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ABSTRACT

We study the stabilization of an unpredictable linear control system where the controller must
act based on a rate-limited observation of the state. More precisely, we consider the system
Xn11 = A X + W,, — U, where the A,,’s are drawn independently at random at each time n
from a known distribution with unbounded support, and where the controller receives at most R
bits about the system state at each time from an encoder. We provide a time-varying achievable
strategy to stabilize the system in a second-moment sense with fixed, finite R.

While our previous result provided a strategy to stabilize this system using a variable-rate
code, this work provides an achievable strategy using a fixed-rate code. The strategy we employ
to achieve this is time-varying and takes different actions depending on the value of the state.
It proceeds in two modes: a normal mode (or zoom-in), where the realization of A, is typical,
and an emergency mode (or zoom-out), where the realization of A,, is exceptionally large.

1. INTRODUCTION

System design for decentralized control over communication networks requires an understand-
ing of the informational bottlenecks that affect our ability to stabilize the system. This paper
focuses on a system that grows unpredictably and is observed over a rate-limited channel. We
consider a modification of the classical data-rate theorems [1], [2], [3], [4], where the system
growth is unpredictable and random, and provide a strategy to control such a system over finite
and fixed-rate channel. This builds on previous work [5], which considered the control of a
system with unpredictable growth with unbounded support over a channel using a variable-rate
code.

Specifically, we consider the control of the following system:

X1 = AnXn + W, — U, ()
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Fig. 1. Rate-limited control: The control U, can be any function of the observations Yy'. The encoder chooses
exactly R bits to transmit to the controller at every time-step through Y,,, i.e. Y, € {1,2,... 2R}. The system gains
{An}n>0 are i.i.d. random variables, and so are the additive disturbances {W}n>0.

Here X, is the (scalar) state of the system at time n. The system gains {4, },,>0 are drawn i.i.d.
from a known distribution and model the uncertainty the controller has about the system. The
additive disturbances {W),,},>0 are also i.i.d. drawn from a known distribution. The controller
chooses the control U,, causally based on R-bit observations Y := {Yj,...,Y,}, where Y}, €
{1,2,...2%}, which are transmitted by an encoder co-located with the system. Our goal is to
stabilize the system in a second-moment sense, which thus requires the co-design of an encoder-
controller pair.

It is known that without a rate-limit on the channel, the system in (1) is second-moment
stabilizable if and only if 0124 < 1, where ai is the variance of A,, [6]. Hence, we focus on the
case 0124 < 1. The goal is to guarantee second-moment stability of the system. Our main theorem
is stated below.

Theorem 1.1. Assume that A,, and W,, have finite (4 + €)-th moments. Then, for some R € N,
there exists a rate- R-limited control strategy (see Fig. 1) that achieves second-moment stability,
ie.,

limsup E[X?] < o0. )

n—oo

A. Strategy overview

Previous works (e.g. [7], [8], [5]) have investigated variable-rate coding strategies for stabiliz-
ing the second-moment of the system (1), as well as other related systems. However, variable-rate
strategies fundamentally require that the encoder send an unbounded number of bits in the case
when the realization of A,, is large, and cannot be directly adapted for use in a fixed-rate regime.

In contrast to the variable-rate strategies, we employ a time-varying strategy in this work.
It works in two different “modes,” depending on whether the realization of A, was typical
or exceptionally large. We will describe the strategy precisely later, but provide an intuitive
description here.

At every time-step, the controller maintains an interval that estimates system state. When
the state remains in the interval that was estimated by the controller, the strategy proceeds



in “normal” (zoom-in) mode. If the state escapes the predicted interval, usually due to the
realization of an exceptionally large A,, the strategy enters “emergency” (zoom-out) mode.
There, the controller grows it’s guess for the interval at every time-step till we are able to locate
X, following which we step back into normal mode. This time-varying strategy fundamentally
works because we can guarantee some average decrease during normal mode, while we can
bound the blow-ups from emergency mode (since we assume that the 4th moments of A and
W are bounded).

