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The theory of open quantum systems lays the foundation for a substantial part of modern research in
quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high
computational complexity of simulating open quantum systems calls for the development of strategies to
approximate their dynamics. In this Letter, we present an approach for tackling open quantum system
dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued
measure, we compactly represent quantum states with autoregressive neural networks; such networks bring
significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce
the concept of string states to partially restore the symmetry of the autoregressive neural network and improve
the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the
Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a
variational formulation. Our approach is benchmarked on prototypical one-dimensional and two-dimensional
systems, finding results which closely track the exact solution and achieve higher accuracy than alternative
approaches based on using Markov chain Monte Carlo method to sample restricted Boltzmann machines. Our
Letter provides general methods for understanding quantum dynamics in various contexts, as well as

techniques for solving high-dimensional probabilistic differential equations in classical setups.
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Introduction.—While the Universe itself is a closed
quantum system, all other systems within the Universe
are open quantum systems coupled to the environment
around them. Open quantum systems (OQS) play a crucial
role in fundamental quantum science, quantum control, and
quantum engineering [1,2]. In recent years, there has been a
significant interest both theoretically and experimentally in
better understanding open quantum systems [3-38]. In the
field of quantum engineering, coupling to the environment
generates decoherence driving the destruction of entangle-
ment within quantum devices. Quantum computers rely on
the qubit-environment coupling to apply quantum gates as
well as try to minimize unwanted coupling to mitigate
errors on the qubits [39].

Unlike closed quantum states which can be represented
by a wave function, the density matrix p becomes the core
object of study in open quantum systems. A typical model
of an OQS evolves the density matrix under both the
Hamiltonian H as well as a series of dissipative operators
which transfer energy and information out to a featureless
bath leading to the Lindblad equation,
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where y, are the dissipation rates associated with jump
operators I';. Although there is hope that quantum algo-
rithms [40-44] may eventually overcome the simulation
bottlenecks in OQS, a direct solution to the Lindblad
equation is difficult because the Hilbert space grows
exponentially with the number of particles, making
classical simulations largely intractable. To deal with this
curse of dimensionality, OQS have historically been
studied with renormalization group approaches [11-13],
mean field methods [9,10,45]; or simulated with tensor
networks [5-8,18,46,47] which compress the density
matrix. Unfortunately, while tensor networks have proved
fruitful in one dimension, their use for OQS in higher
dimensions has been severely limited. Recently, inspired by
the advances in the description of many-body systems in
terms of neural network wave functions [48-57], ideas
from machine learning have been applied to OQS studying
real-time dynamics in one dimension (1D), steady states in
one and two dimensions (2D) [58—61] and determining the
Liouvillian gap [62] by representing the density matrix as a
restricted Boltzmann machine (RBM) [63].

Here, we outline an alternative approach to using
machine learning ideas to simulate the Lindblad equation.
Many machine learning architectures and generative
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models (such as the RBM) have fundamentally been
designed to represent probability distributions (e.g., prob-
ability distributions over images on the internet) making
them inadequate to store quantum states, which are com-
plex valued in general. To overcome this, novel approaches
have been devised such as using complex weights within
RBM; despite these innovative ideas, effectively represent-
ing states with signs have been a key bottleneck in this field
[64-66].

This motivation has inspired us to utilize the recent
developments in the probabilistic formulation of quantum
mechanics [67-70] to simulate the Lindblad equation. In
this formulation the state is mapped to a probability
distribution which we represent compactly using the
Transformer [71]—a machine learning architecture from
which one can efficiently sample the probability distribu-
tion exactly. Using this, we develop efficient algorithms to
both update the state of the Transformer under dynamic
evolution as well as find the Transformer which represents
the steady state of the Lindblad equation. To perform the
dynamic evolution, we combine the second-order forward-
backward trapezoid method [72] with stochastic optimiza-
tion on the Transformer. Since the Transformer does not
naively preserve the symmetry of the true dynamic (or
fixed-point) state, we further improve upon our results by
developing an additional ansatz—string states—which
explicitly restores some of these symmetries. We proceed
to benchmark this work on a series of one- and two-
dimensional systems.

