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Accurate and (near) real-time earthquake monitoring provides the spatial and temporal
behaviors of earthquakes for understanding the nature of earthquakes, and also helps
in regional seismic hazard assessments and mitigations. Because of the increase in both
the quality and quantity of seismic data, an automated earthquake monitoring system
is needed. Most of the traditional methods for detecting earthquake signals and picking
phases are based on analyses of features in recordings of an individual earthquake and/
or their differences from background noises. When seismicity is high, the seismograms
are complicated, and, therefore, traditional analysis methods often fail. With the devel-
opment of machine learning algorithms, earthquake signal detection and seismic phase
picking can be more accurate using the features obtained from a large amount of earth-
quake recordings. We have developed an attention recurrent residual U-Net algorithm,
and used data augmentation techniques to improve the accuracy of earthquake detec-
tion and seismic phase picking on complex seismograms that record multiple earth-
quakes. The use of probability functions of P and S arrivals and potential P and S
arrival pairs of earthquakes can increase the computational efficiency and accuracy of
backprojection for earthquake monitoring in large areas. We applied our workflow to
monitor the earthquake activity in southern California during the 2019 Ridgecrest
sequence. The distribution of earthquakes determined by our method is consistent with
that in the Southern California Earthquake Data Center (SCEDC) catalog. In addition, the
number of earthquakes in our catalog is more than three times that of the SCEDC cata-
log. Our method identifies additional earthquakes that are close in origin times and/or
locations, and are not included in the SCEDC catalog. Our algorithm avoids misidenti-
fication of seismic phases for earthquake location. In general, our algorithm can provide
reliable earthquake monitoring on a large area, even during a high seismicity period.

Introduction
Earthquake monitoring is fundamental routine work in a seis-
mic network. Accurate and complete earthquake activities are
usually essential and critical for further studies in seismology,
such as fault geometry, earthquake nucleation, earthquake trig-
gering, postseismic deformation, and physical mechanisms of
faulting (Peng and Zhao, 2009; Shelly and Hill, 2011; Ross,
Idini, et al., 2019; Ross, Trugman, et al., 2019; Kato and
Ben-Zion, 2021). Many studies reveal that small earthquakes
can provide insights into related issues. For a more complete

catalog, the template matching filter (TMF), using the seismo-
grams of known earthquakes to calculate their similarities with
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continuous data to find events, is a widely used technique to
find missed small earthquakes (e.g., Peng and Zhao, 2009; Mu
et al., 2017; Ross, Trugman, et al., 2019; Lee, Mu, et al., 2020)
However, significant limitations of TMF are that it can only
detect events with high similarities and the need of an earth-
quake catalog for template seismograms. Therefore, it is
necessary to provide a reliable earthquake catalog before using
TMF for a more complete catalog. With the increase in data
quality and quantity, automated earthquake detection and loca-
tion algorithms in continuous recordings are needed. Recently,
some automated algorithms for earthquake monitoring have
been proposed (Tan et al., 2019; Lee, Liao, et al., 2020;
Walter et al., 2021; Zhou et al., 2021), but there are still many
challenges in automation, accuracy, and data scale.

Traditionally, earthquake detection, phase picking, and earth-
quake location are steps for cataloging earthquakes. Identifying
waveforms and phases (e.g., P and S waves) generated by earth-
quakes from continuous seismic recordings are challenging. In
continuous recordings, not only noises generated by other
sources can interfere with earthquake detection, but it is also
challenging to identify individual earthquake signals when the
seismicity is high.

One of the commonly used approaches is to detect changes
in the waveform features (e.g., energy, frequency content, and
particle motions) that are different from the background noise
(e.g., Allen, 1982; Lomax et al., 2012; Baillard et al., 2014).
For example, the short-term average over long-term average
(STA/LTA) can monitor the energy changes of incoming sig-
nals for earthquake signal or phases detections. The STA/LTA
is straightforward and computationally efficient and, therefore,
has been widely used. However, the generalization capabilities
of traditional algorithms are usually poor, and many parameter
settings need to be examined by trial and error for better
performance (Akram and Eaton, 2016). Also, the traditional
methods often fail when seismic activity is high (e.g., after-
shock periods), that is, at the time when earthquake monitor-
ing is the most needed. In general, traditional algorithms were
designed without considering unexpected conditions, so they
often fail when there are abnormal waveforms (e.g., waveform
gaps) in continuous recordings. After picking available P and S
arrivals from continuous recordings, a phase association algo-
rithm is then used to cluster possible phase arrivals of an earth-
quake to invert for its source parameters. The grid search is one
of the most commonly used methods and has been used in
many earthquake monitoring systems (e.g., Weber et al.,
2007; Yeck et al., 2019). When seismicity is high, many earth-
quakes with various magnitudes occurred close in time and
location, and it is a challenging task to associate picked phases
to individual earthquakes correctly.

In addition, backprojection-related methods, including
waveform shifting and stacking processes, are also commonly
used to study seismic sources, such as seismic sources of ambi-
ent noises, rupture processes of large earthquakes, and local

earthquake monitoring. For ambient noise sources, the wave-
field received by a seismic network can be assumed to be the
superposition of multiple plane waves. By shifting and stacking
the recordings in the seismic network to grids of different inci-
dent azimuths and slownesses, the noise sources outside the
network can be imaged. Because this approach is based on the
assumption of plane waves, it is generally called beamforming
(e.g., Nishida, 2017; Löer et al., 2018). For imaging the rupture
of a large earthquake, the range of the rupture can be hundreds
to thousands of kilometers. Typically, the teleseismic record-
ings of a large earthquake in a dense array can be backprojected
to the gridded source area to image the rupture process.
Because of the conceptual intuitiveness of the backprojection
and the few assumptions about the fault geometry and rupture
speed, the backprojection is widely used to study the rupture
process of major earthquakes (e.g., Ishii et al., 2005; Kiser and
Ishii, 2017). Unlike the rupture imaging applications, the back-
projection in local earthquake monitoring usually assumes that
earthquakes are point sources and located in or near the region
covered by the seismic network. Just like you can find the
source of ripples in the water by rewinding, in most applica-
tions, the functions (e.g., envelope, STA/LTA, or kurtosis) of
seismic recordings in the network that may reflect the arrivals
of P and S waves are backprojected according to P and/or S
wave speeds of the gridded study area to find potential earth-
quake sources (e.g., Langet et al., 2014; Tan et al., 2019; Lee,
Liao, et al., 2020). By selecting the corresponding P and S arriv-
als of potential earthquakes, the earthquake source parameters
can be further improved. The backprojection is simple in logic
and provides a more comprehensive consideration for the
recordings in a seismic network, but there remain considerable
challenges in the applications. First, the functions used for
backprojection in previous studies are not the time functions
of P and S arrivals. Those functions mainly reflect changes in
seismograms, including the factors other than seismic phases
such as random noises or recording gaps. This may lead to false
detections or large uncertainties on source parameter esti-
mates. Second, when the waveform changes caused by small
earthquakes are not significant enough or the waveform
changes are large during a high seismicity period, those func-
tions often fail to reflect the phase arrivals of earthquakes.
Therefore, the earthquake detection capability of backprojec-
tion is limited because of the drawbacks of the backprojected
functions. Furthermore, in previous studies, the backprojection
is usually applied to monitor earthquakes in a small area (e.g.,
Langet et al., 2014; Tan et al., 2019). To ensure consistency, all
functions need to be backprojected to all grid points of a study
area. When the study area and the number of stations are large,
the required computational resources increase significantly.

