
2022 IEEE International Conference on Big Data (Big Data)

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 3139

Towards Guaranteeing Error Bound in DCT-based
Lossy Compression

1st Jiaxi Chen
University of Massachusetts Lowell

Lowell, MA
jiaxi chen@student.uml.edu

2nd Aekyeung Moon
ETRI

Daegu, Korea
akmoon@etri.re.kr

3rd Seung Woo Son
University of Massachusetts Lowell

Lowell, MA
seungwoo son@uml.edu

Abstract—High-performance computing (HPC) systems that
run scientific simulations of significance produce a large amount
of data during runtime. Transferring or storing such big datasets
causes a severe I/O bottleneck and a considerable storage burden.
Applying compression techniques, particularly lossy compressors,
can reduce the size of the data and mitigate such overheads.
Unlike lossless compression algorithms, error-controlled lossy
compressors could significantly reduce the data size while respect-
ing the user-defined error bound. DCTZ is one of the transform-
based lossy compressors with a highly efficient encoding and
purpose-built error control mechanism that accomplishes high
compression ratios with high data fidelity. However, since DCTZ
quantizes the DCT coefficients in the frequency domain, it may
only partially control the relative error bound defined by the
user. In this paper, we aim to improve the compression quality
of DCTZ. Specifically, we propose a preconditioning method
based on level offsetting and scaling to control the magnitude of
input of the DCTZ framework, thereby enforcing stricter error
bounds. We evaluate the performance of our method in terms
of compression ratio and rate distortion with real-world HPC
datasets. Our experimental result shows that our method can
achieve a higher compression ratio than other state-of-the-art
lossy compressors with a tighter error bound while precisely
guaranteeing the user-defined error bound.

Index Terms—Lossy compression, DCT, Precondition, Rate-
Distortion.

I. INTRODUCTION

Scientists in various domains use modern high-performance
computing (HPC) systems to validate theories and investigate
new phenomena on a scale that was nearly impossible in the
past. As a result, a massive amount of data in terabytes or even
petabytes would be produced by this process. For instance,
large ensembles of high-fidelity simulation can generate 260
TB of data every 16 seconds across the ensemble [1]. Storing
and transferring such big datasets may cause huge overhead
on storage space and the I/O system. One way to mitigate
such overhead [2]–[5] is to apply compression techniques,
especially lossy ones, which can significantly reduce the data
size.

The idea of lossy compression algorithms is to make a trade-
off between the file size and the quality. A well-known exam-
ple of a lossy compression technique is JPEG [6], which is
widely used in image data compression as human eyes cannot
notice every detail of images. The idea of lossy compression
for scientific data is becoming popular recently since the
slow increase in storage bandwidth barely caught up with the

computing performance improvement of the supercomputers.
Therefore, compressed data can reduce data traffic or burden to
storage systems and network transfer. Though it will introduce
errors and make the reconstructed data not identical to the
original, lossy compression algorithms are applied to achieve
a significantly higher compression ratio.

While for several conventional lossy compressors, such as
ISABELA [7], which uses a B-spline-based curve fitting to
the sorted data, the compression rate is limited due to the
sorting process. FPZIP [8] traverses data in a coherent order
and then applies the corresponding n-dimensional Lorenzo
predictor to predict the neighboring values, which is less
capable of bounding errors. SZ [9]–[11] and ZFP [12] are
two well-known error-controllable lossy compressors designed
for scientific datasets. SZ relies on each input value’s pre-
dictability and compresses the unpredictable data by analyzing
their binary representation. The limitation of the prediction-
based compressor is the data dependency which means the
compression performance would degrade if the data shows less
structure or the error bound becomes tighter. ZFP combines
a transform-based decorrelation scheme with an embedded
coding scheme. With the same level of error bounds, SZ
usually produces higher compression ratios than ZFP, while
ZFP is faster than SZ [13].

Inspired by the JPEG compression algorithm, another
transform-based lossy compressor named DCTZ [14], [15],
which is based on discrete cosine transform (DCT), is designed
for scientific datasets. DCTZ shows comparable performance
with SZ and ZFP regarding compression ratios. However, since
DCTZ truncates DCT coefficients in the frequency domain,
in some cases, DCTZ cannot guarantee the user-defined error
bound. Fig. 1 shows two data points (red circle) with a relative
error larger than the user-defined error bound, 1E-3, in the first
block of cellular-eint dataset.

