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A B S T R A C T   

Physics- and chemistry-informed machine learning (ML) models were trained by using descriptors in the element 
physical and chemical properties domain, which include stoichiometric, elemental-property-based, valance 
orbital occupation, and ionicity features. Young’s modulus, shear modulus and electrical resistivity (ρ) data for a 
group of oxide glasses were used to train artificial neural network (ANN), support vector machine (SVM), and 
random forest (RF) models. In comparison with experimental values, the ANN performs the best in predicting 
elastic moduli, whereas the RF is the best in predicting the temperature dependence of ρ in terms of the coef
ficient of determination (R2) value. The benefits of the ML models using descriptors in the element physical and 
chemical properties domain were demonstrated by revealing the relationships between the predicted glass 
properties and their first and second important features through a grid search.   

1. Introduction 

The combination of machine learning (ML) with the domain 
knowledge of materials science can explore the hidden relationships 
among material properties that cannot be explained by physical or 
chemical theories, and accelerate the prediction of material properties 
and the development of new materials [1–5]. Recently, ML technique 
has been successfully applied in the field of glass. After training a suit
able ML algorithm with a reliable dataset, it can be used to predict 
different glass properties [6–22]. For instance, by combining molecular 
dynamics (MD) simulation with ML, Hu et al. performed a rapid and 
low-cost prediction of density and elastic properties of a multicompo
nent glass system [6]. By training models with a large dataset collected 
by Corning Incorporated, Deng showed good performance in the pre
diction of density and elastic moduli using different ML algorithms [7]. 
Other glass properties, such as Vickers hardness (Hv) [10], glass tran
sition temperature (Tg) [10–13], coefficient of thermal expansion (CTE) 
[10], viscosity [14,15], and chemical durability [16–18] were well 
predicted by ML models as well. 

Unlike the conventional statistical model, e.g., linear regression, a 
ML model often has a rather complex structure with multiple hyper
parameters [23,24]. The complexity of ML model makes it work like a 
black box, and it is hard to obtain the physical or chemical insights from 
the predicted results directly. To obtain ML models that are highly 

informative, one strategy is to use descriptors that include physical 
and/or chemical information instead of just using chemical composition 
[25]. To this end, several alternative descriptors have been proposed. 
For instance, Hu et al. used the descriptors based on MD potential pa
rameters [6]. However, the performance of this method depends on the 
availability and reliability of the force field parameters. Liu et al. 
incorporated the topological constrain theory to compensate the lack of 
structural information in ML, but it is still limited to systems with several 
elements such that the number of constraints can be calculated and used 
as one of the model descriptors [18]. In contrast to these descriptors, 
element-based descriptors used by Hwang [14] and Cassar [15] are 
more versatile. Given that elements are the basic components of mate
rials, element-based descriptors convert glass chemical composition into 
corresponding element-based properties, and predict well the tempera
ture dependence of viscosity [14,15]. However, the dominating de
scriptors and the relationships between them and the glass properties 
have not been revealed. 

In this work, to fully explore the capability of element-based de
scriptors and to reveal the dominating descriptors for glass properties, 
we investigated Young’s modulus (E), shear modulus (G), and temper
ature dependence of electrical resistivity (ρ), which are important for 
electronic applications such as amorphous solid electrolytes in lithium 
ion batteries. After the feature extraction and feature selection process, 
the importance of each descriptor was revealed. After training artificial 
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neural network (ANN), support vector machine (SVM), and random 
forest (RF) using element-based descriptors, the performance of each 
model was evaluated by the root mean square error (RMSE) and the 
coefficient of determination (R2) value, and compared with models 
using the chemical composition descriptors. Furthermore, a grid search 
was carried out to illustrate the relationship between glass property and 
its dominating descriptors, which will facilitate the design of new glass 
composition with desired properties. 

2. Methodology 

ML models were trained to predict the Young’s modulus, shear 
modulus and the temperature dependence of electrical resistivity by 
using the Scikit-Learn package [26]. The procedure includes data 
pre-processing in Section 2.1, feature extraction and selection in Section 

2.2, and model training and evaluation in Section 2.3. 

