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Optimal Causal Rate-Constrained Sampling of the Wiener Process

Nian Guo and Victoria Kostina

Abstract—We consider the following communication scenario.
An encoder causally observes the Wiener process and decides
when and what to transmit about it. A decoder makes real-
time estimation of the process using causally received codewords.
We determine the causal encoding and decoding policies that
jointly minimize the mean-square estimation error, under the
long-term communication rate constraint of R bits per second.
We show that an optimal encoding policy can be implemented
as a causal sampling policy followed by a causal compressing
policy. We prove that the optimal encoding policy samples the
Wiener process once the innovation passes either % or — %,
and compresses the sign of the innovation (SOI) using a 1-
bit codeword. The SOI coding scheme achieves the operational
distortion-rate function, which is equal to D°°(R) =
Surprisingly, this is significantly better than the distortion-rate
tradeoff achieved in the limit of infinite delay by the best non-
causal code. This is because the SOI coding scheme leverages
the free timing information supplied by the zero-delay channel
between the encoder and the decoder. The key to unlock that
gain is the event-triggered nature of the SOI sampling policy. In
contrast, the distortion-rate tradeoffs achieved with deterministic
sampling policies are much worse: we prove that the causal
informational distortion-rate function in that scenario is as high
as Dper(R) = g%. It is achieved by the uniform sampling policy
with the sampling interval %. In either case, the optimal strategy
is to sample the process as fast as possible and to transmit 1-bit
codewords to the decoder without delay. Finally, we show that
the SOI coding scheme also minimizes the mean-square cost of
a continuous-time control system driven by the Wiener process,
and controlled via rate-constrained impulses.

Index Terms—Causal lossy source coding, sequential estima-
tion, sampling.

I. INTRODUCTION
A. System Model

Consider the system in Fig. 1. A source outputs a
continuous-time standard Wiener process {W; }7_, within the
time horizon [0,7]. An encoder observes the process and
decides to disclose information about it at a sequence of non-
decreasing codeword-generating time stamps

0<m <<~ <7y <T. (1)

These time stamps can be random and they can causally
depend on the Wiener process. Consequently, the total number
of time stamps N can also be random. At time 7;, the encoder
chooses to generate a binary codeword U;, with a length
¢; € Z, based on the past observed process {W;};’,. Then,
the codeword U is passed through a noiseless digital channel
to the decoder without delay. Upon receiving the codeword
U, at time 7;, based on all the received codewords U* and
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the codeword-generating time stamps {74, ..., 7; }, the decoder
updates its running estimate of the Wiener process, yielding
{Wi}L_,.. The decoder updates its estimate {W;}{__ ., once
the next codeword U, is received at ;1.
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Fig. 1: System Model.

The communication between the encoder and the decoder is
subject to a constraint on the long-term average transmission

rate,
N

1
TE 2& < R (bits per sec). 2)
The distortion is measured by the long-term mean-square
error (MSE) between W; and Wy, 0 <t < T,
1

—E

T
/ (W, — Wy)2dt| < d. (3)
T 0

We aim to find the jointly optimal encoding and decoding
policies that achieve the best tradeoffs between the rate in (2)
and the MSE in (3).

B. Literature Review

Finding sampling policies at the encoder and estimation
policies at the decoder to jointly minimize the end-to-end
distortion under transmission constraints falls into the realm
of optimal scheduling and sequential estimation problems.
These problems are often encountered in network control
systems, and has attracted significant research interest with
the development of robotics, the Internet of things, and the
smart grid.

Astrém and Bernhardsson [1] compared uniform and sym-
metric threshold sampling policies' (referred to as Riemann
and Lebesgue sampling, respectively) in continuous-time first-
order stochastic systems with a Wiener process disturbance,
and showed that the Lebesgue sampling gives a lower dis-
tortion than the Riemann sampling under the same average
sampling frequency. Imer and Basar [2] considered causal
estimation of i.i.d. processes under MSE and the constraint
on the total number of transmissions over a finite time hori-
zon, and showed via dynamic programming, that the time-
varying symmetric threshold sampling policy is optimal for
i.i.d. Gaussian processes [2]. For causal estimation of mul-
tidimensional discrete-time Gauss-Markov processes, Cogill

The symmetric threshold sampling corresponds to sampling the process if
its current value exceeds or falls short of the previous sample by exactly a
certain threshold.
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et al. [3] aimed to find a sampling policy that minimizes a
cost function combining the average weighted MSE and the
average transmission cost over the infinite horizon. Cogill et
al. [3] proposed a threshold policy that transmits a sample
once the absolute value of the squared error exceeds some
constant, and proved that this suboptimal policy leads to a
cost that is within a factor of 6 of the optimal achievable
cost. Using dynamic programming and majorization theory,
Lipsa and Martins [4] proved that a time-varying symmetric
threshold policy and a Kalman-like filter jointly minimize a
discounted cost function consisting of MSE and a communi-
cation cost, for scalar discrete-time Gauss-Markov processes
over a finite time horizon. For partially observed discrete-time
Gauss-Markov processes, Wu et al. [5] fixed an event-triggered
policy, where the encoder transmits only if the L-infinity
norm of the Mahalanobis transformation of the measurement
innovation exceeds a constant, and derived both the accurate
and approximate (assuming Gaussian samples) minimum MSE
(MMSE) estimator to combine with that sampling policy. Wu
et al. [5] also derived the relation between the transmission
frequency and the threshold of the event-triggered policy.
Rabi et al. [6] formulated the problem of causal estimation
of continuous-time scalar linear diffusion processes under the
constraint on the total number of transmissions over a finite
time horizon as an optimal stopping time problem. Rabi et
al. [6] solved the optimal stopping time problem iteratively
to show that the optimal deterministic sampling policy for
the Wiener process is a uniform sampling policy, and that
the optimal event-triggered sampling policy is a time-varying
symmetric threshold policy. Rabi et al. [6] derived a dynamic
program that can be used to numerically compute the optimal
sampling policy for the Ornstein-Uhlenbeck process. Nar and
Bagar [7] extended the optimal stopping time problem in [6]
to the multidimensional Wiener process, and proved that a
symmetric threshold policy remains optimal over both finite
and infinite time horizons. In particular, Nar and Bagar [7]
showed that the optimal threshold over the infinite horizon
is a constant depending on the average sampling frequency.
For autogressive Markov processes driven by an i.i.d. process
with unimodal and symmetric distribution, Charkravorty and
Mahajan [8] used ideas from renewal theory to prove that
there is no loss of optimality if one focuses on sampling
policies with time-homogeneous thresholds over the infinite
time horizon. Charkravorty and Mahajan [8] also proved
that a symmetric threshold sampling policy together with
an Kalman-like estimator achieves the distortion-transmission
function, where the distortion-transmission function is defined
as the minimum achievable expected average (or discounted)
distortion subject to the expected average (or discounted)
number of transmissions. For the same scenario as in [8],
Molin and Hirche [9] proposed an iterative algorithm to
show that the optimal event-triggered policy converges to a
symmetric threshold policy.

In contrast to the scenarios in [1]-[9], where the commu-
nication channel is assumed to be perfect, [10]-[12] consider
imperfect communication channels, such as a channel with

an i.i.d. delay [10], a channel with i.i.d. Gamma noise [11], a
fading channel [12], and a packet-drop channel [13]. Sun et al.
[10] proved that a symmetric threshold policy remains optimal
even when the samples of the Wiener process experience an
ii.d. random transmission delay, but the threshold depends
on the distribution of channel delay and is different from
the one in [7]. Using dynamic programming, Gao et al. in
[11] derived the optimal sampling, encoding and decoding
policies for event-triggered sampling of an i.i.d. Laplacian
source with subsequent transmission over a channel with a
Gamma additive noise, under an average power constraint.
For discrete-time first-order autogressive Markov processes
considered in [8]-[9], Ren et al. [12] introduced a fading
channel between the encoder and the decoder, where a suc-
cessful transmission depends on both the channel gains and
the transmission power, and found the optimal encoding and
decoding policies that minimize an infinite horizon cost func-
tion combining the MSE and the power usage. For first-order
autogressive sources considered in [8][9][12], Chakravorty and
Mahajan [13] further proved that the optimal estimation policy
is a Kalman-like filter and the optimal sampling policy is
symmetric threshold policy when the communication channel
is a packet-drop channel with Markovian states, where the
packet-drop probability depends on the channel state and the
transmission power chosen by the encoder.

