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Physics- and chemistry-informed machine learning (ML) models were trained by using descriptors in the element
physical and chemical properties domain, which include stoichiometric, elemental-property-based, valance
orbital occupation, and ionicity features. Young’s modulus, shear modulus and electrical resistivity (p) data for a
group of oxide glasses were used to train artificial neural network (ANN), support vector machine (SVM), and
random forest (RF) models. In comparison with experimental values, the ANN performs the best in predicting

elastic moduli, whereas the RF is the best in predicting the temperature dependence of p in terms of the coef-
ficient of determination (R?) value. The benefits of the ML models using descriptors in the element physical and
chemical properties domain were demonstrated by revealing the relationships between the predicted glass
properties and their first and second important features through a grid search.

1. Introduction

The combination of machine learning (ML) with the domain
knowledge of materials science can explore the hidden relationships
among material properties that cannot be explained by physical or
chemical theories, and accelerate the prediction of material properties
and the development of new materials [1-5]. Recently, ML technique
has been successfully applied in the field of glass. After training a suit-
able ML algorithm with a reliable dataset, it can be used to predict
different glass properties [6-22]. For instance, by combining molecular
dynamics (MD) simulation with ML, Hu et al. performed a rapid and
low-cost prediction of density and elastic properties of a multicompo-
nent glass system [6]. By training models with a large dataset collected
by Corning Incorporated, Deng showed good performance in the pre-
diction of density and elastic moduli using different ML algorithms [7].
Other glass properties, such as Vickers hardness (Hy) [10], glass tran-
sition temperature (Tg) [10-13], coefficient of thermal expansion (CTE)
[10], viscosity [14,15], and chemical durability [16-18] were well
predicted by ML models as well.

Unlike the conventional statistical model, e.g., linear regression, a
ML model often has a rather complex structure with multiple hyper-
parameters [23,24]. The complexity of ML model makes it work like a
black box, and it is hard to obtain the physical or chemical insights from
the predicted results directly. To obtain ML models that are highly
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informative, one strategy is to use descriptors that include physical
and/or chemical information instead of just using chemical composition
[25]. To this end, several alternative descriptors have been proposed.
For instance, Hu et al. used the descriptors based on MD potential pa-
rameters [6]. However, the performance of this method depends on the
availability and reliability of the force field parameters. Liu et al.
incorporated the topological constrain theory to compensate the lack of
structural information in ML, but it is still limited to systems with several
elements such that the number of constraints can be calculated and used
as one of the model descriptors [18]. In contrast to these descriptors,
element-based descriptors used by Hwang [14] and Cassar [15] are
more versatile. Given that elements are the basic components of mate-
rials, element-based descriptors convert glass chemical composition into
corresponding element-based properties, and predict well the tempera-
ture dependence of viscosity [14,15]. However, the dominating de-
scriptors and the relationships between them and the glass properties
have not been revealed.

In this work, to fully explore the capability of element-based de-
scriptors and to reveal the dominating descriptors for glass properties,
we investigated Young’s modulus (E), shear modulus (G), and temper-
ature dependence of electrical resistivity (p), which are important for
electronic applications such as amorphous solid electrolytes in lithium
ion batteries. After the feature extraction and feature selection process,
the importance of each descriptor was revealed. After training artificial
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Fig. 1. (1) Young’s modulus dataset distribution [(a) Composition and (b) value], (2) shear modulus dataset distribution [(c) composition and (d) value], and (3)
electrical resistivity (in log-scale) dataset distribution [(e) composition, (f) value and (g) temperature].

Table 1
Elemental-property-based features included in this study.