This paper focuses on optimizing DCTZ with real-world
scientific data sets. We explore the DCTZ framework by
understanding the relationship between the original data and
the relative error of the reconstructed data. We then design
a preconditioning method, which employs level offsetting to
map the center of the input data set to its mean value, and
a scaling method, which significantly decreases the input
data’s magnitude. To demonstrate the effectiveness of the
preconditioning method, we evaluate the performance of our

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
66

54
-8

04
5-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

56
60

.2
02

2.
10

02
03

45

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 01,2023 at 00:25:47 UTC from IEEE Xplore. Restrictions apply.

3140

Fig. 1: The relative error of the first block of cellular-eint with
an error bound of 1E-3.

method using real-world scientific datasets and compare it
with other state-of-the-art lossy compressors, SZ and ZFP.
Our experiments show that our proposed method can strictly
guarantee user-defined error bound and achieve a competitive
performance with SZ and is much better than ZFP regarding
rate distortion and compression ratio. Our implementation of
DCTZ in C is available at: https://github.com/swson/DCTZ.

II. BACKGROUND AND MOTIVATION

A. DCTZ framework
The main idea of DCTZ is to compose a discrete co-

sine transform (DCT) and a truncation of DCT coefficients.
Discrete cosine transform redistributes the energy contained
in the signal and condenses most of the information into
a small number of coefficients (low-frequency coefficients).
Prior studies showed that DCT or equivalent, whose inverse
has the same spectrum as the original data, has high decor-
relation efficiency [16]. After DCT, most signal information
is preserved in a few low-frequency coefficients (DC), while
the high-frequency coefficients (AC) only contain very little
information. This mechanism allows the compression of sci-
entific datasets with a much higher compression ratio than
lossless compressors. Fig. 2 depicts the structure of the DCTZ
framework.

B. Compression Procedure in DCTZ
As shown in Fig. 2, DCTZ compression involves the fol-

lowing steps, and the quantization of AC coefficients within
the bin range introduces compression errors due to truncation
(marked in red box).

• Apply block decomposition, which divides the input data
into blocks with 64 data points each (8 ⇥ 8 in 2D and
4 ⇥ 4 ⇥ 4 in 3D). The 8⇥8 DCT is widely used in
image compression, and prior studies show that it can
be seamlessly applicable to floating-point numbers while
providing its high energy compaction property [14], [15],
[17].

• Apply DCT on each decomposed block to retrieve the
representation in the frequency domain [18]–[20]. Each

Fig. 2: The current implementation of the DCTZ framework.

block’s first coefficient is a DC component, and the
remaining ones are AC components.

• The DC coefficients are saved as is to preserve the most
informative data.

• For the AC coefficients, which take the majority part in
all coefficients, DCTZ would check whether each of them
is inside the bin range.

• Quantize AC coefficients inside the bin range with a
uniform quantizer.

• Compress the data from previous steps, including DC,
AC outside bin range, and bin index, with a lossless
compressor such as zlib [21].

C. Quantization and the Problem
Quantization maps a range of values, DCT coefficients in

our case, to a small fixed one [22], and this is the mechanism
DCTZ employed to implement truncation of the coefficient
and reduce the size of the file. The DCTZ framework checks
the above AC coefficients to see whether they are inside the
bin range. To implement the error boundedness, DCTZ uses
the number of bins (B) and the user-defined error bound (P)
to determine specific bin ranges, defined as [-P*B, P*B].
Then, DCTZ divides the determined bin range into B small
ranges, each with the size of 2*P . The AC coefficients that
fall into any of these small bin ranges would be mapped to
an integer with a value from 0 to 254, assuming the 1-byte

2

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 01,2023 at 00:25:47 UTC from IEEE Xplore. Restrictions apply.

3141

Fig. 3: The DCT coefficients for the first block of cellular-eint.
This chart does not show DC as it is not quantized.

bin index representation in the compression process. DCTZ
dedicates a bin index of 255 to represent the DC coefficient
of each block and AC coefficients outside the bin range.

The size of the bin range is calculated once and fixed
during both the compression and decompression processes.
Therefore, no additional overhead for maintaining bin ranges.
During decompression, DCTZ uses the center value of each
small range to represent the original AC coefficients which
are supposed to guarantee the user-defined error bound since
the difference between the original AC coefficient and its
reconstructed value would be smaller than P . Bin center
values also require no additional overhead because they can
be derivable from the bin ranges.

