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Abstract—Recent years have witnessed an upsurge of interest
in lossy compression due to its potential to significantly reduce
data volume with adequate exploitation of the spatiotemporal
properties of IoT datasets. However, striking a balance between
compression ratios and data fidelity is challenging, particularly
when losing data fidelity impacts downstream data analytics
noticeably. In this paper, we propose a lossy prediction model
dealing with binary classification analytics tasks to minimize
the impact of the error introduced due to lossy compression.
We specifically focus on five classification algorithms for frost
prediction in agricultural fields allowing preparation by the
predictive advisories to provide helpful information for timely
services. While our experimental evaluations reaffirm the nature
of lossy compressions where allowing higher errors offers higher
compression ratios, we also observe that the classification per-
formance in terms of accuracy and F-1 score differs among all
the algorithms we evaluated. Specifically, random forest is the
best lossy prediction model for classifying frost. Lastly, we show
the robustness of the lossy prediction model based on the data
fidelity in prediction performance.

Index Terms—Classification, Transform Coding, Lossy Com-
pression, Data Augmentation, IoT

I. INTRODUCTION

With the recent report by the Food and Agriculture Organi-
zation (FAO) of the United Nations that climate change could
reduce crop yields by up to 30% by 2050 [1], scientists have
increasingly focused on predicting climate phenomena known
to have a substantial impact on agriculture [2], [3]. Among
various climate phenomena affecting the agricultural sector,
frost or freeze damage to flowers and buds at or near the bloom
stage in spring could result in significant crop failures [4], [5].

The convergence of Al (artificial intelligence) and IoT
(internet of things) in the agriculture domain, when applied
effectively exploiting data extracted from a steady stream
of raw data by sensors, afford decision-supporting methods
through actionable prediction knowledge discovery [3]. As
the risk of late-spring frosts increases, actionable predictive
knowledge can be helpful for farmers to protect plants and
farms effectively. For example, Rozante et al. [2] have stud-
ied the damage caused by the frost phenomenon and the
prevention through prediction. Chung et al. [6] showed that
an accurate frost forecast would minimize frost damage by
taking preventive actions. These studies demonstrate that more
intelligent agriculture promises predictive insights using the
data adequately captured in the agriculture domain to enable
proactive steps.
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While agricultural services like frost prediction through this
predictive knowledge look promising, providing accurate ser-
vices in resource-constrained edge devices is challenging due
to highly imbalanced labels and the need for quantifying the
impact of lossy data compression on classification algorithms.
This paper presents a lossy prediction model for the analytics
task of agricultural domains to discover climate conditions
and extract meaningful knowledge from environmental IoT
datasets applied through lossy compressions. Furthermore, to
manage IoT environmental data efficiently and reliably, we
build the prediction model in a lossless way while running in-
ference tasks using lossy data. We then evaluate the fidelity of
the reconstructed data using DCT (discrete cosine transform)-
based lossy compression algorithms to assess the impact of
the lossy compression and restoration on the performance of
classification algorithms. We choose DCT because of its high
decorrelation efficiency [7], its inverse has the same spectrum
as the nearly original data, and a low error rate between
original and reconstructed datasets [3], [8].

We conduct extensive evaluations of our prediction models
based on five machine learning models popularly used in
classification tasks to predict frost. Our results demonstrate
that Random Forests (RF) present superior performances in
accuracy and Fl-score among five lossy models we evalu-
ated [9]: Decision Tree (DT), Random Forest (RF), Adaptive
Boosting (AdaBoost), Support Vector Machine (SVM), and
Artificial Neural Networks (ANN). We also optimize RF using
the stratified k-fold cross-validation method and verify that
the prediction performances by the optimized model improve
accuracy, precision, recall, and F1-score between the original
and reconstructed data from lossy compression. Lastly, our
results demonstrate that fixed information-based lossy com-
pression reduces the required data storage while maintaining
data quality sufficient for accurate classification performance.

II. PRELIMINARIES
A. Classification Task for Frost Prediction

Due to climate changes, the occurrence of frost during
late spring (off-seasonal) has recently increased. This late
spring frost could worsen crop damage because flowers have
feeble freezing resistance compared to the dormant period,
as deviations in low-temperature increase after flowering [5],
[10]. Therefore, a precise prediction of frost can minimize crop
damage by allowing preventive measures (passive protection)
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or actions during the frost, e.g., moving a frost fan around the
crop [11].