Atomic number Dipole polarizability [35]

Atomic volume Density
Atomic weight [32] Period
Boiling point Group

Melting point

Covalent radius [33]

Van der Waals radius [34]
Heat of formation [34]

First ionization energy
Second ionization energy
Third ionization energy

neural network (ANN), support vector machine (SVM), and random
forest (RF) using element-based descriptors, the performance of each
model was evaluated by the root mean square error (RMSE) and the
coefficient of determination (R%) value, and compared with models
using the chemical composition descriptors. Furthermore, a grid search
was carried out to illustrate the relationship between glass property and
its dominating descriptors, which will facilitate the design of new glass
composition with desired properties.

2. Methodology

ML models were trained to predict the Young’s modulus, shear
modulus and the temperature dependence of electrical resistivity by
using the Scikit-Learn package [26]. The procedure includes data
pre-processing in Section 2.1, feature extraction and selection in Section

2.2, and model training and evaluation in Section 2.3.
2.1. Data collection and cleaning

Raw data in this work was collected from the SciGlass database [27].
In order to obtain more reliable data, glass compositions were limited to
those that had been widely studied. A glass system with a maximum of
six components was investigated in this work, which can be noted as
{Mi}iMax=3-{Fj} jMax=3, where M is the glass modifier and F is the glass
former or intermediate. For elastic properties at ambient conditions, M
includes Li, Na, K, Mg, Ca, Sr, Ba, and F includes Al, B, Si. For the
electrical resistivity (in a log scale), M includes Li, Na, K, and F includes
Al, B, Si, Ge, P. Elastic moduli at room temperature and electrical re-
sistivity data at 20, 100, 150, 300, 800, 1000, 1200, and 1400 °C were
used.

After data were extracted and rearranged from the SciGlass, the local
outlier factor (LOF) algorithm was used to detect and remove the out-
liers in the raw dataset [28]. The algorithm estimates the local density of
a given data point by the distance of k-nearest neighbors. If a point is an
outlier, its local reachability density (LRD) is less than the average LRD
of its neighbors, then the LOF value will be high. The criterion for
removing an outlier is defined as LOF > 1.1 in this study. The distri-
bution of data after removing the outliers is shown in Fig. 1.
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Fig. 2. Selected features as a function of importance for (a) Young’s modulus, (b) shear modulus, and (c) electrical resistivity.

Table 2

Hyperparameters for each ML model using element chemical and physical
properties descriptors (numbers in the bracket represent the start, end, and
increment value of a grid search, respectively).

ML Hyperparameters
Models
ANN Activation function: Logistic sigmoid function; Hyperbolic tan function;

Identical function; Rectified linear unit function
Hidden layer size: [1, 3, 1]
Neurons in the hidden layer: [10, 200, 10]

SVM Radial basis function kernel coefficient: [0.1, 1, 0.1]
Regularization parameter: [100, 1000, 100]
Tolerance parameter: [0.1, 1, 0.1]

RF Number of estimators: [100, 1000, 100]

2.2. Feature extraction and selection

In the original data from the SciGlass, a glass is represented by the
mole fraction of its constituents, i.e., by using features in the chemical
composition domain. In order to develop physics- and chemistry-
informed ML models, we extracted features in the element physical
and chemical properties domain as proposed by Ward et al. [1,2]. These
features can be classified into four categories:

2.2.1. Stoichiometric features
These features capture the stoichiometry of a glass. They are based
on LP norms of a vector representing the mole fraction (x;) of each

Table 3

Optimized hyperparameters for each ML model using element chemical and

physical properties descriptors and glass property.

Optimized Young’s Shear Electrical
hyperparameters modulus modulus resistivity
ANN  Activation function Logistic Hyperbolic Hyperbolic
sigmoid tan tan
Hidden layer structure (50) (30, 30) (100, 100)
SVM  Radial basis function 0.5 0.5 0.5
kernel coefficient
Regularization 500 500 500
parameter
Tolerance parameter 1 0.5 0.5
RF Number of estimators 100 1000 500

Table 4

Training set performance of ML models with dominating descriptors for the
prediction of the Young’s modulus, shear modulus and electrical resistivity
evaluated by R? (RMSE).