In seismology, the earthquake detection and seismic phase
picking have also benefited from recent significant develop-
ment in deep learning algorithms (e.g., Ross et al., 2018; Zhu
and Beroza, 2018; Mousavi et al., 2020; Liao et al., 2021). Many
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studies have shown that deep learning-based methods have
high accuracy and stable results in both earthquake detection
and seismic phase picking. An essential difference between tra-
ditional methods and deep learning methods is that the deep
learning methods use the features extracted from the training
data rather than empirical criteria based on processed seismo-
grams (e.g., STA/LTA) selected by users. However, most deep
learning methods use confirmed earthquake recordings to
evaluate model performances. When applying deep learning-
based models to continuous recordings, different situations
need to be considered. Most of the time, continuous data
mostly record background noise, but when the seismic activity
is high, the waveforms of earthquakes with various magnitude
and occurred close in origin times may dominate the record-
ings. In the deep learning methods, features are not only lim-
ited to the targets (e.g., earthquake signal, P, and S phases) but
also include features of nontargets (e.g., background noises and
other seismic waves), so the abnormal recordings (e.g., inter-
rupted recordings) can be included in training data to reduce
the probability of false detections. In addition, deep learning
has significant advantages in dealing with multiple tasks and
complex situations by including additional tasks in the model
and data of complex cases in the training dataset.

In this study, we have developed a workflow that combines
the advantages of deep learning in seismic phase picking and
the straightforward principles of backprojection for earthquake
monitoring (Fig. 1). Our updated attention recurrent residual
U-Net (ARRU) phase picker is used for detecting earthquake
signal, and picking P and S arrivals in the workflow. Data aug-
mentation techniques have been applied to our training dataset
to improve the performance on picking seismic phases on
recordings with multiple earthquakes. Our backprojection of
P and S arrival probability functions has increased the capabil-
ity of detecting small earthquakes and reduced the demand
for computing resources for earthquake monitoring in a large
area using a large number of recordings. The workflow has
been successfully applied to southern California (Fig. 2) and
provides a more complete earthquake catalog during a high
seismicity period.

Methods
Multitask ARRU model
Identifying the earthquake waveforms on continuous seismic
recordings and picking available P and S phase arrivals of an
earthquake are essential for earthquake location. We, therefore,
improved the ARRU phase picker (Liao et al., 2021) for the
earthquake identification and seismic phase picking tasks.
The ARRU phase picker is an encoder–decoder model, so the
features of seismic recordings could also be used for detecting
waveforms of earthquakes. The earthquake waveform identifi-
cation module could be incorporated by simply branching a
convolution block from the last recurrent residual convolution
block (Fig. 3a). The truncated Gaussian functions for P and S

arrivals (Liao et al., 2021) and box-like functions wrapping the
P and S arrivals (earthquake signal) are used as labels in train-
ing data (Fig. 3b). The model inputs are three-component seis-
mograms, and outputs are point-to-point probability density
functions of earthquake signals and seismic phase arrivals.

Model training for continuous recordings
For earthquake monitoring, a reliable machine learning-based
phase picker must perform well both on continuous recordings
with only background noise and with seismic phases of multi-
ple earthquakes. When there is only background noise, the
false detection rate of a model must be low; when there are
multiple earthquakes, a model should be able to distinguish
the phases of different events. The training, validation, and test
datasets of most machine learning-based seismic phase picking
models are earthquake recordings containing only one single
pair of P and S arrivals, so the seismic phase detection capabil-
ity on waveforms containing multiple earthquakes may be lim-
ited. To improve the performance of our ARRU phase picker in
various situations, we included waveforms of background noise
recordings and applied data augmentation to earthquake
recordings. The data augmentation method has been widely
used in machine learning to increase the complexity and var-
iations of data when labeled training data are limited. In addi-
tion, models trained using complex datasets usually show
better performance at various situations. The data augmenta-
tion method has been adopted for seismic phase picking and
shown improvements on model performance (Mousavi et al.,
2020; Zhu et al., 2020).

In this study, we select the earthquake recordings with sig-
nal-to-noise ratio (SNR) greater than 3 for data augmentation.
We estimated the SNR on high-passed waveforms at 2 Hz, but
using raw waveforms in training, validation, and test. Here, the
waveforms spanning from 0.5 s before the P arrival to 5 s after
the S arrival are defined as earthquake recordings, and the
waveforms 10 s before the P arrival are treated as background

Figure 1. Workflow of our earthquake monitoring system.
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noise. To generate semisynthetic recordings of multiple earth-
quakes, data augmentation techniques, including random shift,
superposition, and scaling, have been applied to earthquake
waveforms recorded at the same station. We randomly select
recordings of an earthquake as the first waveform, and the
other earthquake waveforms are superimposed on it. A semi-
synthetic waveform of multiple earthquakes can be denoted as

EQ-TARGET;temp:intralink-;df1;41;171WC�t� � fWC
1 �t� �

X

i

aWC
i �tτi� : tτi ∈ �xi; yi�g; �1�

in which c is the component of seismogram; a is a random
scaling factor between 0.5 and 1.0. The scaling factor is multi-
plied on the ith earthquake recording, and the SNR of the
scaled earthquake waveforms must be larger than 3 to ensure
that it is discernible from background noise. Let tP and tS

denote the P and S arrivals.
The ith superimposed earth-
quake waveform starts at
xi � tPi

− 0:5 − αi and ends at
yi � tSi � 0:5 � �tSi − tPi� � βi.
We keep at least 0.5 s before
P arrival and 0.5 times of �tSi −
tPi� to make sure the earth-
quake waveforms are recogniz-
able during data augmentation
processes. The αi and βi are
random time shifts between 0
and 1.5 s and 2 ≤ i≤ 4 (events).
The length of semisynthetic
waveforms is 30 s, and we then
truncated three 20 s waveforms
with random time shifts between
1.0 and 7.0 s for datasets.