2.1. Data collection and cleaning 

Raw data in this work was collected from the SciGlass database [27]. 
In order to obtain more reliable data, glass compositions were limited to 
those that had been widely studied. A glass system with a maximum of 
six components was investigated in this work, which can be noted as 
{Mi}iMax=3-{Fj} jMax=3, where M is the glass modifier and F is the glass 
former or intermediate. For elastic properties at ambient conditions, M 
includes Li, Na, K, Mg, Ca, Sr, Ba, and F includes Al, B, Si. For the 
electrical resistivity (in a log scale), M includes Li, Na, K, and F includes 
Al, B, Si, Ge, P. Elastic moduli at room temperature and electrical re
sistivity data at 20, 100, 150, 300, 800, 1000, 1200, and 1400 ◦C were 
used. 

After data were extracted and rearranged from the SciGlass, the local 
outlier factor (LOF) algorithm was used to detect and remove the out
liers in the raw dataset [28]. The algorithm estimates the local density of 
a given data point by the distance of k-nearest neighbors. If a point is an 
outlier, its local reachability density (LRD) is less than the average LRD 
of its neighbors, then the LOF value will be high. The criterion for 
removing an outlier is defined as LOF > 1.1 in this study. The distri
bution of data after removing the outliers is shown in Fig. 1. 

Fig. 1. (1) Young’s modulus dataset distribution [(a) Composition and (b) value], (2) shear modulus dataset distribution [(c) composition and (d) value], and (3) 
electrical resistivity (in log-scale) dataset distribution [(e) composition, (f) value and (g) temperature]. 

Table 1 
Elemental-property-based features included in this study.  

Atomic number Dipole polarizability [35] 
Atomic volume Density 
Atomic weight [32] Period 
Boiling point Group 
Melting point First ionization energy 
Covalent radius [33] Second ionization energy 
Van der Waals radius [34] Third ionization energy 
Heat of formation [34]   
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2.2. Feature extraction and selection 

In the original data from the SciGlass, a glass is represented by the 
mole fraction of its constituents, i.e., by using features in the chemical 
composition domain. In order to develop physics- and chemistry- 
informed ML models, we extracted features in the element physical 
and chemical properties domain as proposed by Ward et al. [1,2]. These 
features can be classified into four categories: 

2.2.1. Stoichiometric features 
These features capture the stoichiometry of a glass. They are based 

on Lp norms of a vector representing the mole fraction (xi) of each 

Fig. 2. Selected features as a function of importance for (a) Young’s modulus, (b) shear modulus, and (c) electrical resistivity.  

Table 2 
Hyperparameters for each ML model using element chemical and physical 
properties descriptors (numbers in the bracket represent the start, end, and 
increment value of a grid search, respectively).  

ML 
Models 

Hyperparameters 

ANN Activation function: Logistic sigmoid function; Hyperbolic tan function; 
Identical function; Rectified linear unit function 
Hidden layer size: [1, 3, 1] 
Neurons in the hidden layer: [10, 200, 10] 

SVM Radial basis function kernel coefficient: [0.1, 1, 0.1] 
Regularization parameter: [100, 1000, 100] 
Tolerance parameter: [0.1, 1, 0.1] 

RF Number of estimators: [100, 1000, 100]  

Table 3 
Optimized hyperparameters for each ML model using element chemical and 
physical properties descriptors and glass property.   

Optimized 
hyperparameters 

Young’s 
modulus 

Shear 
modulus 

Electrical 
resistivity 

ANN Activation function Logistic 
sigmoid 

Hyperbolic 
tan 

Hyperbolic 
tan 

Hidden layer structure (50) (30, 30) (100, 100) 

SVM Radial basis function 
kernel coefficient 

0.5 0.5 0.5 

Regularization 
parameter 

500 500 500 

Tolerance parameter 1 0.5 0.5 

RF Number of estimators 100 1000 500  

Table 4 
Training set performance of ML models with dominating descriptors for the 
prediction of the Young’s modulus, shear modulus and electrical resistivity 
evaluated by R2 (RMSE).  