However, as we investigate the transform property of DCT,
we found that as the magnitude of input data becomes bigger,
the DCT result also follows this growing trend. To illustrate
such behavior, let us consider Table I, which shows the first
10 data points of cellular-eint with different scaling factors.
We also observe similar patterns in other data points in other
data blocks. As we can see, Input 2 is about 10X bigger than
Input 1, and the DCTZ coefficients of Input 2 are also about
10X bigger. Since the size of the bin range is fixed, the large
input value will result in more DCT coefficients out of the
bin range, thus lowering the compression ratio. As shown in
Fig. 3, the number of DCT coefficient falls inside the bin
range with error bound equals 1E-4 (between green line) is
much smaller than 1E-3 (between red dash line). Therefore,
decreasing the magnitude of the input value is considered to
improve the compression ratio. However, it is not always true
that smaller input values will result in better DCT performance
due to the challenge of balancing the compression ratio and
quality.

III. PROPOSED APPROACH

In this section, we propose our preconditioning method to
control the range of the input data as well as the level offsetting
mechanism to improve DCTZ in terms of guaranteeing the
user-defined error bound while generating high compression
ratios.

TABLE I: DCT result for the first 10 values of cellular-eint.
Input 1 DCT result 1 Input 2 DCT result 2

1.128948221903188 8.857954597 11.2894822190318 88.5795459719191
1.10622247854768 0.0012397052313 11.0622247854768 0.012397052313
1.0969064587706 -9.84E-15 10.9690645877069 -9.71E-14
1.09584639402647 0.0012202322376 10.9584639402647 0.012202322376
1.09997819840631 8.75E-15 10.9997819840631 8.4E-14
1.10599456853758 0.0011753396060 11.0599456853758 0.011753396060
1.11113078776719 -2.79E-14 11.1113078776719 -2.79E-13
1.11292744924759 0.0010894831660 11.1292744924759 0.010894831660
1.12894822132908 5.3E-88 11.2894822132908 5.3E-7
1.10622247772078 0.00092555927520 11.0622247772078 0.0092555927520

A. Level-Offsetting
Instead of directly applying DCT to the input value, we

apply level-offsetting to the input data set. Specifically, we
first find the mean value of the input dataset, which is equal
to the sum of all input values divided by the number of input
data points. Then find the center of the input data range, which
is calculated as the sum of the min and max values divided
by 2. Next, we calculate the offsetting factor as the center
subtracted from the mean. Then this factor is subtracted from
all of the input data. Algorithm 1, lines 1 to 10, shows the
detail. This step will reduce the dynamic range requirements
in the following DCT phase.

B. Scaling
To further control the range of the input data, we find the

max value from the data set after the level offsetting and
then take the ceiling value of the logarithm value of the max
to calculate the scaling factor. We then divide every input
value by this scaling factor. The detail of this part shows
in Algorithm 1, lines 12 to 16. After this scaling phase, the
transformed data is divided into blocks with a size of 64 and
sent to the DCT step as before.

Algorithm 1 Detailed procedure of our proposed algorithm.
Input: D: input dataset. M : the number of data points.
Output: D

0: Offset data. S: Sum of the input value. ME: Mean value. CE: Center
value. OF : Offsetting factor. D00: Preconditioned data. SF : Scaling factor.

1: Level-Offsetting:
2: for Dm, m = 1, 2, . . . ,M do
3: S S + Dm;
4: end for
5: ME S/M ;
6: CE (MAX(D) + MIN(D))/2;
7: OF CE �ME;
8: for D

0
m, m = 1, 2, . . . ,M do

9: D
0
m Dm � OF ;

10: end for
11:
12: Scaling:
13: SF pow(10, ceil(log10(MAX(D0)))� 2);
14: for D

00
m,m = 1, 2, . . . ,M do

15: D
00
m D

0
m/SF ;

16: end for

C. Preconditioning Order
The order of applying level-offsetting and scaling will also

impact the results. As shown in Fig. 4, the relative error of the
first block of cellular-eint shows that applying level-offsetting
first will result in a lower relative error than scaling first. This
result indicates that level-offsetting first is a better way to
guarantee user-defined error bound than scaling first. Since

3

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 01,2023 at 00:25:47 UTC from IEEE Xplore. Restrictions apply.

