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ABSTRACT

We study the stabilization of an unpredictable linear control system where the controller must
act based on a rate-limited observation of the state. More precisely, we consider the system
Xn+1 = AnXn +Wn −Un, where the An’s are drawn independently at random at each time n
from a known distribution with unbounded support, and where the controller receives at most R
bits about the system state at each time from an encoder. We provide a time-varying achievable
strategy to stabilize the system in a second-moment sense with fixed, finite R.

While our previous result provided a strategy to stabilize this system using a variable-rate
code, this work provides an achievable strategy using a fixed-rate code. The strategy we employ
to achieve this is time-varying and takes different actions depending on the value of the state.
It proceeds in two modes: a normal mode (or zoom-in), where the realization of An is typical,
and an emergency mode (or zoom-out), where the realization of An is exceptionally large.

1. INTRODUCTION

System design for decentralized control over communication networks requires an understand-
ing of the informational bottlenecks that affect our ability to stabilize the system. This paper
focuses on a system that grows unpredictably and is observed over a rate-limited channel. We
consider a modification of the classical data-rate theorems [1], [2], [3], [4], where the system
growth is unpredictable and random, and provide a strategy to control such a system over finite
and fixed-rate channel. This builds on previous work [5], which considered the control of a
system with unpredictable growth with unbounded support over a channel using a variable-rate
code.

Specifically, we consider the control of the following system:

Xn+1 = AnXn +Wn − Un. (1)
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Fig. 1. Rate-limited control: The control Un can be any function of the observations Y n
0 . The encoder chooses

exactly R bits to transmit to the controller at every time-step through Yn, i.e. Yn ∈ {1, 2, . . . 2R}. The system gains
{An}n≥0 are i.i.d. random variables, and so are the additive disturbances {Wn}n≥0.

Here Xn is the (scalar) state of the system at time n. The system gains {An}n≥0 are drawn i.i.d.
from a known distribution and model the uncertainty the controller has about the system. The
additive disturbances {Wn}n≥0 are also i.i.d. drawn from a known distribution. The controller
chooses the control Un causally based on R-bit observations Y n

0 := {Y0, . . . , Yn}, where Yn ∈
{1, 2, . . . 2R}, which are transmitted by an encoder co-located with the system. Our goal is to
stabilize the system in a second-moment sense, which thus requires the co-design of an encoder-
controller pair.

It is known that without a rate-limit on the channel, the system in (1) is second-moment
stabilizable if and only if σ2A < 1, where σ2A is the variance of An [6]. Hence, we focus on the
case σ2A < 1. The goal is to guarantee second-moment stability of the system. Our main theorem
is stated below.

Theorem 1.1. Assume that An and Wn have finite (4 + ε)-th moments. Then, for some R ∈ N,
there exists a rate-R-limited control strategy (see Fig. 1) that achieves second-moment stability,
i.e.,

lim sup
n→∞

E[X2
n] <∞. (2)

A. Strategy overview

Previous works (e.g. [7], [8], [5]) have investigated variable-rate coding strategies for stabiliz-
ing the second-moment of the system (1), as well as other related systems. However, variable-rate
strategies fundamentally require that the encoder send an unbounded number of bits in the case
when the realization of An is large, and cannot be directly adapted for use in a fixed-rate regime.

In contrast to the variable-rate strategies, we employ a time-varying strategy in this work.
It works in two different “modes,” depending on whether the realization of An was typical
or exceptionally large. We will describe the strategy precisely later, but provide an intuitive
description here.

At every time-step, the controller maintains an interval that estimates system state. When
the state remains in the interval that was estimated by the controller, the strategy proceeds
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in “normal” (zoom-in) mode. If the state escapes the predicted interval, usually due to the
realization of an exceptionally large An, the strategy enters “emergency” (zoom-out) mode.
There, the controller grows it’s guess for the interval at every time-step till we are able to locate
Xn, following which we step back into normal mode. This time-varying strategy fundamentally
works because we can guarantee some average decrease during normal mode, while we can
bound the blow-ups from emergency mode (since we assume that the 4th moments of A and
W are bounded).