Element chemical and physical properties descriptors 
ML models Young’s modulus Shear modulus Electrical resistivity 

ANN 0.965 (3.100) 0.966 (1.382) 0.926 (1.119) 
SVM 0.973 (2.738) 0.978 (1.118) 0.946 (0.984) 
RF 0.989 (1.762) 0.822 (0.988) 0.987 (0.474) 

Chemical composition descriptors 

ANN 0.974 (2.663) 0.689 (4.189) 0.953 (0.893) 
SVM 0.973 (2.721) 0.666 (4.343) 0.964 (0.782) 
RF 0.990 (1.665) 0.989 (0.796) 0.988 (0.460)  
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element i in the glass as shown in Eq. (1). 

‖ x ‖p =

(
∑n

i=1
|xi|

p

)1/p

(1)  

where n is the number of elements in the glass. In this work, we used p =
2, 3, 5, and 7 norms [1], which were selected by the criterion that the 
relative difference between ‖ x ‖p and ‖ x ‖p+1 is higher than 1%. 

2.2.2. Elemental-property-based features 
The elemental-property-based features included in this study are 

listed in Table 1, which are available in the Python modules mendeleev 
(https://github.com/lmmentel/mendeleev) and matminer [29]. 
Fraction-weighted mean (f , Avg) and average deviation ( f̂ , Dev) of each 
feature (fi) are calculated by using Eqs. (2) and (3), respectively. 

f =
∑

xifi (2)  

f̂ =
∑

xi|fi − f | (3)  

2.2.3. Valance orbital occupation features 
These features are the fraction-weighted average of the number of 

valance electrons in each orbital divided by the fraction-weighted 
average of the total number of valance electrons. Taking 0.2Na2O- 
0.8SiO2 as an example, the fraction-weighted average of the number of 
valance electrons in the s-orbital is calculated by Eq. (4), where 2/15, 4/ 
15, and 3/5 are the mole fraction of Na, Si, and O, respectively. 

2/15 × 1 + 4/15 × 2 + 3/5 × 2 = 1.87 (4)  

Similarly, the fraction-weighted average of the number of valance 
electrons in the p-orbital can be calculated by Eq. (5). 

2/15 × 0 + 4/15 × 2 + 3/5 × 4 = 2.93 (5)  

Thus, the valance orbital occupation feature of s-orbital and p-orbital are 
1.87

(1.87+2.93)
and 2.93

(1.87+2.93)
, respectively. 

Table 5 
Testing set performance of ML models with dominating descriptors for the 
prediction of the Young’s modulus, shear modulus and electrical resistivity 
evaluated by R2 (RMSE).  

Element chemical and physical properties descriptors 
ML models Young’s modulus Shear modulus Electrical resistivity 

ANN 0.944 (3.845) 0.861 (2.917) 0.938 (1.040) 
SVM 0.938 (4.070) 0.862 (2.911) 0.943 (0.997) 
RF 0.914 (4.788) 0.698 (4.306) 0.948 (0.949) 

Chemical composition descriptors 

ANN 0.955 (3.460) 0.472 (5.693) 0.954 (0.897) 
SVM 0.953 (3.529) 0.477 (5.667) 0.961 (0.823) 
RF 0.925 (4.458) 0.856 (2.978) 0.954 (0.900)  

Fig. 3. Experimental values of (a) Young’s modulus, (b) shear modulus, and (c) electrical resistivity in comparison with those predicted by artificial neural network 
(ANN), support vector machine (SVM), and random forest (RF) models in testing dataset by using descriptors in the element physical and chemical properties 
domain. The red dashed line represents the trend that the predicted values are equal to the experimental values (R2=1). 

Y.-T. Shih et al.                                                                                                                                                                                                                                 

https://github.com/lmmentel/mendeleev


Journal of Non-Crystalline Solids 584 (2022) 121511

5

2.2.4. Ionicity feature [30] 
The ionic character (I) is shown in Eq. (6), where Хi and ХO represent 

the electronegativity of a constituent element and oxygen, respectively. 

I(Xi, XO) = 1 − exp
(

− 0.25(Xi − XO)
2)

(6)  

The ionicity feature computes the mean ionic character, which is 
calculated by using Eq. (7). 