B. Related work

Fundamentally, our problem setup grows out of the uncertainty threshold principle [6] and
the extensive work to understand data-rate theorems [1], [2], [3], [4], [9]. However, the work on
the uncertainty threshold principle [6] does not consider rate limits on the observations, and the
classical data-rate theorems assume that the system model and growth rate are always perfectly
known to the controller.

Martins et al. [7] were the first to consider the rate-limited control of a system with uncertain
growth. Their achievable scheme is quantization-based and assumes that the uncertainty on
the system growth is bounded above. Phat et al. [10] also consider rate-limited control with
uncertain parameters from a robust control perspective. Their setup differs from ours in that it is
not stochastic, and only considers bounded support for the uncertainty on the parameters. They
provide a uniform quantization scheme that can stabilize their system.

Okano and Ishii have made significant progress on understanding rate-limited control of
systems with unpredictable growth from a worst-case perspective [11], [12], [8]. However, they
also consider systems where the uncertain parameters have bounded support and do not consider
additive noise in their model. The achievable scheme in [8] proposes a non-uniform optimal
quantizer for their problem that uses bins with logarithmically decreasing lengths, with the bins
closest to zero being the largest. However, this cannot work in the setting where both A,, and
X, can have unbounded support, as is the case in our work.

We also build on a series of investigations around model unpredictability and multiplicative
noise in control systems [13], [14], [15]. In this work, we take a stochastic control approach,
which complements the investigations around parameter uncertainty in the robust control liter-
ature [16], [17].

In the context of linear systems with known parameters and unbounded additive disturbances,
the necessity of adaptive quantization for stabilization has been long recognized. Nair and
Evans [18] proved that time-invariant fixed-rate quantizers are unable to attain bounded cost
if the noise is unbounded [18], regardless of their rate. The reason is that since the noise is
unbounded, over time, a large magnitude noise realization will inevitably be encountered, and
the dynamic range of the quantizer will be exceeded by a large margin, not permitting recovery.
Adaptive quantizers of zooming type were originally proposed by Brockett and Liberzon [19],
and further studied in [18], [20], [21]. Such quantizers “zoom out” (i.e. expand their quantization
intervals; this corresponds to our “emergency mode”) when the system is far from the target
and “zoom in” when the system is close to the target (this corresponds to our “normal mode”).



This paper extends our recent analysis [21] of adaptive quantization for known linear systems
to unpredictably varying ones.

2. SETUP

We consider the system in (1). Here W,,, A,, are i.i.d. variable noises drawn from the laws W
and A. These are independent of the system state X,, and the control term U,,. We use n as the
time index. Without loss of generality, we assume our initial condition Xy = 0. The encoder
and controller will work together to stabilize the sequence (X)) in the second-moment sense,
i.e., (2). The encoder observes X,, perfectly, and transmits a symbol from the set {1,2,...,2%}
to the controller at each time-step. R is a finite universal constant that we will choose later.
The controller can choose U, as a function of these R bits and any previous history. Let
1A, OTA, bw,ow be the means and standard deviations of A, W. Without loss of generality, set
pw = 0.

The goal of second-moment stability cannot be accomplished for arbitrary distributions A, .
Using the independence of A,,, W,, and U, we see from (1) that [6]:

E[X2, ] = cAE[X2] + E[(uaXy — Un)?] + oy 3)

It is clear from (3) that the assumption o4 < 1 is required for second-moment stabilizability
(except possibly in the case 04 = 1,0y = 0 which we ignore.) Our result will provide a
strategy to achieve it. We require the mild assumption that A and W have finite 4 + e-moment
for some ¢ > 0.

3. DESCRIPTION OF THE STRATEGY

At the nth time-step, three things happen in the following order:

1) The encoder transmits a codeword from a codebook of size R bits to the controller based
on the observation of X,,. The exact value of R is described below.

2) The controller chooses U,, based on the transmission from the encoder and any past history.

3) The noises A,,, W, are generated and the new state X, is determined, based on A,,, W,,
and U,. This value of X,,11 is observed by the encoder.

We proceed in “rounds,” which are blocks of time-steps. Most rounds will consist of a single
time-step, in those cases where X, falls in an interval predicted by the encoder-controller pair.
In those cases where X, falls outside those bounds, a round might consist of multiple time-steps,
until an appropriate bounding interval is found for the state.

