the interpolant will not be
discussed here for brevity, but can be found in the literature cf.
[37, 38].

To derive the curved scaffold rods from the interpolated sur-
face, we use its level sets. Each rod on the primary layer of the
scaffold corresponds to a contour on the level set of the inter-
polant’s surface. The design variables for this parameterization
correspond to the center points and heights that the interpolant is
fitted to. The directrix of each curvilinear rod thus corresponds
to a level set of this surface, with level sets corresponding to
f(u) =kA, k=1,2,---, where A is a specified value.

This representation is compact; in the scaffold shown in Fig.
4, for example, 16 rods in 2 layers are defined by only 12 variables.
This is in contrast to Bézier curves or splines, which would require
at least 4 variables for each rod in the primary layer. This level-
set representation naturally produces contours that are free of
intersections without the need for additional constraints. Such
constraints would be required if, for example, Bézier or spline
representations were used for each rod. Another advantage of the
RBF representation is that the level sets are smooth and therefore
easy to fabricate in the DIW process. This smoothness owes
to the minimal-energy property of thin plate RBFs. The RBF
representation is also adaptable, in that as many RBFs as desired
may be added to the interpolant, allowing for more complex
level sets to be created and consequently providing more design
freedom.

The separation between rods for the RBF representation is
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FIGURE 4: An RBF interpolant is fitted so that it attains the values h; at the center points ¢;, creating a surface like the one shown in
Fig. 4a. The rod directrices correspond to level sets of the surface, as shown in Fig. 4b. Curves orthogonal to these level sets are then
generated numerically to generate the alternate layer, and the resulting contours are cut to the final scaffold shape as shown in Fig. 4c

readily computed as

I(u) = 2

A
IV’
which follows from the first-order Taylor series approximation of
the signed distance function, and where the interpolant gradient
can be derived from 1 as

VAW =p+ Y i (e )V, G
i=1

Finally, the level sets for the alternate layer must also be
found. Unfortunately, this cannot be done analytically, but they
can be easily obtained numerically. To ensure the rods of the
alternate layer are perpendicular to the primary layer rods at all
points, we define a function g such that g, = —fy and gy, = fx.. To
obtain g, we employ numerical techniques to reconstruct a surface
from a gradient field (cf. [39]). Since Vg must be approximately
equal to the finite difference of g, we can construct a system
of equations solving for g at a set of points. This leads to an
overdetermined system that is solved using least squares. Once g
is solved for, its level sets can be used to define the alternate layer.
An example of a completed scaffold design with its alternate layer
is shown in Fig. 4c.

2.2 Bone growth model

As previously mentioned, bone requires a certain amount of
load or stimulus as well as an adequate supply of osteoblasts to
grow. Osteoblasts are the cells which specialize in the repair and
maintenance of bone, which are responsible for the actual growth
process [9]. However, as new bone is deposited, the distribution
of stresses in the bone and ease of fluid transport (i.e. diffusivity)
change even under a constant stimulus. This means modeling the
transient bone growth is required to characterize the performance
of a scaffold. The bone growth model adopted in this work is
based on that of [9, 26, 40]. In a previous work, we adapted this
model to predict bone growth in rectilinear scaffolds [32].

This model uses strain energy density as a measure of me-
chanical stimulus, and diffusion as a model of cell transport.
Based on the mechanical stimulus received and the relative con-
centration of cells at a point, the bone deposited there is estimated.
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The bone growth model consists of a finite element-based simula-
tion that estimates the density change in bone on an element-wise
basis. The bone is assumed to have an infinite supply of os-
teoblasts that is not depleted by the bone growth process. A
linear static analysis on the bone-scaffold assembly is performed
to determine the stress distribution, and a transient mass dif-
fusion analysis is conducted to determine the concentration of
osteoblasts in each element. At every time step during the heal-
ing period, the density and material properties of each element
are updated.