I
=

=
∑

xixO × I(Xi, XO) (7)  

Once again, using 0.2Na2O-0.8SiO2 as an example, the electronegativity 
of Na, Si, and O are 0.93, 1.9, and 3.44, respectively, the ionic character 
between Na and O is 0.79, and between Si and O is 0.45, the ionicity 
feature is 2/15 × 3/5 × 0.79 + 4/15 × 3/5 × 0.45 = 0.135. 

After the feature extraction, the resulting features were selected by 
the importance factor calculated by the random forest algorithm [31], 
which was trained using the same procedure as in Section 2.3. It is 
important to note that since we studied the electrical resistivity at 
different temperatures, temperature was considered as one of the fea
tures in the ML models. Only features in the element physical and 
chemical properties domain with importance higher than 2% will be 
considered in the following training process. The selected features in the 

element physical and chemical properties domain and the correspond
ing importance are shown in Fig. 2. 

2.3. Model training and evaluation 

Data after pre-processing were randomly separated into training and 
testing sets with a ratio of 80:20. Each dataset was standardized sepa
rately by centering to the mean and scaling to unit variance before 
training and testing. Artificial neural network (ANN) [36], support 
vector machine (SVM) [37] and random forest (RF) [38] were trained 
separately. For ANN, Adma was used as an optimizer with a learning rate 
of 0.001 [39]. For RF, the minimum number of samples required to split 
an internal node was 2. Besides training ANN and SVM, we also 
re-trained RF with the dataset by using the selected features with 
importance higher than 2%. 

A 5-fold cross-validation (CV) was conducted to optimize the 
hyperparameters of each model by using the training set. Hyper
parameters considered in the CV were grid searched in a certain range as 
listed in Table 2. The optimized hyperparameters for each ML model and 
glass property are listed in Table 3. The performance of each model was 
evaluated by the root mean square error (RMSE) and the coefficient of 
determination (R2) value, where R2=1 indicates a perfect prediction; 
while the smaller the R2 value, the worse a model’s performance [40]. 

Fig. 4. Experimental values of (a) Young’s modulus, (b) shear modulus, and (c) electrical resistivity in comparison with those predicted by artificial neural network 
(ANN), support vector machine (SVM), and random forest (RF) models in testing dataset by using descriptors in the chemical composition domain. The red dashed 
line represents the trend that the predicted values are equal to the experimental values (R2=1). 
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Meanwhile, ML models using chemical composition descriptors in terms 
of mole fraction of constituent oxides were also trained and evaluated by 
the same procedure for comparison. R2 and RMSE of ML models (trained 
with dominating descriptors for each property) for the training and 
testing dataset are summarized in Table 4 and Table 5, respectively. 

3. Results and discussions 

Fig. 3 shows the performance of the trained ML models by using the 
descriptors in the element physical and chemical properties domain. The 
red dashed line represents the trend that the predicted values are equal 
to the experimental values (R2=1), whereas a larger deviation from the 
line represents a worse prediction. 

Among the three models in Fig. 3(a), ANN has the best performance 
for predicting the Young’s modulus (E), followed by SVM and RF. 
Moreover, the best predicted Young’s modulus lies in the range of 
60~80 GPa. As seen in Fig. 1(b), the highest distribution of the Young’s 
modulus is in the range of 60~80 GPa, which suggests that the perfor
mance of ML model becomes worse as the training data becomes sparse. 

Among the three glass properties we studied in this work, the shear 
modulus has the sparsest dataset, which results in the worst performance 
of ML models as seen in Fig. 3(b). Among the three models, the per
formance of ANN is similar to that of SVM; however, the RF has a quite 

weak performance in predicting the shear modulus. Fig. 3(c) shows the 
comparison of predicted and actual electrical resistivity (ρ) on a log- 
scale, where the accuracy of the prediction deteriorates with 
increasing resistivity. Once again, this may be due to the fact that the 
sparsity of data increases with increasing resistivity as shown in Fig. 1(f). 
The three models studied here well predict the temperature dependence 
of the electrical resistivity and RF exhibits a slightly better performance 
than the other two. 