Throughout, we will maintain positive numbers I,, < M, that will be defined below. Roughly
speaking, M,, will represent an estimate of the maximum value of | X,,|, and I,, will capture the
quantization error in the controller’s estimate of X,,.

We fix My (a lower bound for the M,,’s), a large constant P, and a small J to be chosen later,
such that % € Z. The constant P captures the controller’s guess on how the M,,’s will grow at
each time-step. The constant § specifies the size of the codebook to % + 1, and the transmission
rate is R = [log(3 +1)].




We will now describe how the M,,’s will evolve with time along with our strategy. We first
initialize M; = I = Mj. At each time-step, we check how X,, compares to the guess of the
controller. If | X,,| < PM,,_1, we operate in normal mode. In this case, the encoder transmits a
quantized version of the state to the controller. If | X,,| > PM,,_; we operate in emergency mode,
and the encoder simply sends a special codeword to indicate this emergency mode. A round of
time-steps will continue until we exit emergency mode at a time £ such that X, < PM,_;.

Case 1: X,, < PM,,_;.

In this case, X, has landed within the bounds we expected it to land in, and we are starting
the round in normal mode. The encoder partitions the interval [—PM,_1, PM,_;] into %
subintervals of length d PM,,_; and sends a codeword to represent the index of the interval
(an, by) containing X,,. Set

Mn:maX(M()a‘anL‘anv 4)
I,, = max (Mo, '“";“) : (5)
Pn+1 = sgn(an) = sgn(by), (6)

where equality in (6) holds because % is an integer, and so the point O is always an endpoint

of a quantization interval. The values M, I,,, p, are common knowledge between the encoder
and controller; they are uniquely determined by the bits that have been sent by the encoder.
Consequently, in normal mode, the controller knows which interval of the form

pn[Mn - 2In7Mn] (7

contains X,,, where p,, € {£1}.
Now the controller will set

Un = pn,UfA(Mn - In) (8)

The random variables A,,, W,, are generated, and X,,11 is determined. Hence, we will have that:

|NAXn - Un’ < paly,. 9)

If | X, 41| < PM,, the round ends at time-step n + 1. Else, it will proceed for at least one
more time-step.

Case 2: |X,| > PM,,_1.

If this is the case, the encoder simply uses the special ( % + 1-th) codeword to indicate that we
are in emergency mode and the state has escaped the predicted interval. The round will continue
until we exit emergency mode.

Throughout emergency mode, we will take

Mn+k+1 = PMn—I—k



until exiting. More specifically, if at the start of time-step n 4 k we are in emergency mode, the
following steps happen:
1) The encoder uses the special codeword to indicate that we are in emergency mode.
2) The controller sets U, = 0. Since the controller does not have a good estimate of the
state, it does nothing.
3) Apig, Whik are generated, and X,,, 5,1 is determined. If X, 11 < PM, 1k, we exit
emergency mode and the round ends. Else, we continue to the next time-step in emergency
mode.

Remark 3.1. Note that the state always belongs to the interval indicated by (7) at the end of
a round. We also see that M,,, I,, > My at all times.

4. PREPARATIONS FOR ANALYSIS
A. A Modified Sequence

The idea is to show that |X,,|? decreases on average when it is large. However this is not
true during emergency mode, so we will define a dominating sequence (/N,,) which does have
the desired property. The analysis will also use a trick of modifying the sequence (X,,) slightly.
We will freeze the value of X, at a time of interest ng, by setting the subsequent A,’s to 1 and
Wy’s to 0. This modification is an important step required to obtain the dominating sequence
though Proposition 4.1 as explained in Remark 4.2. If we continued to let the state X,, evolve,
then we would have to account for the probability that X,  was large but A, was small.

First, we make a few important definitions. Fix ng, where IE[XTQLO] is what we would like to
bound. We define a modified sequence as follows:

T
which satisfies the recurrence
Xpi1 = A X, + Wy, — U, (11)
for '
R
Define a sequence M,,:
M, if n < ny
M, =< PM,—y ifn>mngand | X, | > M,_1 (13)

M, _1 if n > ng and |Xn0| < M, _.



