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Abstract—As the scale and complexity of high-performance
computing (HPC) systems keep growing, data compression
techniques are often adopted to reduce the data volume and
processing time. While lossy compression becomes preferable
to a lossless one because of the potential benefit of generating
a high compression ratio, it would lose its worth the effort
without finding an optimal balance between volume reduction
and information loss. Among many lossy compression techniques,
transform-based lossy algorithms utilize spatial redundancy bet-
ter. However, the transform-based lossy compressor has received
relatively less attention because there is a lack of understanding
of its compression performance on scientific data sets. The insight
of this paper is that, in transform-based lossy compressors,
quantifying dominant coefficients at the block level reveals the
right balance, potentially impacting overall compression ratios.
Motivated by this, we characterize three transformation-based
lossy compression mechanisms with different information com-
paction methods using the statistical features that capture data
characteristics. And then, we build several prediction models
using the statistical features and the characteristics of dominant
coefficients and evaluate the effectiveness of each model using six
HPC datasets from three production-level simulations at scale.
Our results demonstrate that the random forest classifier captures
the behavior of dominant coefficients precisely, achieving nearly
99% of prediction accuracy.

Index Terms—Lossy Compression, Discrete Cosine Transform
(DCT), Prediction Models, Data Fidelity

I. INTRODUCTION

Data compression is increasingly becoming crucial in vari-
ous HPC application domains, especially since a large volume
of data causes high storage, communication bandwidth, and
energy usage [1]-[7]. There are two types of compression tech-
niques, lossy and lossless. Lossless compression can generate
the reconstructed datasets without losing data to its original
form. On the other hand, lossy compression can generate the
reconstructed datasets with the loss of some data to their
original datasets. Various lossy compression algorithms have
been proposed to meet applications’ critical data management
needs and can realize higher compression ratios than lossless
ones. However, lossy compression faces the challenge of
finding an optimal balance between data reduction and data
fidelity, which is highly dependent on application domains
and might affect the quality of analytic outcomes using the
reconstructed data.

Transform-based lossy compressors for HPC datasets can
also help reduce the size significantly. However, errors are
hard to bound as they discard or quantize information in the
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transformed domain [1], [8]-[10]. Prior studies showed that
transformation-based lossy compressors help minimize data
reconstruction errors and are crucial for maintaining errors
within a tolerable error bound [8], [11]. Furthermore, several
researchers have studied the effect of lossy data compression
on data fidelity and how it affects data analytics tasks, such
as anomaly detection in streaming datasets. However, the
relationship between the characteristics of HPC datasets and
the behavior of transform-based lossy compressors is relatively
unexplored. Thus, our motivation in this paper is to present
a prediction model for dominant coefficients that transform-
based compressors would capture, which are the critical factor
for predicting compression ratios.

In this paper, we consider three transform-based lossy com-
pressors, namely DCT-EC (Energy Compaction) [1], [8], DCT-
K (Knee-point) [1], [12], and DCT-Z [13], and analyze the
relationship between their compression performance in terms
of dominant transform coefficients and data characteristics.
All schemes are based on discrete cosine transform (DCT)
and utilize block decomposition to capture spatial redundancy
better and exploit parallelism. In detail, however, each scheme
has a different compression process, especially in obtaining
the information that needs to be kept in the highest precision,
which ultimately dictates overall compression performance.
We refer to that information as K -dominant coefficients. DCT-
EC focuses on the K-dominant coefficients according to the
fixed energy, and DCT-K obtains K-dominant coefficients
using a knee-point detection mechanism. DCT-EC and DCT-
K store data related to K-dominant coefficients during the
compression process. Unlike DCT-EC and DCT-K, DCT-Z
applies quantization to transformed datasets and obtains K-
dominant coefficients outside specified error bounds to reduce
data loss (i.e., errors).