Lindblad equation as a probability equation.—The
general objective of this Letter is to develop an approach
to solve for the dynamics and fixed point of the density
matrix p in the Lindblad equation [Eq. (1)]. We test
this approach on two models—the transverse-field

Ising model (TFIM), where H = (V/4)Y, o\”o%+
(9/2)> % a,ix), and the Heisenberg model,

H=3 0 ns JWO'I(-W)O'E-W) +BY, o,(f>. In both cases,

Te=ol) =1(c —is”). We are interested in the

expectation values of local observables given by the
Pauli matrices averaged over all qubits, i.e., for a system
with n qubits, we consider (5,) = (1/n) S>:(c\")) for
w=x, y, and z. Typically, the density matrix p is
represented (explicitly or implicitly) in an orthogonal basis.
In this Letter, we instead represent p in the positive
operator-valued measure (POVM) formalism. Given an
informationally complete POVM (IC POVM), a density
matrix p of a spin-1/2 system can be uniquely mapped to a
probability distribution p(a), where a spans over all 4"
measurement outcomes in the POVM basis. An IC POVM
is defined by a collection of positive semidefinite operators
{M 4} called the frame, which specifies the probability
distribution p(a) = Tr(pM 4,)). The inverse transformation

where

is given by p = >, p(b)N®), where the dual frame {N®)}

can be computed from the frame as N®) =5 M
The elements of the overlap matrix 7 are glven by
Tay = Tr(M M), and T, represent the elements of

the inverse overlap matrix 7!
Lindblad equation as

a) =7 pb)Lt=

. Thus, we can re-express the

b)(AL + BY), (2)

Zp
with

AL = —iTr(HIN®) M ,)));

Bb = ZEkTr(zrkN@)F,LM(a) ~TTN® My}). (3)
k

We work with an IC POVM where the frame and dual
frame are constructed from local frames acting on single
spins as {M )} = {M,) @ M(,,) ® M(,,) ® ---} and
{N®)Y = [N ®N(b2> ®N®)®---} with four outcomes
per spin a;. This allows us to write p(a) = p(a,,a,,as, ...).
The expectation value of observables are given by

(0) = Y2y p(b)Tr (ON?) & (1/N,) 3257, Tr(ON?),
where N, is the number of samples b drawn from the
distribution p(b) used to estimate (O). We emphasize that a
complete specification of the probability distribution p(b)
requires 4" probability values for an n-site system.

Autoregressive models and string states.—We have
chosen to model the probability distribution in a compact
way with an autoregressive neural network where the pro-
bability of a given configuration a is expressed through its
conditional probabilities py(a) =], po(arlai.as,....a;_1).
This representation allows for exact sampling of a con-
figuration from the space of probability distributions with-
out invoking Markov chain Monte Carlo techniques.
Modern incarnations of autoregressive models include,
among others, recurrent neural networks (RNN) [73,74],
pixel convolutional neural networks (PixelCNN) [75],
Transformers [71]. Recent work has effectively applied
these models to quantum systems [53,54,68,69,76]. Here,
we use an autoregressive Transformer, which follows the
same architecture as the model in [69]. The Transformer
consists of two hyperparameters: the number of transformer
layers stacked on each other n; and the hidden dimension
ny, which we adjusted for different tests.

Since our Transformer gives “ordered” measurement
outcomes, when we simulate two-dimensional systems we
need to choose a linear ordering of our two-dimensional
sites (i.e., a string of sites). We consider two different
single-string orderings [string 0 and string 1 from Fig. 1(a)].
These strings explicitly break a symmetry of our system
which then would need to be restored (to the degree to which
the model has the variational freedom to do so) by the
Transformer itself. We can partially (or completely) restore
this symmetry explicitly by choosing our ansatz to be a
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FIG. 1. Strings used for mapping 1D Transformer to 2D
quantum systems. String O is the default mapping (which we
refer to as no strings). We always refer to the first (in order) n
strings (excluding string 0) when we say we used n strings.

mixture of distributions defined over multiple different
symmetry-related strings—i.e., pp(a) = > s po(alS)p(S),
where p(S) = 1/Nyine for a total number of Ny, strings;
we call this refined ansatz a string state. This linear
combination of the Transformer probabilities can be inter-
preted as a mixture model [77] and bears some resemblance
to string bond states [78]. Restoring symmetries explicitly
has proved useful in variational calculations of quantum
states [53,64,79-81]. Given a set of strings and a configu-
ration @ we can compute p(a) explicitly. Sampling an a from
po(a) is also straightforward because of linearity and the fact
that each term in our average is positive. To do so, we first
sample an ordered {ay, a,, ...a;_;} from the Transformer
and then randomly choose a string to map these ordered
values to get the final configuration. Here, we test a subset of
strings 1 — k for different &k [see Figs. 1(b)-1(31)].
Optimization and results.—Equation (2) gives a pre-
scription for applying time evolution to the density matrix
by time evolving the POVM probability distribution. To
solve for the time-evolved distribution, we discretize time
and use a second-order forward-backward trapezoid
method [72]. We designed the following objective function