Note that M,, might still be growing for n > ng, even though the sequence X, it aims to bound
is not growing for n > ng. Finally define:

e {l i
Now we define a counter for the length of a round for the modified sequence X,
Definition 1. Define 7(n) by
7(n) = min {m >n X < PMm_l} . (15)

Assuming time-step n < ng does not involve an emergency which lasts until time ng, the value
7(n) is simply the first time-step n or larger which starts in normal mode. Hence for a time-step
n which exits in normal mode, 7(n) = n. For a time-step n which starts in emergency mode,
suppose that time-steps n, ..., n + k < ng exit in emergency mode and n + k + 1 does not. Then

Tn)=71n+1)=..=7(n+k)=n+k+1 (16)
Note that we always have 7(7(n)) = 7(n) > n, usually with equality.

Definition 2. Let K be a large constant. Define

Qn=1\/M2+ KI2. (17)

The strange-seeming (), is essentially M,, but with better expected-decrease guarantees that
will be relevant later.

Finally, we define the dominating sequence which we will show is decreasing on average for
large n. With this definition of N,, we “front-load” the cost of an emergency mode. Thus, N,
is decaying exponentially during the emergency mode, even though X, is not, which helps us
obtain the required bound.

Definition 3. For a time-step n, let

This sequence essentially measures the time until the end of the round from any n through
the exponent 7(n) — n. The idea is to show that N,, decreases on average when it is large, and
to conclude from this that E[N?2] is uniformly bounded. We show in Proposition 4.1 below that
N,, bounds X, , allowing us to conclude that E[Xzo] is bounded, for all ng.

For technical reasons explained just below, we will work with the sequence X,, when esti-
mating E[X?2 ]. We think of this modified sequence as evolving normally until time ng. At time
ng, we freeze the value of X, to be X, . We finish the current round if we are in the middle
of emergency mode, and then stop permanently.

Proposition 4.1. We always have
| X0, | < Ny, (19)



Proof. Since X,,, = Xno and the value of X, is frozen to be Xno for all n > ng and 7(ng) > ny,
we have that B .
| X0l = [X7no)| £ Mrng) < Qr(ng) < Nug- (20)

O]

Remark 4.2. If we did not switch to working with the sequence (X'n) then the inequalities
above would hold with X in place of X but the first equality would not hold. The trick of
freezing the value of X, at X, for n > ng allows us to focus exactly on bounding the quantity
of interest, which is IE[X?ZU}, without worrying about fluctuations in the sequence due to A,’s
for n > ny.

5. ANALYSIS OF THE ALGORITHM

Now we state our main theorem showing that INV,, decreases on average when large. We need
to specify a filtration; we will include in the o-algebra F,, all steps of the algorithm which have
happened so far.

Definition 4. Let F,, be the o-algebra generated by (Ag)x<n, (Wk)r<n and all bits sent by the
encoder in time-steps up through n — 1.

Theorem 5.1. Let ngy be any fixed time. Then, for any n < ny, positive constant ¢ < min (1 — 0124, %)
that does not depend on ny, sufficiently large P, My, K, and sufficiently small 6 = §(c, P, My, K),
there exists a constant C(c, P, My, K,ow,04) such that

E[N2] < C 21)
Our main result, Theorem 1.1 follows immediately as a corollary.

Proof of Theorem 1.1. For any fixed ng, modifying the sequence at ng results in a sequence
N,,. We know from Prop 4.1 that |X,,,| < N,,. Theorem 5.1 implies inductively that

n un n<ng

sup(E[N?]) = sup <sup E[Ng]) < 00, (22)

which gives the result. O

A. Proof of Theorem 5.1

For a time-step n < ng that is in normal mode, we have that 7(n) = n. We write:

Npi1 = N lein=ni1 + Vs lrin)snit- (23)

We estimate the conditional expectation of each term separately. For the first term we establish
a second-moment averaged decrease from M,, to M, ; when we stay in normal mode, while
for the second we show that the contributions from emergency mode are small. The first step is
elementary but with slightly involved algebra, while the second requires us to control the tails



for the length of a round (and thus requires a bounded 4 + e-th moment). We split this work
into the following pair of lemmas.