The analysis region Q is separated into two domains: scaffold
() and bone (), with Q = Q, U Q;,, Q; N Q;, = 0. The
bone domain contains all of the pre-existing bone surrounding
the scaffold. The scaffold domain consists of the scaffold itself,
and any bone that grows within it. The material properties of the
two domains are calculated differently. Any elements in the bone
domain are henceforth referred to as bone elements, and any in the
scaffold domain as scaffold elements. The calculations pertaining
to these domains are detailed in [32] and are not repeated here.
However, the density update, which we now describe, is the same
for both regions.

As the density update is done on each element, we compute
all relevant local quantities at the element centroid and assume
they are uniform within the element. Therefore, while the ex-
pressions shown in the following can be computed at any point
x € Q, in the implementation they are computed at each element
centroid. The density for each time step is computed using the
update

Prsar(X) = min(pp, p;(X) + p(X)A1), 4)

where p;Ar and p; denote the bone density at times ¢ + At and
t, respectively, and gy, is the maximum possible density of bone.
This density is based on empirical measurements of bone density.
A small minimum allowable bone density g, is also imposed
everywhere to ensure the mechanical properties of bone are not
zero, which leads to an ill-posed mechanical analysis, and leads
to a division by zero in the growth model (cf. [32]). we thus
assign po = pp for all x € Q;. Both g, and p, can be found in
[32].

The rate of change in bone density p(x) is computed at each
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time step as [26]

P(X) = Ser £ S(X)7(X) P, ®)

where § is the specific surface area in element e. S.7y is an
empirical constant that represents what fraction of the available
surface area actually supports bone growth. S is calculated dif-
ferently for the bone and scaffold domains due their differing
microstructure. Likewise, S.r ¢ attains different values for the
two regions. 7(X) is the rate of bone deposition, calculated based
on the mechanical stimulus and osteoblast concentration at point
x. Note that we assume bone resorption is negligible over the
growth period, so p(x) > 0. The formulas for each of the quan-
tities in (5) can be found in [32].

2.3 Scaffold properties

In order to perform the elasticity and diffusion analyses re-
quired by the growth model, scaffolds properties must be incor-
porated into the finite element model. As the structural details of
the scaffold are small relative the scale of the bone, a conforming
mesh of the scaffold geometry would require many elements and
add considerable computational expense. To avoid this, the scaf-
fold is instead modeled as a homogenized bulk material, whose
properties are applied to the elements in the scaffold region (cf.
[32]). This is complicated by the spatially variable scaffold ge-
ometry, which implies spatially varying homogenized properties.
Our approach to this problem is to assume that locally the proper-
ties of the curvilinear scaffold can be approximated by a rectilinear
scaffold unit cell. Essentially, at the centroid of every element,
we determine the approximate rectilinear unit cell parameters and
orientation. This information, combined with the in-grown bone
density, is then used to determine the scaffold properties at that
element. In our previous work on rectilinear scaffolds, we cre-
ated a surrogate model of the scaffold properties as a function
of its geometric parameters. The effective properties for each
design used in the construction of the surrogate are obtained by
numerical homogenization of a periodic unit cell. Geometry pro-
jection techniques are used so that the analyses for the numerical
homogenization can be performed on a non-conforming mesh so
as to circumvent remeshing. For brevity, details of the surrogate
construction are not provided here, and the interested reader is
referred to [32].

The surrogate model returns the elastic and diffusion prop-
erties as a function of the in-grown bone density p; and two
dimensionless constants d// and « := 1 — a/d. a, d, and [ are
as defined in Fig. 5. In general, higher d// and « correspond to
stiffer unit cells with less interstitial space. d is effectively a fixed
value, determined by the nozzle size of the DIW machine and the
shrinkage caused by the sintering process. The layer offset a is
in general independent of the curvilinear rod layout and thus « is
a design variable. As previously shown, [ can be found from the
radial basis function representation via 2.

To appropriately rotate the scaffolds properties, the local unit
cell orientation (@ in Fig. 5) must be determined. We take the
convention that the local y-axis of the unit cell at any point in
the scaffold is oriented along the gradient of interpolant at that
point. Therefore, the unit vector n of the unit cell orientation can
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be found by normalizing the gradient:

V£l

from which the unit cell orientation € can be readily calculated.