Prior studies also indicate that the performance of lossy
compressors depends on data as bit-plane coding needs to
be applied differently [1], [6], [7], [10]. Using sampling
mechanisms to predict compression ratios is one of the
ways to exploit spatial or temporal data characteristics [14]—
[17]. The transform-based compression could better reveal
the relationship between achievable compression ratios and
information loss, as low-frequency components carry more
critical information than high-frequency ones. In other words,
one can model the behavior of transform-based lossy compres-
sors using how dominant coefficients compact and how they
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relate to data characteristics at the block level. To verify the
model for predicting compression ratios for DCT-EC, DCT-
K, and DCT-Z, we use six production-level HPC datasets:
eddy, vortex, sedov, cellular, rlds, and mrsos. We extract the
statistical features of those datasets and label K -dominant
coefficients for DCT-EC, DCT-K, and DCT-Z to conduct
extensive evaluations of our prediction models.

We exploit the characteristics in block partitioned data in
the original and DCT domain to capture the entire dataset’s
behavior and use them as input to prediction models. We eval-
uate five commonly-used regression machine learning models
to predict the number of dominant coefficients that transforms-
based lossy compressors preserve to balance compression
ratios and error rates. Our experimental evaluation shows
that our method can achieve 100% prediction accuracy in
many cases of real scientific HPC data sets. Our results
also demonstrate that the prediction model based on Random
Forests (RF) presents its superior performance in terms of
accuracy among the regression models we evaluated.

II. RELATED WORK

One way to characterize lossy compressors is to accurately
predict compression ratios using a small dataset instead of
performing a trial-and-error approach, which is prohibitively
expensive. Zemliachenko et al. [14] proposed a method to
predict the compression of noisy images, the mean probability
that absolute values of DCT coefficient amplitudes presumably
could characterize the image, and also assumed that there is a
relationship between the compression ratio and this parameter.
Then the dependence of compression ratio on this parameter
is obtained by curve fitting into a scatter-plot.

Lu et al. [15] proposed a sampling-based estimation method
based on byte entropy, coreset size, and serial correlation co-
efficient to estimate the compression ratio of ZFP, ISABELA,
and SZ. However, this method can only support Huffman
encoding but not dictionary encoding. Moreover, it cannot
estimate the compression ratio for SZ 2.0, which employs a
new predictor.

Zhao et al. [17] also employ a sample engine that selects
a small portion of the whole dataset by a uniform sampling
method. The experiments show that under a small sampling
rate of 8%, they can estimate compression ratio with only
about 5% error in most cases.

Another prior study is from Zhang et al. [16], which
employs a sampling strategy to estimate compression ratios
for multi-staged lossy compressors. They first shrink the input
dataset to a smaller dataset, randomly pick 3 (by default)
subsets as sample data, then calculate the knee point for each
subset and average them to get the knee point for the whole
dataset. Doing this requires less calculation as it needs only
three subsets instead of whole datasets. It also produces precise
rate-distortion prediction, indicating that the prediction model
works well with transformed domains.

III. PREDICTION OF COMPRESSION RATIOS

Transform-based lossy compressors employ discrete trans-
forms, such as DCT, DWT, and Fast Walsh-Hadamard
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Fig. 1. Cumulative density function (CDF) of energy in DCT coefficients
using (a) the entire data points and (b) the block of 64. The curves in (b) are
based on averaged DCT coefficient values in all blocks.

(FWHT), to decorrelate the original data [18]. Like the one
used in [9], [19], due to its superior compaction capabil-
ity and faster performance, we also adopt DCT-II, one of
the most commonly used variants of DCT transforms. In
transform-based lossy compression algorithms [20], unlike
original signals, the transformed signals often contain only a
few significant components [1], [9], [11], [21]. In other words,
discrete transforms redistribute the energy contained in the
signal and concentrate it into a small number of dominant
coefficients (as low-frequency coefficients).

Transform-based lossy compressor uses transformed coeffi-
cients to decide which information to keep or discard [1], [22].
In other words, the behaviors in transform coefficients rather
than original data can effectively expose the importance of
information. To demonstrate the effect of this relationship on
data compression, Fig. 1 shows the CDF (cumulative density
function) for the energy of DCT coefficients after applying
DCT to the original HPC datasets, where each value is trans-
formed into a DCT coefficient [22]. The energy in this paper
is defined as a sum of the nonnegative value of the square
root of the transformed DCT coefficients in sorted order.
Since low-frequency DCT coefficients attain more energy (i.e.,
information), CDF curves climb quickly in the beginning and
taper off as it includes more high-frequency coefficients, which
are close to zero. As depicted in Fig. 1, each dataset shows
different curvatures and saturation points, demonstrating each
dataset’s characteristics. Once the data is represented in the
frequency domain, we can easily find the relationship between
the percentage of informative DCT coefficients (i.e., low-
frequency ones) and the amount of energy carried by them.
Fig. 1a shows the CDF curves for each dataset using the entire
data points, whereas Fig. 1b shows the CDF per block of 64.
As we can see, unlike Fig. 1a, CDF curves in Fig. 1b (i.e., per
block) are slightly faster to converge, but both show similar
overall patterns. These CDF curvatures indicate that we can
predict the data characteristic of the entire data points using
the characteristics of data points in the partitioned blocks.