We used the recordings of
earthquakes in Taiwan from
2012 to 2017 to train and vali-
date our ARRU model. There
are 250 K earthquake recordings
used as training dataset and
50 K earthquake recordings
used as validation dataset.
About 211 K earthquake
recordings in Taiwan from
2018 to 2019 are used as a test
dataset. The Z-score standardi-
zation, which removes the mean
and then divides the waveform
by the standard deviation of
the waveform, is applied to all
training, validation, and test
date to reduce the variances in
amplitude (Liao et al., 2021).

We trained two models using the waveforms in the training
dataset. Model A was trained with data containing waveforms
from single earthquake. Model B was trained using augmented
data containing waveforms from two to four different events
and various scaling factors for waveforms from different
events.

To confirm that the model trained by augmented data has
not deteriorated on detecting seismic phases on recordings of P
and S phase pair from single event, we applied the two models
to the test dataset of Taiwan (Table 1), and the performances of
the two models are at the same level. A global waveform data-
set, STEAD (Mousavi et al., 2019), has also been used to evalu-
ate the generalization capabilities of the two models (Table 1).
The result shows that the two models have good model gen-
eralization and similar capabilities on detecting seismic phases
of recordings of single earthquake.

Figure 2. Distribution of the 507 stations used for earthquake location in this study. Triangles,
broadband stations; circles, accelerometer; squares, short period stations; box, region for earth-
quake monitoring; and black-solid lines, major faults. The color version of this figure is available
only in the electronic edition.
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To evaluate performances of the two models on waveforms
of multiple earthquakes, data augmentation techniques have
been applied to the test dataset of Taiwan to construct three
90 K waveform datasets of 2, 3, and 4 earthquakes. The true
positive picks must satisfy that the phase probabilities larger
than 0.3 and time differences with the ground truth less than
0.5 s (Fig. 3c). True positive detection requires that the

probabilities of entire detection
mask to be greater than 0.3.
Only the detection rate, true
positives divided by all sam-
ples, is available for earthquake
detection of Taiwan dataset,
because noise label is not
included in the dataset to com-
pute confusion matrix. Figure 4
shows the model performances
of the two models on different
test datasets. Clearly, model B
that was trained by augmented
waveforms shows much better
performances on both phase
picking and earthquake detec-
tion for waveforms of multiple
earthquakes. The results sug-
gest that the use of model B
could provide more reliable
phase picking when seismicity
is high.

Backprojection
In previous backprojection-
based applications, functions
based on energy or waveform
changes on seismograms (e.g.,
envelope, STA/LTA, or kurto-
sis) are treated as time func-
tions of P and/or S arrivals,
and are backprojected to find
potential earthquakes (e.g.,
Liao et al., 2012; Drew et al.,
2013; Langet et al., 2014).
However, such an assumption
may have the following draw-
backs that would limit the per-
formance of backprojection in
local earthquake monitoring:
(1) Variations in these func-
tions are not solely caused
by seismic wave phases.
Complex seismic wave propa-
gation effects, random noises,
or problematic seismic record-

ings can all cause changes in functions (Fig. 5a,b). Even the
earthquake source radiation patterns can cause significant
changes in the functions for the recordings on different com-
ponents (Fig. 5a). (2) For small earthquakes or when earth-
quakes with different magnitudes occur close in time, those
functions often perform poorly in detecting seismic phases
(Fig. 5a). (3) Usually it is not clear from the functions that

Figure 3. (a) Schematic diagram of our updated attention recurrent residual U-Net (ARRU) model
used in this study. The ARRU model is adapted to multitask learning model. The model receives
seismograms in shape of 2001×3 and outputs 5 vectors in total that represent the probability
functions of P, S, and others phases and earthquake and other masks. (b) An example of semi-
synthetic waveforms and the corresponding target functions. The model optimization relies on the
weighted softmax loss separately estimated from target functions of phase arrivals and detection
masks. (c) The criteria and classification of model predicted picks in confusion matrix. Here, the true
pick is counted when the arrival residual between the labeled arrival and predicted arrival is less
than 0.5 s. A positive pick is with predicted probability larger than 0.3. The color version of this
figure is available only in the electronic edition.
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the changes are caused by P or Swaves. If the possibilities of the
functions changing in different components and P and S waves
are all considered, the amount of computation will be greatly
increased for backprojection. High computational demands
limit the potential of backprojection for earthquake monitor-
ing in a large region or a network with many stations. (4) The
peak values of some functions (e.g., envelope and STA/LTA)
are often not the arrivals of the P and S waves (Fig. 5a,b), thus

increasing the uncertainties of
the source parameter estima-
tions. (5) The value ranges of
some functions are large (e.g.,
envelope and kurtosis), and it
is difficult to set the threshold
for selecting potential earth-
quakes.

Unlike previous studies,
more reliable P and S arrival
probability functions obtained
by ARRU in continuous
recording are used for our
backprojection application to
improve the performance of
local earthquake monitoring.
The backprojection method
used in this study for estimat-

ing potential earthquake location consists of the follow-
ing steps:

1. Compute travel-time tables of grids. In this work, the study
area, southern California, is divided into 4 × 4 km horizon-
tally and 3 km vertically grids, and the CVM-S4.26 (Lee
et al., 2014) is used as the velocity model for computing
phase travel times. The P and S travel times of a grid point

TABLE 1
Benchmarking Results on Taiwan and STEAD Test Datasets

STEAD Model
Picking or
Detection Rate

Mean
(s)

Standard
Deviation (s) Precision Recall

F1
Score MAE

Test
Samples

P phase A 0.9854 −0.0102 0.0599 0.9963 0.9906 0.9934 0.0309 81 K EQ (20 s)

B 0.9829 −0.0057 0.0631 0.9955 0.9896 0.9926 0.0347

S phase A 0.9687 −0.0169 0.1040 0.9832 0.9890 0.9861 0.0661

B 0.9655 −0.0002 0.1081 0.9821 0.9863 0.9842 0.0685

Detection A 0.9921 – – 0.9944 0.9921 0.9933 – 81 K EQ and

23.5 K Nz (20 s)

B 0.9915 – – 0.9942 0.9915 0.9928 –

Taiwan Data

P phase A 0.9914 0.0002 0.0405 0.9974 0.9948 0.9961 0.0205 211 K EQ

B 0.9875 0.0011 0.0493 0.996 0.9927 0.9943 0.0274

S phase A 0.9781 0.0070 0.0927 0.9887 0.9918 0.9902 0.0583

B 0.9736 0.0297 0.1005 0.9844 0.9920 0.9882 0.0687

Detection A 0.9882 – – – – – –

B 0.9828 – – – – – –

EQ, earthquake; MAE, mean absolute error; Nz, noise.