Lemma 5.2. Suppose that time-steps n and n+ 1 are both < ng and start in normal mode, so
that T(n) = n and T(n + 1) = n + 1. Then for any positive constant ¢ < 1 — 0%, sufficiently
large K, arbitrary P, My, and sufficiently small § = 6(c, P, My, K) we have

EINZ 11 (ni)=ni1 | Ful < (1= ¢)N2 + 203, + KM; a.s.. (24)

n

Lemma 5.3. Suppose that A and W have finite 4+ e-th moments. Further, suppose that time-step
n starts in normal mode, so that T(n) = n. However, X,,1+1 > PM,, so that T(n+1) > n+ 1.
Then,

E[N 11 r(ni1)ysnt1 | Ful < eNp as., (25)

n

where (P, My) may be made made arbitrarily small by choosing My sufficiently large and then
P sufficiently large.

We now briefly explain how to derive Theorem 5.1 from Lemmas 5.2 and 5.3.

Proof of Theorem 5.1, using Lemmas 5.2 and 5.3. First, we consider the case when we are in
normal mode and 7(n) = n, and use the representation in (23). For c as in the theorem statement,
we first pick P, My large enough such that, in the language of Lemma 5.3, (P, M) satisfies
. 9 3
c+ ¢ < min lfJA,E . (26)

Lemma 5.3 then gives:

E[N; 11 lrnrtysnt | Frim)] < N5 27
Then substituting ¢ + ¢ for ¢ in Lemma 5.2, pick K large and then ¢ small to make

E[N; 11 (ni1)=nt1 | Frm] < (1 — ¢ — )Ny + 20, + K M§ (28)

n

hold whenever 7(n) = n. Combining (27) and (28) using (23), we have
E[N: 1 | Frgmy) < (1= )N + 207, + KM, (29)

in this case.
Now consider the case that we are in emergency mode and 7(n) > n. Here, due to (18) we
automatically have N,41 = NT Since ¢ < % and .7-"7(”) includes N, it follows that:

1
E[Nay1 | Frml = 7N < (1= )Ny (30)
Thus (29) also holds when 7(n) > n.
Let
D =203 + (1 + K)M§Z. (31)

and observe that (29) implies
E[N2,] < (1 — o)E[N2] + 203, + K M. (32)



Now we can proceed using induction. Assume E[N?] < % = C. Then, we have from (32) that

D
E[N2,,] < (1 fc);JerMg (33)
D
;.

< (34)

It remains to verify the base case. Since Xy = 0, we know that My = I, the initial 7(0) =0
and Qo = (1+ K)M§@. Hence Ny = Qo - 2° = Qo and E[NZ] < D < £ since ¢ < 1.
This proves Theorem 5.1 assuming the lemmas. U

B. Proofs of Lemmas

Finally, we prove the two key lemmas below.

Proof of Lemma 5.2. In the case considered here, we have 7(n) = n, and this implies Frn) =
Fn and N,, = Q,,. Further, we have 7(n 4+ 1) = n+ 1, and so Ny,+1 = Qn+1. Hence, for the
remainder of this proof we will refer to the ()’s instead of the N’s. Similarly, since n < ng we
will refer to the X’s instead of the X ’s, the A’s instead of /i’s, etc; these modifications are only
important for Lemma 5.3 and not Lemma 5.2.

Note that from the definition (17) we have @, = \/MEL +KI2 = \/J\;IEL + K12. We will
obtain the bound (24) by bounding both M,, and I,,. We first start with obtaining a bound on
M,

From (3) we have

E[X21|Fn) = 03 X2 + (maXy — Up)* + oy (35)
In addition, since we are in normal mode we have from (9): that
(aXn — Un| < paly.
This implies
E[X7 1L r(urnymnst [Fa] < BIX0 0 Fa] < 0AMG + pally + oy (36)

Furthermore, we assume this round lasts exactly one time-step and 7(n + 1) = n + 1. Hence,
we also have that either
‘Mn—i-l - Xn—&—l‘ S PéMny (37)

or the state X, has gotten below the lower limit My and we have that M, = My:
| Xng1| < My = M. (38)
From this we obtain the error estimate

E[(M 1 = X5 ) Letany=nt1 | Fal < POM (2E[1Xn11[1r(urtymnsr | Ful + POM) + M.
(39)



This follows because we have that (a®> — b?) = (a + b)(a — b), and further we observe that
|X + M| < |2X| + |M — X|. The last term M¢ comes from the case where the state hits the
lower limit, and follows from (38).