3142

-2.00E-04

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1.40E-03

1.60E-03

1.80E-03

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Re
la

tiv
e

er
ro

r

Index of data point

offsetting + scaling

scaling +offsetting

Fig. 4: The relative error for the first block of cellular-eint
with different order of application between level-offsetting and
scaling.

we observed this consistent performance on all the datasets
we evaluated, we adopt this implementation in the rest of this
paper.

IV. EXPERIMENTAL EVALUATION

A. Evaluated Schemes
We evaluate the performance of DCTZ with our proposed

method named DCTZ-P and the current implementation as
DCTZ-C. We also compare it with two other state-of-the-art
compressors, SZ (version 2.1.12) and ZFP (version 1.0.0). We
ran SZ and ZFP with the command examples provided at
Scientific Data Reduction Benchmarks (SDRBench) [23].

B. Datasets and Metrics
We evaluate the real-world scientific datasets (in double-

precision) from HPC code packages FLASH [24], and Ta-
ble II shows their characteristics. We focus on these datasets
as DCTZ often suffers from guaranteeing user-defined er-
ror bound on those, which could prevent successful check-
point/restart with lossy compression. We configured both
Celluar and Sedov solvers as 2D (-2d -auto during solver
setup) and picked the checkpoint files with the largest blocks.
Therefore, each cellular dataset has 512 blocks, while 517 for
sedov, with 2D (8 by 8) for each block. Note that FLASH uses
adaptive mesh refinement, thus the number of blocks keeps
evolving during simulation.

TABLE II: Characteristics of datasets evaluated.
Solver Variable Range Mean Dimension

cellular
dens 2.62E+7 21.7E+7 8*8*512
eint 9.66E+17 8.42E+17 8*8*512
pres 1.23E+25 8.07E+24 8*8*512

sedov
dens 4.2731 1 8*8*517
eint 3.24E+2 25.94 8*8*517
pres 3.90 0.82 8*8*517

The performance of the compressor is measured using
several metrics:

• Compression Ratio (CR) is defined as the original data
size divided by the compressed data size.

• Peak Signal-to-Noise Ratio (PSNR) measures the overall
distortion between the original data and the decompressed
data

• Bit-rate, means the average number of bits to represent a
data point in a compressed file.

We set the error bound to 1E-3, 1E-4, and 1E-5, respectively.
Error bound refers to the maximum relative error (calculated
as the maximum difference between original data and recon-
structed data divided by the range of the data) allowed. Since
SZ and ZFP support several error-bounding mechanisms, we
set appropriate runtime options in SZ and ZFP for a fair
comparison.

C. Experimental Results
1) Compression Ratio: In Fig. 5, we compare the compres-

sion ratio between DCTZ-P with SZ and ZFP with the error
bound of 1E-3, 1E-4, and 1E-5. The chart shows that ZFP
generates the lowest CR for all six datasets, as ZFP is among
the most conservative lossy compression algorithm. With a
relatively loose error bound (1E-3), SZ performs better than
DCTZ-P. However, when the error bounds get tighter (like 1E-
4), SZ outperforms DCTZ-P in 3 out of 6 cases (sedov-dens,
sedov-eint, and sedov-pres). However, for an error bound equal
to 1E-5 (the tightest), DCTZ-P achieves the highest CR on all
six datasets.

We also notice in Fig. 5 that DCTZ-C achieves better
CR than DCTZ-P in all cases (18 cases in total). However,
as shown in Fig. 6, DCTZ-C cannot guarantee user-defined
error bound in 8 cases. In the remaining 10 cases, DCTZ-
C achieves as much as 97% better performance than DCTZ-
P (cellular-dens with 1E-3), and the smallest gap is about
6% (sedov-dens with 1E-5). This difference indicates that our
proposed precondition method provides a more conservative
implementation of DCTZ.

2) Error Boundedness: We compare the maximum relative
error bound between DCTZ-C and DCTZ-P. As shown in
Fig. 6, DCTZ-C shows a much higher maximum relative
error than DCTZ-P in all cases. At the same time, DCTZ-
C cannot guarantee the user-defined error bound for 2 cases
(cellular-eint and cellular-pres) with 1E-3, 4 cases (cellular-
eint, cellular-pres, sedov-dens, and sedov eint) with 1E-4 and
2 cases (cellular-eint and cellular-pres) with 1E-5. This figure
also shows the trade-off between CR and compression error.