(6)

< Pi~

=
.

() (d

FIGURE 5: Unit cell of the rectilinear scaffold (enclosed by
dashed lines) with rods shown in gray. z is the direction perpen-
dicular to the deposited layers, and 6 is the orientation about the
z axis. The out-of-plane cross sections (a) and (b) are perpendic-
ular to the xy plane and to each other. The in-plane cross-section
(c and d) is normal to the z axis. € also corresponds to the angle
between the axes of the rods in alternating layers and the x and y
axes, respectively.

2.4 Obijective function

The design goal in our method is to maximize bone ingrowth.
The best way to quantify bone growth in scaffolds is still an open
question. One metric used in the literature is mass bone growth,
defined as [26]

e = st pt(x)h:tf dv N ZeEQS pelt:tf Ve
& Jo, P dv YePbve

(7

Full osteointegration for mass bone growth (i.e., a mass frac-
tion of 1) would imply that fully dense bone fills all the interstitial
space within the scaffold. However, a more clinically relevant def-
inition may be to require that bone occupies the entire scaffold,
but not necessarily at the maximum density. The latter definition
is more consistent with the fact that the bone itself is not fully
dense everywhere.

2.5 Fill fraction constraint

To ensure the manufacturability of the final scaffold design,
an additional constraint beyond those on the rod center-to-center
spacing [ must be imposed. When the DIW process deposits a
new rod over existing rods, it displaces some material in both the
new and existing rods. How much material is displaced depends
on the overlap @. Too large of an intersection can cause the pores
between rods to be filled in by the displaced material. Rod layouts
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with low d/I values are not affected by this problem, since there
is more space for the displaced material to occupy. To predict
this behavior, we formulate a scaffold fill fraction defined as

_ VI nt (8)

VrvE'
where Vj,,; is the total volume of the rod intersections in a unit cell,
and Vry g is the volume of the unit cell. V;,, can be computed
as [41]:

Vine =2(1 = K)vine, €))

where vy,; is the volume of one complete rod intersection at a
right angle with coplanar axes, (i.e. a Steinmetz solid) and « is
an adjustment factor that accounts for the separation between the
cylinder axes. The factor of 2 reflects the fact that there are two
full intersections per unit cell. The volume of a Steinmetz solid
is vy = 16r3/3, where r is the rod radius. « can be found via
[41] as

k=1-(1+n2)(1+n)E@m)+2n(n+1)K(m). (10)

In this expression, K (m) and E(m) denote the complete elliptic
integrals of the first and second kind. Note that there are two
definitions of these integrals in common use, one in which the
argument m is squared in the integral, and one where it is not; we
use the latter. m is computed as

1-7 2
m= , (11)
(1+n)

where n = a/r, where a is as defined in Fig. 5 and r is as
defined earlier. For a fixed maximum fill fraction, this constraint
effectively links / and a. If / is large, a can be close to the rod
radius since the volume of the intersections is smaller relative to
the total unit cell size. If / is small, then a must be large relative
to the rod radius.

2.6 Optimization problem statement

Bringing together the objective and constraints discussed in
previous sections, the optimization problem we seek to solve is

max my(c,h, @)
¢,h,a

subject to

— Il(c,h,

max u -1<0

XeQp Imax

— h,

max 1 -— u <0

xeQ, hlmin (12)
m CI(C, ’aa X) _ 1 S 0

XEQP dmax

Umin < @ < Upax

IA

Cmin < Cix < Cmax

IA

Ciy < Cmax
hi < hmaXa

Cmin

IA

hmin
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where c is the vector of the x- and y-coordinates of the interpolant
center points, and h is the vector of heights at those points. « is
the unitless overlap fraction defined in 2.3. As we regard the rod
diameter d as fixed, this variable effectively controls a. max is a
smooth approximation of the maximum, used to ensure differen-
tiability and enable the use of efficient gradient-based optimizers.
Here, we employ the Kreisselmeier-Steinhauser function for max.
It is important to note that the constraints are applied over the re-
gion Q,, corresponding to the printed domain. This domain
includes € as defined in Section 2.2, but also regions that are
printed but removed when the scaffold is machined to its final
shape. These regions were included in the constraint because
print failures in these regions can propagate to Qg and ruin the
print.