Nayyar et al. [14] considered a scenario where the encoder
relies on the energy harvested from the environment to trans-
mit messages to the estimator, with each transmission costing
1 unit of energy, and proved that the optimal sampling strategy
is a symmetric threshold policy, provided that the finite-
state Markov source has symmetric and unimodal distribution
and the distortion measure is either the Hamming distortion
function or the power of the estimation error |z — y|?. For the
non-causal lossy source coding of a uniformly sampled Wiener
process, Kipnis et al. [15] derived the trade-offs between
the sampling frequency, the communication bitrate and the
estimation MSE, achievable in the limit of infinite delay.

Kofman and Braslavsky [16] designed a quantized
event-triggered controller for noiseless partially observed
continuous-time LTI systems with an unknown initial state to
ensure asymptotic convergence of the system to the origin with
zero average rate, seemingly violating the data-rate theorem.
Similar to [16], the fact that sampling time stamps of event-
triggered policies carry information is also exploited in [17]-
[20]. Pearson et al. [17] considered encoding the determin-
istic and possibly nonuniformly sampled states of noiseless
continuous-time LTI systems into symbols in a finite alphabet
with a free symbol representing the absence of transmission.
For discrete-time linear systems with additive disturbances,
Khina et al. [18] considered a setting where at each discrete-
time instant, the encoder chooses to either transmit 1 bit or
transmit the free symbol, and designed an adaptive scalar
quantizer with three bins using a Lloyd-Max algorithm with
the quantization bin of the largest probability corresponding
to the free symbol. Ling [19] designed a periodic event-
triggered quantization policy to stabilize continuous-time LTI



systems subject to i.i.d. feedback dropouts, bounded network
delay and bounded noise, which leads to a stabilizing rate
that is lower than the one the data-rate theorem requires
for time-triggered policies. Khojasteh et al. [20] considered
sampling noiseless continuous-time LTI systems when the
state estimation error exceeds an exponentially decaying func-
tion, and found that the information transmission rate re-
quired for stabilizing systems can be any positive value for
small enough delays and starts to increase when the delay
exceeds a critical value. Quantized event-triggered control
has also been studied for continuous-time LTI systems with
bounded disturbances [21], for partially-observed continuous-
time LTT systems without noise [22] and with bounded noise
[23], for discrete-time noiseless linear systems [24], and for
partially observed continuous-time LTI systems with time-
varying network delay [25]. Event-triggered control schemes
to guarantee exponential stabilization were designed both for
continuous-time LTT systems with bounded disturbances under
a bounded rate constraint [26] and for noiseless continuous-
time LTI systems under time-varying rates constraints and
channel blackouts [27].

C. Contribution

In this paper, we adopt an information-theoretic approach to
continuous-time causal estimation, by considering the optimal
tradeoff between the achievable MSE and the average number
of bits communicated. This is different from the models
studied in [1]-[14], where communication cost is measured
by the number of transmissions, and each infinite-precision
transmission can carry an infinite amount of information. For
communication over digital channels, a bitrate constraint, rou-
tinely considered in information theory, is more appropriate.
Our setting is also different from [15] in that we do not ignore
delay: our distortion at time ¢ is measured with respect to the
actual value of the process at time ¢; whereas [15] permits an
infinite delay, following a standard assumption in information
theory. In contrast to the works [16]-[27] that do not claim
or consider the optimality of the proposed event-triggered
policies, we show the optimality of the SOI coding scheme
for our problem setting in Section I-A.

We first show that an optimal encoding policy that achieves
the operational distortion-rate function (ODRF) can be im-
plemented as a causal sampling policy coupled with a com-
pressing policy. Then, we prove that the optimal encoding
policy is a symmetric threshold sampling policy with threshold

:I:\/% and a 1-bit SOI compressor. The optimal decoding
policy causally estimates the Wiener process by summing up
the received innovations. This coding scheme, termed the SOI
coding scheme, achieves the ODRF D°P(R) = .

In the SOI coding scheme, the encoder continuously tracks
the process, generating a bit once the process passes the
threshold. To reconstruct the process, both those bits and their
time stamps are required at the decoder. In the scenario where,
due to implementation constraint, the sampler is process-
agnostic, or the decoder has no access to timing information,
one has to adopt a deterministic sampling policy. We prove

that a uniform sampling policy with the sampling interval
% achieves the informational distortion-rate function (IDRF),
which is equal to Dpgr(R) = %. To define the IDRF for the
deterministic sampling policies, we change the rate constraint
(2) to a directed mutual information rate constraint, which
serves as an information-theoretic lower bound to (2). This
is a consequence of our real-time distortion constraint. Had
we allowed delay, coding gains would have been possible
by, for example, jointly compressing blocks of those bits.
To confirm that the IDRF is a meaningful gauge of what is
achievable in the zero-delay causal compression, we imple-
ment the greedy Lloyd-Max compressor [18] to compress the
innovations W, — VAVTFI, and verify that the performance of
the resulting scheme is close to the IDRF.

To study the tradeoffs between the sampling frequency and
the rate per sample under a rate per second constraint R, we
define operational and informational distortion-frequency-rate
function (ODFRF and IDFRF). The ODFRF and the IDFRF
are both minimized by the maximum sampling frequency R
and the minimum rate 1 bit/sample, implying that sampling
the process as fast as possible under the rate constraint and
transmitting 1-bit codewords to the decoder without delay is
optimal.

Surprisingly, the distortion achieved by the SOI coding
scheme is smaller than the distortion achieved by the best non-
causal codes. The reason is that in the SOI coding scheme,
the encoder and the decoder know the random sampling time
stamps perfectly, whereas in classical non-causal coding, this
free timing information is not considered.

We also show that the SOI coding scheme continues to
be optimal when there is a fixed channel delay between the
codeword-generating time and the codeword-delivery time. We
show that if the decoder is allowed to wait for only the next
codeword before decoding, the MSE can be further decreased.

Finally, we prove that the SOI coding scheme is also optimal
in a rate-constrained event-triggered control scenario with a
continuous-time stochastic plant driven by the Wiener process
and controlled via impulse control. The SOI code minimizes
the mean-square cost between the state of the stochastic plant
and the desirable state 0.

A part of this work will be presented at the 57th Annual
Allerton Conference [38]; the conference version does not
contain Section VI or any proofs.

D. Paper organization

In Section II, we define causal codes, distortion-rate and
distortion-frequency-rate functions. In Section III, we state
the main results of this paper, including the optimal causal
sampling and compressing policies and the tradeoffs between
the sampling frequency and the rate per sample. In Section IV,
we show the proof of the main results. In Section V, we discuss
the distortion-rate tradeoffs when delays are allowed at both
the encoder and the decoder, at the decoder only, and at the
communication channel. In Section VI, we show the optimal
causal sampling and compressing policies in a rate-constrained
event-triggered control system.



E. Notations
Tit+1

We denote by {W;},Z and {W;}; <i<r,,, the parts
of the Wiener process within time intervals [r;,7;4+1], and
(7, Tiy1), tespectively. For M € Z*, [M] = {1,...,M}.
For a possibly infinite sequence z = {x1,x2,...}, we write
2t = {x1,22,...,7;} to denote the vector of its first i
elements.

II. DISTORTION-RATE FUNCTIONS

In this section, we define the operational and the informa-
tional causal distortion-rate functions, and we show that an
optimal encoder can be separated into a sampler followed by
a compressor.

A. Encoding and decoding policies

The standard Wiener process is defined as follows.

Definition 1. (standard Wiener process, e.g. [31]) A standard
Wiener process {W,}i>o is a stochastic process characterized
by the following three properties:

(i) time-homogeneity: for all non-negative s and t, W, and
Weie — Wy have the same distribution (Wy = 0);

(ii) independent increments: Wy, — Ws, (i > 1) are
independent whenever the intervals (s;,t;] are disjoint;

(iii) Wy follows the Gaussian distribution N(0,t).

Throughout, we assume that both encoder and decoder know
the initial state Wy = 0 at 79 = 0.