3) Rate Distortion: To evaluate how the preconditioning
method would affect the performance of DCTZ, we compare
the compression quality of DCTZ-P, DCTZ-C, SZ, and ZFP
with bit-rate. From Fig. 7, we can observe that higher PSNR
requires a higher bit-rate. In other words, the curve on the
top left part with a higher slope is better than the curve on
the bottom right with a lower slope. We can see that both
DCTZ-C and DCTZ-P outperform SZ in all six datasets. An
evaluation with a broader error-bound spectrum, such as 1E-
2 (loosest) and 1E-6 (tightest), could make the curve look
more informative as it provides more data points. However,
we could not acquire a reasonable PSNR value of ZFP and
SZ for some cases. Even with the error bound we tested, two

4

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 01,2023 at 00:25:47 UTC from IEEE Xplore. Restrictions apply.

3143

0

10

20

30

40

50

60

70

80

90

cellular-dens cellular-eint cellular-pres sedov-dens sedov-eint sedov-pres

C
om

pr
es

si
on

 R
at

io
 (C

R
)

Datasets

SZ

ZFP

DCTZ-C

DCTZ-P

(a) error bound=1E-3

0

5

10

15

20

25

30

35

40

cellular-dens cellular-eint cellular-pres sedov-dens sedov-eint sedov-pres

C
om

pr
es

si
on

 R
at

io
 (C

R
)

Datasets

SZ

ZFP

DCTZ-C

DCTZ-P

(b) error bound=1E-4

0

5

10

15

20

25

cellular-dens cellular-eint cellular-pres sedov-dens sedov-eint sedov-pres

C
om

pr
es

si
on

 R
at

io
 (C

R
)

Datasets

SZ

ZFP

DCTZ-C

DCTZ-P

(c) error bound=1E-5

Fig. 5: The compression ratios for SZ, ZFP, and DCTZ-P with error bound of (a) 1E-3, (b) 1E-4, and (c) 1E-5.

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

cellular-dens cellular-eint cellular-pres sedov-dens sedov-eint sedov-pres

M
ax

im
um

 ra
la

tiv
e

er
ro

r

Datasets

DCTZ-C

DCTZ-P

error bound

(a) error bound=1E-3

0.0000

0.0001

0.0001

0.0002

0.0002

0.0003

cellular-dens cellular-eint cellular-pres sedov-dens sedov-eint sedov-pres

M
ax

im
um

 ra
la

tiv
e

er
ro

r

Datasets

DCTZ-C

DCTZ-P

error bound

(b) error bound=1E-4

0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

cellular-dens cellular-eint cellular-pres sedov-dens sedov-eint sedov-pres

M
ax

im
um

 ra
la

tiv
e

er
ro

r

Datasets

DCTZ-C

DCTZ-P

error bound

(c) error bound=1E-5

Fig. 6: Maximum relative error for DCTZ-C and DCTZ-P with error bound of (a) 1E-3, (b) 1E-4, and (c) 1E-5.

curves are missing for the same reason (ZFP for cellular-eint
in Fig. 7b and SZ for cellular-pres in Fig. 7c). Moreover, since
ZFP can achieve a significantly higher PSNR but much lower
CR than other compressors, its curve always falls on the right
side of the coordinate.

TABLE III: The characteristics of variables.
var name min max Var Mean Median

cellular-dens 1.00E+7 3.62E+7 4.28E+13 2.17E+7 2.4E+7
cellular-eint 1.63E+17 1.13E+18 1.32E+35 8.42E+17 1.03E+18
cellular-pres 8.64E+23 1.32E+25 1.53E+49 8.07E+24 9.76E+24
sedov-dens 0.0128 4.2859 0.5937 1 1
sedov-eint 2.5E-05 324.24 5.73E+3 26.94 2.50E-5
sedov-pres 1.00E-05 3.90 1.14 0.823 1.00E-5

4) Data Characteristic: As shown in Fig. 8 and Table III,
sedov-dens and sedov-eint contain more outliers (red “+”) than
sedov-pres, which introduces sharp discontinuities in the input
dataset. In order to represent these sharp discontinuities accu-
rately, in other words, to respect the user-defined error bound,
we need a more precise high-frequency coefficient. Since our
quantization method implements a fixed range proportional to
the user-defined error bound, the DCTZ performance would
degrade in terms of compression quality for the dataset with
many outliers.