1 & 1
C=— _
Po(1+27) (a)

Sarpo(iar)

Z[Pe(znr) (b)(5¢bz - TLZ) — Do) (b)(@b; + TLZ)} )
b

(4)

where N, is the number of samples, &% is the Kronecker
delta function, the sum over a is sampled stochastically
from pg(,;2,), the sum over b can be evaluated efficiently as
explained in Supplemental Material [82] Sec. IX and the
gradient of the objective function C with respect to the
parameters in pg,.o)(b) is computed using PyTorch’s [83]
automatic differentiation. To optimize the objective func-
tion we use Adam [84]. In the limit where C is zero, we get
exact time evolution up to the discretization error induced

X
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FIG. 2. The expectation value (c.) as a function of time (a) for
the 1D Heisenberg model with B =y, J, =2y, J, =0,and J, =
y using a time step 7 = 0.005y~'. The initial state is the product
state [TY | | <) ({(s,) = =1). (b) for the 3 x 3 Heisenberg model
with B =0, J, = 0.9y, J, = 1.0y, 1.8y, and J, = y using a time
step 7 = 0.008y~!. The initial state is the product state [T, | 1)
({o.) = 1). Both models use periodic boundary conditions. Exact
curves are produced using QuTip [87,88]. The Transformer
has one encoder layer and 32 hidden dimensions, and is trained

using a forward-backward trapezoid method with a sample size
N, = 12000.

by the trapezoid rule. Typically, it will be impossible for the
Transformer to exactly represent the time-evolved state;
instead by minimizing C the optimization continuously
projects onto a nearby state in the manifold of distributions
represented by our Transformer. This can be viewed as a
higher order generalization of imaginary-time supervised
wave function optimization [85] and the method in
Ref. [86] but here applied instead to a probability distri-
bution. The dominant source of error in performing our
dynamics comes from the limited set of states that the
Transformer can represent. Additionally, it is possible that
even within this manifold of states, one may not reach the
optimal value if there are optimization issues such as local
minima. Over multiple time steps, errors will naturally
accumulate due to the unitary dynamics of the system and
be suppressed by the dissipative operators which should
drive all dynamics to a fixed point. We test this dynamic
evolution on the 1D and a 2D Heisenberg model (see
Fig. 2) using the tetrahedral POVM basis (see
Supplemental Material [82] Sec. II) where we find that
the dynamics matches closely to the exact result. We
capture both the qualitative behavior (i.e., the peaks and
oscillation of the observables) as well as their quantitative
values. The values are especially accurate in both the limit
of small and large time. In our results, we have simulated
one-dimensional chains up to N = 40 and two-dimensional
chains for 3 x 3 lattices.

One approach to finding the fixed point of the
Liouvillian superoperator £ is through a sufficiently long
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time evolution (for an example, see the large time limit
of Fig. 2). Interestingly, our approximate time evolution
fluctuates around a fixed value of the observable, though it
may not reach a true fixed point [i.e., py(f + 27) = py(1)]
even in the limit of small 7 (see Supplemental Material [82]
Sec. VII).

Alternatively, we can search for the fixed point by direct
minimization of the L; norm of p, giving

1ol =

a

N, b
NL Z |pr6(b))La| , (5)

pola

Zpe(b)LZ ~
b

S a~py

where the second line offers a stochastic approach to
evaluate the || pg||, by sampling a from py(a). The gradient
in Eq. (5) is taken with respect to the parameters in py(b)
using PyTorch’s [83] automatic differentiation. Notice that
because the gradients of Eq. (4) and (5) (see Supplemental
Material [82] Sec. VII) are different (except in the limit
where the manifold of states representable by the
Transformer span the full space), they will converge to
different answers.