Several studies have shown that predictive models using
various IoT datasets could forecast frost effectively. For ex-
ample, Lee et al. [12] attempted to use Logistic Regression
(LR) and DT techniques to predict frost using frost observation
data. In contrast, Kim [13] estimated the occurrence of frost
using ANN, RF, and SVM. However, these studies needed
to verify the proposed models with field observations (i.e.,
ground truth); more importantly, they could suffer from class
imbalance problems. More recently, Noh et al. [5] used five
input data variables (i.e., temperature, subzero temperature du-
ration, precipitation, wind speed, and humidity) and considered
the imbalanced class problem. Specifically, they applied the
under-sampling technique to solve imbalanced class and the
degree of affecting frost depending on the time to notify the
preparation to prevent frost. They also adjusted the ratio of
frost events to 50:50 by applying the under-sampling method
but with a possibility of valuable data loss.

The frost prediction is part of the predictive services we
have been providing since 2015 using microclimate datasets
collected from IoT weather stations!. Moreover, we have
collected observed frost data by farmers since 2017 through
the deployed system because we need datasets with labels to
develop a prediction model. The frost prediction model can use
these labeled datasets to classify between non-frost and frost
states in a training phase. However, the quantity of our labeled
datasets is still limited; thus, we need methods to augment data
for highly accurate prediction.

B. Lossy Compression

As the amount of data produced by IoT weather stations in-
creases continuously (with more deployed nodes and sensors),
resource-scarce devices frequently employ data reduction tech-
niques to lessen the volume of data and overhead by exploiting
potential redundancy in spatial, temporal or both [14]. Like
several recent studies, we utilize lossy compression using a
signal transformation to exploit characteristics in many time-
series datasets [8]. Lossy compression could filter noises and
transfer potentially vital information to analytic workloads
running on the cloud because bandwidth, energy, and storage
constrain IoT stations considerably. Therefore, we need to
manage these data efficiently to reduce storage and transmis-
sion costs [15]. While employing lossy data compression can
be helpful for highly efficient data management, it still needs
a comprehensive evaluation that establishes the criteria for
selecting the degree of compromise in data quality and makes
reasonably accurate forecast services.

Several prior studies demonstrated that lossy compression
could help reduce the data size, while error rates and loss
of data quality are often hard to bound [16], [17]. However,
as reported in several prior studies, such as analyses of
electrocardiogram (ECG) data [18], weather data [3], and high-
performance computing applications [19], data reconstructed
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from lossy compression allows for meaningful analysis. Nev-
ertheless, lossy compression techniques are still subjective to
data fidelity issues for the analytics of prediction tasks because
acceptable information loss varies [3], [20]. No studies have
quantified such investigation on analytical tasks.

Among many lossy compression techniques, transform-
based lossy algorithms utilize spatial data characteristics bet-
ter. There are two considerations to exploit transform-based
lossy compression effectively. First, most lossy compression
techniques capitalize that their overall patterns are spatiotem-
porally smooth in time-series datasets [8], [21]. Because of
this, data compression in conjunction with transformation
techniques can be more effective, and the transformed data
usually explicitly reveal the information’s correlation. Second,
the distortion by loss data is minor, thus confirming that one
can reconstruct IoT data (e.g., temperature) by maintaining
minimal fractions of the original data.

The goal of our lossy compressor is to find k, which
is the number of significant coefficients in the transformed
domain required to store outcomes Ly, of original datasets X,
such that we can reconstruct data within a certain tolerance.
We then characterize the k needed to approximate X and
the reconstructed R(Ly) from L. The rate-distortion of Ly
measures FRy|X, R(Ly)|. ERk|X, R(Ly)| means the error
rate between original datasets X and reconstructed datasets
(R(Lyg)) from lossy compressed datasets (Ly). Then we ana-
lyze the impact of ERy|X, R(Ly)| for the achievable classi-
fication performance using our prediction model for accurate
classification.

III. DATASETS PREPARATION FOR HIGHLY ACCURATE
PREDICTION TASK

In this section, we describe datasets to build the lossy
prediction model for frost classification and steps to increase
the model’s predictability. As depicted in Fig. 1, the overall
process involves learning (or training) and on-time prediction
phases. In the learning phase, we collect observation data with
labels and augment data for high-accuracy prediction. To man-
age [oT datasets efficiently (less burden on data management)
and reliably (less information loss on prediction model), we
apply lossy compression, store lossy data, and then reconstruct
them for the prediction task.