Element chemical and physical properties descriptors

ML models Young’s modulus Shear modulus Electrical resistivity

ANN 0.965 (3.100) 0.966 (1.382) 0.926 (1.119)

SVM 0.973 (2.738) 0.978 (1.118) 0.946 (0.984)

RF 0.989 (1.762) 0.822 (0.988) 0.987 (0.474)
Chemical composition descriptors

ANN 0.974 (2.663) 0.689 (4.189) 0.953 (0.893)

SVM 0.973 (2.721) 0.666 (4.343) 0.964 (0.782)

RF 0.990 (1.665) 0.989 (0.796) 0.988 (0.460)
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Table 5

Testing set performance of ML models with dominating descriptors for the
prediction of the Young’s modulus, shear modulus and electrical resistivity
evaluated by R? (RMSE).

Element chemical and physical properties descriptors

ML models Young’s modulus Shear modulus Electrical resistivity
ANN 0.944 (3.845) 0.861 (2.917) 0.938 (1.040)
SVM 0.938 (4.070) 0.862 (2.911) 0.943 (0.997)
RF 0.914 (4.788) 0.698 (4.306) 0.948 (0.949)
Chemical composition descriptors
ANN 0.955 (3.460) 0.472 (5.693) 0.954 (0.897)
SVM 0.953 (3.529) 0.477 (5.667) 0.961 (0.823)
RF 0.925 (4.458) 0.856 (2.978) 0.954 (0.900)

element i in the glass as shown in Eq. (1).

n 1/p
Ixll, = (Z Ixf”> €h)
=1

where n is the number of elements in the glass. In this work, we used p =
2, 3, 5, and 7 norms [1], which were selected by the criterion that the
relative difference between || x ||, and || x ||p;1 is higher than 1%.

2.2.2. Elemental-property-based features
The elemental-property-based features included in this study are
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listed in Table 1, which are available in the Python modules mendeleev
(https://github.com/Immentel/mendeleev) and matminer [29].
Fraction-weighted mean (f, Avg) and average deviation (f , Dev) of each
feature (f;) are calculated by using Eqs. (2) and (3), respectively.

F=> @
?:inlfi*ﬂ 3

2.2.3. Valance orbital occupation features

These features are the fraction-weighted average of the number of
valance electrons in each orbital divided by the fraction-weighted
average of the total number of valance electrons. Taking 0.2NayO-
0.8SiO3 as an example, the fraction-weighted average of the number of
valance electrons in the s-orbital is calculated by Eq. (4), where 2/15, 4/
15, and 3/5 are the mole fraction of Na, Si, and O, respectively.

2/15 x 1+4/15 x 24+3/5 x 2=187 @

Similarly, the fraction-weighted average of the number of valance
electrons in the p-orbital can be calculated by Eq. (5).

2/15 x 0+4/15 x 2+3/5 x 4=2093 &)

Thus, the valance orbital occupation feature of s-orbital and p-orbital are
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Fig. 3. Experimental values of (a) Young’s modulus, (b) shear modulus, and (c) electrical resistivity in comparison with those predicted by artificial neural network
(ANN), support vector machine (SVM), and random forest (RF) models in testing dataset by using descriptors in the element physical and chemical properties
domain. The red dashed line represents the trend that the predicted values are equal to the experimental values (R>=1).
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Fig. 4. Experimental values of (a) Young’s modulus, (b) shear modulus, and (c) electrical resistivity in comparison with those predicted by artificial neural network
(ANN), support vector machine (SVM), and random forest (RF) models in testing dataset by using descriptors in the chemical composition domain. The red dashed
line represents the trend that the predicted values are equal to the experimental values (R>=1).

2.2.4. Ionicity feature [30]
The ionic character (I) is shown in Eq. (6), where X; and X represent
the electronegativity of a constituent element and oxygen, respectively.

I(X;,Xo) = 1 —exp( = 0.25(X; — X0)?) (6)

The ionicity feature computes the mean ionic character, which is
calculated by using Eq. (7).