In Fig. 3, we consider the one-dimensional TFIM, with
the 4-Pauli POVM basis (see Supplemental Material [82]
Sec. II), and compute the expectation value of all three
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FIG. 3. Variational steady-state solution for a 16-site TFIM
chain with periodic boundary condition and V =2y (orange
dots). The initial state is the product state [[¥ | 1) ((6.) = 1).
The Transformer has one encoder layer and 32 hidden dimen-
sions, and is trained using Adam [84] in 500 iterations with
N, = 12000. Green points are the fixed point solution represent-
ing the density matrix as an RBM; both the exact curve (black
line) and density matrix results are digitized from Ref. [58].

Pauli matrices at various values of y. We find strong
agreement with the exact method. In addition, we find
that this approach performs particularly well in the regime
of 1 < g/y < 2.5 which has proven particularly challeng-
ing for the RBM method [58]. We can further improve the
performance by averaging over multiple simulations (see
Supplemental Material [82] Sec. V). In Fig. 4, we consider
optimizing a 3 x 3 Heisenberg model using Eq. (5) with
various different variational ansatz (here we use the
tetrahedral POVM basis (see Supplemental Material [82]
Sec. II). In looking at the quality of (s,) we find that
increasing the size of the Transformer both in depth and
hidden dimension improves the result although this
improvement is marginal until we reach two transformer
layers and a hidden dimension of 64. Interestingly, we
find that the use of strings has a significant effect on our
results [see Fig. 1(i)]. To begin with, the use of string 1 is
marginally superior to string 0. We expect this is because
string 1 better addresses local correlations. More impor-
tantly, we find that there is a significant improvement (for
any Transformer) by including more symmetry related
strings out to the maximum of eight strings we considered.
In fact, eight strings with one hidden layer and a hidden

@ 2] S
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L 06 —— exact #  var2,64
~08 - var,1,32 $ dyn,1,32
. 4 var1,324s b var+dyn,1,32
_1 .0 T T T T T
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FIG. 4. Steady-state solutions for 3 x 3 Heisenberg model with
periodic boundary condition with B =0, J, = 0.9y, and J, =y.
The exact curves (black lines) are produced using QuTiP [87,88].
(a) (o) for different values of J, for POVM variational results
(var), POVM dynamics (dyn) and POVM dynamics starting from
the variational results (var + dyn). The two integers in the legend
label are the number of transformer layers and hidden dimen-
sions. (b) Steady-state solution J, = 1.8y comparing different
variational ansatz. “Os” and “ls” use one string (string 0 and
string 1); “2s”, “4s”, and “8s” use strings 1-2, 1-4, and 1-8,
respectively [see Fig. 1()] All initial states are [[¥,|1)
({6.) = 1). The dynamics and variational plus dynamics ap-
proaches use the time step 7 = 0.008y~!. The results of two
transformer layers are computed exactly under all POVM frame
elements.
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dimension of 32 provides a similar accuracy to 1 string with
2 hidden layers and a hidden dimension of 64. Additionally,
we compared the results obtained through time evolution at
long time to the fixed point method and found that the
steady state approached by the time-evolved state provides
significantly more accurate results. While the evaluation of
the dynamics is computationally slower, we find that
supplementing the fixed-point method with further dynami-
cal evolution achieves the same steady-state solution as
the dynamical approach at an overall reduced computa-
tional time.

Conclusion—We have demonstrated an approach,
whose run-time complexity per iteration step is polynomial
on the system size and the hidden dimensions, to simulate
the real-time dynamics of open quantum systems via an
exact probabilistic formulation. By parametrizing the
quantum state using an autoregressive Transformer, we
accurately track the dynamics and steady state in 1D and
2D transverse field Ising and Heisenberg models. For 2D
systems, we introduce string states which partially restore
the symmetry of the Transformer.

Our methods constitute an important step in the machine
learning approach for quantum many-body dynamics
simulation. It provides the first exact sampling method
for neural networks in OQS, which is a crucial improve-
ment over the standard Markov chain Monte Carlo tech-
niques with RBM, as well as an efficient stochastic
optimization method for high dimensional differential
equations. Our approach is versatile and applicable to
general quantum dynamics in various contexts, including
closed systems quantum dynamics, finite temperature
dynamics of the density matrix, as well as challenging
fermionic transport problems [89,90] with interactions to
the environment [91]. Because of the probabilistic formu-
lation as a quantum-classical mapping, our work has
applications beyond quantum mechanics and demonstrates
how to efficiently solve high-dimensional probabilistic
differential equations with autoregressive neural networks.
Such probabilistic equations appear in a wide variety of
classical contexts and our Letter represents an important
step forward in the direction.
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