For comparison, Fig. 4 shows the performance of the trained ML 
models using the descriptors in the chemical composition domain. In 
general, the accuracy of the ML models using the descriptors in the 
chemical composition domain deteriorates with increasing sparsity of 
data, similar to the observations in Fig. 3. Comparing the performance of 
the models using different types of descriptors in terms of the RMSE and 
R2 in Table 5, it can be found that these two types of descriptors exhibit 
insignificant differences in predicting the Young’s modulus and elec
trical resistivity. However, for shear modulus, ANN and SVM perform 
better than RF when descriptors in the element physical and chemical 
properties domain are used, the opposite is true when the descriptors in 
the chemical composition domain are used. 

To reveal the relationship between the glass property and the 
dominating physical and/or chemical features of constituent elements, a 
grid search was conducted using the ML model with the best perfor
mance, namely the ANN for elastic moduli and the RF for electrical re
sistivity. The composition interval of the grid search was set as 5 mol% 
in terms of constituent oxides. In addition, to follow the glass formation 
theory, the total amount of modifier and intermediate is ≤ 40 mol% 
[41]. The resulting composition grid was then converted into features in 
the element physical and chemical properties domain as described in 
Section 2.2, and the trained ML model was used to predict properties. 
Afterwards, the relationship between the glass property and its domi
nating physical and/or chemical features of constituent elements was 
visualized by projecting the glass property on the plane of the first 
(x-axis) and the second (y-axis) important features. 

Fig. 5(a) shows the projection of the predicted Young’s modulus on 
the feature plane of the first important feature, the average deviation of 
heat of formation (Hf), and the second important feature, the fraction- 
weighted mean of Hf. At a given average Hf, the Young’s modulus in
creases (more reddish) with decreasing average deviation of Hf. More
over, the highest Young’s modulus is observed in the region of 260~320 
KJ/mol of average Hf and decreases while the average Hf moves away 
from this region. The projection of the predicted shear modulus on the 
feature plane of the average deviation of Hf and the average deviation of 
the second ionization energy (2nd IE) is shown in Fig. 5(b). In the region 
where the 2nd IE deviation that is higher than 7 eV, the shear modulus 
exhibits insignificant change with the features. Below this region, the 
shear modulus decreases with increasing average deviation of Hf and 
with decreasing the 2nd IE deviation. The different second important 
feature in the Young’s modulus and shear modulus may be because they 
represent the resistance of glass to different deformations (bond 
stretching vs. bond bending). 

From the results of the grid search, it was found that low elastic 
moduli generally occur in glasses with high B2O3 and high alkali mod
ifier contents, whereas the large additions of SiO2 result in an 
enhancement in both the Young’s modulus and shear modulus, which 
are consistent with experimental observations [42]. Comparing with the 
widely used Makishima–Mackenzie (MM) model in which the Young’s 
modulus is proportional to the dissociation energy of the constituent 
oxide and the atomic packing fraction [43,44], the average Hf in the ML 
model corresponds to the dissociation energy in the MM model. Mean
while, due to the large difference between the Hf of the modifier and the 
network former or intermediate [34], the glass with a higher Hf devia
tion implies higher modifier content, which generally leads to lower 
connectivity of glass network and thus lower elastic moduli. The Hf 
deviation learned from the ML model as the first important feature im
proves the prediction of the Young’s modulus in the MM model [45,46]. 

Fig. 5. Projection of (a) the Young’s modulus and (b) shear modulus on the 
plane of the first (x-axis) and the second (y-axis) important feature. The trained 
ANN model is employed to predict the elastic moduli. 
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Fig. 6 shows the projection of the predicted electrical resistivity on a 
log-scale at different temperatures on the feature plane of the average 
ionicity and the average third ionization energy (3rd IE). The importance 
of the 3rd order IE here may be due to elements with more valence 
electrons to ionize, such as phosphorus. For these elements, the first 
distinct change of IE occurs at the higher order and enhances the 
importance of the feature. The electrical resistivity decreases signifi
cantly with increasing temperature as the ion mobility increases. From 
the perspective of element physical and chemical features, the electrical 
resistivity decreases with both increasing the average ionicity and the 
3rd IE. 