7 = inx() x 1(X;,Xo) @

Once again, using 0.2Na0-0.8Si0, as an example, the electronegativity
of Na, Si, and O are 0.93, 1.9, and 3.44, respectively, the ionic character
between Na and O is 0.79, and between Si and O is 0.45, the ionicity
feature is 2/15 x 3/5 x 0.79+ 4/15 x 3/5 x 0.45 =0.135.

After the feature extraction, the resulting features were selected by
the importance factor calculated by the random forest algorithm [31],
which was trained using the same procedure as in Section 2.3. It is
important to note that since we studied the electrical resistivity at
different temperatures, temperature was considered as one of the fea-
tures in the ML models. Only features in the element physical and
chemical properties domain with importance higher than 2% will be
considered in the following training process. The selected features in the

element physical and chemical properties domain and the correspond-
ing importance are shown in Fig. 2.

2.3. Model training and evaluation

Data after pre-processing were randomly separated into training and
testing sets with a ratio of 80:20. Each dataset was standardized sepa-
rately by centering to the mean and scaling to unit variance before
training and testing. Artificial neural network (ANN) [36], support
vector machine (SVM) [37] and random forest (RF) [38] were trained
separately. For ANN, Adma was used as an optimizer with a learning rate
of 0.001 [39]. For RF, the minimum number of samples required to split
an internal node was 2. Besides training ANN and SVM, we also
re-trained RF with the dataset by using the selected features with
importance higher than 2%.

A 5-fold cross-validation (CV) was conducted to optimize the
hyperparameters of each model by using the training set. Hyper-
parameters considered in the CV were grid searched in a certain range as
listed in Table 2. The optimized hyperparameters for each ML model and
glass property are listed in Table 3. The performance of each model was
evaluated by the root mean square error (RMSE) and the coefficient of
determination (R%) value, where R2=1 indicates a perfect prediction;
while the smaller the R? value, the worse a model’s performance [40].
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Fig. 5. Projection of (a) the Young’s modulus and (b) shear modulus on the
plane of the first (x-axis) and the second (y-axis) important feature. The trained
ANN model is employed to predict the elastic moduli.

Meanwhile, ML models using chemical composition descriptors in terms
of mole fraction of constituent oxides were also trained and evaluated by
the same procedure for comparison. R? and RMSE of ML models (trained
with dominating descriptors for each property) for the training and
testing dataset are summarized in Table 4 and Table 5, respectively.

3. Results and discussions

Fig. 3 shows the performance of the trained ML models by using the
descriptors in the element physical and chemical properties domain. The
red dashed line represents the trend that the predicted values are equal
to the experimental values (R2:1), whereas a larger deviation from the
line represents a worse prediction.

Among the three models in Fig. 3(a), ANN has the best performance
for predicting the Young’s modulus (E), followed by SVM and RF.
Moreover, the best predicted Young’s modulus lies in the range of
60~80 GPa. As seen in Fig. 1(b), the highest distribution of the Young’s
modulus is in the range of 60~80 GPa, which suggests that the perfor-
mance of ML model becomes worse as the training data becomes sparse.

Among the three glass properties we studied in this work, the shear
modulus has the sparsest dataset, which results in the worst performance
of ML models as seen in Fig. 3(b). Among the three models, the per-
formance of ANN is similar to that of SVM; however, the RF has a quite
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weak performance in predicting the shear modulus. Fig. 3(c) shows the
comparison of predicted and actual electrical resistivity (p) on a log-
scale, where the accuracy of the prediction deteriorates with
increasing resistivity. Once again, this may be due to the fact that the
sparsity of data increases with increasing resistivity as shown in Fig. 1(f).
The three models studied here well predict the temperature dependence
of the electrical resistivity and RF exhibits a slightly better performance
than the other two.