3. IMPLEMENTATION

To demonstrate our methodology, we optimize an 8§ mm
diameter scaffold implanted in six different locations in a pig
mandible. We compare the optimized design of the curvilinear
scaffold to a) arectilinear scaffold for the same application, which
was optimized using the previously reported methodology in [32]
(see Fig. 9a); and b) to a design that has been used in experimental
studies [42] (see Fig. 9b). For the curvilinear scaffolds, the level
set surface was defined using 4 RBFs. The center point coordi-
nates, the center point heights and the rod overlap « provided the
optimizer with a total of 13 design variables.

3.1 Bone Adaptation Model

The mechanobiological simulation requires the strain en-
ergy density within the bone and scaffold at every point, as well
as the normalized osteoblast concentration (cf. Section 2.2).
These quantities are obtained from linear elasticity and transient
diffusion finite element analyses of the pig mandible with the
implanted scaffold. Both analyses were performed using an in-
house code based upon the deal.ii finite element library [43]. The
deal.ii library facilities for scalable distributed memory paral-
lelization were employed for efficient utilization of all available
CPU cores. The AztecOO package of Trilinos was used as the
solver for the ensuing system of linear equations via the built-in
interface available in deal.ii [44].

The voxelized, non-conforming mesh of the bone and scaf-
fold regions was created using Hypermesh [45] and it is entirely
composed of linear hexahedral elements. The bone update pro-
cedure is implemented as part of the analysis code. The rotation
of the local scaffold properties due to the curvature of the rods
is achieved by rotating the elasticity tensor of the homogenized
scaffold material within the finite element code. For the diffusion
analysis, the bone region surrounding the scaffold is treated as a
source of osteoblasts, with a fixed normalized concentration of 1.
The scaffold region is assumed to have a zero initial osteoblast
concentration at implantation [26]. Note since the scaffold is
treated as a homogenized material, the mesh does not change
for different design parameters, and only the properties of the
scaffold region elements are changed.

Most of the constants required for the bone growth simula-
tion are the same as those used in [32], except for the reference
mechanical stimulus value ¥* and the lazy zone width w. The
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former is the mechanical stimulus threshold above which the bone
will grow and below which bone will be resorbed [9]. The latter
is arange of the stimulus value around W* within which negligible
bone adaptation will occur. To estimate what this value would
be for the pig mandible, we assumed that the mandible’s exist-
ing bone density is perfectly adapted to the loads it experiences.
Therefore, the stimulus it sees as part of a standard mastication
cycle should be approximately equal to W*. To find this stimu-
lus value, experimentally measured strains from a study of pig
mastication [46] were used to estimate the reference stimulus,
approximately 10 MPa/day.

In regards to the determination of the lazy zone width w,
several authors have simply set this value to some percentage of
the reference stimulus. In [9], it is set to 25%; in [40], to 10%.
We opted to use the former, which corresponds to a value of w of
2.5 MPa/day.

3.2 Computation of sensitivities

We wish to employ efficient gradient-based methods for the
optimization. Gradient-based methods were selected over global
optimization methods because of the cost of the bone-growth
simulation, which would make the optimization via zero-order
methods impractical. While it is possible to compute analyti-
cal sensitivities for our bone growth model (see, for example,
[30]), a simpler and faster approach that is enabled by the com-
pact design representation is to use first-order backward finite
differences to approximate the design sensitivities. To do this
efficiently, a Python framework was implemented that creates a
set of perturbed designs around the current design. Bone growth
simulations of these perturbed designs are performed in parallel
on a high performance computing system, with each simulation
running on one compute node. In turn, each individual simula-
tion is performed in parallel using all the available cores in the
node where it is running. Through the techniques and interfaces
available in the deal.ii library, domain decomposition and parallel
linear algebra utilities are employed to perform the analysis. After
all the simulations are completed, the Python framework collects
the mass growth values, computes the design sensitivities using
finite differences, and passes these data to the optimizer. The
SLSQP routine from SciPy [47] is employed for the optimization