B. Related work

Fundamentally, our problem setup grows out of the uncertainty threshold principle [6] and
the extensive work to understand data-rate theorems [1], [2], [3], [4], [9]. However, the work on
the uncertainty threshold principle [6] does not consider rate limits on the observations, and the
classical data-rate theorems assume that the system model and growth rate are always perfectly
known to the controller.

Martins et al. [7] were the first to consider the rate-limited control of a system with uncertain
growth. Their achievable scheme is quantization-based and assumes that the uncertainty on
the system growth is bounded above. Phat et al. [10] also consider rate-limited control with
uncertain parameters from a robust control perspective. Their setup differs from ours in that it is
not stochastic, and only considers bounded support for the uncertainty on the parameters. They
provide a uniform quantization scheme that can stabilize their system.

Okano and Ishii have made significant progress on understanding rate-limited control of
systems with unpredictable growth from a worst-case perspective [11], [12], [8]. However, they
also consider systems where the uncertain parameters have bounded support and do not consider
additive noise in their model. The achievable scheme in [8] proposes a non-uniform optimal
quantizer for their problem that uses bins with logarithmically decreasing lengths, with the bins
closest to zero being the largest. However, this cannot work in the setting where both An and
Xn can have unbounded support, as is the case in our work.

We also build on a series of investigations around model unpredictability and multiplicative
noise in control systems [13], [14], [15]. In this work, we take a stochastic control approach,
which complements the investigations around parameter uncertainty in the robust control liter-
ature [16], [17].

In the context of linear systems with known parameters and unbounded additive disturbances,
the necessity of adaptive quantization for stabilization has been long recognized. Nair and
Evans [18] proved that time-invariant fixed-rate quantizers are unable to attain bounded cost
if the noise is unbounded [18], regardless of their rate. The reason is that since the noise is
unbounded, over time, a large magnitude noise realization will inevitably be encountered, and
the dynamic range of the quantizer will be exceeded by a large margin, not permitting recovery.
Adaptive quantizers of zooming type were originally proposed by Brockett and Liberzon [19],
and further studied in [18], [20], [21]. Such quantizers “zoom out” (i.e. expand their quantization
intervals; this corresponds to our “emergency mode”) when the system is far from the target
and “zoom in” when the system is close to the target (this corresponds to our “normal mode”).
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This paper extends our recent analysis [21] of adaptive quantization for known linear systems
to unpredictably varying ones.

2. SETUP

We consider the system in (1). Here Wn, An are i.i.d. variable noises drawn from the laws W
and A. These are independent of the system state Xn and the control term Un. We use n as the
time index. Without loss of generality, we assume our initial condition X0 = 0. The encoder
and controller will work together to stabilize the sequence (Xn) in the second-moment sense,
i.e., (2). The encoder observes Xn perfectly, and transmits a symbol from the set {1, 2, . . . , 2R}
to the controller at each time-step. R is a finite universal constant that we will choose later.
The controller can choose Un as a function of these R bits and any previous history. Let
µA, σA, µW , σW be the means and standard deviations of A,W . Without loss of generality, set
µW = 0.

The goal of second-moment stability cannot be accomplished for arbitrary distributions A,W .
Using the independence of An, Wn and Un, we see from (1) that [6]:

E[X2
n+1] = σ2AE[X2

n] + E[(µAXn − Un)2] + σ2W . (3)

It is clear from (3) that the assumption σA < 1 is required for second-moment stabilizability
(except possibly in the case σA = 1, σW = 0 which we ignore.) Our result will provide a
strategy to achieve it. We require the mild assumption that A and W have finite 4 + ε-moment
for some ε > 0.

3. DESCRIPTION OF THE STRATEGY

At the nth time-step, three things happen in the following order:
1) The encoder transmits a codeword from a codebook of size R bits to the controller based

on the observation of Xn. The exact value of R is described below.
2) The controller chooses Un based on the transmission from the encoder and any past history.
3) The noises An,Wn are generated and the new state Xn+1 is determined, based on An,Wn

and Un. This value of Xn+1 is observed by the encoder.
We proceed in “rounds,” which are blocks of time-steps. Most rounds will consist of a single

time-step, in those cases where Xn falls in an interval predicted by the encoder-controller pair.
In those cases where Xn falls outside those bounds, a round might consist of multiple time-steps,
until an appropriate bounding interval is found for the state.