Next, we formally define the encoding and decoding poli-
cies?. Denote the set of continuous functions on the time
interval [0,t] by Cjo 4. Define the Wiener process stopped at
a stopping time 7 (e.g. [33, Eq. 3.9]) as:

W, ift<r
W(r) = = 4
t(7) {WT it T @

Definition 2. (An (R,d,T) causal code) An (R,d,T) causal
code for the Wiener process {W:}_, is a pair of encoding
and decoding policies defined as follows.

The encoding policy consists of

(i) the causal sampling policy 70 = {71,72,...} that
decides the codeword-generating time stamps in (1) that are
stopping times of the filtration o({W;}L_ ), and

(ii) the compressing policy fr = {f1,fa,... }>,

fi: Comy — [2]. (5)

The codeword generated at time 7; is U; = f; ({Wt(Ti)}tT:Q)-
The codewords’ lengths must satisfy the long-term average
rate constraint (2).

The decoding policy causally maps the received codewords
and the codeword-generating time stamps to a continuous-time
process estimate {W;}L_ using

WtéE[thUi,Ti,t<Ti+1], te [TiuTi-l-l)' (6)

2We refer to encoding and decoding policies to emphasize their causal
nature.

3In some scenarios, we allow randomness in the mapping f;, replacing the
deterministic mapping f; in (5) by a transition probability kernel.

Together, the encoding and the decoding policies must
satisfy the long-term MSE constraint in (3).

In this work, we focus on the causal sampling policies
satisfying the following natural assumptions:
(i) The sampling interval between any two consecutive stop-
ping times, 7;41 — T, satisfies

E[Ti+1—Ti] <oo, t=0,1,... 7

(i) Forall i =0,1,..., the conditional pdf f; . exists.

The decoding policy in (6) forces the estimate W, to be
equal to the conditional expectation of W, given all the
received information and the information that the next sample
has not been transmitted yet. As we will show in the proof
of Theorem 1, given the optimal sampling policy, the optimal
decoding policy Wi, t € [7i, Ti+1) can be simplified to the
following equation,

Wy = W,, 2 E[W,.|U', 7], t € [r,Tig1)- (8)

k3

Allowing more freedom in the design of a decoding policy
cannot yield a lower MSE because (6) is the MMSE estimator
of W, during t € [r;,7;+1). This is a consequence of the
zero-delay MSE constraint (3) at the decoder. As we explain
in Section V-B below, had we allowed delay at the decoder,
we could have improved performance by e.g. using linear
interpolation between recovered samples at the decoder.

B. Operational distortion-rate function

We now define the operational distortion-rate function.

Definition 3. (Operational distortion-rate function (ODRF))
The ODRF is the minimum distortion compatible with rate R
achievable by causal rate-R codes in the limit of infinite time
horizon:

D°P(R) £ limsupinf{d: 3 (R,d,T) causal code}. (9)

T—o0

Equivalently, the ODRF is

N X
1 Tit+1 .
D°P(R) = li inf —E W, — Wy)2dt
(R =tgsw f, 7B |3 [ -0 1
freFr: =0 "

6)
(10)

where Tn 41 £ T, and IIy, Fr denote the sets of all
sampling and all compressing policies over the time horizon
T respectively.

It turns out that the ODRF can be decomposed into the dis-
tortion due to sampling and the distortion due to quantization.

Proposition 1. The ODRF for the Wiener process can be
written as

P 1 ad s 2
D°P(R) =i inf —{E W, — W,,)2dt
(R) imsup inf 7 ;/T (Wi )

(11a)

> i =) (W, = Wn)Q] }7

=1

+ inf E
fr€Fr:
)

(11b)



where Wn is given in (8). Furthermore, if randomized com-
pressing policies are allowed, there is no loss of optimality
if at time T;, a compressing policy only takes into account
the innovation W, — VAVTFI, past codewords U™1 and timing
information T, rather than the whole process up to time T;,
as permitted by Definition 2.

Proof. Appendix A. |

In (11a), W, is the MMSE estimator of W att € [7;, Tit+1),
given the past lossless samples {/., }§:1 and the codeword-
generating time stamps 7°. The expectation in (11a) is the
sampling distortion due to causally estimating the Wiener
process from its lossless samples {V[/Tj}j»:1 taken under the
sampling policy 7.

The expectation in (11b) is the mean-square quantization
error of the samples, accumulated over sampling intervals of
length 7541 —7;, ¢ =1,..., N. According to the compressing
policy described in Proposition 1, the minimization problem
in (11b) is the operational zero-delay causal distortion-rate
function of the discrete-time stochastic process formed by
the samples. Furthermore, the encoding policy can be imple-
mented as a sampler followed by a compressor. See Fig. 2.
The sampler takes measurements of the Wiener process under

Wi

LW Ui,...
—— sampler

’ Uz
compressor

Fig. 2: Decomposition of the encoder.

a sampling policy and outputs samples without delay to the
compressor. Upon receiving a new sample, the compressor
immediately generates a codeword under the compressing
policy described in Proposition 1.

C. Informational distortion-rate function

The directed information I(X™ — Y™) from a sequence
X" to a sequence Y is defined as [32]

I(X" = Y") =Y I(X5 Yy
i=1

12)

The directed information captures the information due to the
causal dependence of Y™ on X™.

A sampling policy np = {71,72,...} is deterministic if
its sampling time stamps (1) are deterministic. We denote the
set of all deterministic sampling policies by IT2ET. Under a
deterministic sampling policy, the total number of samples [NV
within the time horizon [0, 7] is constant.

Definition 4. (Informational distortion-rate function (IDRF))
The IDRF for the Wiener process under deterministic sampling

policies can be written as

Dprr(R) £

N .
1 Ti+1
limsup inf —{E{ E / (W — Wn)zdt] + (13a)
i=0 " T

T—oo mp€elRET T

v . inf E [i(ﬂ’-ﬂ — 7)) Wy, — Wn)z] },

i=1 PWT”WH,W”%: i=1
I(WTN - WTN)
7 <R

(13b)

The minimization problem (13b) in Dpgr(R) is the causal
IDRF for the discrete-time stochastic process formed by the
samples. Note that (13b) is minimized over the directed infor-
mation rate, which gives an information-theoretic lower bound
to the rate considered in (2). Thus, the following relation holds
according to [36, Eq. (43)].

DPgr(R) > Dper(R), (14)

where DJ.(R) is the ODRF for deterministic sampling
policies defined by (11) with the minimization constraint in
(11a) replaced by mr € H?ET.

D. Operational and informational distortion-frequency-rate
function

According to Proposition 1, an optimal encoder can be
implemented as a sampler followed by a compressor. To gain
insight into the tradeoffs between the sampling frequency f
at the sampler and the rate per sample R at the compressor,
we define an (f, Rs,d, T) causal code.

Definition 5. (An (f, Rs,d,T) causal code) An (f, Rs,d,T)
causal code for the Wiener process {W;}L_ is a triplet of
causal sampling, compressing and decoding policies:

(i) the causal sampling policy* mr = {11, 72,...} satisfies
the average sampling frequency constraint

1
—E[N] = f; 15
T [N] = f; (15)
(ii) the compressing policy fr = {f,fa,...} is
fi: Rx RN x R — [2%]. (16)

The codeword generated at time T; is U; = f; (Wn, Ut Ti).
The codewords’ lengths must satisfy

1 N

(iii) the decoding policy causally maps the received
codewords and the codeword-generating time stamps to a
continuous-time process estimate {Wt}tTZO using (6).

Together, the causal sampling, compressing and decoding
policies must satisfy the long-term MSE constraint in (3).

< R (bits per sample); 17

4The causal sampling policy is defined in Definition 2(i)

SHere we slightly abuse the notation: we have used fr in Definition 2(ii),
and have shown in Proposition 1 that the compressing policy fr can be
simplified to (16).



We define the operational distortion-frequency-rate function.