This parallel finite difference approach can actually be more
efficient in terms of wall-time than analytical sensitivities pro-
vided there are enough computing resources available to perform
all the perturbed design analyses simultaneously. This is be-
cause analytical sensitivities for a finite element model are usually
calculated via the adjoint method, which requires an additional
analysis be performed after each time step to compute the adjoint
solution. This adjoint analysis usually requires a similar amount
of time as the primal analysis, roughly doubling the wall time
per iteration. The parallel finite difference method, on the other
hand, allows a simultaneous execution of the analyses necessary
to compute the objective function and its sensitivities, and thus
suffers no such penalty. It is important to note that this benefit
is only realized if all the simulations can be executed in paral-
lel, which may not feasible depending the problem and available
computational power.
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The use of sensitivities and the associated gradient-based
optimizers introduced the possibility of the optimization getting
trapped in poor local minima. To minimize this risk, the opti-
mization was run from 8 different starting points. These points
were selected by conducting a large random sampling of the de-
sign space, with geometrically infeasible designs discarded from
the sample. The designs that exhibited the largest standard de-
viation of d/! ratios across the scaffold domain (i.e., those that
were the least rectilinear) were chosen as starting candidates. To
ensure all the starting designs were not too similar to each other,
the candidate designs were visually inspected.

3.3 Constraints

A summary of the variable bounds and constraint values is
shown in Table 1. As our goal is to produce scaffolds fabricated
via DIW, we seek to impose physically realistic constraints based
on the capabilities and limitations of the manufacturing process.
For the following, we used a printing nozzle diameter of 610 ym.
The shrinkage due to sintering was found to be a approximately
20%.

Variable Description Value
Rmin Min. height 2
Ninax Max. height 2
Cmin Min. center point coordinate -10
Cmax Max. center point coordinate 10
Lmin Min. rod center-to-center spacing 610 um
Lnax Max. rod center-to-center spacing 1528 ym
dmax Max. fill fraction 0.173
Umin Min. rod overlap fraction 0.05
Unax Max. rod overlap fraction 0.3975

TABLE 1: Constraint values and design variable bounds

The lower limits imposed on a reflect the requirement that
the rods of each layer must have at least some overlap with those
of the previous layer to ensure joint fusion. The DIW process
effectively deposits the rods in tension, giving them the ability
to span gaps. However, this can also cause previously printed
rods to be pulled out of place if they are not sufficiently well
bonded with the previous layer. We impose a lower bound a;,,;5,
= 0.05 to address these requirements. The upper bound of «
arises from the need to ensure a minimum out-of-plane pore size
(po in Fig. 5). As previously mentioned, this ensures sufficient
space for vascularization and to facilitate tissue in-growth. We
set a minimum pore size of 100 ym in any direction (as-sintered).
For the pore size along the build direction, this translates to @4
= 0.3975.

As previously mentioned, / cannot exceed a maximum value
before rod sagging during the deposition becomes excessive. This
limit was found experimentally to be 1910 um, which translates
to a sintered /,,,4x of 1528 um. The lower limit of / is dictated by
the maximum allowable d/! value of 0.8, which corresponds to
the largest rod diameter-to-rod separation ratio considered in the
construction of the surrogate model for the scaffold properties.
This translates to /,,,;, = 610 um. A maximum fill fraction g4
of 0.173 was conservatively estimated by calculating the largest
fill fraction of several designs that are known to be printable.
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The coordinates of the interpolant center points in the xy
plane are bound to the [-10, 10] range to keep them within a
reasonable distance of the origin. This is desirable because points
that are far from the scaffold origin would have almost no effect
on the level set surface, which could cause RBFs to be effectively
"lost" by the optimizer. Bounds /i, = =2 < h; < hypgx =2 0On
the heights are also imposed, since excessively large differences in
heights between points result in steep surfaces with rod spacings
that are too small.