A. Observed Datasets

Depending on the weather condition on the farm at a
particular time, we predict when adverse weather conditions
(i.e., frost) could occur. It would ultimately provide an instant
alert to prevent or minimize damage from frost by allowing
farmers to act proactively. In this paper, we consider the
environmental data in an orchard region in South Korea,
where we have been collecting data using the deployed IoT
stations since 2015. Datasets mainly include the microclimate
datasets collected from IoT stations and the local weather data
obtained from KMA (Korea Meteorological Administration).
These real-world IoT datasets are continuously monitored and
collected every minute from the IoT stations. Specifically,
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Acquired raw sensor data

TABLE I: Data distribution of observation datasets that shows
a class imbalance.

. T
Learning 1 On-time . # of . . Imbalance

: Prediction Station valid data # of majority | # of minority ratio

Data colloction I A 1124 1104 20 55.20
v B 1124 1099 25 43.96
DCT Transformation C 1124 1114 10 111.40

] D 1121 1102 19 58.00

[""'I I E 1124 1110 14 79.29

_ ‘j:m] F 1122 1109 13 85.31
“ G 2139 2119 20 105.95

coeflicients H 1944 1558 336 7.04
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| Feature Engineering |

Augmentation
(Oversampling)

Preprocessing

* Reconstruction
R (L)
Augmented Datasets <5
% i’u | Feature Selection
Model

Optimization
Prediction

Lossy Prediction
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Fig. 1: Overall process of our Lossy Prediction Model.

the environmental data collected are air temperature, grass
temperature (i.e., temperature above grass), humidity, wind
speed, rainfall, and soil moisture. We also extract the most
relevant features to predict accurately from these collected
datasets. The extracted features contain dew point, temperature
inversion, rainfall, solar radiation, minimum air temperature,
temperature difference, wind speed, minimum grass tempera-
ture, and soil moisture.

After selecting features, we labeled the datasets with
farmer’s frost observation to evaluate the prediction model.
However, one of the main obstacles to using observational
data, infrequent but critical events like frost, for learning a
model is imbalanced datasets. Even though IoT stations can
provide rich environmental datasets for machine learning, it is
impossible to anticipate evenly labeled training data. Table I
shows an imbalance ratio between the minority (frost) and
the majority (no-frost), obtained through observation of frost.
This imbalanced condition leads to biased outcomes by the
majority class. In other words, most machine learning-based
algorithms can be overwhelmed by the majority of data unless
they adequately address the imbalance problem. Considering
that the given class is balanced when the imbalance ratio
(majority class/minority class) is close 0, almost all stations
suffer from the severe class imbalance problem except station
H. For instance, even though station H’s imbalance ratio is
much better than others (4.04 vs. greater than 43 for stations
A through G), its data also might negatively influence machine
learning-based classifiers because it produced poor prediction
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performance with only 0.2632 in F1-score.

B. Augmented Datasets

Since our frost prediction is a binary classification task, we
can use supervised machine learning-based predictive models.
One critical precondition for effectively training a supervised
machine learning model is obtaining large-scale datasets with
proper labels [22]. In other words, the learning datasets need
a balanced ratio between classification classes. Therefore, we
synthetically augment to alleviate the class imbalance issue
discussed in Section III-A. Therefore, we employ the Synthetic
Minority Oversampling Technique (SMOTE) method [23],
which strengthens the pros and makes up for the cons of the
oversampling technique, to solve the class imbalance problem
in our training data for frost prediction.

Fig. 2 illustrates our mechanism using original and aug-
mented datasets. SMOTE augments the minority of the orig-
inal datasets in Fig. 2a as shown in Fig. 2b. Its fundamental
principle is to generate synthetic minority samples on the new
random position in the feature space by using k-nearest neigh-
bors and uniform random variables to lessen the influences of
the overfitting problem.

C. Lossy Datasets

While we use raw datasets with data augmentation to build a
robust classification model, the prediction uses lossy datasets.
It is noteworthy that any form of additional measurements,
such as more diverse sensors, an increased number of weather
stations or sensor nodes, or even sensing frequencies, is
intended to build a model that predicts more accurately. On
the other hand, such increased data collection will significantly
burden IoT devices where data collection and inference occur.
Our design of prediction utilizes the lossy model using mini-
mizing data for performing prediction at IoT devices.