Definition 6. (Operational distortion-frequency-rate func-

tion(ODFRF)) The ODFREF is the minimum distortion achiev-

able by causal frequency-f and rate-Rg codes in the limit of
infinite time horizon:

D°P(f, R,) £ limsupinf{d : 3 (f, Rs,d, T) causal code}.
T—o0
- (1)
Using the method used to decompose D°P(R) in Proposi-

tion 1, we can write D°P(f, Ry) as

D (f, Rs) =

N )

1 Tit+1
li inf —<{E W, — W...)2dt 19
I;nj;pﬁTief%;T: T{ ;/T (W, — W) ] (192)

+ 'inf ‘E|‘Z(Ti+1 - Ti)(Wn - WT1)2‘| }7

an’ L=

(19b)

where the expectation in (19a) is the sampling distortion, and
the expectation in (19b) is the mean-square quantization error
of the samples weighted by the lengths of sampling intervals
Ti+1—Ti,Z.: 1,...,N.

We define the informational distortion-frequency-rate func-
tion for deterministic sampling policies. The informational
equivalent of D°P(f, Rs) replaces (17) by the constraint on
the directed information, that is, for deterministic sampling
policies,

%I(WTN — WT™) <R,. (20)

Definition 7. (Informational distortion-frequency-rate func-
tion (IDFRF)) The IDFRF for the Wiener process under
deterministic sampling policies can be written as

Dpger(f, Rs) =

limsup  inf
T—oo 7T GH?ET :
(15)

. inf ‘E{é(nﬂ — 1) (W, — WTI.)Q} }

i=1 Pv"v” |WTi W1
(20)

1 N Ti41
T{E[;/T (Wt—WTi)zdt} (21a)

(21b)

Similar to Dpgr(R) in Definition 3, (21b) is the IDRF for
the Gauss-Markov process formed by the samples, but it is
worth noticing that the rate considered in (21b) is the rate per
sample R rather than the rate per second R considered in
(13b).

III. MAIN RESULTS

The first theorem of this section shows the optimal causal
sampling and compressing policies that achieve D°P(R).

Theorem 1. In causal coding of the Wiener process, the
optimal causal sampling policy is the following symmetric
threshold sampling policy:

/1
Ti+1=inf{tZTi2|Wt—WTi|2 }—%},7;:0,1,2,...

(22)
The optimal compressing policy is a 1-bit sign-of-innovation
(SOI) compressor:

1 if Woo, — W, >0
Ui = lf o ' (23)

0 if Wi, — W, <0.

The SOI coding scheme achieves the ODRF':

1

D°P(R) = —. 24
(R) = o (4)
Proof. Section IV-A. O

Together with the optimal encoding policy in Theorem 1, the
optimal decoding policy (6) accumulates the received noiseless
innovations to estimate the current value of the process.

The next theorem shows the optimal deterministic sampling
policy that achieves Dpgrr(R).

Theorem 2. In causal coding of the Wiener process, the
uniform sampling with the sampling interval equal to

1
Ti+1_Ti:E7i2071727"'7 (25)
achieves 5
D R)=—. 26
peET(R) R (26)
Proof. Section IV-D. o

Theorem 3. In causal coding of the Wiener process, the
ODREF satisfies

Dop — . op <
(R) join D (f, Rs), (27a)
fRs<R
=D(R, 1), (27b)

and the IDRF under deterministic sampling policies satisfies

Dpgr(R) = oduin Dper(f, Rs) (28a)
fRs<R
=Dper(R,1). (28b)
Proof. See Section IV-B for the proof of (27). See Sec-
tion IV-C for the proof of (28). O

Using Theorem 3, we can formulate the working principle
of an optimal encoding policy as follows. A sampler takes
measurements of the Wiener process as fast as possible subject
to a rate constraint, and the most recent sample is used to
generate a 1-bit codeword, which is transmitted to the decoder
without delay. In the setting of Theorem 1, the 1-bit SOI
compressor associated with the symmetric threshold sampling
policy uses the most recent sample to calculate the innovation
and to produce a 1-bit codeword. In the setting of Theorem 2,
although evaluating Dpgrr(R) does not give us an operational



compressing policy, we know that the stochastic kernel that
achieves the causal IDRF for discrete-time Gauss-Markov
processes formed by the samples under uniform sampling

policies has the form @);-, Py, W, W, W [35, Eq.
T 17 Ti—1

(5.12)], suggesting that at the encoder, it is sufficient to

compress the quantization innovation W, WTP1 only. The

decoder computes the estimate W as W, = W, _, +
qi(Wy, —~Wo, ), where q; = giofy, fi (W — W, ) e [24]
is the i-th binary codeword, and g;(c) € R is the quantization
representation point corresponding to ¢ € [2&']. In practice,
one can use the greedy Lloyd-Max compressor [18] that runs
the Lloyd-Max algorithm for the quantization innovation in
each step based on the prior probability of the quantization
innovation. Specifically, the prior for (i + 1)-th step is the pdf
of the quantization innovation W, — VAVT“ which can be
computed as the convolution of the pdfs of the quantization
error W, — Wﬂ and the process increment W, , —W7,. The
globally optimal scheme has a negligible gain over the greedy
Lloyd-Max algorithm even in the finite time horizon [18].
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Fig. 3: MSE versus rate

Fig. 3 displays distortion-rate tradeoffs obtained in
Theorems 1 and 2, as well as a numerical simulation of
the uniform sampling in Theorem 2 with the greedy Lloyd-
Max quantization of innovations. The symmetric threshold
sampling policy followed by a 1-bit SOI compressor leads to
a much lower MSE than uniform sampling. Indeed, according
to Theorems 1 and 2, DgiT(Eg) = 5, and DL (R) for the
uniform sampling is even higher than Dpgrr(R) by (14).
Note that the greedy Lloyd-Max curve is rather close to the
Dprr(R) curve, indicating that the IDRF is a meaningful
gauge of what is attainable in zero-delay continuous-time
causal compression.

The optimal sampling policies of Theorems 1 and 2, i.e.
the symmetric threshold and the uniform sampling policies,
are the same as the corresponding optimal sampling policies
that achieve the minimum sampling distortion [6, Sec. 3.1]
[7] subject to an average sampling frequency constraint (15)
with f = R. The value of D°P(R) (24) achieved by the sym-

metric threshold sampling policy is the same as the sampling
distortion, since the 1-bit SOI compressor is able to compress
each innovation noiselessly due to the size-2 alphabet of the
innovations, resulting in zero quantization distortion (11b).
In contrast, for deterministic sampling policies, quantization
distortion is unavoidable, since the samples are Gaussian. If
we only consider the constraint on the sampling frequency, the
optimal deterministic sampling policy for the Wiener process
is uniform sampling [6, Sec. 3.1]. Nevertheless, the result in
Theorem 2 implies that uniform sampling is still optimal in
the IDRF sense, whether or not the quantization distortion is
taken into account.

IV. PROOFS OF THE MAIN RESULTS
A. Proof of Theorem 1

To prove that the SOI coding scheme in Theorem 1 achieves
the ODREF, we first derive a lower bound to the ODRF, and
then we show that this lower bound is achieved by the SOI
coding scheme. The MSE achievable by causal rate-R codes
is lower bounded in the following way,

Tl+1
rof3 [ o

inf E[W U, 7%t < 7i41])%dt

np€llp, T
freFr:
2)
(292)

) 1 N i i i
> inf : TE {Z /T (Wi = EIW: {Ws}iio, 7"
dpl<p 0T

(29b)

N .
. 1 Ti+1 5
~ inf -E Z/T (W — E[W,| Wy, , 7)) dt] (29¢)
LE[NI<R =07
f L[S~ 7 2
= i —E Wy — W, )*dt |, 29d
o 7R3 [ wpa] o
E[N]<R =077
where (29b) holds since o(U*) C o({W;}]-,) and
N
[N] <E Z&] ; (30)
i=1

(29¢) holds due to [39, Cor. 1.1] where the Wiener process
satisfies the regularity conditions in [39]; (29d) is due to the
strong Markov property of the Wiener process.

It remains to show that the lower bound (29d) is achieved by
the SOI coding scheme. First, we notice that the optimization
problem in (29d) corresponds to determining the optimal
sampling policy that minimizes the MSE subject to an average
sampling frequency constraint, where /N can be considered as
the total number of samples taken within [0, T']. According to
[7, Eq. (20)], the optimal sampling policy that achieves the
lim supy_, . of (29d) is given by (22). Second, we know that
each innovation

AW; £ W,

Ti+1_WTia i:Oalvza"'a (31)



is equiprobabily distributed on a size-2 alphabet :I:\/% }
Thus, AW; can be noiselessly encoded using 1-bit codewords
U‘, while satisfying the inequality in (30) with equality.
Therefore, the limsup;_,., of (29d) is achieved by the SOI
coding scheme.