From the results of the grid search, it was found that low electrical 
resistivity generally occurs in glasses with high Li2O content, whereas 
the decreasing of modifier contents results in a significant increase in 
electrical resistivity, which are consistent with experimental observa
tions [47]. Based on experimental results, the electrical resistivity of 
glass increases with the increasing bond strength of ions in the network 
and their size [48,49]. In the ML model, the covalency of the glass in
creases with decreasing ionicity, suggesting a stronger bond strength 
and a higher electrical resistivity. Moreover, the ionization energy in
creases with decreasing atomic size according to the periodic trends, 
which indicates that the smaller size of the alkali modifier ion, the 
higher ionization energy, hence a lower resistivity as predicted by the 
ML model. 

In summary, descriptors in the element physical and chemical 
properties domain provide a new perspective for the ML models. Even 
though we did not include any glass structural information, such as 
coordination number, bond length and bond angle in our models 
directly due to the difficulty in obtaining reliable structural data in 
multi-component glasses, the models can still capture some structural 
information implicitly, such as the connectivity of the glass network and 
the ionic radius. Moreover, the important feature of the covalent radius 
in the Young’s modulus, and the atomic volume in the shear modulus 
and the electrical resistivity identified in Fig. 2 also help compensate the 
lack of structural information in ML models. Comparing with models 
using descriptors in the chemical composition domain, ML models using 
features in the element physical and chemical properties domain can not 
only predict glass properties, but also help interpret them from the 
physical and chemical point of view, which provides key insights for the 
design of new glass composition with desired properties. 

4. Conclusions 

Physics- and chemistry-informed machine learning models were 
trained by using descriptors in the element physical and chemical 
properties domain instead of the chemical composition domain. The 
ANN exhibits the best performance in the prediction of elastic moduli, 
whereas the RF is the best in predicting the temperature dependence of 

Fig. 6. Projection of electrical resistivity at (a) 20, (b) 300, and (c) 800 ◦C on the plane of the first (x-axis) and the second (y-axis) important feature. The trained RF 
model is employed to predict the properties. 
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electrical resistivity (ρ) among the ML algorithms studied in this work. 
Through a grid search, the projection of predicted glass property on the 
plane of the first and the second important features reveals the rela
tionship among them. At a given average heat of formation (Hf), the 
Young’s modulus increases with decreasing average deviation of Hf. 
Moreover, the highest Young’s modulus is observed in the region where 
the average Hf is of 260~320 KJ/mol, and decreases while the average 
Hf moves away from this region. The shear modulus exhibits insignifi
cant change with the features in the region where the second ionization 
energy (2nd IE) deviation is higher than 7 eV, and decreases with 
increasing average deviation of Hf and decreasing 2nd IE deviation below 
the region. The electrical resistivity is strongly dependent on the tem
perature and exhibits a decreasing trend with both increasing ionicity 
and the third ionization energy (3rd IE). 
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The data that support the findings of this study are available from the 
corresponding author upon reasonable request. An input dataset of the 
Young’s modulus and its trained model for Scikit-Learn can be accessed 
at https://github.com/compmatscirpi/PCIML-model. 

CRediT authorship contribution statement 

Yueh-Ting Shih: Investigation, Formal analysis, Writing – original 
draft, Writing – review & editing. Yunfeng Shi: Conceptualization, 
Formal analysis, Writing – review & editing. Liping Huang: Supervi
sion, Funding acquisition, Conceptualization, Writing – review & 
editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work was supported by the National Science Foundation under 
Grant No. DMR-1508410 and DMR-1936368. 

References 

[1] L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, NPJ Comput. Mater. 2 (1) 
(2016) 16028. 

[2] B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J.W. Doak, A. Thompson, K. Zhang, 
A. Choudhary, C. Wolverton, Phys. Rev. B 89 (9) (2014), 094104. 

[3] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, NPJ 
Comput. Mater. 3 (1) (2017) 54. 

[4] A. Agrawal, A. Choudhary, APL Mater. 4 (5) (2016), 053208. 
[5] J. Schmidt, M.R.G. Marques, S. Botti, M.A.L Marques, NPJ Comput. Mater. 5 (1) 

(2019) 83. 
[6] Y.J. Hu, G. Zhao, M. Zhang, B. Bin, T. Del Rose, Q. Zhao, Q. Zu, Y. Chen, X. Sun, 

M. de Jong, L. Qi, NPJ Comput. Mater. 6 (1) (2020) 25. 
[7] B. Deng, J. Non. Cryst. Solids 529 (2020), 119768. 
[8] S. Bishnoi, S. Singh, R. Ravinder, M. Bauchy, N.N. Gosvami, H. Kodamana, N.M. 