The above-mentioned unique features of discrete data trans-
form inspired us to design a set of transform-based lossy
compressors, DCT-EC, DCT-K, and DCT-Z. These lossy com-
pressors have a different methodology for capturing dominant
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coefficients using the advantages of data transformation. Since
the lossy compressors introduce the loss of data fidelity while
reducing data, it faces a challenging understanding of the
impact of lossy on HPC data management. The objective of
this paper is to present a prediction model of compression
ratios (in terms of the number of dominant coefficients to
maintain specified accuracy) for the transform-based lossy
compressor: DCT-EC, DCT-K, and DCT-Z. While there is a
gap between the actual compression ratios and the number of
dominant coefficients, the latter is much easier to extract. More
importantly, it makes the relationship between error rates and
compression ratios easier.

Fig. 2 shows the model for predicting compression ratios.
To describe the model, let X ((Z) denote data points, where 1 <
i <pand 1 <t < block size (BS), and i and ¢ are block
indexes and data point indexes in the block ¢, respectively.
It also requires statistical features for each block, denoted as
(), which characterizes data points [X((ig ...X(gs 1. 6 is the
statistical characteristics of n data points in block 2. Each block
1 includes datasets X ((Z)) follows the condition in Equation 1.

X, if1<t<BS, [0?% 051)]
(2) 2)
X((t)> _ )Xy, if1<t<BS, [9(1),...,9@)] 1<i<p
X, it1<t<BS,[0F),...00)]
(H

We next define the compression ratio to predict, denoted as
CR;, and approximated data points for each block, denoted
as AD,;. As shown in Equation 2 below, CR; and AD; are
similar, except that AD; includes additional information re-
quired for data reconstruction. We assume a strong relationship
between () (representing each block’s data characteristics)
and the compression ratio, C'R;, in each block as described
in Equation 3, which we evaluate using several regression
models.

AD; (X" ~

(t) CRM]- SZSP-

CR; x 6.

2
3

Both transform-based lossy compressors and the model
for predicting compression ratios aim to find K, which is

the number of significant coefficients in the transformed
domain required to store outcome X} out of the original
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dataset X to reconstruct data within a certain tolerance. We
then characterize the K needed to approximate X and the
reconstructed R(X}). The rate-distortion of X} measures
ERy|X,R(Xk)|. ERi|X, R(X}))| means the error rate be-
tween original datasets X and reconstructed datasets (R(X}))
from lossy compressed datasets (Xy,).

We choose the following statistical features (denoted as
0()) to characterize datasets and related to the transformation
compression:

o Descriptive features: we calculate variance, mean, me-
dian, range, diff, skewness, and kurtosis of datasets.
Skewness is a measure of data asymmetry around the
mean value. Normal distribution, which is symmetric
around its mean, gives zero skewness. Negative skewness
values mean more data are scattered to the left of the
mean, whereas positive skewness values mean more data
are scattered to the right. The kurtosis measurement indi-
cates how much the distribution tends to be outliers. As
the kurtosis of any normal distribution is 3, distributions
with a kurtosis higher than 3 are more outlier-prone. On
the other hand, the distributions of a kurtosis lower than
3 are less outlier- prone We also measure diff defined as
follows: diff(t) = X/ ; — X}, 1 <t < BS for block i.
We calculate the standard deviation of diff(x).

o Stationarity features: stationarity means the properties,
like mean, variance, and autocorrelation structure, do
not change over time. Therefore, determining whether
a partitioned block is stationary is crucial to making
accurate predictions. We use two statistical tests to check
the stationarity of a dataset — the Augmented Dickey-
Fuller (ADF) test and the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test. A key difference from the ADF test is
that the null hypothesis of the KPSS test is that the block
is stationary. So the interpretation of the probability value
(p-value) is just the opposite of each other. In other words,
if the p-value is above the 0.05 level, then the tested data
is stationary. Whereas in the ADF test, it means non-
stationary.

e Transform coding features: we also calculate the
std(dct(X;) and max(dct(X;)) in the given block Xj;.