Throughout, we will maintain positive numbers In ≤Mn, that will be defined below. Roughly
speaking, Mn will represent an estimate of the maximum value of |Xn|, and In will capture the
quantization error in the controller’s estimate of Xn.

We fix M0 (a lower bound for the Mn’s), a large constant P , and a small δ to be chosen later,
such that 1

δ ∈ Z. The constant P captures the controller’s guess on how the Mn’s will grow at
each time-step. The constant δ specifies the size of the codebook to 2

δ +1, and the transmission
rate is R = dlog(2δ + 1)e.
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We will now describe how the Mn’s will evolve with time along with our strategy. We first
initialize M1 = I1 = M0. At each time-step, we check how Xn compares to the guess of the
controller. If |Xn| ≤ PMn−1, we operate in normal mode. In this case, the encoder transmits a
quantized version of the state to the controller. If |Xn| > PMn−1 we operate in emergency mode,
and the encoder simply sends a special codeword to indicate this emergency mode. A round of
time-steps will continue until we exit emergency mode at a time ` such that X` ≤ PM`−1.

Case 1: Xn ≤ PMn−1.
In this case, Xn has landed within the bounds we expected it to land in, and we are starting

the round in normal mode. The encoder partitions the interval [−PMn−1, PMn−1] into 2
δ

subintervals of length δPMn−1 and sends a codeword to represent the index of the interval
(an, bn) containing Xn. Set

Mn = max(M0, |an|, |bn|), (4)

In = max

(
M0,
|an − bn|

2

)
, (5)

ρn+1 = sgn(an) = sgn(bn), (6)

where equality in (6) holds because 1
δ is an integer, and so the point 0 is always an endpoint

of a quantization interval. The values Mn, In, ρn are common knowledge between the encoder
and controller; they are uniquely determined by the bits that have been sent by the encoder.
Consequently, in normal mode, the controller knows which interval of the form

ρn[Mn − 2In,Mn] (7)

contains Xn, where ρn ∈ {±1}.
Now the controller will set

Un = ρnµA(Mn − In). (8)

The random variables An,Wn are generated, and Xn+1 is determined. Hence, we will have that:

|µAXn − Un| ≤ µAIn. (9)

If |Xn+1| ≤ PMn, the round ends at time-step n + 1. Else, it will proceed for at least one
more time-step.

Case 2: |Xn| > PMn−1.
If this is the case, the encoder simply uses the special (2δ +1-th) codeword to indicate that we

are in emergency mode and the state has escaped the predicted interval. The round will continue
until we exit emergency mode.

Throughout emergency mode, we will take

Mn+k+1 = PMn+k



6

until exiting. More specifically, if at the start of time-step n+ k we are in emergency mode, the
following steps happen:

1) The encoder uses the special codeword to indicate that we are in emergency mode.
2) The controller sets Un+k = 0. Since the controller does not have a good estimate of the

state, it does nothing.
3) An+k,Wn+k are generated, and Xn+k+1 is determined. If Xn+k+1 < PMn+k, we exit

emergency mode and the round ends. Else, we continue to the next time-step in emergency
mode.

Remark 3.1. Note that the state always belongs to the interval indicated by (7) at the end of
a round. We also see that Mn, In ≥M0 at all times.

4. PREPARATIONS FOR ANALYSIS

A. A Modified Sequence

The idea is to show that |Xn|2 decreases on average when it is large. However this is not
true during emergency mode, so we will define a dominating sequence (Nn) which does have
the desired property. The analysis will also use a trick of modifying the sequence (Xn) slightly.
We will freeze the value of Xn at a time of interest n0, by setting the subsequent An’s to 1 and
Wn’s to 0. This modification is an important step required to obtain the dominating sequence
though Proposition 4.1 as explained in Remark 4.2. If we continued to let the state Xn evolve,
then we would have to account for the probability that Xn0

was large but An0
was small.