As our compression utilizes transform methods, we perform
data transforms, specifically DCT. Once transformed in the
frequency domain, we obtain the relationship between the per-
centage of informative DCT coefficients (i.e., low-frequency
ones) and the amount of energy those coefficients carry. Due
to DCT’s high compaction property, a few low-frequency DCT
components retain the most energy (i.e., information), and
the remaining high-frequency coefficients are close to zero.
Our prior studies also indicate that maintaining coefficients
containing 99.9% of energy (i.e., information) and discarding
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Fig. 2: Two representative sampling methods: (a) original, (b)
augmented datasets.

insignificant coefficients K provides competitive compression
ratios. However, the implication of such lossy compressions
on the commonly-used ML prediction model applied to the
reconstructed R(X%), i.e., how much information is still
meaningful without reducing prediction accuracy, is largely
unexplored.

IV. LPM: LoSSY PREDICTION MODEL METHODOLOGY

This section presents Lossy Prediction Model (LPM) de-
sign, as illustrated in Fig. 1. The LPM consists of learning
(including the evaluation model) and accurate prediction. To
build an accurate prediction Model, in learning phase, we uses
augmented observational dataset and uses lossy datasets in on-
time prediction to impose less burden on data management and
prediction model.
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A. Lossy Prediction Model

To describe how our lossy prediction model works, let us
consider the data point X ((Z)) € R in Equation 1, where 1 < ¢ <
n, and n is the number of types of sensor data. In 1 < ¢ < p, ¢
means frost prediction during specific period. It also requires
a labeled class, 6(9, which characterizes frost conditions for
each day. Let §(*) denote the parameter associated with typical
frost characteristics of fn feature selected in penod 1 (one

day). We augment minority data {A(zl)), AE;; f s 0} to
alleviate the class imbalance issue.
(1) (1) (1)
R
0 _ ) Xy Xz X (0,40 ... A0 o)
Xy =9 @@ 7w {Au)vA(z) Ay 07 1 -
X(P) X(P) X(P)

®)(2) ()

(1

To apply lossy datasets (L) in the predictive model Fig. 1,
loss ion for X' follows the condition in Equa-
y compression for X ;) follows the condition in Equa

tion 2. We define X,, which denotes transformed components
for a compressed block size of N at a given period ¢
X, = {Xt 1, X, 25 e X, .~ }. Thus, each coefficient component
has its own energy coefficient defined as e(Xtm). EC (Xt,k)
is formulated as the energy concentration (EC) contained in
the number of coefficients components, denoted as k, of the
entire transformed components (Xt), which is calculated as:

Sh_ 13(th)
N
n= 16

L= EC(Xy ) = >d0,n=12,...Nk<n.

2

It is noteworthy that k& determines how many coefficients are
required to represent 6 amount of the energy [3]. In other
words, k refers to the number of dominant coefficients repre-
senting block X,. EC means the difference between original
datasets X and reconstructed datasets R(Lj) from Lj. The
goal of LPM is assumed as Equation 3 even ERy|X, R(Ly,)]
exists.

n

LPM(X(;)) ~ LPM[R(EC(X, x))] = LPM[R(L)]. (3)

B. Agricultural Feature Engineering

Features in Table II define X (Z) in Equation 1 to process
LPM for frost forecast. Table II lists essential environmental
data for LPM, such as temperature and relative humidity used
for training our prediction model. We provide a forecast at
23:00 (or 11 p.m.) so that farmers can receive predictive advi-
sory of frost information about the next day and have sufficient
preparation time to prevent damage. Lastly, the significance
of some features is time sensitive, mostly from noon to our
forecast time (23:00), as described in the calculation model in
Table II.

Additional features, such as temperature inversion and dew
point, are calculated from raw datasets using Equations 4-
7. The temperature inversion, a reversal of the expected
temperature behavior, means that a layer of warmer air overlies
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that of cool air at the surface. As a result, frost will be highly
likely to happen if the temperature inversion occurs. To obtain
temperature inversion, we use two types of thermometer sensor
data to capture the inversion: one collected from 10cm above
(T'yrass) the ground and the other from 1.5m above the ground
(Thir). We then calculate a temperature inversion layer using
those two temperatures. The temperature inversion denoted as
I is calculated as:

ATt = Tgrass (t) - Tair (t)a Ts S t § Tea
I(ATy) =Y ATy, if AT, <0,

“4)
®)

where ¢ is a measurement time, and the difference between
the grass and air temperatures is AT}.