3.4 Methods

The mandible geometry was extracted from a CT scan of an
adult pig using Amira [48]. Six circular defects were created in
the mandible, each 8 mm in diameter, as shown in Fig. 6. Each
scaffold is assigned a code to identify it, as shown in Fig. 7.

FIGURE 6: Isometric view of the mandible geometry. The scaf-
fold regions are shown in grey.

3.4.1 Finite Element Model. The mechanobiological sim-
ulation requires the initial bone density distribution of the bone
surrounding the implants. The initial bone density distribution
for the mandible was derived from CT scan data in the same man-
ner as in our previous work [32]. These values were then mapped
to the mesh bone region by assigning to each element the density
of the CT scan voxel closest to the element’s centroid. The mesh
has a total of 238,892 linear hexahedral elements, with ~5,500
elements in each scaffold.

o I

L2

o
o I

R2

Y

ced

R3

FIGURE 7: A view of the mandible from the rear, with the dif-
ferent scaffolds colored
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To estimate the mechanical stimulus that would act on the
scaffolds, the finite element elasticity analysis was setup to mimic
loads induced by mastication. In general, the chewing action of
a pig depends on six muscles: the lateral pterygoid, the medial
pterygoid, the masseter, the temporalis, the zygomaticomandibu-
laris and the digastric [49]. A model of the mandible with the
loads and boundary conditions is shown in Fig. 8

The muscle forces and activation timings are based on those
from [49] with forces adjusted to account for animal size differ-
ences [50]. The lines of action of the muscles were estimated
based on the muscle origin and insertion points in the CT scan.
As pigs alternate between crushing bolus on the left and right, a
load case was included for each case. The frequency of each load
case was estimated to be 9,800 cycles per day based on [51, 52].

At the temporomandibular joint, a frictionless roller bound-
ary condition is imposed. This prevents translation along the
y-axis, but leaves the joint otherwise free to move. A fixed
boundary condition is imposed on the most posterior molar to
represent the resistance from the food (bolus) being processed.
The molar being constrained is alternated between the left and
right sides for each mastication load case.

The simulated duration of the mechanobiological simulation
for the pig mandible is 24 weeks, or 168 time steps.

4. RESULTS

The design resulting from the optimization process is shown
in Fig. 9c. Perhaps its most striking feature is that it is almost
rectilinear. The maximum variation in / across the whole scaffold
is less than 2%. This represents a substantial deviation from
the initial design, which has significant curvature and a widely
varying rod-to-rod spacing. Indeed, all of the designs we found
from the various starting points were close to rectilinear. We
note that, as shown by our previous work on design of rectilinear
scaffolds, the orientation has a negligible effect on the scaffold
performance [32]. Although we did not perform an exploration
of the design space with zero-order methods, the fact that all the
optimizations starting from significantly different initial designs
converged to similar near-rectilinear designs is an indication that
this problem is not highly multimodal. We posit the reason the
optimal design is nearly rectilinear is the following. The region
of the mandible in which these scaffolds are implanted is a flat
bone, whose loading is dominated by the nearby insertions of the
masseter and medial pterygoid. Moreover, the scaffolds are small
relative to the size of the mandible, hence the stress field through
the scaffolds is practically uniform. Also, the direction of these
muscles’ lines of action are nearly identical in both load cases.
Therefore, the stress state in the scaffolds favors a rectilinear
design in which rods are aligned with the load direction.

The mass growth of the optimized curvilinear designs is
compared to that in a) a rectilinear reference design previously
used in in vivo experiments [42], and b) a rectilinear scaffold
optimized for the same conditions (see Table 2). The unit cell
parameter ranges for all three scaffolds are presented in Table 3.
Furthermore, the plots of the final bone density distribution of
the reference and optimized curvilinear design are shown in Fig.
10

Both optimized designs outperform the reference design by a
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(a) View parallel to the sagittal plane looking towards
it

(b) View from the sagittal plane looking out.