First, we make a few important definitions. Fix n0, where E[X2
n0
] is what we would like to

bound. We define a modified sequence as follows:

X̃n =

{
Xn if n < n0,

Xn0
if n ≥ n0.

(10)

which satisfies the recurrence

X̃n+1 = ÃnX̃n + W̃n − Ũn (11)

for

(Ãn, W̃n, Ũn) =

{
(An,Wn, Un) if n < n0

(1, 0, 0) if n ≥ n0
(12)

Define a sequence M̃n:

M̃n =


Mn if n ≤ n0
PM̃n−1 if n > n0 and |X̃n0

| > M̃n−1

M̃n−1 if n > n0 and |X̃n0
| ≤ M̃n−1.

(13)
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Note that M̃n might still be growing for n > n0, even though the sequence X̃n it aims to bound
is not growing for n > n0. Finally define:

Ĩn =

{
In if n ≤ n0
In0

if n > n0.
(14)

Now we define a counter for the length of a round for the modified sequence X̃n.

Definition 1. Define τ(n) by

τ(n) = min
{
m ≥ n : |X̃m| ≤ PM̃m−1

}
. (15)

Assuming time-step n < n0 does not involve an emergency which lasts until time n0, the value
τ(n) is simply the first time-step n or larger which starts in normal mode. Hence for a time-step
n which exits in normal mode, τ(n) = n. For a time-step n which starts in emergency mode,
suppose that time-steps n, ..., n+ k < n0 exit in emergency mode and n+ k+1 does not. Then

τ(n) = τ(n+ 1) = ... = τ(n+ k) = n+ k + 1. (16)

Note that we always have τ(τ(n)) = τ(n) ≥ n, usually with equality.

Definition 2. Let K be a large constant. Define

Qn =

√
M̃2
n +KĨ2n. (17)

The strange-seeming Qn is essentially Mn but with better expected-decrease guarantees that
will be relevant later.

Finally, we define the dominating sequence which we will show is decreasing on average for
large n. With this definition of Nn we “front-load” the cost of an emergency mode. Thus, Nn

is decaying exponentially during the emergency mode, even though Xn is not, which helps us
obtain the required bound.

Definition 3. For a time-step n, let

Nn = Qτ(n)2
τ(n)−n. (18)

This sequence essentially measures the time until the end of the round from any n through
the exponent τ(n)− n. The idea is to show that Nn decreases on average when it is large, and
to conclude from this that E[N2

n] is uniformly bounded. We show in Proposition 4.1 below that
Nn0

bounds Xn0
, allowing us to conclude that E[X2

n0
] is bounded, for all n0.

For technical reasons explained just below, we will work with the sequence X̃n when esti-
mating E[X2

n0
]. We think of this modified sequence as evolving normally until time n0. At time

n0, we freeze the value of Xn to be Xn0
. We finish the current round if we are in the middle

of emergency mode, and then stop permanently.

Proposition 4.1. We always have
|Xn0
| ≤ Nn0

. (19)
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Proof. Since Xn0
= X̃n0

and the value of X̃n is frozen to be X̃n0
for all n ≥ n0 and τ(n0) ≥ n0,

we have that
|X̃n0
| = |X̃τ(n0)| ≤Mτ(n0) ≤ Qτ(n0) ≤ Nn0

. (20)

Remark 4.2. If we did not switch to working with the sequence (X̃n), then the inequalities
above would hold with X in place of X̃ but the first equality would not hold. The trick of
freezing the value of X̃n at Xn0

for n ≥ n0 allows us to focus exactly on bounding the quantity
of interest, which is E[X2

n0
], without worrying about fluctuations in the sequence due to An’s

for n ≥ n0.

5. ANALYSIS OF THE ALGORITHM

Now we state our main theorem showing that Nn decreases on average when large. We need
to specify a filtration; we will include in the σ-algebra Fn all steps of the algorithm which have
happened so far.