Selecting an appropriate algorithm is essential when the
training data is ready to use after the preprocessing, which
involves balancing the class distribution of given data, nor-
malization, and missing value analysis. However, all learning
algorithms do not perform equally well when averaged over
all possible data sets. In other words, looking for a general
and superior algorithm to other algorithms is not feasible.
Therefore, we conduct an extensive evaluation using several
machine learning algorithms to predict compression ratios
(later in Section IV-D).

The following subsections discuss how each lossy compres-
sor we evaluate extracts K in detail.

A. DCT-EC

DCT-EC transforms partitioned data blocks into sparse
representations using DCT. To illustrate DCT-EC in detail,
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let us consider x and & to represent the original data and
corresponding transformed components, respectively [22]. To
model the correlation between the transformed coefficients and
energy (or information) represented among them, let us further
define ;, which denotes transformed components in a block
size of N at given block i: &; = {%; 1,42, ...&i.N }- EC(Zi 1)
is formulated as the energy concentration (£'C') contained in
the number of DCT coefficients, denoted as K, of the entire
transformed components (Z;), which is calculated as:

Yopei €(Ein)?
25:1 e(Zin)?

Using Equation 4 above, DCT-EC finds the dominant K
required to represent § amount of the energy [19] in terms

of energy compaction. K refers to the number of dominant
coefficients to represent block z; or z;.

EC(3:4) = n=12_.,N,i<N. (4

)

B. DCT-K

Another compression scheme we consider automatically
determines compression factors (i.e., dominant coefficients)
based on the curvature of energy compaction attained by the
transformed coefficients. We adopt the Kneedle algorithm [12]
on the CDF (cumulative density function) of the coefficients’
energy compaction [1] to determine K. Specifically, we first fit
CDF into a smoothing spline to preserve the overall behavior
of the energy distribution. Then we normalize the points in
the best-fit curve to the unit square as a preprocessing step
to eliminate anomalies (which can make the analysis more
complicated). Next, we find the knee points (in K) from the
normalized curve, generally the point of maximum curvature
of the normalized curve. In other words, the point is the local
maxima, which depicts the maximum distance between the
normalized curve and the line y = x; mathematically, it is
a function of its first and second derivatives. We use a 1D
interpolation function for obtaining smoothing curves, while
a more sophisticated one, such as a polynomial interpolation
function, can also be applied.

C. DCT-Z

DCT-Z [9] is another transform-based lossy compression
method but with an error boundness. In DCT-Z, the first DCT
coefficient (£;1) in &; is the most informative coefficient
(i.e., DC coefficient, which contains zero frequency), and the
remaining coefficients as the AC coefficients (contain non-
zero frequencies). Similar to JPEG, DCT-Z utilizes the 8x8
macroblock, which could capture 8 x8 in 2D or 4 x4 x4 in 3D,
a common data partition used in many scientific applications.
Once the partitioned block is transformed using DCT, it
aggregates the DC coefficient, i.e., Z; 1, from each block and
organizes them based on the block sequence order. Therefore,
the aggregated DC coefficients represent low-frequency co-
efficients for the entire data. The remaining AC coefficients,
{Z;2,...%; n}, are considered as the high-frequency coeffi-
cients. While different block sizes affect data precision, we
found the default 64 generated the best compression quality
in most cases. The block size of 64 also enables easier
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parallelization of DCT transforms. While one could employ
recursive DCT, additional indexing and ordering coefficients
incurred during compression result in lower compression ra-
tios. More details about DCT-Z can be found in [13].