FIGURE 8: Mandible with loads and boundary conditions at a point in the mastication cycle. Only half of the mandible is shown for
clarity, as the muscle insertions and boundary conditions are considered symmetric. The arrows at the angle of the mandible denote the
combined forces of the masseter and medial pterygoid. The arrows located at the coronoid process are the combined temporalis and
zygomaticomandibularis muscle forces. The arrows just below the condylar process on the inside of the mandible represent the force
from the lateral pterygoid. The orange triangle at the peak of the condylar process represents a roller displacement boundary condition
normal to the y-axis. The blue and orange triangles at the molar represent fixed displacement boundary conditions.

(a) Surrogate model optimized
rectilinear

(c) Optimized curvilinear

(b) Reference [42] scaffold

FIGURE 9: Comparison of the optimized curvilinear design to a reference rectilinear design that has been evaluated in-vivo [42] and a
rectilinear design optimized using the previously reported surrogate-based method. Note that the orientation of the scaffolds in the figure
is not indicative of their orientation at implantation
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Scaffold | Reference Optimized Optimized
Position | [42] (%) Rectilinear Curvilinear
(%) (%)

L1 32.9 45 47.2

L2 31 48 48.9

L3 48.2 64.6 62.3

R1 322 45.1 45.6

R2 30.9 50.5 48.3

R3 53.3 68.6 64.5

TABLE 2: Mass growth percentages of each design in each scaf-
fold position.

Design a dj/l ps (um)
Reference 0.18 0.523 359
Rectilinear 0.2 0.8 122
Curvilinear 0.3975 0.351-0.357 878-902

TABLE 3: Scaffold design parameters. Note that the curvilinear
d/l and pg values are not constant across the scaffold, so ranges
are given.

Bone Density (g/cc)

(a) Reference (b) Optimized curvilinear

FIGURE 10: Final bone density distributions in the reference
and curvilinear optimized scaffolds. The left and right side bone
density distributions are very similar, so only scaffolds R1, R2
and R3 are shown
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large margin. From Fig. 10, it can be observed that the curvilinear
design has a greater final bone density throughout all the scaf-
folds. However, the curvilinear optimized design and rectilinear
optimized design have nearly identical performance in terms of
mass growth. It is unlikely this performance difference would
be noticeable in vivo. It is interesting that the two optimizations
did not converge to the same design. The optimized rectilinear
design has a larger d/I/ and smaller pores than anywhere in the
curvilinear design (see Table 3). This suggests the existence of
at least two local optima, though it is possible the surrogate op-
timized scaffold optima is an artefact of the surrogate model and
not present in the actual system response.

5. CONCLUSIONS

This paper introduced a computational technique to design
curvilinear scaffolds made by DIW to maximize bone growth, as
determined by a mechanobiological simulation of bone adapta-
tion. The optimized curvilinear design was found to exceed the
bone growth of a reference design previously used for in vivo
studies, and it exhibits similar bone growth to that of a rectilinear
design optimized with the surrogate model based approach of
[32]. While in the example presented here the optimal scaffold
turned out to be nearly rectilinear, scaffolds subject to more com-
plex loading conditions could benefit from the additional design
freedom.

The method presented here can generate arbitrarily complex
curvilinear geometries through the addition of more radial basis
functions. The use of the thin-plate spline RBFs to define level
sets ensures smooth, continuously varying rod contours that fa-
cilitate deposition. Moreover, the method can readily support
the necessary geometric constraints to ensure the optimal design
can be manufactured using existing DIW technology. Further-
more, the compact design representation and the parallel finite-
difference approach can efficiently exploit HPC systems to reduce
the wall-time of the gradient-based optimization when compared
to using analytical sensitivities.

Several important aspects of bone scaffold design are not
considered in this study and will be addressed in future research.
Resorption of both the bone and scaffold are not considered here,
which is necessary to understand the long-term behavior of the
scaffold-bone system. Moreover, the stresses within the scaffold
are not considered, making the scaffold’s ability to withstand in-
vivo loads unknown. Incorporation of these considerations will
help increase the clinical viability of bone scaffolds.
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