From the equality in (29c¢) and the fact that the SOI coding
scheme attains (29a), we conclude that the optimal decoding
policy (6) can indeed be simplified to (8) given the optimal
encoding policy in Theorem 1.

B. Proof of Theorem 3 (27)

D°P(f, Rs) is lower-bounded by the sampling distortion
(19a). This lower bound is achieved by a symmetric threshold

and a 1-bit SOI

compressor, where the symmetric threshold sampler achieves
the minimum of (19a), which is equal to % [7, Eq. (20)].
Since the 1-bit SOI compressor results in zero quantization
distortion (19b),

sampling policy with thresholds =+ %,

o=

for any R > 1. Plugging (32) into the minimization problem
in (27a), we obtain

(32)

. op o
f>01,111%15nz1; D®(f, Rs) = D (R, 1), (33a)
fRs<R
1
D(R,1 33b
(R,1) = A (33b)

Comparing (33) to (24), we conclude that (27) holds.
C. Proof of Theorem 3 (28)

Since the samples taken under a deterministic sampling
policy form a Gauss-Markov process, we first compute
Dprr(f, Rs) building on existing results on the causal IDRF
(21b) of discrete-time Gauss-Markov processes.

Lemma 1. The IDFRF under deterministic sampling policies
can be written as

Dpgr(f, Rs) = limsup Dy (f, Rs), (34a)
N —o00
f[SnT?
,Rs) = inf = -+ mln T:D; |,
(S Re) V>0: N 22 DN z;
35) = (36) =
(34b)
where the minimization constraints in (34) are
N
1 1
— T, = —, 35
~ ; 7 (35)
and
N-1
1 T; T
N\ A 0
£ — <
z(D") N<;10g(1+D)+1og(DN>>_2RS,
(36a)
D; 1+T; 1>D;,i=1,...,N. (36b)

Proof. Appendix B. O

The optimization variable TV in (34) is the vector of

sampling intervals T = {Ty, T}, ..., Tn}, where
T=7i1—75, i=0,....N —1,
Ti+1 T, (37)
TN = T — TN,

that determine a deterministic sampling policy. The optimiza-
tion variable D? in (34) is the vector of sample distortions
DN ={D,...,Dy}.

Note that Dpgr(R) in (13) is related to Dpgr(f, Rs) in
(34) as follows,
Dper(R) = lim sup sooinf Dn(f,Rs).  (38)
fR.<R

We observe that (28a) does not directly follow (38), since the
right-hand side of (28a) switches the order of lim sup and inf
in (38).

We will use Lemmas 2 to 5 that follow to prove (28a) in
Theorem 3.

Lemma 2. Dy(f, R

N(f7RS)ZQN(f7RS)7
PO i(TOQ—i—TJ%,—i—Qloge/\*(f,Rs,N)

s) is lower-bounded as

(39a)

T >0y >0 2 N
T0+TNSE
N-1_,
+ —T (f, N)\/T*(f,N)2 +4loge *(f, Rs, N) |,
(39b)
where T*(f, N) is given by,
N To+TN .
T*(f,N) & - =1,...,N—1, (40
(f’ ) f(N _ 1) N _ 1 77/ ) ) ) ( )
and X*(f,Rs, N) > 0 is the unique solution to
z (DV*) = 2R, (41)
with DY in (36a) replaced by
—T; T? + 41 * s, N
i = +/T? + ;gek(f,R, )71.:1,“.7]\,_17
(42a)
A (f, Re, N)1
D}kv — (f7 ) Oge’ (42b)
Tn
and Ty, i = 1,...,N — 1 in (36a) replaced by T*(f,N) in
(40).
Proof. Appendix C. O

Lemma 3. Dy(f, R
DN(f; Rs) S DN(.f7 Rs)v

Ay N lOge)\*(f, RsuN)f
O f(N+1)2 N

N-1 N 2

s) is upper-bounded as

(43a)




where N*(f, Rs, N) > 0 is the unique solution to (41) with
DY in (36a) replaced by (42) and T, i = 0, ..., N in (36a)
equal to

N

To:le"':TN:m- (44)
Proof. Appendix D. O
Lemma 4.

Dper(f, Rs) = % + mv (45)

where (45) can be achieved by a uniform sampling policy with
sampling intervals equal to

1
T, =—,1=0,1,... (46)
f
Proof. Appendix E. O
Lemma 5.
Dper(R) = fodin Dpgr(f, Rs). 47)
fRs<R
Proof. Appendix F. O

Using Lemma 5, we conclude that (28a) in Theorem 3 holds.
It remains to minimize Dpgr(f, Rs) in (28a) over feasible f
and R to prove (28b).

. R
Dpgr(R) = in Dper (R_’ Rs) (48a)
= DpgT (R, 1) (48b)
1 1 5
- = 48
2R " 3R 6R’ (48¢)

where (48a) holds because Dprr(f, Rs) in (45) decreases
monotonically in f for any given R; > 1, and (48b) holds

because Dppr (£, R, ) increases monotonically as R in-
R’

creases in the range Rs > 1. Thus, Dpgr(R) is achieved
at f = R, R; = 1. Note that ﬁ in (48¢) comes from the
sampling distortion and ﬁ comes from the causal IDRF for
the discrete-time samples.

D. Proof of Theorem 2

From (48), we conclude that (26) holds. Using Lemma 4
and (28b), we conclude that the uniform sampling policy with
sampling frequency R achieves Dpgrr(R).

V. RATE-CONSTRAINED SAMPLING WITH DELAYS

In our communication scenario in Section I-A, the code-
words are delivered from the encoder to the decoder without
delay, and the distortion constraint (3) penalizes any delay
at the encoder or the decoder. While those are realistic
assumptions in some scenarios of remote tracking and control,
in this section we consider how the achievable distortion-rate
tradeoffs are affected if those assumptions are weakened.

A. Delay at the encoder and the decoder

In the scenario of encoding the entire process for the
purpose of preserving it for future, a large delay is permissible.
In the extreme, the encoder may wait until the whole input
process {W;}1_, is observed before coding, and the decoder
is allowed to wait until 7" before estimating the process. This
corresponds to the classical scenario of non-causal (block)
compression. The IDRF for this scenario is given by

Dnoncausal (R) =

lim
T— o0

inf E
Powvogliwn Ly
FIEW o {Wi}_g)<R

%/OT(Wt — Wt)th] .

(49)
Berger [34] derived the distortion-rate function for the Wiener
process using reverse water-filling over the power spectrum of
the process,

2logs €
Dnoncausal(R) = ﬂ-zg}Z%

bits/s. (50)
The ODRF continues to be lower-bounded by the IDRF in
this non-causal scenario, D> (R) > Dnoncausal (R)
(cf. (14)). As for the achievability, Berger showed that (50)
can be achieved in the following sense: given a rate R > 0,
and € > 0, there exists a code with rate R+ ¢ that achieves the
distortion Dyoncausal (R) + €. Berger’s coding scheme operates
as follows [34]: the Wiener process is divided into successive
time intervals of a large enough length 7" seconds. For each
interval, the Karhunen-Loeve (KL) coefficients of the process
are calculated, and at most 27(8+€) codewords are used to
jointly encode these coefficients with a resulting MSE per
second equal t0 Dyoncausal(R) + €. In parallel with the KL
expansion coefficients encoding scheme, an integrating delta
modulator is employed to encode each endpoint of the length-
T intervals with MSE per second € using e bits per second.

Comparing Dyoncausal (R) in (50) with D°P(R) in (24), we
see that, surprisingly, the optimal zero-delay policy outper-
forms the best infinite delay one:

DP(R)

— = ~0.57.
Dnoncausal(R)

(51

This is because in zero-delay causal coding, the timing in-
formation is free. Indeed, the decoder knows the codeword-
generating time stamps that are stopping times of the filtra-
tion generated by the Wiener process. In classical noncausal
(block) lossy compression, no encoder and decoder synchro-
nization is assumed, and thus the encoder is tasked with
encoding both the values of the Wiener process and the time
stamps corresponding to these values. In many operational
scenarios of remote tracking and control, the encoder and
decoder are naturally synchronized, providing free timing in-
formation. Since Berger’s distortion-rate function in (50) does
not take that into account, it cannot adequately characterize the
fundamental information-theoretic limits in those scenarios.