Figure 4. Model performances of model A (trained by recordings of single earthquake) and model B
(trained by augmented recordings) on augmented test datasets of multiple events. The color
version of this figure is available only in the electronic edition.
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to its nearest 20 stations are
calculated using simul2000
(Thurber and Eberhart-
Phillips, 1999) and stored
according to distance from
the nearest station to the
farthest station for backpro-
jection.

2. Backproject probability func-
tions of P and S arrivals. The
probability functions of P
arrivals, π�t�, S arrivals,
σ�t�, and earthquake detec-
tion, E(t), obtained from
our ARRU model are used
for backprojection. To fully
utilize the information of
phase pairs, we regard a pair
of P and S picks with a local
maximum larger than a given
threshold within a mask of E
(t) above another threshold
as a phase pair. Here, the
threshold values are all 0.3
for earthquake detection, P
pick, and S pick. Before back-
projecting the π�t� and σ�t�
to a given grid point, we
reject the phase pairs that
are unlikely to be generated
from the grid point to the
station. When the observed
and calculated P and S phase
residuals are larger than a
given time, we replace the
π�t� and σ�t� in the earth-
quake detection mask, E(t),
written as π′�t� and σ ′�t�,
with zero to reject the phase
pairs that are unlikely to be
generated from the grid to
the station. The time differ-
ence threshold here is 0.5 s,
but the threshold is related
to the velocity model and
grid sizes. Our backprojec-
tion results on a grid j can
be expressed as follows:

EQ-TARGET;temp:intralink-;df2;445;119

B�j; t� �
XN

k�1

σ ′�t − tsjk�

� π′�t − tpjk�; �2�

Figure 5. Examples of ARRU model predictions compared with the results of other phase pickers.
(a,b) Examples of three-component seismograms (black solid lines), their waveform envelopes
(greed solid lines), short-term average/long-term average functions (blue solid lines), positive
time derivatives of kurtosis functions (red solid lines), and P (red) and S (blue) arrival predictions of
ARRU model. (c,d) Solid lines on seismograms indicate the P (red) and S (blue) phase arrivals
picked by Southern California Earthquake Data Center (SCEDC) for earthquake location.
Comparisons of P (red curves), S (blue curves), and earthquake signal (black curves) probability
functions made using the ARRU model and earthquake transformer (EQT). The green lines
indicate the threshold for phase selection. The color version of this figure is available only in the
electronic edition.
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in which k indicates the available stations sorted from the
nearest to the farthest in the time table of the grid j.
The tsjk and tpjk are calculated P and S travel times from grid
j to station k. The minimum number of stations required for
backprojection is 8 in this study.

3. Find potential earthquakes. The backprojection results,
B(j,t), store the summation of P and S arrival probabilities
close to the grid point. When a local maximum on a grid
point is larger than a given threshold (2.0 in this study), the
grid point can then be considered as a potential hypocenter.
The time point of local maximum is taken as the origin time
of the potential earthquake (Fig. 6e,f). To avoid grid points
that are close to the potential hypocenter being selected, we
also set thresholds in space and time for selecting the poten-
tial earthquakes (Fig. 6). The thresholds are related to the
velocity model and grid size used in the backprojection to
some extent. In this study, the largest stacking values of
grids with time differences in 2.0 s and location difference
in 20 km are selected as potential earthquakes.

Refine phase picks, earthquake relocation, and
magnitude estimates
We calculate the P and S arrivals of potential earthquakes for
all stations in the network as references for selecting seismic
phases of the events. In this study, the local maximum of phase
probabilities larger than 0.3 and time residuals of the P and S
arrivals within 1.0 and 1.2 s, respectively, are selected. The
Hypoinverse (Klein, 2002) is used to relocate potential earth-
quakes with at least 8 P and/or S phases. We select earthquake
location results with a location quality of C or higher to our
earthquake catalog. If a phase arrival is used to locate multiple
earthquakes, we only retain the earthquake with better location
quality. Finally, the local magnitude, ML, of qualified earth-
quakes are estimated based on Richter scale (Richter, 1935;
Boore, 1989; Stein and Wysession, 2002).

Results
Phase-picking results on continuous recordings
The improved ARRU phase picker trained by augmented data
shows capabilities for detecting P and S arrivals and earthquake
signals in various continuous recordings. Figure 5c,d shows the
performances of our improved ARRU phase picker and the
earthquake transformer (EQT) model (Mousavi et al., 2020)
that was trained using the STEAD dataset, a global waveform
dataset (Mousavi et al., 2019), on the continuous recordings of
stations SV03 in southern California. EQT has also used data
augmentation techniques in the training dataset to improve
the model performance, and the waveforms are band-passed
at 1–45 Hz for EQT (Mousavi et al., 2020). If the data augmen-
tation techniques used in this study are also applied to the
training data of EQT, it will be possible to improve the detec-
tion ability of EQT in the seismic phases of small earthquakes.

The SV03 station was deployed by U.S. Geological Survey after
the 2019 Ridgecrest earthquake (Cochran et al., 2020). The
training dataset of the two models did not contain the record-
ings of the stations, so the results also demonstrate the gener-
alization of the two models. In the case of multiple small
earthquakes that occurred in a short period of time, the ARRU
model can identify most earthquakes, and that can be recog-
nized by the naked eye (Fig. 5c). When there are many small
earthquakes occurred before and after a larger earthquake, the
phases of small events are challenging to identify using tradi-
tional methods (e.g., STA/LTA). The ARRU phase picker can
identify most small earthquakes and is less affected by the
amplitude of the large earthquake (Fig. 5d). When using tradi-
tional methods (e.g., STA/LTA, kurtosis) for phase picking, the
unexpected changes that are not caused by earthquakes in con-
tinuous recordings, such as padding zeros when data missing,
can easily cause false picks. Deep learning-based methods (e.g.,
ARRU, EQT) can include exceptions to the training dataset to
reduce the probability of false phase picks (Fig. 5b).