Definition 4. Let Fn be the σ-algebra generated by (Ak)k<n, (Wk)k<n and all bits sent by the
encoder in time-steps up through n− 1.

Theorem 5.1. Let n0 be any fixed time. Then, for any n < n0, positive constant c < min
(
1− σ2A,

3
4

)
that does not depend on n0, sufficiently large P,M0,K, and sufficiently small δ = δ(c, P,M0,K),
there exists a constant C(c, P,M0,K, σW , σA) such that

E[N2
n] ≤ C (21)

Our main result, Theorem 1.1 follows immediately as a corollary.

Proof of Theorem 1.1. For any fixed n0, modifying the sequence at n0 results in a sequence
Nn. We know from Prop 4.1 that |Xn0

| ≤ Nn0
. Theorem 5.1 implies inductively that

sup
n
(E[N2

n]) = sup
n0

(
sup
n<n0

E[N2
n]

)
<∞, (22)

which gives the result.

A. Proof of Theorem 5.1

For a time-step n < n0 that is in normal mode, we have that τ(n) = n. We write:

N2
n+1 = N2

n+11τ(n+1)=n+1 +N2
n+11τ(n+1)>n+1. (23)

We estimate the conditional expectation of each term separately. For the first term we establish
a second-moment averaged decrease from Mn to Mn+1 when we stay in normal mode, while
for the second we show that the contributions from emergency mode are small. The first step is
elementary but with slightly involved algebra, while the second requires us to control the tails
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for the length of a round (and thus requires a bounded 4 + ε-th moment). We split this work
into the following pair of lemmas.

Lemma 5.2. Suppose that time-steps n and n+ 1 are both < n0 and start in normal mode, so
that τ(n) = n and τ(n + 1) = n + 1. Then for any positive constant c < 1 − σ2A, sufficiently
large K, arbitrary P,M0, and sufficiently small δ = δ(c, P,M0,K) we have

E[N2
n+11τ(n+1)=n+1 | Fn] ≤ (1− c)N2

n + 2σ2W +KM2
0 a.s.. (24)

Lemma 5.3. Suppose that A and W have finite 4+ε-th moments. Further, suppose that time-step
n starts in normal mode, so that τ(n) = n. However, Xn+1 > PMn, so that τ(n+1) > n+1.
Then,

E[N2
n+11τ(n+1)>n+1 | Fn] ≤ εN2

n a.s., (25)

where ε(P,M0) may be made made arbitrarily small by choosing M0 sufficiently large and then
P sufficiently large.

We now briefly explain how to derive Theorem 5.1 from Lemmas 5.2 and 5.3.

Proof of Theorem 5.1, using Lemmas 5.2 and 5.3. First, we consider the case when we are in
normal mode and τ(n) = n, and use the representation in (23). For c as in the theorem statement,
we first pick P,M0 large enough such that, in the language of Lemma 5.3, ε(P,M0) satisfies

c+ ε < min

(
1− σ2A,

3

4

)
. (26)

Lemma 5.3 then gives:
E[N2

n+11τ(n+1)>n+1 | Fτ(n)] ≤ εN2
n. (27)

Then substituting c+ ε for c in Lemma 5.2, pick K large and then δ small to make

E[N2
n+11τ(n+1)=n+1 | Fτ(n)] ≤ (1− c− ε)N2

n + 2σ2W +KM2
0 (28)

hold whenever τ(n) = n. Combining (27) and (28) using (23), we have

E[N2
n+1 | Fτ(n)] ≤ (1− c)N2

n + 2σ2W +KM2
0 . (29)

in this case.
Now consider the case that we are in emergency mode and τ(n) > n. Here, due to (18) we

automatically have Nn+1 =
Nn

2 . Since c < 3
4 and Fτ(n) includes Nn, it follows that:

E[N2
n+1 | Fτ(n)] =

1

4
N2
n ≤ (1− c)N2

n. (30)