B. Delay at the decoder

In the scenario of causal coding where some small delay
is tolerated but the data is not recorded for storage, e.g.
speech communication, one can leverage both the free timing
information and the coding delay to improve distortion-rate
tradeoffs. A one sample look-ahead decoder waits for the
next codeword U, , before estimating Wy, 7; < t < 711,
introducing a maximum average delay of E(7iy1 — i) = &
at the decoder. As we are about to see, this one sample
look-ahead decoder greatly reduces the MSE compared to the
ODREF obtained in (24) under causal estimation.

With the encoding policy in Proposition 1, the decoder is
permitted to estimate W; at time ¢/, ¢t < ¢’ < T using not
only the codewords received before time ¢, but also the extra
codewords received during the time [¢, ¢']. In the extreme, t' =
T, the decoder can jointly use all the codewords and codeword-
generating time stamps in time horizon [0, 7] to recover the
Wiener process. Using Wolf and Ziv’s decomposition of MSE

in [28], the ODRF with decoder delay can be decomposed as

Ti+1
Deee dclay(R) = 11;11 sup Wj}gfr.[T = [Z/ (W, — Wy)?
e freFr:

@
+(w- ) e
(52)

where W is the MMSE estimator of the process at the encoder
using the samples and the times that they were taken: for ¢ €

[Ti77i+1),

Wi £ E[WtHWTj }é'v:lvT ] [Wt| Ti) Tz+177—177-i+1]7
(53)
where (53) holds because Wt — (Wi, Wr i T, Tig1) —
({WTJ }] 1 {WTJ J=i+1> {T7}J 1 {T7}] z+1) form a Markov
chain in that order. Therefore, given all the noiseless samples,
W; only depends on the previous sample and the next sample.
In particular, when the samples are taken under a determinis-
tic sampling policy, (W, Wy, W) is a Gaussian random
vector, thus V[/t in (53) is the linear interpolation between W,

and W. W, is the MMSE estimator of the process at the

Tit1®
decoder using all the received information,

Wy, =E[W,|UN, 7] (54a)

=EEW {5, U, w0, 7Y (54b)

=EW U™, 7], (54c)

where (54c¢) holds due to the Markov chain W; —
({Wr,32,,7) = UY and (53). Since the one sample look-
ahead decoder only waits until the next codeword U,;; is
received at 7,1, W; is specified to E[W;|Ut1, 7+1] for
te [Ti,Ti+1).

We append the one sample look-ahead decoder to the opti-
mal encoding policy in Theorem 1 and calculate the resulting
MSE. Under symmetric threshold sampling policies, the sam-
ples are not necessarily Gaussian, and the linear interpolation
can be suboptimal. Yet, if in (52) we substitute for W, a

. . W, +Wr, . .
suboptimal estimate —5—", then the resulting the MSE is

equal to ﬁ, a two-fold improvement over (24). We append
the one sample look-ahead decoder to the uniform sampling
policy in Theorem 2, and ignore the potential reduction in
quantization distortion brought by the decoder’s ability to look
ahead by one sample. The resulting sampling distortion is

”E[va_o [T = W) =

over the sampling distortion 55 (48c) causally attainable W1th
a uniform sampling policy. Thus the total MSE is at most
a 1.67-fold improvement over (26).

3 R, a 3-fold improvement

2R’

C. Delay at the channel

Consider the communication scenario in Fig. 1 with a fixed
channel delay between the codeword-generating time stamp
and the codeword-delivery time stamp. We show that the
optimal coding policy remains the SOI code in Theorem 1.
Denote the channel delay by > 0. If the sampling time is
7;, the delivery time is 7; + d. The encoder and the decoder
are clock-synchronized. The decoder knows the delivery time
and the fixed delay, thus it knows the sampling time since the
channel delay is fixed. The distortion is however measured in
real time as in Section I-A (3) rather than after a delay as in
Sections V-A and V-B.

The MSE that we aim to minimize under the rate constraint

(2) is given by
N Tit1+06 N
Z/ (W, — W,)2dt |,
i=0 ' Tito

Den(R) =limsup inf
T—o0o 7TEIlT
JreFr:

2

1
=K
T

(55)
where, similar to [6] and [10], we use the following MMSE
decoding policy,

W, & E[W;|U, 7], t € [1i + 6, Tig1 + 0). (56)

Unlike Theorem 1 where we proved that conditioning on the
event ¢ < 7;41 in the decoding policy (6) can be ignored to
yield (8) without loss of optimality, here we do not delve into
the issue of whether ignoring the known event ¢t < 7,41 + ¢
in the conditional expectation (56) is optimal.

Proposition 2. In causal coding of the Wiener process with
a fixed channel delay and decoding policy (56), the optimal
sampling and compressing policy remains the SOI coding

scheme in Theorem 1, and
1
D, =
h(R) R + 4.

Proof. Appendix G. O

(57)

The optimal sampling policy in the fixed-delay scenario
coincides with the optimal sampling policy in the delay-free
scenario. This differs from the result of [10], according to
which the optimal causal sampling policy for the Wiener
process through a channel with an i.i.d. delay Y; is a symmetric
threshold sampling policy,

=inf{t + 7 + Y : [Wiirpv, — Wr,

=B} (58)

Ti+1



where f is a threshold that depends on the distribution of Y;
and the sampling frequency constraint. The setting in [10] is
different from our setting in this Section V-C, since the channel
is only allowed to serve one sample at a time in a first-in-first-
out (FIFO) principle. Because recent samples must wait in a
queue before the previous sample is delivered, the optimal
encoder in [10] takes a new sample after the previous sample
is delivered, whereas in our setting, the encoder may take a
new sample after or before the previous sample is delivered.
This results in the policy in [29] attaining a larger MSE in
the constant-delay scenario of Proposition 2 than indicated in
(57). We also notice that with the random delay, we cannot
simply append an SOI compressor to the optimal symmetric
threshold policy (58) to obtain the optimal rate-constrained
code. Indeed, the innovation W, 1y, — W;, may not be a
binary random variable for all + = 0,1, ... since waiting for
the delivery of the previous sample may cause the thresholds
not to be hit with equality at the time 7;.

VI. RATE-CONSTRAINED EVENT-TRIGGERED CONTROL

The SOI coding scheme proposed in Theorem 1 can also
be applied to the following rate-constrained event-triggered
control scenario.

Zy stochastic plant Xy
controller sampler
U; compressor X,

Fig. 4: Control system.

The stochastic plant evolves according to

dX, = Zydt + dW,, (59)

where W; is the standard Wiener process and Z; is the control
signal generated by the controller. A sampler samples the
plant X, at a sequence of non-decreasing stopping times
71,72, .. adapted to the filtration generated by { X;}7_ . Note
that the sampler does not need to know the control signal.
At time 7;, the sampler outputs X,,, and the compressor
generates codewords U; based on causally received samples.
At time 7;, the controller uses received codewords U? to form
an impulse control signal Z,,. The communication between
the compressor and the controller is subject to bits per sec
constraint (2). We aim to find the optimal sampling and
compressing policies such that the mean-square cost of X,
from target state 0 is minimized

T
/ det] .

0

1
limsup —=E (60)

T—o0

We restrict our control signal to be the impulse control as in
[11,[40]. The impulse control only takes action at the stopping
times (1) decided by the sampling policy, i.e. Z; # 0 if and
only if t = 71, T2, .... The impulse control leads to

X +=X,,+2;,1=0,1,... 61)
where TZ-+ represents the time just after 7; [41]. From (59) and
(61), we conclude that

Xt:XTf-i-Wt—W-,—“ t e (Ti7Ti+1]' (62)
Theorem 4. In the rate-constrained event-triggered control
system, the jointly optimal sampling and compressing policy
that minimizes (60) is the SOI coding scheme in Theorem I,
and the optimal impulse control signal is

Zeo =Wy, —W,,_,),i=0,1,... (63)

The minimum mean-square cost (60) is equal to %.