For comparison, Fig. 4 shows the performance of the trained ML
models using the descriptors in the chemical composition domain. In
general, the accuracy of the ML models using the descriptors in the
chemical composition domain deteriorates with increasing sparsity of
data, similar to the observations in Fig. 3. Comparing the performance of
the models using different types of descriptors in terms of the RMSE and
RZ in Table 5, it can be found that these two types of descriptors exhibit
insignificant differences in predicting the Young’s modulus and elec-
trical resistivity. However, for shear modulus, ANN and SVM perform
better than RF when descriptors in the element physical and chemical
properties domain are used, the opposite is true when the descriptors in
the chemical composition domain are used.

To reveal the relationship between the glass property and the
dominating physical and/or chemical features of constituent elements, a
grid search was conducted using the ML model with the best perfor-
mance, namely the ANN for elastic moduli and the RF for electrical re-
sistivity. The composition interval of the grid search was set as 5 mol%
in terms of constituent oxides. In addition, to follow the glass formation
theory, the total amount of modifier and intermediate is < 40 mol%
[41]. The resulting composition grid was then converted into features in
the element physical and chemical properties domain as described in
Section 2.2, and the trained ML model was used to predict properties.
Afterwards, the relationship between the glass property and its domi-
nating physical and/or chemical features of constituent elements was
visualized by projecting the glass property on the plane of the first
(x-axis) and the second (y-axis) important features.

Fig. 5(a) shows the projection of the predicted Young’s modulus on
the feature plane of the first important feature, the average deviation of
heat of formation (Hy), and the second important feature, the fraction-
weighted mean of Hy. At a given average Hy, the Young’s modulus in-
creases (more reddish) with decreasing average deviation of Hs. More-
over, the highest Young’s modulus is observed in the region of 260~320
KJ/mol of average Hf and decreases while the average Hf moves away
from this region. The projection of the predicted shear modulus on the
feature plane of the average deviation of Hrand the average deviation of
the second ionization energy (2““l IE) is shown in Fig. 5(b). In the region
where the 2" IE deviation that is higher than 7 eV, the shear modulus
exhibits insignificant change with the features. Below this region, the
shear modulus decreases with increasing average deviation of Hf and
with decreasing the 2" IE deviation. The different second important
feature in the Young’s modulus and shear modulus may be because they
represent the resistance of glass to different deformations (bond
stretching vs. bond bending).

From the results of the grid search, it was found that low elastic
moduli generally occur in glasses with high B,O3 and high alkali mod-
ifier contents, whereas the large additions of SiO, result in an
enhancement in both the Young’s modulus and shear modulus, which
are consistent with experimental observations [42]. Comparing with the
widely used Makishima-Mackenzie (MM) model in which the Young’s
modulus is proportional to the dissociation energy of the constituent
oxide and the atomic packing fraction [43,44], the average Hy in the ML
model corresponds to the dissociation energy in the MM model. Mean-
while, due to the large difference between the Hy of the modifier and the
network former or intermediate [34], the glass with a higher Hy devia-
tion implies higher modifier content, which generally leads to lower
connectivity of glass network and thus lower elastic moduli. The Hs
deviation learned from the ML model as the first important feature im-
proves the prediction of the Young’s modulus in the MM model [45,46].
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Fig. 6. Projection of electrical resistivity at (a) 20, (b) 300, and (c) 800 °C on the plane of the first (x-axis) and the second (y-axis) important feature. The trained RF

model is employed to predict the properties.

Fig. 6 shows the projection of the predicted electrical resistivity on a
log-scale at different temperatures on the feature plane of the average
ionicity and the average third ionization energy (3"IE). The importance
of the 37 order IE here may be due to elements with more valence
electrons to ionize, such as phosphorus. For these elements, the first
distinct change of IE occurs at the higher order and enhances the
importance of the feature. The electrical resistivity decreases signifi-
cantly with increasing temperature as the ion mobility increases. From
the perspective of element physical and chemical features, the electrical
resistivity decreases with both increasing the average ionicity and the
3" IE.