DCT-Z implements the error boundness through an ad-
justable quantizer. The quantizer begins with the user-defined
(relative) error bound, denoted as P, and a total number of
bins, C'. Using P and C, it defines a global bound (GP) as
[-P«C, P«C)]. For example, if P is le-3 and C is 256 (i.e.,
1 byte index for bin indexes), then GP is [—0.256,0.256].
Each bin’s center value will be approximated values for all AC
coefficients belonging to the same bin. Once G P is calculated,
DCT-Z determines how many AC coefficients are within G P
or not. If AC coefficients are within G P, then the maximum
errors due to approximation are within the user-specified error
bound, P. For AC coefficients outside G P, DCT-Z saves them
as the exact values to ensure the user-defined error bound.
One could also apply an extra truncation to improve the
compression ratio on AC components out of GP. Since AC
components that need to be saved as exact values dictate the
compression factor, we calculate K -dominants the same as
coefficients outside the error bound P.

IV. EVALUATIONS

A. Setup

1) Datasets: We use six datasets from three production-
level HPC applications. Specifically, we use sedov and cellular
from FLASH [23], [24], Vortex and Eddy from Nek5000 [25],
[26], and mrsos and rlds from CMIPS [27]. Prior studies
showed that these datasets worked well with transform-based
compressors, but we expect our framework will work with
other datasets, like the ones in SDRBench [28], which we
plan to explore in our future work. Table I shows the statistical
properties of the original datasets in variance, skewness, and
kurtosis. We measure each statistics per block, and Table I
shows the mean value for all blocks. Skewness is a measure of
data asymmetry around the mean value. As shown in Table I,
sedov has the highest kurtosis value among all datasets, which
means it is more outlier prone. In the case of variance, diff-
std, and range(max-min), mrsos has the highest values. In the
case of transform coding, rlds has a higher value than others —
consequently, the data characteristics in Table I would impact
K presented in Table II.

As described in the previous section, the method of deter-
mining the K for prediction differs among DCT-EC, DCT-K,
and DCT-Z. K of DCT-EC is the same as the K-dominant
coefficients and the knee-point in DCT-K. In DCT-Z, the
K-dominant coefficients are the same as those outside the
error bound. We note that the predicted K is the same as
compression ratios for DCT-EC and DCT-K as both truncate
non-significant components (i.e., N — K). On the other hand,
the predicted K is not the actual compression ratio for DCT-
Z because it maintains non-significant components through
quantization.
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TABLE I
THE CHARACTERISTICS (IN MEAN) OF EVALUATED DATASET PER BLOCK.

[ Data | Var [ Mean | Median | Skewness | Kurtosis | ADF [ KPSS | DCT-max | DCT-std [ diff-std [ range |
cellular 0.04 2.21 2.21 -0.11 1.82 0.63 0.1 17.69 2.2 0.09 0.26
eddy 0.33 0.0 0.02 -0.15 -0.68 0.55 0.05 3.54 0.8 0.37 1.8
mrsos 0.84 0.77 0.55 1.19 2.74 0.26 0.09 6.24 1.09 0.41 24
rlds 0.13 2.86 2.86 -0.02 -0.21 0.26 0.08 2291 2.85 0.12 1.18
sedov 0.21 1.0 0.93 0.91 3.62 0.6 0.06 8.0 1.04 0.21 0.94
vortex 0.34 0.17 0.1 0.01 0.24 0.49 0.09 3.52 0.72 0.36 1.08
TABLE II

THE AVERAGE VALUES OF K FOR EACH COMPRESSOR.

[ Daa | EC(95) | EC(99) | EC (999 | K | Z(1e3) | Z(le-d | Z(I1e5) |
cellular 1l 185 324 98 3.06 1421 30.82
eddy 104 2218 4049 912 178 5311 62.83
mrsos 15.03 2826 201 10.75 | 28.09 1547 4811
rlds 117 234 9.19 308 9.68 1374 598
sedov 174 11.62 2152 775 10.07 25.69 322
vortex 6.7 14.26 25.06 981 10.78 32.96 33.65

B. Performance Metrics

Let © = {1, %2, 3, ..xn} be the raw HPC datasets, N be
the number of data points in raw datasets (), and n be the
number of blocks calculated by bl+’ where block size
. . ock size
is 64 in this paper.

e Compression Ratio for DCT-EC, DCT-K, and DCT-Z

where |D| is the number of D, |k’| is the number of

K -dominant coefficients, is given by: CRx = %
Let x = x1,x2,x3,..xx be the original data and z =
1,29, 23,...2 N be the reconstructed data. Then, we mea-
sure the peak signal-to-noise ratio (PSNR), a commonly
used average error metric, especially in visualization [29],
which is calculated as follows:
Mazx(z) — Min(z)

RMSE(x, )

o Accuracy of the prediction is defined as R%:

_ D€
i (e = T)?

where e; = (y: — y;), ¥+ is actual compression ratios
y+ and y; is predicted values, both are represented in K
values. The best possible score is 1.0, i.e., 100% accurate
prediction. The score can also be less than zero because
the model can be arbitrarily worse.