Proof. We calculate a lower bound to the MSE in (60) and
show that this lower bound can be achieved by the SOI coding
scheme. The MSE in (60) is equal to

1 [ N Tit1
limsup =E Z/ (X + +W; — W,,)2%dt| (64a)
T—o0 T i=0 Y Ti i
1 [ N Tit1
=limsup —E Z X2, dt (64b)
T—o00 Li=0 Ti i
1 [ N Tit1 )
+limsup =E / Wi — W, )7dt 64c
T—>oop T ; Ti ( ! ) ( )
N Ti41
+2limsup E X + / (W — W,,)dt (64d)
T— 00 i=0 K Ti
1 N Ti4+1 9
> 1 — — W,
> h;n 1sup TE ; /T i (Wy = Wr,)7dt |, (64e)

where (64a) is obtained by substituting (62) into (60); (64d) is
equal to zero since X_+ is independent of [ (W, — W, )dt

and E [f:;“(wt - Wn)dt} —0foralli =0,1,... by the
reflection principle of the Wiener process [42, Chap.3, Thm.
Ad44]. To achieve the lower bound in (64¢), we need X_+ =0
for all 7 = 0,1,..., thus, the optimal impulse control 7Signal
is

Zy =Xy, i=0,1,..., (65)

which is equal to (63). Using the arguments in the paragraph
below (30) in the proof of Theorem 1, we can easily verify
that the SOI coding scheme achieves the lower bound and is
therefore a jointly optimal sampling and compressing policy.

O

In contrast, if the sampler samples {X;}7_, with a uniform
sampling policy that satisfies the rate constraint (2) together
with some succeeded compressing policy, then we show



that the minimum achievable mean-square cost, denoted by
duniform, 1S lower bounded by
1
2R’
To show (66), we first notice that (64a)—(64e) holds under
a uniform sampling policy, with the stopping times 71, 72, . . .
and random number of samples N replaced by deterministic
times ti1,to2,..., and the fixed number of samples n. We
minimize the lower bound (64e) over all uniform sampling
policies that satisfy the following constraint

duniform > (66)

<R
and obtain that the minimum of (64e) is equal to ﬁ. This
lower bound corresponds to the scenario that we ignore the
quantization effect due to the compressing policy. The lower
bound is not achievable since the controller cannot output the
ideally optimal impulse control signal (63) to make th Zero
for all ¢ = 0,1,... This is because the sample innovation
Wy, =Wy, .9 =1,2,... is a Gaussian random variable that
cannot be noiselessly compressed using 1 bit.

(67)

VII. CONCLUSION

The results in this paper contribute to the rich literature on
optimal scheduling and causal sequential estimation problems
by introducing a transmission rate constraint beyond the pop-
ular sampling frequency constraint. The SOI coding scheme
is optimal for causal estimation of the Wiener process under
an expected rate constraint (Theorem 1). The performance of
the SOI coding scheme is much better than that of the best
non-causal code (Section V-A). This underscores the power of
free information contained in the codeword arrival times that
is not considered in the standard setting of non-causal (block)
compression. The SOI scheme remains optimal even if the
channel introduces a fixed delay (Proposition 2). The key to
transmit information via timing is to use process-dependent,
rather than deterministic, sampling time stamps, because the
latter contain zero information. The optimal deterministic
sampling policy is uniform (Theorem 2). In either setting,
the best strategy is to transmit lowest possible rate (1-bit
codewords) as frequently as possible (Theorem 3). This is
a consequence of the real-time distortion constraint (3). If
a delay is affordable, the MSE can be further reduced with
only one sample look-ahead at the decoder (Section V-B). The
SOI coding scheme also minimizes the mean-square cost of a
stochastic plant driven by the Wiener process, and controlled
via impulse control (Theorem 4).
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APPENDIX
A. Proof of Proposition 1

The objective function in (9) decomposes in the following
way.

1 TM
—E Z% / W) dt] (68a)
_ 1 THA 2
=+E z; / W) }L (68b)
1 .
Tk _;(Ti-i—l —7)(Wr, — Wn)2dt} +
1 r IV . Ti4+1
B _;Wn - [ U Wmdt}
1 Ti+1
:TE_;; / (W, — W) ) (68¢)
1 [ .
T _;(ﬁﬂ —7i)(Wr, — Wn)th} ;

where (68a) uses the simplified decoding policy (8) that is
justified in the proof of Theorem 1; (68b) is obtained by

substituting Wy — W., +W,, — Wﬂ for the term W; — W, in
(68a), and (68¢) holds due to the fact that [ (W, — W, )dt
is orthogonal to W, — Wn for all = 0,1,2,..., N. Since

the encoder only influences the second term in (68c), we move
the minimization over the encoder f7 in (9) directly in front
of the second term in (68c¢).

To show that f; only encodes W,, — W,. . given U*"! and
7%, we first recall a well-known fact. Consider the following
lossy source coding model in Fig. 5, where X € X and
Y € Y are available only at the encoder, C' is the common
information, X € X is the reproduction. Encoder Pyixyv,c
and decoder PX\ v,c am to achieve a given distortion d =

E {d(X, X)}, where d: X x ¥ — R* is the distortion
measure, subject to a constraint on the cardinality of the
alphabet ¢/ of U. Since

E [d(x,f(ﬂc = c] :/

TEX
/ dPU\X,C:c(U)/ dPg g o (@)d(, ),
Ueu teX

the knowledge of side information Y is useless at the encoder,
the

dPX\C:c(x)'
(69)

i.e. for any encoder-decoder pair (PU‘ XY,C PX\U,C)’

pair (PU|X,C’PX\U,C)’ where Py x,c is the marginal of
Py x,v,c Py x,c- achieves the same expected distortion.

In our problem, the infimum of the long-term average
MSE in (68c) corresponds to a causal sampling policy and
a sequence of sample distortion allocations E[WW,, - W, 2,

i=1,2,.... Attime 71, we take X = W,,, Y = {Wito<t<rs
C =71, and d(X, X) = (X — X)2. To achieve a given sample
distortion E [(VVT1 - W, )2} , the random compressing policy



X X
encoder u decoder
Y,C C

Fig. 5: Y only available at the encoder, C' available at both
the encoder and the deocder

needs to only take into account WT1 and 7. Inductively, at
time 7;, the encoder knows {Wt . Both the encoder and
the decoder know U‘~! and 7°. Smce WT , 1s known once
U=t and 7°~! are given,

E[W,, — W2 =
E [(Wn ~We, B [Wr, =W, |Ui’7—1)2] -0

Take X = W, — W, ., X = E[W, — W, _ |U 7],
U=U;, C={U"1 7%}, and Y is everything known at the
encoder excluding X and C. It follows that for the purpose
of achieving the sample distortion E[WV, — W, .2, at time 7;,
the randomized compressing policy needs to only take into
account W,, — W,._,, U1, and 7°.

B. Proof of Lemma 1

Denote the IDRF for discrete-time samples of the Wiener
process

W.

Tit1 — WT'L + VTz‘? VT'L NN(OaTl) (71)

by Dn(Rs) (21b). Using the representation of its dual in [29,
Eq. (18)] derived using a semi-definite programming approach,
we represent Dy (R;) as

N
Dy (Rs) = D;>0 gﬁi N: ZTlDl
Di1+T; 1 >Di,  i=1,2,--,N, i=1

% (Zivzl % 10g(D1'71+T»;71)—§ log DZ)SRS
(72)
Since the sampling intervals 77 are deterministic, we
calculate the summand in (21a) as

Tit1 T; T2
E [/ (W; — Wn)2dt] = E[/ Wfdt} =5
Ti 0

k3

(73)

Plugging (72) and (73) into (21), we can write Dprr(f, Rs)
as

1 72

D R, =1 £ (> =4 Dy(R

et (f, Rs) ?lfolipﬁTelrﬁDETT(z; o+ D ( ))
(15) =

(74)
Note that when 7' — oo, the number of samples N must
increase no slower than v/7". Indeed, since the largest sampling
interval satisfies

T
max T; >

; 75
i=0,...N = N+1 (75)

the summand in (74)

max; T T
3T = 2(N + 1)

(76)

will blow up to infinity if N increases slower than /7.
Thus, N — oo as T' — oo. Therefore, we can replace
the limsups_,., in (74) by limsupy_,., and obtain (34),
where we replace 7' in (74) by % as permitted by (15), and
we replace the minimization constraint (15) in (74) by its
equivalent (35).