Comparison of earthquake catalogs
Our workflow has been applied to southern California where
the number of stations is as high as 500, and the earthquake
monitoring area is about 500 × 600 km (Fig. 2). We applied the
workflow to the available continuous seismic recordings in July
2019 that included the 2019 Ridgecrest earthquake sequence to
demonstrate the capability of earthquake monitoring during a
high seismicity period. The two catalogs have high consistency
in the distribution of earthquakes, mostly concentrated in the
Ridgecrest regions and the Peninsular Ranges (Fig. 7a,b). In the
Peninsular Ranges, the distribution of earthquakes in our cata-
log coincides with the San Jacinto fault (Fig. 7g). The number
of earthquakes detected by our workflow is more than three
times that of the Southern California Earthquake Data
Center (SCEDC) Catalog (Fig. 7c). Most of the earthquakes in
Ridgecrest regions are aftershocks of the 2019 Mw 6.4 and 7.1
earthquakes or earthquakes triggered by the mainshock. Our
results provided a more complete catalog of aftershocks and
triggered events, which may be attributed to our ARRU phase
picker that can identify more seismic phases of small earth-
quakes (Fig. 5c,d). The results show that our workflow can
be used to monitor seismic activity in a large area with a large
number of seismometers, and it can still provide reliable seis-
micity monitoring when seismicity is high.

Events close in origin times and/or hypocenters
Our ARRU backprojection method has the potential to locate
earthquakes that are likely unidentified using traditional
methods. In earthquake location, it is challenging to locate
earthquakes with close origin times, and hypocenters due to
the difficulties in phase picks and phase associations. In our
method, when most of the seismic phases of earthquakes
have been identified, the backprojection could associate the
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probabilities of phases to find the potential hypocenters.
Figure 8c shows an example of earthquakes with close hypo-
centers, and the origin time difference is 3.08 s detected by our
method (origin times of events 1 and 2 are 7 July 2019
08:45:08.72 and 7 July 2019 08:45:11.80, respectively). These
two earthquakes are not included in the SCEDC catalog. In
traditional backprojection based method for local earthquake
monitoring, usually only the location with the maximum
stacking value at the time point is considered a potential earth-
quake (e.g., Langet et al., 2014). For the earthquakes that
occurred at about the same time, even if the two earthquakes
have a discernible distance, one of them may not be detected.
Figure 8d,e shows two earthquakes with origin time differences
less than 0.1 s (origin time of the event 3 on Fig. 8d is 6 July

2019 09:36:39.20, and that of
event 4 on Fig. 8e is 6 July
2019 09:36:39.27), and the
location difference that is
about 300 km have been iden-
tified by our method. Of the
two, only the larger earthquake
in the Ridgecrest region is
listed in the SCEDC catalog.

Discussion
The application of our work-
flow in southern California
shows the capability of earth-
quake monitoring in a large
area under high seismicity. The
following are the advantages of
combining our ARRU phase
picker and backprojection in
earthquake monitoring.

1. The use of individual P and
S probability functions can
improve the accuracy and
computational efficiency of
backprojection. When using
the backprojection for
detecting potential earth-
quakes, if the cause of the
waveform changes (e.g.,
energy) is not known to be
a P or S wave, the shift-
and-stack processes need
to be applied to the record-
ings of three components
for both P and S travel times
to consider all the possibil-
ities (Lee, Liao, et al.,
2020). When the specific

inputs of P and S waves are known, the shift-and-stack only
needs to be applied to the functions of P and S waves
according to their travel times. Fewer shift-and-stack oper-
ations in backprojection not only improve the calculation
efficiency but also improve the accuracy of earthquake
detection due to the reduction of waveforms with incorrect
phase shifts on stacking results.

2. The fixed range (between 0 and 1) probabilities provide same
weights for different phases in backpgojection. Different from
other data processing results (e.g., envelope or kurtosis of seis-
mograms) that are greatly affected by various factors (e.g.,
earthquake magnitude, source-receiver distance, and back-
ground noise), our ARRU phase picker provides probabilities
between 0 and 1 of P and S arrivals, so that the weights of

Figure 6. (a,b) Snapshots of the results of our backprojection with earthquake mask applied at the
initial origin time of events 1 and 2. (c,d) The same snapshots as panels (a) and (b) for events 1 and
2 but the backprojection without earthquake mask applied. The color bar indicates the stacked
probability. (e,f) The black curves indicate the maxima of global stacking values; the blue curves are
the stacking values at the optimal grid point of events 1 and 2. The red dotted line indicates the
optimal earthquake origin time estimate. The color version of this figure is available only in the
electronic edition.
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phase arrivals at different sta-
tions are the same. Therefore,
when using backprojection to
evaluate potential earth-
quakes at each grid point,
only the same number of
phase arrival functions are
required to be stacked to
achieve consistency, and
there is no need to shift-
and-stack the phase arrival
functions of all the stations
to each grid point. This not
only greatly reduces required
calculations but also opens
the possibilities of parallel
computing and earthquake
monitoring in large area.
The fixed probability range
also allows the threshold
value to be set according to
the expected stacking value
of the P and S phases of an
earthquake, which is different
from the difficulty in setting a
suitable threshold of back-
projections using other data
(e.g., envelope). In addition,
the use of the data close to
a grid point in backgrojection
is also more advantageous for
the monitoring of small
earthquakes and earthquakes
that occur close in time.

3. Excluding improper P and
S pairs in backprojection
can increase the accuracy
of earthquake detection
(Fig. 6a,b). When earth-
quakes occur continuously
in a short period of time
(e.g., swarms or aftershocks),
if directly backproject all
probability functions of P
and S arrivals, some high val-
ues in stacking results may
not be earthquakes (Fig. 6c–
f). Removing the P and S
pairs determined by ARRU
phase picker that are unlikely
from a given grid to the sta-
tion can increase the accurcy
in earthquake detection.