Thus (29) also holds when τ(n) > n.
Let

D = 2σ2W + (1 +K)M2
0 . (31)

and observe that (29) implies

E[N2
n+1] ≤ (1− c)E[N2

n] + 2σ2W +KM2
0 . (32)
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Now we can proceed using induction. Assume E[N2
n] ≤ D

c = C. Then, we have from (32) that

E[N2
n+1] ≤ (1− c)D

c
+D −M2

0 (33)

<
D

c
. (34)

It remains to verify the base case. Since X0 = 0, we know that M0 = I0, the initial τ(0) = 0
and Q0 = (1 +K)M2

0 . Hence N0 = Q0 · 20 = Q0 and E[N2
0 ] ≤ D ≤ D

c , since c < 1.
This proves Theorem 5.1 assuming the lemmas.

B. Proofs of Lemmas

Finally, we prove the two key lemmas below.

Proof of Lemma 5.2. In the case considered here, we have τ(n) = n, and this implies Fτ(n) =
Fn and Nn = Qn. Further, we have τ(n + 1) = n + 1, and so Nn+1 = Qn+1. Hence, for the
remainder of this proof we will refer to the Q’s instead of the N ’s. Similarly, since n < n0 we
will refer to the X’s instead of the X̃’s, the A’s instead of Ã’s, etc; these modifications are only
important for Lemma 5.3 and not Lemma 5.2.

Note that from the definition (17) we have Qn =
√
M̃2
n +KĨ2n =

√
M̃2
n +KĨ2n. We will

obtain the bound (24) by bounding both Mn and In. We first start with obtaining a bound on
Mn

From (3) we have

E[X2
n+1|Fn] = σ2AX

2
n + (µAXn − Un)2 + σ2W . (35)

In addition, since we are in normal mode we have from (9): that

|µAXn − Un| ≤ µAIn.

This implies

E[X2
n+11τ(n+1)=n+1|Fn] ≤ E[X2

n+1|Fn] ≤ σ2AM2
n + µAI

2
n + σ2W . (36)

Furthermore, we assume this round lasts exactly one time-step and τ(n + 1) = n + 1. Hence,
we also have that either

|Mn+1 −Xn+1| ≤ PδMn, (37)

or the state Xn+1 has gotten below the lower limit M0 and we have that Mn+1 =M0:

|Xn+1| ≤Mn+1 =M0. (38)

From this we obtain the error estimate

E[(M2
n+1 −X2

n+1)1τ(n+1)=n+1 | Fn] ≤ PδMn

(
2E[|Xn+1|1τ(n+1)=n+1 | Fn] + PδMn

)
+M2

0 .
(39)
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This follows because we have that (a2 − b2) = (a + b)(a − b), and further we observe that
|X +M | ≤ |2X| + |M −X|. The last term M2

0 comes from the case where the state hits the
lower limit, and follows from (38).

Now using the definition of Xn+1 in (1), the choice of Un in (8) and the simple estimate
E[|Z|] ≤ µZ + σZ for any real random variable Z, we obtain:

E[|Xn+1| | Fn] ≤ E[|An|]|Xn|+ E[|Wn|] + |µAMn| ≤ (2µA + σA)Mn + σW . (40)

Adding (36) and (39), and then using the bound in (40) for the conditional expectation of |Xn+1|
we get that:

E[M2
n+11τ(n+1)=n+1 | Fn] ≤

(
σ2A + (2µA + σA)(2Pδ) + P 2δ2

)
M2
n+2PδσWMn+µAI

2
n+σ

2
W+M2

0 .
(41)

Since 2PδσWMn ≤ P 2δ2M2
n + σ2W we can eliminate the term that is linear in Mn, obtaining

the slightly cleaner

E[M2
n+11τ(n+1)=n+1|Fn] ≤

(
σ2A + (2µA + σA)(2Pδ) + 2P 2δ2

)
M2
n+µAI

2
n+2σ2W+M2

0 . (42)

Estimating I2n+1 is much simpler; since we know from (5) that |In+1| ≤ max(PδMn,M0)
whenever τ(n) = n we obviously have

E[I2n+11τ(n)=n|Fn] ≤ P 2δ2M2
n +M2

0 . (43)