A. Krishnan, J. Non Cryst. Solids 524 (2019), 119643. 

[9] K. Yang, X. Xu, B. Yang, B. Cook, H. Ramos, N.M.A. Krishnan, M.M. Smedskjaer, 
C. Hoover, M. Bauchy, Sci. Rep. 9 (1) (2019) 8739. 

[10] R. Ravinder, K.H. Sridhara, S. Bishnoi, H.S. Grover, M. Bauchy, H. 
Kodamana Jayadeva, N.M.A. Krishnan, Mater. Horiz. (2020). 

[11] E. Alcobaça, S.M. Mastelini, T. Botari, B.A. Pimentel, D.R. Cassar, A.C.P.d.L.F. de 
Carvalho, E.D. Zanotto, Acta Mater. 188 (2020) 92–100. 

[12] D.R. Cassar, A.C.P.L.F. de Carvalho, E.D. Zanotto, Acta Mater. 159 (2018) 
249–256. 

[13] D.R. Cassar, G.G. Santos, E.D. Zanotto, Ceram Int. (2020). 
[14] J. Hwang, Y. Tanaka, S. Ishino, S. Watanabe, Sci Technol. Adv. Mater. 21 (1) 

(2020) 492–504. 
[15] D.R. Cassar, Acta Mater. 206 (2021), 116602. 
[16] Y. Zhang, A. Li, B. Deng, K.K. Hughes, NPJ Mater. Degrad. 4 (1) (2020) 14. 
[17] T. Han, N. Stone-Weiss, J. Huang, A. Goel, A. Kumar, Acta Biomater. 107 (2020) 

286–298. 
[18] H. Liu, T. Zhang, N.M. Anoop Krishnan, M.M. Smedskjaer, J.V. Ryan, S. Gin, 

M. Bauchy, NPJ Mater. Degradat. 3 (1) (2019) 32. 
[19] J.D. Musgraves, J. Hu, L. Calvez, Springer Handbook of Glass, Springer 

International Publishing, 2019. 
[20] D.R. Cassar, S.M. Mastelini, T. Botari, E. Alcobaça, A.C.P.L.F. de Carvalho, E. 

D. Zanotto, Ceram Int. (2021). 
[21] H. Liu, Z. Fu, K. Yang, X. Xu, M. Bauchy, J Non Cryst. Solids 557 (2021), 119419. 
[22] V.V. Ravinder, S. Bishnoi, S. Singh, M. Zaki, H.S. Grover, M. Bauchy, M. Agarwal, 

N.M.A. Krishnan, Int. J. Appl. Glass Sci. 12 (3) (2021) 277–292. 
[23] D.W.T.H.R.T. Gareth James, An Introduction to Statistical learning: With 

Applications in R, Springer, New York, 2013 [2013]©2013. 
[24] T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning: Data 

Mining, Inference, and Prediction, Springer, 2009. 
[25] I. Tanaka, Nanoinformatics, Springer, Singapore, 2018. 
[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, 

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, G. Louppe, J. Mach. Learn. 
Res. 12 (2012). 

[27] A.I. Priven, O.V. Mazurin, Adv. Mater. Res. 39–40 (2008) 147–152. 
[28] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based 

local outliers, SIGMOD Rec. 29 (2000) 93–104. 
[29] L. Ward, A. Dunn, A. Faghaninia, N.E.R. Zimmermann, S. Bajaj, Q. Wang, 

J. Montoya, J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K.A. Persson, G. 
J. Snyder, I. Foster, A. Jain, Comput. Mater. Sci. 152 (2018) 60–69. 

[30] L. Pauling, J. Am. Chem. Soc. 54 (9) (1932) 3570–3582. 
[31] G. Louppe, L. Wehenkel, A. Sutera, P. Geurts, in: Proceedings of the 26th 

International Conference on Neural Information Processing Systems - Volume 1, 
Lake Tahoe, Nevada, Curran Associates Inc., 2013, pp. 431–439. 

[32] J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P.D. Bièvre, M. Gröning, N. 
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