From the results of the grid search, it was found that low electrical
resistivity generally occurs in glasses with high Li,O content, whereas
the decreasing of modifier contents results in a significant increase in
electrical resistivity, which are consistent with experimental observa-
tions [47]. Based on experimental results, the electrical resistivity of
glass increases with the increasing bond strength of ions in the network
and their size [48,49]. In the ML model, the covalency of the glass in-
creases with decreasing ionicity, suggesting a stronger bond strength
and a higher electrical resistivity. Moreover, the ionization energy in-
creases with decreasing atomic size according to the periodic trends,
which indicates that the smaller size of the alkali modifier ion, the
higher ionization energy, hence a lower resistivity as predicted by the
ML model.

In summary, descriptors in the element physical and chemical
properties domain provide a new perspective for the ML models. Even
though we did not include any glass structural information, such as
coordination number, bond length and bond angle in our models
directly due to the difficulty in obtaining reliable structural data in
multi-component glasses, the models can still capture some structural
information implicitly, such as the connectivity of the glass network and
the ionic radius. Moreover, the important feature of the covalent radius
in the Young’s modulus, and the atomic volume in the shear modulus
and the electrical resistivity identified in Fig. 2 also help compensate the
lack of structural information in ML models. Comparing with models
using descriptors in the chemical composition domain, ML models using
features in the element physical and chemical properties domain can not
only predict glass properties, but also help interpret them from the
physical and chemical point of view, which provides key insights for the
design of new glass composition with desired properties.

4. Conclusions

Physics- and chemistry-informed machine learning models were
trained by using descriptors in the element physical and chemical
properties domain instead of the chemical composition domain. The
ANN exhibits the best performance in the prediction of elastic moduli,
whereas the RF is the best in predicting the temperature dependence of
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electrical resistivity (p) among the ML algorithms studied in this work.
Through a grid search, the projection of predicted glass property on the
plane of the first and the second important features reveals the rela-
tionship among them. At a given average heat of formation (Hy), the
Young’s modulus increases with decreasing average deviation of Hy.
Moreover, the highest Young’s modulus is observed in the region where
the average Hg is of 260~320 KJ/mol, and decreases while the average
Hf moves away from this region. The shear modulus exhibits insignifi-
cant change with the features in the region where the second ionization
energy (2™ IE) deviation is higher than 7 eV, and decreases with
increasing average deviation of Hy and decreasing 2™ IE deviation below
the region. The electrical resistivity is strongly dependent on the tem-
perature and exhibits a decreasing trend with both increasing ionicity
and the third ionization energy (3" 1E).

Data availability

The data that support the findings of this study are available from the
corresponding author upon reasonable request. An input dataset of the
Young’s modulus and its trained model for Scikit-Learn can be accessed
at https://github.com/compmatscirpi/PCIML-model.

CRediT authorship contribution statement

Yueh-Ting Shih: Investigation, Formal analysis, Writing — original
draft, Writing — review & editing. Yunfeng Shi: Conceptualization,
Formal analysis, Writing — review & editing. Liping Huang: Supervi-
sion, Funding acquisition, Conceptualization, Writing — review &
editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was supported by the National Science Foundation under
Grant No. DMR-1508410 and DMR-1936368.

References

[1] L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, NPJ Comput. Mater. 2 (1)
(2016) 16028.

[2] B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J.W. Doak, A. Thompson, K. Zhang,
A. Choudhary, C. Wolverton, Phys. Rev. B 89 (9) (2014), 094104.

[3] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, NPJ
Comput. Mater. 3 (1) (2017) 54.

[4] A. Agrawal, A. Choudhary, APL Mater. 4 (5) (2016), 053208.

[5] J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, NPJ Comput. Mater. 5 (1)
(2019) 83.