Now, recall we defined Qn =
√
M̃2
n +KĨ2n. Adding (42) and (43) we get:

E[Q2
n+11τ(n+1)=n+1|Fn] ≤

(
σ2A + (2µA + σA)(2Pδ) + (2 +K)P 2δ2

)
M2
n+µAI

2
n+2σ2W+(K)M2

0 .
(44)

Now, we choose parameters K, δ so that we can bound the coefficients of M2
n and I2n in (44),

i.e, so that the following two inequalities hold:

σ2A + (2µA + σA)(2Pδ) + (2 +K)P 2δ2 ≤ 1− c, and (45)

µA ≤ (1− c)K. (46)

These can be satisfied for any positive c < 1−σ2A if we take P arbitrary, choose K ≥ µA

1−c , and
finally take δ = δ(c,K, P ) sufficiently small. This gives:

E[Q2
n+11τ(n+1)=n+1|Fn] ≤ (1− c)M2

n + (1− c)KI2n + 2σ2W + (K)M2
0

= (1− c)Q2
n + 2σ2W + (K)M2

0 .

Remark 5.4. Making the choice c < 1−σ2A is technically the only place in the proof where we
use the necessary assumption σ2A < 1. The value for P was essentially irrelevant in the above
calculations but picking P appropriately will be important for Lemma 5.3. In particular, it is
important that an arbitrarily large value of P is acceptable if we take δ very small to compensate.
The value M0 did not come into play but will play a minor role in proving Lemma 5.3.
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For some intuition on the definition of Qn, note that if Mn = In, i.e. when we hit the lower
limit of M0, then we cannot guarantee an averaged squared decrease of Mn →Mn+1. However,
in this case we expect In+1 = PδIn to hold. In the other extreme case when we know Xn =Mn,
we expect Mn →Mn+1 to result in a decrease, and so picking δ small enough ensures that the
regularization term KI2n doesn’t hurt us too much. Hence in both cases we expect a squared
decrease from Qn → Qn+1 when parameters are chosen as appropriately, e.g. as above.

Proof of Lemma 5.3. Again, here note that τ(n) = n, and we estimate E[N2
n+11τ(n+1)>n+1]

under this assumption. Note that if τ(n+ 1) = n+ k + 1 (for k ≥ 1) then we have

N2
n+1 ≤ 22k

(
M̃2
n+k+1 + Ĩ2n+k+1

)
≤ 22k+1M̃2

n+k+1 = 22k+1P 2k+2M̃2
n

≤ 22k+1P 2k+2N2
n. (47)

Hence qualitatively, it will suffice to show τ(n+1)− (n+1) has very fast decaying tails. This
is what we will do.

We have X̃n+1 = ÃnX̃n + W̃n − Ũn. For later emergency rounds, we have Ũn+j = 0 and so

X̃n+j+1 = Ãn+jX̃n+j + W̃n+j .

Hence again taking τ(n+ 1) = n+ k + 1, for each k ≥ h ≥ 0 we may write

X̃n+h+1 = (Ãn+1Ãn+2...Ãn+h)(ÃnX̃n − Ũn) +
h∑
i=0

W̃i

h∏
j=i+1

Ãn+j

 .

Since the above equation only holds when τ(n+ 1) ≥ n+ h+ 1, for each h ≥ 0 we define

Zn+h+1 := (Ãn+1Ãn+2...Ãn+h)(ÃnX̃n − Ũn) +
h∑
i=0

W̃i

h∏
j=i+1

Ãn+j

 . (48)

Since |Ũn| ≤ |µA|M̃n we have

|Zn+h+1| ≤ 2M̃n(|Ãn|+ |µA|)(|Ãn+1Ãn+2...Ãn+h|) +
h∑
i=0

|W̃i|
h∏

j=i+1

|Ãn+j |

 . (49)

To control the probability that τ(n+1) = n+k+1, we will estimate the α-moments of Zn+h+1.
The point is that τ(n+ 1) = n+ k + 1 implies |Zn+k| ≥ P kM̃n which is an abnormally large
value. To do this we need to control the moments for each term. For convenience, define

mα = max (2,E [(|A|+ |µA|)α]) , (50)

and
`α = E[|W |α]. (51)
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Some of the Ãn+j terms may have the law of A, while others may be almost surely 1. However,
the value mα will serve to estimate both cases uniformly; similarly W might be identically 0,
and this will also be fine. We have the simple estimate for the first term in (49), which follows
from (50), the independence of M̃n and all of the Ãk’s, which are i.i.d..