¢ Mean square error of the prediction is defined as:

PSNR = 20[0910(

).

Accuracy(yz,y;) = 1

1 n
MSE(y,y;) = NZ(@)?
t=1

C. Compression Performance

Tables III and IV show compression ratios and PSNR
using DCT-EC (with the fixed information compaction rate
of 95%, 99%, and 99.9%), DCT-K, and DCT-Z. In DCT-Z,
we use three specified error bounds (P): 1e-3, le-4, and le-5.
All schemes apply transforms per every 64 data points, i.e.,
the block size is 64. Given the number of data points per
dataset, the number of blocks after partitioning ranges from
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203 to 579. Typically, blocks with higher variance require
more components to approximate data maintained by the same
amount of energy, resulting in a lower approximation ratio.
For instance, mrsos has slightly higher K values than other
data sets in Table II. Therefore, the std and diff std values in
mrsos are higher than other data sets in Table I. In the case
of DCT-Z, when the error bound is the highest value (i.e., le-
3), it shows the highest compression ratios. Table IV shows
that higher compression leads to higher error rates with lower
PSNRs.

TABLE III

THE EVALUATED DATASETS AND THEIR COMPRESSION RATIOS (%).

[ DCT-EC [ [ DCT-Z |

Data o551 95 [ 999 | MK ' 1e3 [ 1ea [ 1e5 |
celllular | 97.27 [ 97.11 | 94.94 84.68 98.09 | 96.11 [ 94.13
eddy 83.76 | 6534 | 36.74 85.75 8471 | 69.33 | 63.24
mrsos 76.51 | 55.84 | 34.36 83.21 77.17 | 70.50 | 70.50
tlds 98.17 | 96.35 | 85.64 85.97 83.02 | 68.15 | 63.90
sedov 02.59 | 81.84 | 66.38 87.89 91.30 | 86.05 | 83.33
vortex 89.54 | 77.71 | 60.85 84.67 92.23 | 83.55 | 77.63

TABLE IV
THE EVALUATED DATASETS AND THEIR ERROR RATE (PSNR).

[ DCT-EC | [ DCT-Z |

Data 55T 99 1 999 | PP o3 [ 1ed | 15 |
cellular [ 254 ] 30.65 [ 36.53 3271 75.62 | 95.61 116.88
eddy 28.33 | 35.05 | 44.91 28.43 79.75 | 103.59 | 127.87
mrsos | 23.36 | 30.08 | 40.23 22.54 82.66 | 111.25 | 127.89
rlds 21.16 | 2454 | 32.17 31.38 76.78 | 100.93 | 126.15
sedov 2591 | 3235 | 42.27 28.35 81.75 | 104.14 | 12531
vortex | 28.48 | 35.07 100 30.03 81.26 | 102.99 | 125.00

D. Prediction Performance

We use the following regression methods in our evaluation:
Decision Tree (DT) [30], Adaptive Boosting (AB) [31], Ran-
dom Forest (RF) [32], Linear Regression (LR), and Multi-layer
Perceptron (MLP) [33].

e« DT is a popular nonparametric supervised learning
method to solve various real-world problems. It operates
by repeatedly dividing a feature space of a given dataset
using the Gini index and Entropy.

e AB is also an improvement of DT to fit a sequence
of weak learners (i.e., models that are only slightly
better than a random guess, such as small decision trees)
on repeatedly modified versions of the data. Then, the
predictions from all of them are combined through a
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weighted majority vote (or sum) to produce the final
prediction.

« RF is an ensemble model correlated DTs to solve the
vulnerabilities mentioned above by combining multiple
DTs.