The dew point, another essential feature affecting frost
conditions, refers to the temperature at which water vapor
in the atmosphere is saturated, and part of the water vapor
condenses with water. Above this temperature, the moisture
will stay in the air. A well-known approximation used to
calculate the dew point denoted as Ty, given the actual air
temperature, T,;,. (in degrees Celsius), and relative humidity
(in percent), RH, is calculated as follows:

RH.  bxT,,,

Tpir, RH) =In(—=) + ————,

V(Tair, RH) n(100)+c+T,m ©)
C * TairaRH

b Y(Tair, RH),

where b = 17.62 and ¢ = 243.5, one of the constant sets used in
National Oceanic and Atmospheric Administration and other
studies.

C. Evaluating Lossy Prediction Models

To quantify which classification algorithm would work best
as a lossy prediction, we evaluate the prediction model of
five representative classification methods, DT, RF, AdaBoost,
SVM, and ANN.

Once we validate the best-performing prediction model with
lossy datasets, we optimize the selected model using the
k-fold cross-validation method. The k-fold cross-validation
method divides a given dataset into k& non-overlapping folds.
The k-th fold uses a validation set and the remainder as a
training set. We select optimized hyperparameters by deriving
and comparing averaged performance by combining the grid
search method. The stratified k-fold cross-validation method
mitigates the influence of remained class imbalance problem.
We derive the optimized classifier for our lossy prediction
model from these processes.

We sorted out and utilized the same test data in the modeling
process for a fair comparison. Similarly, z-score normalization
uses hyperparameters in the modeling and the missing value
process. After the optimized classifier derives experimental
results, we evaluate and compare the results based on the
confusion matrix. Since our test data is imbalanced, we
consider both accuracy and F1-score performance criteria.
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V. RESULTS AND DISCUSSION
A. Evaluation Metrics

We use the following metrics to evaluate the performance
of the lossy prediction model: compression ratio (CR) for
measuring the amount of data reduced, the Peak Signal-to-
Noise Ratio (PSNR) for measuring information loss, and
various other metrics for measuring the impact of LPM on
prediction.

o Compression Ratio (CR): The compression ratio is given

by CR = % x 100%, where |D| is the size of D,
|D’| is the reduced size, and § is the amount of energy.
e Let X be the original data and lossy data Lj be the
reconstructed data. Then, we measure the peak signal-
to-noise ratio (PSNR) for FR|X, R(Ly)|, a commonly

used average error metric.

PSNR = 201 (Mam(x) — Min(z)
OO R MSE(z, R(Ly))

« The objective of our lossy prediction model is to achieve
a higher Accuracy and Fl-score. TP, TN, FP, and FN
indicate true positive, true negative, false positive, and
false negative, respectively.

TP 4+ TN
Accuracy = .
TP +FP +FN + TN
TP
F1-score =

TP + 0.5 x (FP + FN)’
B. Evaluation of Lossy Datasets

Since our predictive services run on lossy data, let us first
discuss how much data reduction our compression mechanism
brings. In our evaluation, we compress fixed energy (or infor-
mation) compaction rate § = 0.99 (99%) in Equation 2 and
reconstruct the five data variables (Temperature, Grass, Soil
Moisture, Wind Speed, Relative Humidity), each with 525,190
data points.

Table III shows each data’s CR, when 6 = 0.99 (99%),
and data characteristics in terms of the normalized standard
deviation (NSTD), skewness, and kurtosis. We observe that
each data shows similar characteristics in all metrics. In the
case of skewness, wind speed has a positive value. Wind speed
has a higher NSTD than that of the others. In the case of
the temperature, CR is 99.35, which means 0.65% of data is
needed, whereas wind speed needs 39.1% of data is needed.

To measure how much the reconstructed data deviate from
the original data, i.e., ERy|X, R(Lg)|, we use PSNR to mea-
sure distortion estimates. A higher value of PSNR represents
lower error and is similar to the original datasets. Overall, the
effect of the error rate varies depending on the datasets. For
instance, the error rate for wind speed increases more than
others. Soil moisture data shows higher PSNR than the other
datasets, which means that R(Ly) is closer to the original.

C. Evaluation of Lossy Prediction Performance

We next evaluate the performance of our frost prediction
task using lossy datasets. We utilize machine learning libraries
from scikit-learn [24] to train and evaluate five machine
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TABLE II: The environmental datasets used in training.