V. RELATED WORK

Recently, lossy compressors have attracted considerable at-
tention across scientific datasets containing double and single-
precision floating-point numbers. SZ [9]–[11] is a prediction-
based compressor that exploits the predictability of the input
data value. For each input data, it quantizes the difference

between the predicted and actual value, and the difference is
bounded inside the user-defined error bound. However, SZ
tends to produce less competitive compression ratios with
tighter error bounds. ZFP [12] is a transform-based lossy
compressor that combines a decorrelation scheme with an
embedded coding scheme. It reduces the file size by truncating
the precision of the transformed coefficients based on user-
defined error bounds. With the same level of error bounds, SZ
usually achieves a higher compression ratio than ZFP, while
SZ is often 20-30% slower than ZFP [25]. MGARD [26] is
a multigrid-based lossy compressor that can bound the loss
in different norms. The resulting loss can guide the adaptive
reduction of the dataset to meet users’ tolerance or memory
constrain. FRaZ [27] is a fixed ratio lossy compression frame-
work that respects user-specified error constraints. Unlike
other lossy compressors, it can determine the appropriate
error setting for different lossy compressors based on target
compression ratios. Although it runs slower than fixed-error
compression, it provides a new lossy compression technique
for huge scientific datasets.

VI. CONCLUSION AND FUTURE WORK

In this paper, we design a data preconditioning method
for DCTZ, in which we apply level offsetting and scaling to
control the magnitude of input data. Our proposed method,
DCTZ-P, improves the compression quality while maintaining
competitive performance compared to other state-of-the-art
lossy compressors. Our experimental evaluations using six
real-world scientific datasets show that DCTZ-P can achieve a

5

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 01,2023 at 00:25:47 UTC from IEEE Xplore. Restrictions apply.

3144

60.00

110.00

160.00

210.00

260.00

310.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00

PS
NR

bit-rate

SZ

ZFP

DCTZ-C

DCTZ-P

(a) cellular-dens

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

PS
NR

bit-rate

SZ

DCTZ-C

DCTZ-P

(b) cellular-eint

60.00

110.00

160.00

210.00

260.00

310.00

360.00

410.00

0.00 50.00 100.00 150.00 200.00

PS
NR

bit-rate

ZFP

DCTZ-C

DCTZ-P

(c) cellular-pres

60.00
70.00
80.00
90.00
100.00
110.00
120.00
130.00
140.00
150.00
160.00

0.00 10.00 20.00 30.00 40.00 50.00

PS
NR

bit-rate

SZ
ZFP
DCTZ-C
DCTZ-P

(d) sedov-dens

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

PS
NR

bit-rate

SZ
ZFP
DCTZ-C
DCTZ-P

(e) sedov-eint

60.00
70.00
80.00
90.00
100.00
110.00
120.00
130.00
140.00
150.00
160.00

0.00 10.00 20.00 30.00 40.00 50.00

PS
NR

bit-rate

SZ
ZFP
DCTZ-C
DCTZ-P

(f) sedov-pres

Fig. 7: Comparison of rate-distortion among different lossy compressors with six datasets.

(a) cellular-dens (b) cellular-eint (c) cellular-pres

(d) sedov-dens (e) sedov-eint (f) sedov-pres

Fig. 8: Distribution of input datasets displayed in box plots.

higher compression ratio than SZ and ZFP with a tighter error
bound while guaranteeing the user-defined error bound.

In our future work, we plan to expand the evaluation of
our method to other available scientific datasets [23] and the

newest lossy compressors, such as SZ3 [28], in terms of
compression ratio and throughput. We also plan to utilize the
distribution pattern of the bin index data among blocks to
improve the compression ratios further.

6

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 01,2023 at 00:25:47 UTC from IEEE Xplore. Restrictions apply.

3145

VII. ACKNOWLEDGMENT

This material is in part based upon work supported by the
National Science Foundation under Grant No. 1751143.

REFERENCES

[1] I. Foster, “Computing just what you need: Online data analysis and re-
duction at extreme scales,” in 2017 IEEE 24th International Conference
on High Performance Computing (HiPC), 2017, pp. 306–306.