« LR fits a linear model with coefficients to minimize the
residual sum of squares between the observed targets
in the dataset and the targets predicted by the linear
approximation.

o MLP is a mathematical model inspired by the study of
the brain. It has a connected set of artificial neurons
consisting of the input layer, one or more hidden layers,
and an output layer.

As previously described in Table IV, the K values increase
with tighter constraints in DCT-EC and DCT-Z. For example,
DCT-EC with 0.999 requires a higher K than DCT-EC with
0.99. Similarly, DCT-Z with le-5 requires a higher K than
DCTZ-Z with 1e-3 as le-5 is a tighter error bound than le-
3. Note that DCT-K automatically determines K based on
the detected knee points in the CDF curve. We predict K to
represent the compression ratios using the characteristics of
the data. We utilize machine learning libraries from scikit-
learn [34] to train and evaluate the five machine learning
algorithms we evaluate. We set 80% of the data for training
and the remaining 20% for the test. Tables V, VI and VII
show the model’s prediction performance on compression
ratios for DCT-Z, DCT-EC, and DCT-K, respectively. We
evaluate performance according to fixed energy (EC: 0.95,
0.99, and 0.999, Z: 1le-3, le-4, and le-5). As we can see, RF
performs better than other algorithms in prediction accuracy
for all datasets. In conjunction with the compression ratios, the
observed data characteristics show a clear correlation between
those two. In the case of DCT-Z, the accuracy of eddy in
the MLP model is less than zero because the model could
not determine the compression ratio based on the data loss of
the application effectively. Based on these results for model
selection, we can conclude that RF works best to work with
reconstructed data from lossy compression.

We next perform optimization for the selected model, RF.
The parameters of the RF model are optimized through a
cross-validated grid search. Specific optimized parameters we
obtained are as follows:

« The optimized number of features is 2 from (2, 4, 6, 8§,
10, 12).

o The optimized number of estimators is 3 from (3, 10, 30,
100).

V. CONCLUSIONS

This paper analyzes three transform-based lossy compres-
sion techniques for HPC datasets: DCT-EC, DCT-K, and
DCT-Z. Our motivational analysis showed that the behavior
exhibited in the partitioned block level in the transformed
domain could represent that of the entire dataset. We exploit
this behavior to build a model that maps block-level data
characteristics from various perspectives to predict the number
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TABLE V
EXPERIMENTAL RESULTS FOR MODEL SELECTION. DCT-Z

Dat I DT AB I RF I LR MLP |
ata GP
| Acc T MSE | Acc [ MSE [ Acc [ MSE | Acc | MSE [ Acc | MSE |

cellular le-3 1.0 0.01 1.0 0.0 1.0 0.0 0.95 223 1.0 0.09
Te-4 | 0.98 3.94 1.0 0.66 1.0 0.01 0.66 76.07 0.94 13.41

le-5 [ 0.96 6.37 1.0 0.51 1.0 0.08 0.39 95.89 0.64 56.48

eddy le-3 | 0.94 532 0.99 0.56 1.0 0.18 0.8 19.45 0.94 6.0
Te-4 | 0.95 577 0.99 .14 1.0 0.34 0.56 48.75 0.67 36.86

le-5 0.84 0.43 0.94 0.16 0.98 0.06 0.36 1.77 -4.4 15.02

mrsos le-3 | 0.98 4.8 0.99 1.38 1.0 0.99 0.96 9.12 0.96 9.44
Te-4 1.0 1.45 1.0 0.71 1.0 0.23 091 48.46 091 44.91

le-5 1.0 0.18 1.0 0.17 0.99 7.83 0.81 98.47 0.8 103.9

Hds le-3 | 0.88 1.96 0.97 0.49 0.99 0.22 0.8 33 0.86 235

” le-4 0.92 12.48 0.99 227 0.99 1.04 0.75 40.23 0.74 42.23
Te-5 | 0.97 2.04 0.99 1.07 0.99 0.59 0.38 49.09 0.0 78.45

sedov le-3 0.98 6.21 0.99 2.64 0.99 1.68 0.8 50.63 0.94 14.57
h le-4 | 0.98 7.93 0.99 2.42 1.0 1.23 0.66 151.03 | 0.84 71.42
Te-5 | 0.99 1.74 1.0 0.92 1.0 0.25 0.29 191.46 | 047 144.03

vortex le-3 1.0 0.12 1.0 0.05 1.0 0.0 0.97 2.93 1.0 0.16
le-4 [ 0.99 35 1.0 1.0 1.0 0.01 0.81 45.78 0.99 347

le-5 0.95 5.16 0.99 1.44 1.0 0.01 0.65 35.43 0.85 14.95

TABLE VI

EXPERIMENTAL RESULTS FOR MODEL SELECTION.