[ [ features [ calculation model
Temperature Inversion 1(ATy) Equation 4 and 5
Dew Point Tap Equation 6 and 7
Rainfall rain between 22:30 and 23:00
Solar Radiation solar between 12:00 and 19:00
Air Temperature Tair(min) the minimum temperature between 12:00 and 23:00
Tair(mazx) the maximum temperature between 12:00 and 23:00
Tair(dif f) T(max) - T(min)
Wind Speed W speed between 21:00 and 23:00
Grass Temperature Tgrass between 12:00 and 23:00
Tgrass(min) minimum between 12:00 and 23:00
Soil Moisture T'soil between 22:30 and 23:00

TABLE III: The evaluated datasets and their characteristics.

NSTD Skewness Kurtosis CR PSNR

Temperature 0.81 -0.072 -0.94 99.35 42.03
Grass Temperature 0.91 -0.047 -0.85 98.62 41.87
Soil Moisture 0.25 -0.22 -1.034 99.99 51.2
Wind Speed 1.097 1.17 1.25 60.9 37.32
Relative Humidity 0.31 -0.61 -0.74 99.93 33.07

TABLE IV: Experimental results for model selection.

Station Performance RF SVM DT ANN AdaBoost
A Accuracy 0.9132 | 0.8852 | 0.8663 | 0.8935 0.8663
FI-score 0.6908 | 0.6494 | 0.5944 | 0.6532 0.5858
B Accuracy 0.8959 | 0.8508 | 0.8632 | 0.8508 0.8632
FI-score 0.6712 | 0.5720 | 0.6562 | 0.5947 0.6575
C Accuracy 0.9162 | 0.8867 | 0.8844 | 0.8958 0.8829
FI-score 0.6337 | 0.5609 | 0.5905 | 0.6203 0.5953
D Accuracy 0.8784 | 0.8343 | 0.8406 | 0.8407 0.8527
Fl-score 0.6545 | 0.6053 | 0.6032 | 0.6042 0.6322
E Accuracy 0.9335 | 0.8869 | 0.9066 | 0.8711 0.9003
Fl-score 0.6344 | 0.1936 | 0.6190 | 0.1598 0.6175
F Accuracy 0.9135 | 0.8762 | 0.8876 | 0.8975 0.8937
Fl-score 0.6365 | 0.5521 0.6103 | 0.6195 0.6224
G Accuracy 0.9919 | 0.9081 0.9880 | 0.9214 0.9876
Fl-score 0.9538 | 0.0441 0.9290 | 0.3590 0.9264
H Accuracy 0.9786 | 0.7548 | 0.9580 | 0.7235 0.9506
Fl-score 0.9743 | 0.7132 | 0.9479 | 0.6641 0.9384

learning algorithms: DT, RF, AdaBoost, SVM, and ANN. We
set 70% of the data for training and the remaining 30% for
the test. Also, we augment synthetic minority samples 2x for
station H and 10x for the remaining stations to make a similar
imbalance ratio across all stations.

Table IV shows the experimental results for the five classi-
fication algorithms we tested. As we can see, RF shows the
best performance among all five models in both Accuracy
and F1 score. We attribute RF’s superior performance on
lossy datasets as follows. RF reduces variance by combining
various subtrees based on operating principles, although it
might slightly increase bias. The variance reduction is often
meaningful for the model’s overall performance improvement,
guaranteeing robust results. Based on these results for model
selection, we conclude that RF works best to work with
reconstructed data from lossy compression. We next perform
hyperparameter optimization for RF. Specific hyperparameters
we obtained are as follows:

o the number of subtrees (from 10 to 200)
o the maximum depth of each subtree (from 5 to 30)
« the splitting criteria (Gini index and Entropy)
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VI. CONCLUSION

The convergence of [oT and Al has the potential to produce
predictive advisories like frost forecasts using a large volume
of diverse IoT data, which needs to be stored efficiently and
with maximum data fidelity. In this paper, we evaluated the
effectiveness of the lossy prediction model on IoT environ-
mental datasets as an exemplar of the predictive service. Our
experimental results show that lossy compressions based on
DCT can achieve significantly higher compression ratios with
a marginal loss of data quality. Specifically, we compared the
performance of frost prediction tasks using RF, SVM, DT,
ANN, and AdaBoost on the reconstructed data using various
error-bounding methods to evaluate the feasibility of applying
lossy compressions. Moreover, our LPM (Lossy Prediction
Model) has an accuracy of 0.88 — 0.99 with 91.8% of the
average compression ratio, demonstrating that a certain degree
of loss in data fidelity by lossy compression hardly affects the
accuracy of frost prediction outcomes.
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