E
[∣∣∣2M̃n(|Ãn|+ |µA|)(Ãn+1Ãn+2...Ãn+h)

∣∣∣α∣∣ Fn] ≤ M̃α
n 2

αmh+1
α . (52)

For the individual terms in the summation in (49), we similarly have from (50), (51):

E

|W̃i|
h∏

j=i+1

|Ãn+j |

α∣∣∣∣ Fn
 ≤ `αmh−i

α .

Let Bi =
(
|W̃i|

∏h
j=i+1 |Ãn+j |

)
. Then, the above inequality can be written as ||Bi||αα ≤ `αmh−i

α ,

where the Lα-norm is taken with respect to E(· | Fn). The subadditivity of the Lα-norm implies
that

||
∑
i

Bi||αα ≤

(∑
i

||Bi||α

)α
.

This gives us the following bound for some constant C(α), where we also use mh−1
α ≤ mh

α:

E

 h∑
i=0

|W̃i|
h∏

j=i+1

|Ãn+j |

α∣∣∣∣ Fn
 ≤ C(α)`αmh

α. (53)

To combine the two estimates (52) and (53) we simply note that

|x+ y|α ≤ 2α(|x|α + |y|α)

for all reals x, y. Hence we obtain the following, where C1(α) and C2(α) are also constants:

E [|Zn+h+1|α | Fn] ≤ C1(α)(M̃
α
nm

h+1
α + `αm

h
α) ≤ C2(α)m

h
α(M̃

α
n + 1).

Because we have |M̃n| ≥M0 for all n, we may simply say for a constant C3(α):

E [|Zn+h+1|α | Fn] ≤ C3(α)m
h
αM̃

α
n . (54)

Now in the event that τ(n) = n+ k + 1 we must have

|Zn+k| ≥ P kM̃n.

Therefore by the Markov inequality,

P
[
|Zn+k| ≥ P kM̃n | Fn

]
≤ P−kαM̃−kαn E [|Zn+k|α | Fn]

≤ C3(α)P
−kαM̃α−kα

n mk
α. (55)
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Combining our work, we have

E[|N2
n+1τ(n+ 1) > n+ 1] ≤

∑
k≥1

(
22k+1P 2k+2N2

n P
[
|Zn+k| ≥ P kM̃n

])
(56)

≤ C4(α)N
2
n

∑
k≥1

(
22k−2P 2k+2−kαM̃ τ(1−k)

n mk
α

)
, (57)

for a fourth constant C4(α). The first inequality (56) follows from (55), and the second (57) fol-
lows from (47). This sum is a geometric series with first term P 4−αmα, and ratio, 4P 2−αM̃−αn mα.
Hence we obtain

E[N2
n+11τ(n+1)>n+1] ≤ C(4)

α N2
n

(
P 4−αmα

1− 4P 2−αM̃−αn mα

)
.

Since everything so far has been uniform in P , we see that for any α > 4, taking P sufficiently
large gives the upper bound

E[N2
n+11τ(n+1)>n+1] ≤ εN2

n

as desired. (Recall A,W have bounded α-moment for some α > 4.)

6. CONCLUSION AND FUTURE WORK

Our paper considered the problem of stabilizing a system that was growing unpredictably
using observations over a rate-limited channel. We provide a time-varying strategy that is able
to stabilize the system. The controller takes different actions based on whether the value of
the system state is in a predicted interval or not — we believe such a time-varying strategy is
essential for this problem. In future work, we aim to close the gap between this strategy and the
converse bound in [5]. Extensions to the vector case are also interesting, since the differential
growth rate along different directions must be taken into account.
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