Now using the definition of X, in (1), the choice of U, in (8) and the simple estimate
E[|Z|] < puz + oz for any real random variable Z, we obtain:

El[ Xnt1| | Fn] < E[|Anl]|[Xn| + E[[Wal] + [padn| < 2pa +0a) My +ow.  (40)
Adding (36) and (39), and then using the bound in (40) for the conditional expectation of | X, 1|
we get that:

EIMp 11 niymntt | Fal < (0% + (24 + 04)(2P5) + P?6%) ME+2PSow My+pal,+opy+M;.
(41)
Since 2P§ow M, < P252M? + o2, we can eliminate the term that is linear in M, obtaining
the slightly cleaner
BN Lyt ol € (734 (Gpa + 04)(2P9) + 2P%6%) M2 pa L2 207 4 MF. (42)
Estimating 2 41 is much simpler; since we know from (5) that |I,,11| < max(PJéM,, M)
whenever 7(n) = n we obviously have

E[I2 11, (y=n|Fn) < P26 M2 + M§. 43)

Now, recall we defined @Q,, = \/]\Zfﬁ + K f?l. Adding (42) and (43) we get:

EQ7 1 1r(ni1)=nt11Fn] < (07 + (2pa + 0.4) (2P8) + (2 + K)P?6%) M +paly+207 +(K)M;.

(44)
Now, we choose parameters K, § so that we can bound the coefficients of M2 and I2 in (44),
i.e, so that the following two inequalities hold:

04+ (214 +04)(2P8) + (2 + K)P?6* <1 —¢, and (45)
pa < (L-o)K. (40)

These can be satisfied for any positive ¢ < 1 — 0124 if we take P arbitrary, choose K > # and
finally take § = d(c, K, P) sufficiently small. This gives:

ElQ2 11 (nt1)=nt1|Fn] < (1= )M: + (1 — ) K12 + 207, + (K)Mg
=(1- C)Qi + 20‘2;[/ + (K)Mg
Il

Remark 5.4. Making the choice c < 1 — 0124 is technically the only place in the proof where we
use the necessary assumption 0124 < 1. The value for P was essentially irrelevant in the above
calculations but picking P appropriately will be important for Lemma 5.3. In particular, it is
important that an arbitrarily large value of P is acceptable if we take ) very small to compensate.
The value My did not come into play but will play a minor role in proving Lemma 5.3.



For some intuition on the definition of Q, note that if M,, = I, i.e. when we hit the lower
limit of My, then we cannot guarantee an averaged squared decrease of M,, — M, 1. However,
in this case we expect I, 11 = Pd1, to hold. In the other extreme case when we know X,, = M,
we expect M, — My, 11 to result in a decrease, and so picking § small enough ensures that the
regularization term KI? doesn’t hurt us too much. Hence in both cases we expect a squared
decrease from Q,, — Qn+1 when parameters are chosen as appropriately, e.g. as above.

Proof of Lemma 5.3. Again, here note that 7(n) = n, and we estimate E[N? 1, ¢, 1)>p11]
under this assumption. Note that if 7(n + 1) =n + k + 1 (for £ > 1) then we have

2 2% (72 )
Ny <2 (M i1 T 1 +k+1)
S 22k+1M3+k+1 — 22k+1p2k+2M72L
S 22k‘+1p2/€+2N2. (47)

Hence qualitatively, it will suffice to show 7(n+ 1) — (n + 1) has very fast decaying tails. This
is what we vgill do. o R 3 R
We have X,,.1 = A, X,, + W,, — U, For later emergency rounds, we have U,,,; = 0 and so

Xntjr1 = Ang; Xnij + Wagy.
Hence again taking 7(n + 1) = n+ k + 1, for each k£ > h > 0 we may write

h
W; H

Jj=t+1

E

Xn+h+1 = (An+1An+2---An+h)(Aan - U +

ﬁ
Il
o

Since the above equation only holds when 7(n + 1) > n + h + 1, for each h > 0 we define