Figure 7. (a,d,f) Earthquake distributions of SCEDC and (b,e,g) our catalogs in July 2019.
(c) Histograms show the number of earthquakes in SCDEC (orange bars) and our
(blue bars) catalogs. Black lines, major faults, and surface fractures of the 2019 Ridgecrest
earthquakes (Xu et al., 2020). The color version of this figure is available only in the electronic
edition.
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Figure 8. (a,b) Maps of examples of earthquakes and stations.
(c) Seismograms of events 1 and 2 with close origin times and
locations detected by our method but missed in SCEDC catalog.
(d,e) seismograms of events 3 and 4 occurred almost simultane-
ously, but the locations differed by 300 km detected by our

workflow. Solid lines on seismograms indicate the P (red) and
S (blue) arrivals picked for earthquake location. The rows of ARRU
show the P (red curves), S (blue curves), and earthquake signal
(black curves) probability functions predict by our ARRUmodel. The
color version of this figure is available only in the electronic edition.
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Our ARRU phase picker has high computational efficiency
and has the potential for near real-time earthquake monitor-
ing. It only takes 0.73 s to process 60 s of continuous seismo-
grams using our ARRU model using NVIDIA RTX 2080Ti.
Taking backprojection in the southern California as an exam-
ple (in a case of 480 available stations and 181,500 grid points),
it takes 1657.29 s to backproject 1 hr data with 1 core and
456.12 s on 6 cores of the Intel Xeon Silver 4210R CPU.
Using the results of ARRU phase picker to perform backpro-
jection, each grid only needs the results of its surrounding sta-
tions rather than all stations, which is conducive to parallel
computing. Rapid and accurate earthquake monitoring is
not only helpful for studies of earthquake physics but also
for disaster relief after earthquakes and can even be used to
assess the potential of large earthquakes. For example, a b-
value based method for near real-time evaluates the possibil-
ities of another major earthquake after a large earthquake has
also been successfully applied to the 2019 Ridgecrest sequence
(Gulia et al., 2020).

The earthquakes determined by our method and the earth-
quakes in SCEDC catalog have high consistency in the distri-
butions (Fig. 7). However, our earthquake distribution is more
scattered than that in SCEDC catalog in the Ridgecrest region
(Fig. 7d,e). This may be due to our method’s higher ability to
detect small earthquakes (Fig. 8). The scattered distribution of
earthquakes in the intersection area of surface ruptures of the
Mw 6.4 event on 4 July 2019, and the later Mw 7.1 Ridgecrest
earthquake (Fig. 7e) may reflect the damages in fault zones.
The surface fractures of the 2019 Ridgecrest earthquakes
obtained by Interferometric Synthetic Aperture Radar (Xu
et al., 2020) also show a dense fracture in the region.

When monitoring earthquakes in large areas or areas
with complex geological structures, seismic phases that propa-
gate through different paths may be misjudged and used to
cause errors in earthquake location. For example, Figure 9a
shows an earthquake that occurred in the Ridgecrest region
(SCEDC event ID: 38488719, Mw 3.83), and the Pn and Pg
phases were recorded at a station in the Anza region about
300 km away. Because the S and surface waves arrive late,
the Pn and Pg may be wrongly judged as other wave phases
and used for earthquake location. Figure 9b shows the seismo-
grams in the Anza region of an earthquake (SCEDC event ID:
38488767, ML 3.48) that occurred in Ridgecrest, and the Pg
phase was incorrectly identified as P arrivals of the other
earthquake (SCEDC event ID: 38488775, ML 1.60) in the
Anza area.

Conclusion
Because most seismic networks currently record ground
motions continuously, a reliable automated workflow is needed
for earthquake monitoring on continuous recordings. In this
study, the advantages of our automated workflow can be
summarized as follows:

1. We have improved our ARRU model for seismic phase
picking and earthquake signal detection. The results of
earthquake detection can be used to pair the P and S arrivals
of the same earthquake.

2. The use of data augmentation techniques has significantly
improved the capability of ARRU phase picker in detecting
multiple earthquakes on continuous recordings.

3. The combination of accuracy probability functions of our
ARRU phase picker and travel time-based backprojection
has improved significantly the spatial and temporal resolu-
tion of earthquake monitoring.

4. Our workflow has been successfully applied to the record-
ings of more than 500 seismic stations throughout southern
California (about 500 × 600 km) and shows the capability of
earthquake monitoring in a large area.

5. During periods of high seismicity, our workflow can pro-
vide a more complete earthquake catalog. Our workflow
has detected many earthquakes missed during the 2019
Ridgecrest sequence, and the number of earthquakes in
our catalog is more than three times than that in SCEDC
catalog.

Data and Resources
The earthquake recordings in Taiwan used in this work are from the
Geophysical Database Management System (GDMS) operated by the
Central Weather Bureau (CWB) and the Broadband Array in Taiwan
for Seismology (BATS) operated by the Institute of Earth Sciences,
Academia Sinica (IES). The Southern California Earthquake Data
Center (SCEDC) earthquake catalog website is https://scedc.caltech
.edu/data/eq-catalogs.html (last accessed October 2021). The seismo-
grams in southern California used in this study were obtained from
SCEDC through the Seismogram Transfer Program (STP), and the
website of STP is https://scedc.caltech.edu/data/downloads.html (last
accessed October 2021). The source code and model of our attention
recurrent residual U-Net (ARRU) phase picker, source code and
examples of our backprojection, and our southern California earth-
quake catalog are available for download from https://github.com/
tso1257771/ARRU_seismic_backprojection (last accessed February
2022).
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Figure 9. (a) Seismograms of the earthquake occurred in the
Ridgecrest region (SCEDC event ID: 38488719, Mw 3.83, event 5
on Fig. 7d) recorded in the Peninsular Ranges region. Dashed lines
on seismograms indicate the predicted first arrived P (red) and S
(blue) phases. The middle and bottom panels show P (red curves),
S (blue curves), and earthquake signal (black curves) probability
functions made using the ARRU model and EQT. (b) Seismograms

of the earthquake occurred in the Ridgecrest region (SCEDC event
ID: 38488767, ML 3.48, event 6 on Fig. 7d) recorded in the
Peninsular Ranges region. The red dashed lines indicate predicted
first P arrivals of the event at the stations, and the red lines are P
picks used for locating the earthquake (SCEDC event ID:
38488775, ML 1.60, event 7 on Fig. 7f) in SCDEC catalog. The
color version of this figure is available only in the electronic edition.

1892 Seismological Research Letters www.srl-online.org • Volume 93 • Number 3 • May 2022

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/93/3/1880/5596392/srl-2021274.1.pdf
by National Cheng Kung Univ  user
on 23 May 2022



providing seismic recordings for this study. This work utilizes resour-
ces supported by the National Science Foundation’s Major Research
Instrumentation program, Grant Number 1725729, as well as the
University of Illinois at Urbana-Champaign. The authors also thank
National Center for High-performance Computing (NCHC) in
Taiwan, for providing computational and storage resources.

References
Akram, J., and D. W. Eaton (2016). A review and appraisal of arrival-

time picking methods for downhole microseismic data, Geophysics
81, no. 2, KS71–KS91, doi: 10.1190/geo2014-0500.1.

Allen, R. (1982). Automatic phase pickers: Their present use and
future prospects, Bull. Seismol. Soc. Am. 72, no. 6B, S225–S242.

Baillard, C., W. C. Crawford, V. Ballu, C. Hibert, and A. Mangeney
(2014). An automatic kurtosis-based P- and S-phase picker
designed for local seismic networks, Bull. Seismol. Soc. Am. 104,
no. 1, 394–409, doi: 10.1785/0120120347.