Data B | DT I AB I RF LR I MLP
| Acc T MSE [ Acc [ MSE [ Acc [ MSE | Acc | MSE [ Acc [ MSE
cellular 0.95 1.0 0.0 1.0 0.0 1.0 0.0 0.91 0.02 0.99 0.0
099 | 1.0 0.0 0 | 00 10 | 00 | 08 .9 10 | 002
0.999 1.0 0.0T 1.0 0.0 1.0 0.0 0.88 6.53 1.0 0.07
cddy 095 [096 | 21 | 099 | 039 [ 099 | 026 | 0.73 | 1331 | 094 | 3.16
0.99 0.88 [ 14.67 | 0.99 1.59 1.0 0.28 [ 0.71 3577 0.9T 10.62
0.999 | 0.93 10.24 | 0.99 1.61 1.0 0.36 [ 0.65 50.14 0.84 | 22.63
mrsos 0.95 0.92 7.64 0.99 | 096 | 0.9 1.04 | 0.88 11.32 0.92 7.02
0.99 0.87 [ 17.78 | 0.98 231 0.99 142 0.8 28.03 0.89 15.4
0.999 [ 092 [ 14T | 098 | 29T | 099 | 192 | 0.71 | 5007 | 084 | 2672
Hds 0.95 1.0 0.0 1.0 0.0 0.97 [ 0.01 0.8 0.06 0.84 0.05
’ 099 | 085 | 044 | 0.99 | 003 | 098 | 005 | 077 | 066 | 096 | 0.12
0.999 | 0.93 22 0.99 [ 037 [ 099 | 039 0.92 25 0.95 1.34
edoy | 095 [094 7427 [098 | 138 | 099 | 039 | 055 | 31.76 | 091 | 664
: 0.99 0.89 [ 18.62 | 097 549 1 099 | 095 | 051 79.58 0.77 37.0
0.999 | 092 [ 18.04 | 097 7.67 | 0.99 148 | 034 [ 14779 | 0.56 [ 99.05
vortex 095 [ 098 1 071 10 | 007 | 1.0 | 0.03 | 088 36 099 | 02
0.99 0.99 1.46 1.0 0.24 1.0 0.0 0.92 10.22 1.0 0.59
0999 [ 098 | 296 | 1.0 | 049 | L0 | 001 | 085 | 29.73 | 099 | 1.75
TABLE VII
EXPERIMENTAL RESULTS FOR MODEL SELECTION. DCT-K.
Daa | DT | AB | RF | LR | MLP ]
[ Acc. [ MSE | Acc. | MSE | Acc. | MSE | Acc. | MSE | Acc. | MSE |
cellufar 03 334 095 0.76 1.0 0.02 0.56 72 0384 2.66
cddy 073 K] 097 021 0.99 0.05 0.6 269 | 082 123
mrsos 075 4385 095 087 0.97 0.55 077 | 451 082 352
rlds 075 147 092 0.45 0.97 017 059 235 0.67 192
sedov 091 168 097 155 0.99 0.68 082 985 0.9 54
vortex 099 017 099 011 1.0 0.04 0.89 131 098 027

of dominant coefficients for different transformation-based
lossy compressors. Our evaluation results using several real-
world HPC datasets showed that the higher the data variance,
the lower the number of dominant coefficients but with some
differences among the compressors. Especially, DCT-EC and
DCT-Z require more DCT components to maintain the same
amount of energy or error-bound when datasets exhibit higher
variance. In other words, higher randomness would result in
a lower compression ratio. We also evaluate the accuracy and
error rate of five machine learning models. Our evaluation
results indicated that RF is among the five regression models
that achieve the highest prediction accuracy for all datasets we
evaluated. We expect that the proposed model to effectively
predict the number of dominant coefficients could help quan-
tify how transform-based lossy compressors impact overall
compression ratios and a range tolerable by the application
with reliable precision.
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