[6] Y.J. Hu, G. Zhao, M. Zhang, B. Bin, T. Del Rose, Q. Zhao, Q. Zu, Y. Chen, X. Sun,
M. de Jong, L. Qi, NPJ Comput. Mater. 6 (1) (2020) 25.

[7] B. Deng, J. Non. Cryst. Solids 529 (2020), 119768.

[8] S. Bishnoi, S. Singh, R. Ravinder, M. Bauchy, N.N. Gosvami, H. Kodamana, N.M.
A. Krishnan, J. Non Cryst. Solids 524 (2019), 119643.

[91
[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]
[22]

[23]
[24]

[25]
[26]

[27]
[28]

[29]

[30]
[31]

[32]

[33]

[34]
[35]
[36]
[37]

[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]

[49]

Journal of Non-Crystalline Solids 584 (2022) 121511

K. Yang, X. Xu, B. Yang, B. Cook, H. Ramos, N.M.A. Krishnan, M.M. Smedskjaer,
C. Hoover, M. Bauchy, Sci. Rep. 9 (1) (2019) 8739.

R. Ravinder, K.H. Sridhara, S. Bishnoi, H.S. Grover, M. Bauchy, H.

Kodamana Jayadeva, N.M.A. Krishnan, Mater. Horiz. (2020).

E. Alcobaga, S.M. Mastelini, T. Botari, B.A. Pimentel, D.R. Cassar, A.C.P.d.L.F. de
Carvalho, E.D. Zanotto, Acta Mater. 188 (2020) 92-100.

D.R. Cassar, A.C.P.L.F. de Carvalho, E.D. Zanotto, Acta Mater. 159 (2018)
249-256.

D.R. Cassar, G.G. Santos, E.D. Zanotto, Ceram Int. (2020).

J. Hwang, Y. Tanaka, S. Ishino, S. Watanabe, Sci Technol. Adv. Mater. 21 (1)
(2020) 492-504.

D.R. Cassar, Acta Mater. 206 (2021), 116602.

Y. Zhang, A. Li, B. Deng, K.K. Hughes, NPJ Mater. Degrad. 4 (1) (2020) 14.

T. Han, N. Stone-Weiss, J. Huang, A. Goel, A. Kumar, Acta Biomater. 107 (2020)
286-298.

H. Liu, T. Zhang, N.M. Anoop Krishnan, M.M. Smedskjaer, J.V. Ryan, S. Gin,

M. Bauchy, NPJ Mater. Degradat. 3 (1) (2019) 32.

J.D. Musgraves, J. Hu, L. Calvez, Springer Handbook of Glass, Springer
International Publishing, 2019.

D.R. Cassar, S.M. Mastelini, T. Botari, E. Alcobaca, A.C.P.L.F. de Carvalho, E.

D. Zanotto, Ceram Int. (2021).

H. Liu, Z. Fu, K. Yang, X. Xu, M. Bauchy, J Non Cryst. Solids 557 (2021), 119419.
V.V. Ravinder, S. Bishnoi, S. Singh, M. Zaki, H.S. Grover, M. Bauchy, M. Agarwal,
N.M.A. Krishnan, Int. J. Appl. Glass Sci. 12 (3) (2021) 277-292.

D.W.T.H.R.T. Gareth James, An Introduction to Statistical learning: With
Applications in R, Springer, New York, 2013 [2013]©2013.

T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Springer, 2009.

1. Tanaka, Nanoinformatics, Springer, Singapore, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, G. Louppe, J. Mach. Learn.
Res. 12 (2012).

A.L Priven, O.V. Mazurin, Adv. Mater. Res. 39-40 (2008) 147-152.

M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based
local outliers, SIGMOD Rec. 29 (2000) 93-104.