Boore, D. M. (1989). The Richter scale: Its development and use for
determining earthquake source parameters, Tectonophysics 166,
no. 1, 1–14, doi: 10.1016/0040-1951(89)90200-X.

Cochran, E. S., E. Wolin, D. E. McNamara, A. Yong, D. Wilson, M.
Alvarez, N. van der Elst, A. McClain, and J. Steidl (2020). The U.S.
Geological Survey’s rapid seismic array deployment for the 2019
Ridgecrest earthquake sequence, Seismol. Res. Lett. 91, no. 4, 1952–
1960, doi: 10.1785/0220190296.

Drew, J., R. S. White, F. Tilmann, and J. Tarasewicz (2013).
Coalescence microseismic mapping, Geophys. J. Int. 195, no. 3,
1773–1785, doi: 10.1093/gji/ggt331.

Gulia, L., S. Wiemer, and G. Vannucci (2020). Pseudoprospective
evaluation of the foreshock traffic-light system in Ridgecrest
and implications for aftershock hazard assessment, Seismol. Res.
Lett. 91, no. 5, 2828–2842, doi: 10.1785/0220190307.

Ishii, M., P. M. Shearer, H. Houston, and J. E. Vidale (2005). Extent,
duration and speed of the 2004 Sumatra–Andaman earthquake
imaged by the Hi-Net array, Nature 435, no. 7044, 933–936,
doi: 10.1038/nature03675.

Kato, A., and Y. Ben-Zion (2021). The generation of large earth-
quakes, Nat. Rev. Earth Environ. 2, no. 1, 26–39, doi: 10.1038/
s43017-020-00108-w.

Kiser, E., andM. Ishii (2017). Back-projection imaging of earthquakes,
Ann. Rev. Earth Planet. Sci. 45, no. 1, 271–299, doi: 10.1146/
annurev-earth-063016-015801.

Klein, F. W. (2002). User’s guide to HYPOINVERSE-2000, a Fortran
program to solve for earthquake locations and magnitudes, U.S.
Geol. Surv. Open-File Rept. USGS Numbered Series 2002–171,
123 pp., doi: 10.3133/ofr02171.

Langet, N., A. Maggi, A. Michelini, and F. Brenguier (2014). Continuous
kurtosis-based migration for seismic event detection and location,
with application to Piton de la Fournaise Volcano, La Reunion,
Bull. Seismol. Soc. Am. 104, no. 1, 229–246, doi: 10.1785/0120130107.

Lee, E., W. Liao, D. Mu, W. Wang, and P. Chen (2020). GPU-
Accelerated Automatic Microseismic Monitoring Algorithm
(GAMMA) and its application to the 2019 Ridgecrest earthquake
sequence, Seismol. Res. Lett. 91, no. 4, 2062–2074, doi: 10.1785/
0220190323.

Lee, E., D. Mu, W. Wang, and P. Chen (2020). Weighted Template-
Matching Algorithm (WTMA) for improved foreshock detection

of the 2019 Ridgecrest earthquake sequence, Bull. Seismol. Soc. Am.
110, no. 4, 1832–1844, doi: 10.1785/0120200020.

Lee, E.-J., P. Chen, T. H. Jordan, P. B. Maechling, M. A. M. Denolle,
and G. C. Beroza (2014). Full-3-D tomography for crustal struc-
ture in southern California based on the scattering-integral and the
adjoint-wavefield methods, J. Geophys. Res. 119, no. 8, 6421–6451,
doi: 10.1002/2014JB011346.

Liao, W.-Y., E.-J. Lee, D. Mu, P. Chen, and R.-J. Rau (2021). ARRU
phase picker: Attention recurrent-residual U-Net for picking seis-
mic P - and S -phase arrivals, Seismol. Res. Lett. doi: 10.1785/
0220200382.

Liao, Y.-C., H. Kao, A. Rosenberger, S.-K. Hsu, and B.-S. Huang
(2012). Delineating complex spatiotemporal distribution of earth-
quake aftershocks: An improved source-scanning algorithm,
Geophys. J. Int. 189, no. 3, 1753–1770, doi: 10.1111/j.1365-
246X.2012.05457.x.

Löer, K., N. Riahi, and E. H. Saenger (2018). Three-component ambi-
ent noise beamforming in the Parkfield area, Geophys. J. Int. 213,
no. 3, 1478–1491, doi: 10.1093/gji/ggy058.

Lomax, A., C. Satriano, and M. Vassallo (2012). Automatic picker
developments and optimization: FilterPicker—a Robust, broad-
band picker for real-time seismic monitoring and earthquake early
warning, Seismol. Res. Lett. 83, no. 3, 531–540, doi: 10.1785/
gssrl.83.3.531.

Mousavi, S. M., W. L. Ellsworth, W. Zhu, L. Y. Chuang, and G. C.
Beroza (2020). Earthquake transformer—an attentive deep-learn-
ing model for simultaneous earthquake detection and phase pick-
ing, Nat. Commun. 11, no. 1, doi: 10.1038/s41467-020-17591-w.

Mousavi, S. M., Y. Sheng, W. Zhu, and G. C. Beroza (2019). STanford
EArthquake Dataset (STEAD): A global data set of seismic
signals for AI, IEEE Access 7, 179,464–179,476, doi: 10.1109/
ACCESS.2019.2947848.

Mu, D., E.-J. Lee, and P. Chen (2017). Rapid earthquake detection
through GPU-based template matching, Comput. Geosci. 109,
305–314, doi: 10.1016/j.cageo.2017.09.009.

Nishida, K. (2017). Ambient seismic wave field, Proc. Jpn Acad. Ser. B
93, no. 7, 423–448, doi: 10.2183/pjab.93.026.

Peng, Z., and P. Zhao (2009). Migration of early aftershocks following
the 2004 Parkfield earthquake, Nat. Geosci. 2, no. 12, 877–881, doi:
10.1038/ngeo697.

Richter, C. F. (1935). An instrumental earthquake magnitude
scale*, Bull. Seismol. Soc. Am. 25, no. 1, 1–32, doi: 10.1785/
BSSA0250010001.

Ross, Z. E., B. Idini, Z. Jia, O. L. Stephenson, M. Zhong, X. Wang, Z.
Zhan, M. Simons, E. J. Fielding, S.-H. Yun, et al. (2019).
Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest
earthquake sequence, Science 366, no. 6463, 346–351, doi: 10.1126/
science.aaz0109.