[2] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W. keng Liao, and
A. Choudhary, “Data Compression for the Exascale Computing Era-
Survey,” Supercomputing Fronties and Innovations, vol. 1, no. 2, pp. 76–
78, 2014. [Online]. Available: http://superfri.org/superfri/article/view/13

[3] D. Ibtesham, D. Arnold, K. B. Ferreira, and P. G. Bridges, “On the
viability of Checkpoint Compression for Extreme Scale Fault Tolerance,”
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 302–311, 2012.
[Online]. Available: http://dx.doi.org/10.100/978-3-642-29740-3 34

[4] X. Ni, T. Islam, K. Mohror, A. Moody, and L. V. Kale, “Lossy
Compression for Checkpointing: Fallible or Feasible?” Proceedings
of the International Conference For High Performance Computing,
Networking, Storage and Analysis (SC), 2014.

[5] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[6] D. S. Taubman and M. W. Marcellin, “JPEG 2000: Image Compression
Fundamentals, Standards and Practice,” Norwell, MA, USA: Kluwer
Academic Publishers, 2001.

[7] X. Ni, T. Islam, K. Mohror, A. Moody, and L. V. Kale, “Isabela
for effective in situ compression of scientific data,” Concurrency and
Computation: Practice and Experience, vol. 25, pp. 523–540, 2013.

[8] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[9] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data (Big Data), 2018, pp. 438–447.

[10] S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression
with sz,” in 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2016, pp. 730–739.

[11] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2017, pp. 1129–1139.

[12] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[13] X. Zou, T. Lu, W. Xia, X. Wang, W. Zhang, H. Zhang, S. Di, D. Tao,
and F. Cappello, “Performance optimization for relative-error-bounded
lossy compression on scientific data,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 7, pp. 1665–1680, 2020.

[14] J. Zhang, X. Zhuo, A. Moon, H. Liu, and S. W. Son, “Efficient Encoding
and Reconstruction of HPC Datasets for Checkpoint/Restart,” in 2019
35th Symposium on Mass Storage Systems and Technologies (MSST),
2019, pp. 79–91.

[15] J. Zhang, J. Chen, A. Moon, X. Zhuo, and S. W. Son, “Bit-Error Aware
Quantization for DCT-based Lossy Compression,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC), 2020, pp. 1–7.

[16] K. R. Rao and P. Yip, “Discrete Cosine Transform: Algorithms, Advan-
tages, Applications,” 1990.

[17] J. Zhang, A. Moon, X. Zhuo, and S. W. Son, “Towards improving
rate-distortion performance of transform-based lossy compression for
hpc datasets,” in 2019 IEEE High Performance Extreme Computing
Conference (HPEC), 2019, pp. 1–7.

[18] ——, “Towards improving rate-distortion performance of transform-
based lossy compression for hpc datasets,” in 2019 IEEE High Per-
formance Extreme Computing Conference (HPEC), 2019, pp. 1–7.

[19] A. Moon, J. Kim, J. Zhang, and S. W. Son, “Lossy compression on iot
big data by exploiting spatiotemporal correlation,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), 2017, pp. 1–7.

[20] X. Cai and J. S. Lim, “Algorithms for transform selection in multiple-
transform video compression,” IEEE Transactions on Image Processing,
vol. 22, no. 12, pp. 5395–5407, 2013.

[21] https://github.com/madler/zlib.
[22] A. Gersho and R. M. Gray, “Vector Quantization and Signal Compres-

sion,” 1991.
[23] https://sdrbench.github.io/.
[24] Flash Center for Computational Science, “FLASH User’s Guide: Version

4.6.2,” 2019.
[25] X. Zou, T. Lu, W. Xia, X. Wang, W. Zhang, H. Zhang, S. Di, D. Tao,

and F. Cappello, “Performance optimization for relative-error-bounded
lossy compression on scientific data,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 7, pp. 1665–1680, 2020.

[26] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the multivariate
case,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. A1278–
A1303, 2019.

[27] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “Fraz: A generic
high-fidelity fixed-ratio lossy compression framework for scientific
floating-point data,” in 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2020, pp. 567–577.

[28] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao, Z. Chen, and F. Cappello, “Sz3: A
modular framework for composing prediction-based error-bounded lossy
compressors,” IEEE Transactions on Big Data, pp. 1–14, 2022.

7

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on February 01,2023 at 00:25:47 UTC from IEEE Xplore. Restrictions apply.