.Mb
.E;

Znihyl i= (An—&-lAn—l—Q-uAnJrh)(Aan - ﬁn) + Wz An—l—j . (48)
=0 j=i+1
Since |U,| < |pa|M, we have
~ ~ ~ ~ ~ h ~ ~
| Znnir] < 2M(|An] + pal) (| Ans1 Angoe- Apin) + > Wil T 1Ansil |- @9)
i=0 j=i+1

To control the probability that 7(n+1) = n+k+1, we will estimate the a-moments of Zy, 1 1.
The point is that 7(n + 1) = n + k + 1 implies |Z,, 41| > P*M,, which is an abnormally large
value. To do this we need to control the moments for each term. For convenience, define

M = max (2, E[(|A] + [pa])®]), (50)

and
= E[|W]?]. (5D



Some of the flnﬂ terms may have the law of A, while others may be almost surely 1. However,
the value m,, will serve to estimate both cases uniformly; similarly W might be identically 0,
and this will also be fine. We have the simple estimate for the first term in (49), which follows
from (50), the independence of M,, and all of the A;’s, which are i.i.d..

E HzMn(yAn| +11al) (Ang1AnyaAngn)| | fn} < Me2omh 1, (52)

For the individual terms in the summation in (49), we similarly have from (50), (51):
~ h ~ “ ] .
| (11 TT 1wl | | 73] < tamt

j=i+1

o

Let B; = <|WZ| H?:Z 41 | Ay \) Then, the above inequality can be written as ||B;||2 < £om/
where the L,-norm is taken with respect to E(- | F,,). The subadditivity of the L,-norm implies

that ey
1> Billg < <Z|Bi||a> :
7

)

This gives us the following bound for some constant C'(«), where we also use m/ =1 < m/:

h h @
E (YWl I] 14nl ']—"n < C(a)loym?. (53)
i=0 j=i+1

To combine the two estimates (52) and (53) we simply note that
|z +y|* <2%(|2|* + [y|*)
for all reals x,y. Hence we obtain the following, where C(a) and Cy(«) are also constants:
E{|Znsni1|* | Fal < Cr(@)(Mgmit! + Lamfy) < Co(a)ymy (Mg} +1).
Because we have |M,,| > My for all n, we may simply say for a constant C5(cv):
E{|Znnsa|* | Fu] < Ca(a)yml M. (54)
Now in the event that 7(n) = n + k + 1 we must have
| Zpsr| = P M,,.
Therefore by the Markov inequality,
B || Zuil 2 P, | Fo) < PTRONGRE ]| Zosl® | Fl
< Cs(a) PRopge—Femk . (55)

«



Combining our work, we have

E(NZ r(n+1)>n+1]<> (22k+1p2k+2N,3 P [\ZM\ > P’anD (56)
k>1
< C4(a)N? Z (22k—2p2k+2—kaM;Z—(l—k)mI;) 7 (57)
k>1

for a fourth constant Cy(«). The first inequality (56) follows from (55), and the second (§7) fol-
lows from (47). This sum is a geometric series with first term P*%m,, and ratio, 4P2*aMn* “Me.
Hence we obtain

E[NZ+117(n+1)>n+1] < Cc(x4)N72L < P4_a77}a > .
1 —4P2= My “my,
Since everything so far has been uniform in P, we see that for any o > 4, taking P sufficiently
large gives the upper bound
E[N7 i1 1r(nyt)sni1] < eNjy

n

as desired. (Recall A, W have bounded a-moment for some « > 4.)

6. CONCLUSION AND FUTURE WORK

Our paper considered the problem of stabilizing a system that was growing unpredictably
using observations over a rate-limited channel. We provide a time-varying strategy that is able
to stabilize the system. The controller takes different actions based on whether the value of
the system state is in a predicted interval or not — we believe such a time-varying strategy is
essential for this problem. In future work, we aim to close the gap between this strategy and the
converse bound in [5]. Extensions to the vector case are also interesting, since the differential
growth rate along different directions must be taken into account.
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