Ross, Z. E., M.-A. Meier, E. Hauksson, and T. H. Heaton (2018).
Generalized seismic phase detection with deep learning, Bull.
Seismol. Soc. Am. 108, no. 5A, 2894–2901, doi: 10.1785/
0120180080.

Ross, Z. E., D. T. Trugman, E. Hauksson, and P. M. Shearer (2019).
Searching for hidden earthquakes in southern California, Science
364, no. 6442, 767–771, doi: 10.1126/science.aaw6888.

Shelly, D. R., and D. P. Hill (2011). Migrating swarms of brittle-failure
earthquakes in the lower crust beneath Mammoth Mountain,

Volume 93 • Number 3 • May 2022 • www.srl-online.org Seismological Research Letters 1893

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/93/3/1880/5596392/srl-2021274.1.pdf
by National Cheng Kung Univ  user
on 23 May 2022

http://dx.doi.org/10.1190/geo2014-0500.1
http://dx.doi.org/10.1785/0120120347
http://dx.doi.org/10.1016/0040-1951(89)90200-X
http://dx.doi.org/10.1785/0220190296
http://dx.doi.org/10.1093/gji/ggt331
http://dx.doi.org/10.1785/0220190307
http://dx.doi.org/10.1038/nature03675
http://dx.doi.org/10.1038/s43017-020-00108-w
http://dx.doi.org/10.1038/s43017-020-00108-w
http://dx.doi.org/10.1146/annurev-earth-063016-015801
http://dx.doi.org/10.1146/annurev-earth-063016-015801
http://dx.doi.org/10.3133/ofr02171
http://dx.doi.org/10.1785/0120130107
http://dx.doi.org/10.1785/0220190323
http://dx.doi.org/10.1785/0220190323
http://dx.doi.org/10.1785/0120200020
http://dx.doi.org/10.1002/2014JB011346
http://dx.doi.org/10.1785/0220200382
http://dx.doi.org/10.1785/0220200382
http://dx.doi.org/10.1111/j.1365-246X.2012.05457.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05457.x
http://dx.doi.org/10.1093/gji/ggy058
http://dx.doi.org/10.1785/gssrl.83.3.531
http://dx.doi.org/10.1785/gssrl.83.3.531
http://dx.doi.org/10.1038/s41467-020-17591-w
http://dx.doi.org/10.1109/ACCESS.2019.2947848
http://dx.doi.org/10.1109/ACCESS.2019.2947848
http://dx.doi.org/10.1016/j.cageo.2017.09.009
http://dx.doi.org/10.2183/pjab.93.026
http://dx.doi.org/10.1038/ngeo697
http://dx.doi.org/10.1785/BSSA0250010001
http://dx.doi.org/10.1785/BSSA0250010001
http://dx.doi.org/10.1126/science.aaz0109
http://dx.doi.org/10.1126/science.aaz0109
http://dx.doi.org/10.1785/0120180080
http://dx.doi.org/10.1785/0120180080
http://dx.doi.org/10.1126/science.aaw6888


California: Lower-crustal earthquake swarms, Geophys. Res. Lett.
38, no. 20, doi: 10.1029/2011GL049336.

Stein, S., and M. Wysession (2002). An Introduction to Seismology,
Earthquakes and Earth Structure, Wiley-Blackwell, Malden,
Massachusetts.

Tan, F., H. Kao, E. Nissen, and D. Eaton (2019). Seismicity-scanning
based on navigated automatic phase-picking, J. Geophys. Res. 124,
no. 4, 3802–3818, doi: 10.1029/2018JB017050.

Thurber, C., and D. Eberhart-Phillips (1999). Local earthquake
tomography with flexible gridding, Comput. Geosci. 25, no. 7,
809–818, doi: 10.1016/S0098-3004(99)00007-2.

Walter, J. I., P. Ogwari, A. Thiel, F. Ferrer, and I. Woelfel (2021).
easyQuake: Putting machine learning to work for your regional
seismic network or local earthquake study, Seismol. Res. Lett.
92, no. 1, 555–563, doi: 10.1785/0220200226.

Weber, B., J. Becker, W. Hanka, A. Heinloo, M. Hoffmann, T. Kraft,
D. Pahlke, J. Reinhardt, J. Saul, and H. Thoms (2007). SeisComP3
—Automatic and interactive real time data processing,
Geophysical Research Abstracts, Vol. 9, no. 9, General Assembly
European Geosciences Union (EGU), Vienna, Austria, 2007,
219 pp.

Xu, X., D. T. Sandwell, and B. Smith-Konter (2020). Coseismic
displacements and surface fractures from Sentinel-1 InSAR:
2019 Ridgecrest earthquakes, Seismol. Res. Lett. 91, no. 4, 1979–
1985, doi: 10.1785/0220190275.

Yeck, W. L., J. M. Patton, C. E. Johnson, D. Kragness, H. M. Benz, P. S.
Earle, M. R. Guy, and N. B. Ambruz (2019). GLASS3: A standalone
multiscale seismic detection associator, Bull. Seismol. Soc. Am. 109,
no. 4, 1469–1478, doi: 10.1785/0120180308.

Zhou, Y., H. Yue, L. Fang, S. Zhou, L. Zhao, and A. Ghosh (2021). An
earthquake detection and location architecture for continuous
seismograms: Phase picking, association, location, and matched
filter (PALM), Seismol. Res. Lett. doi: 10.1785/0220210111.

Zhu, W., and G. C. Beroza (2018). PhaseNet: A deep-neural-network-
based seismic arrival time picking method, Geophys. J. Int. doi:
10.1093/gji/ggy423.

Zhu, W., S. M. Mousavi, and G. C. Beroza (2020). Seismic signal aug-
mentation to improve generalization of deep neural networks, Adv.
Geophys. 61, 151–177, doi: 10.1016/bs.agph.2020.07.003.

Manuscript received 28 September 2021

Published online 9 March 2022

1894 Seismological Research Letters www.srl-online.org • Volume 93 • Number 3 • May 2022

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/93/3/1880/5596392/srl-2021274.1.pdf
by National Cheng Kung Univ  user
on 23 May 2022

http://dx.doi.org/10.1029/2011GL049336
http://dx.doi.org/10.1029/2018JB017050
http://dx.doi.org/10.1016/S0098-3004(99)00007-2
http://dx.doi.org/10.1785/0220200226
http://dx.doi.org/10.1785/0220190275
http://dx.doi.org/10.1785/0120180308
http://dx.doi.org/10.1785/0220210111
http://dx.doi.org/10.1093/gji/ggy423
http://dx.doi.org/10.1016/bs.agph.2020.07.003