L. Ward, A. Dunn, A. Faghaninia, N.E.R. Zimmermann, S. Bajaj, Q. Wang,

J. Montoya, J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K.A. Persson, G.

J. Snyder, 1. Foster, A. Jain, Comput. Mater. Sci. 152 (2018) 60-69.

L. Pauling, J. Am. Chem. Soc. 54 (9) (1932) 3570-3582.

G. Louppe, L. Wehenkel, A. Sutera, P. Geurts, in: Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 1,
Lake Tahoe, Nevada, Curran Associates Inc., 2013, pp. 431-439.

J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P.D. Bievre, M. Groning, N.

E. Holden, J. Irrgeher, R.D. Loss, T. Walczyk, T. Prohaska, Pure Appl. Chem. 88 (3)
(2016) 265-291.

B. Cordero, V. Gomez, A.E. Platero-Prats, M. Revés, J. Echeverria, E. Cremades,
F. Barragdn, S. Alvarez, Dalton. Trans. (21) (2008) 2832-2838.

W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, 2014.

P. Schwerdtfeger, J.K. Nagle, Mol Phys 117 (9-12) (2019) 1200-1225.

1. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, 2016.
M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, B. Scholkopf, IEEE Intell. Syst. Their
Appl. 13 (4) (1998) 18-28.

L. Breiman, Mach. Learn. 45 (1) (2001) 5-32.

D.P. Kingma, J. Ba, CoRR (2015) abs/1412.6980.

D.J. Ozer, Psychol. Bull. 97 (2) (1985) 307-315.

A K. Varshneya, J.C. Mauro, Fundamentals of Inorganic Glasses, Elsevier Science,
2019.

K. Januchta, T. To, M.S. Bgdker, T. Rouxel, M.M. Smedskjaer, J. Am. Ceram. Soc.
102 (8) (2019) 4520-4537.

A. Makishima, J.D. Mackenzie, J. Non Cryst. Solids 12 (1) (1973) 35-45.

A. Makishima, J.D. Mackenzie, J. Non Cryst. Solids 17 (2) (1975) 147-157.

M. Plucinski, J.W. Zwanziger, J. Non Cryst. Solids 429 (2015) 20-23.

Y. Shi, A. Tandia, B. Deng, S.R. Elliott, M. Bauchy, Acta Mater. 195 (2020)
252-262.

M.J. Lakin, H. Scholze, Glass: Nature, Structure, and Properties, Springer, New
York, 2012.

W. Wang, R. Christensen, B. Curtis, S.W. Martin, J. Kieffer, Phys. Chem. Chem.
Phys. 20 (3) (2018) 1629-1641.

F.M.E. Eldin, N.A. El Alaily, Mater. Chem. Phys. 52 (2) (1998) 175-179.


http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0001
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0001
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0002
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0002
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0003
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0003
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0004
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0005
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0005
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0006
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0006
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0007
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0008
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0008
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0009
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0009
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0010
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0010
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0011
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0011
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0012
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0012
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0013
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0014
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0014
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0015
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0016
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0017
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0017
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0018
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0018
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0019
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0019
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0020
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0020
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0021
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0022
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0022
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0023
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0023
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0024
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0024
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0025
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0026
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0026
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0026
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0026
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0027
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0028
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0028
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0029
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0029
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0029
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0030
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0031
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0031
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0031
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0032
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0032
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0032
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0033
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0033
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0034
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0035
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0036
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0037
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0037
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0038
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0039
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0040
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0041
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0041
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0042
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0042
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0043
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0044
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0045
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0046
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0046
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0047
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0047
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0048
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0048
http://refhub.elsevier.com/S0022-3093(22)00119-3/sbref0049

	Predicting glass properties by using physics- and chemistry-informed machine learning models
	1 Introduction
	2 Methodology
	2.1 Data collection and cleaning
	2.2 Feature extraction and selection
	2.2.1 Stoichiometric features
	2.2.2 Elemental-property-based features
	2.2.3 Valance orbital occupation features
	2.2.4 Ionicity feature [30]

	2.3 Model training and evaluation

	3 Results and discussions
	4 Conclusions
	Data availability
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