C. Proof of Lemma 2

We split Dy (f, Rs) (34b) into the following optimization

problems:
N(faRs) éT>OiI%1f\.r>0' N(f7R87T07TN)7 (773)
0ZY, =
TO"FTNS%

N(f, R, To, Tiy) &

N 2
L (Z D (f, RS,TN)> ,

min
Ty, T -1 >0: ~
ZN = 1 ToTVTN =
(77b)
,RS,T é mln T;D;. 77¢c
N (f R Zj (77¢)
36
Denote by Dy(f,Rs,TY) the lower bound to
Dy (f, Rs,TN) obtained by deleting the minimization

constraint (36b) in (77¢), i.e.

Dy(f Ry, TN) £ (78)

n ZTDZ,

(%6;1) i=1

Denote by Dy (f, Rs,To, Tn) the corresponding lower bound
to Dn(f, Rs,To, Tn) in (77b):

QN(f7R87T07TN) £

f (T2
: T 25+ STV
Ty,.. I’—sz\}n1>0: N (; 2 +—N (f5R7 ))
+yin=3 —TotTn =
(79)
We will calculate the corresponding lower bound to

DN(f, RS)I
DN(fa RS) £

min
T[) ZO,TN 20 :
To+Tn< %

QN(faRSaT07TN)' (80)

We first show that the optimization problem in the right-hand
side of (78) is a convex optimization problem that satisfies
Slater’s condition, i.e. strong duality holds. Then, we solve
its Lagrangian dual problem to get the optimal D7 ..., D% in
(42) that achieve the minimum in the right-hand side of (78),
where A*(f, Rs, N) > 0 is the unique solution to (41).



The objective function Zfil T;D; (78) is an affine function
in DV. Furthermore, z (D") is a convex function since

0%z (DN : ) .
= ( ):k’geTl(?D”TZ)ZO, Vi=1,... N—1,
aD? N(DZ + D/Th)?
(81a)
92z (DV) 1
2(D7) _ loge (81b)
oD% ND%
P2 (DY) o wij=1,..\N (81c)
90,0, i,j=1,...,N. c

Therefore, the minimization problem in the right-hand side of
(78) is convex. Notice that z(D, D,..., D) decreases from
+00 to —oo as D increases from 0 to co. Thus, there exists
D > 0 such that Slater’s condition is satisfied, i.e.

2(D,D,...,D) < 2R,. (82)
( )

We conclude that 1) the strong duality holds, 2) D(f, R, T™)
can be obtained via its Lagrangian dual problem, and 3) there
must exist an optimal Lagrangian multiplier \*(f, Rs, N) >
0 that satisfies the complementary slackness (41) in the
Karush-Kuhn-Tucker conditions. Indeed, (41) always has a
non-negative solution \*(f, Rs, N), since as a function of
A (f,Rs,N), 2z (DN *) is continuous and monotonically de-
creasing from +o00 to —oo as A*(f, Rs, N) increases from 0
to 4-o0.

Plugging DV* (42) into (78), we obtain Dy (f, Rs, TV)
and proceed to evaluate D (f, Rs,To, Tn) in (79), which is
given by

QN(f? R57T07TN) = min g(Tla . 7TN71)7
Lyeeey TN71>0:
1 N-1p_ 1 TotTn
N 2ui=1 *iTF ~
(83)
where
g(T17 s 7TN—1) £ 2{;\7 |:T0 + TN + 21Og6A*(f7 RsuN)
N-1
+3 Ti\/Tf + 4log e (/, RS,N))
1=1

(84)
We make use of the Schur-convexity of (84) to calculate
Dy (f, Rs, Ty, T). Recall that if a function f(z?) is sym-
metric and its first partial derivative with respect to each z;,
i=1,...,d exits, then f(z?) is Schur-convex if and only if

) (6f( Y _ ot
’ 8171 aZCj
It is clear that g(T4,...,Tn—1) is symmetric since it is
invariant to the permutations of 7%,...,7Tn_1. To calculate
the partial derivatives of (84), we first compute the implicit
differentiation M by taking the derivative with re-

spect to T; on the both sides of (41), yielding

ON(f,Rs,N) 1
oT; VT? +4logel*(f, Rs, N)
2A* (fu Rsu N)

)) >0,Vi,j=1,...,d (85)

(86)

Tk !
1+Z’f 1 \/T2+4logex*(f,Rs,N)

Using (86) to compute the first partial derivative, we obtain

ag(Tlv---,TNfl)
oT; (87a)
S JON(f B, N)
2loge——"—— T2 + 41 * N
R ST VT AlogeX (f, R, )
T2 + 2log eT; 2L R N)
Z g T (87b)
V/T? + 4loge)*(f, Rs, N)
i 2log eTy, w o
C
* /T + 4logeX*(f, Rs, N)
k;éz
:%\/TE + dlog e (f, Ry, N). S0,

Using (87), we can verify that g(T1,...,Ty—_1) satisfies (85):

(T, —T;) <\/T2 + 4logeX*(f, Ry, N)

(83)
- \/sz + 4log eN*(f, RS,N)> >0,
forall 4,j = 1,...,N — 1. Therefore, g(T1,...,Tn—1) is a
Schur-convex function.
Let x = (21,...,2q4) €RL y = (y1,...,y4) € R? be two

non-increasing sequences of real numbers. Recall that x is
majorized by y if for each k = 1,...,d, Zle x; < Zle Yi
with equality if & = d. For a Schur-convex function f, if
x is majorized by y, then f(x) < f(y). In our case, the
feasible 7;’s must satisfy the minimization constraint of the
optimization problem in (83). Any sequence T7i,...,Tn_1
that satisfies the minimization constraint of the optimization
problem in (83) majorizes the sequence in (40). Therefore, the
infimum in (83) is achieved by the sequence T7,...,Tx_; in
(40).
Plugging T, ..., Tx_; (40) into (83), we obtain
T3 + Ty + 2logeX*(f, Rs, N)
N

QN(faRSaT07TN): g(

N-1
+ T/, N

¥ WT*(f,N)2 +4logel*(f,Rs,N) |.

(89)
Plugging (89) into the right-hand side of (80) completes the
proof.

D. Proof of Lemma 3

Plugging (44) into (42), we obtain the corresponding opti-
mal sample distortions,

Di=...=Di_, =
N N 2
_f(N"l‘l) + (f(N+l)) +410g8)\*(f7R57N)
2 , (90a)
N+1
Dy = MlogeA*(f, R,,N), (90b)

N



where A*(f, Rs, N) is defined in Lemma 3.

We first show that the TV in (44) and the corresponding
DY in (90) satisfy the deleted constraint (36b), then we can
plug TN (44) and DV (90) as feasible solutions into the
minimization problem associated with Dy (f, Rs) in (34b) to
obtain the upper bound in (43).

When 7 = 2,..., N — 1, the deleted constraint (36b) is
satisfied trivially, since D;_1 = D; and T;_; > 0. To prove
that the deleted constraint (36b) also holds at ¢ = 1 and N,
we upper bound A\*(f, Rs, N) for every N > 2. When

T =--=1Tn-1, On
we can rearrange terms in the complementary slackness con-
dition (41) and conclude x = \*(f, Rs, N)loge is the unique
solution to the following equation,

hn(To,Tn,Th, Rs,x) — 2 =0, (92)
where
hn(To, T, T, R, z) £
7
2Rt iy R PSSR AT (93)
2
+ I
92R.+y2y R, —EEIN s ]

Note that the left-hand side of (92) monotonically decreases
as x increases.

Given R, plugging (44) into the left-hand side of (92),
we conclude that the \*(f, Rs, N) in Lemma 3 is the unique
solution to the following equation,

N N N
" <f(N+1)’ FN+1) f(N+1)’RS’x> —r=0
94)
Plugging
N2
BETERENE (95)

into (94), we observe that the left-hand side of (94) is less or
equal to O for all V > 2. Thus, we conclude

2

)\*(f,RS,N)logegm, vV N > 2. (96)
Plugging (96) into (90), we obtain
Di < \/M(f,Rs,N)loge < L, (97a)
f(N+1)
N (97b)

Dy < ———
N =92f(N +1)
Substituting (44) and (97) into (36b), we conclude that (36b)

holds for i =1 and i = N.

Now, we can plug (44) and (90) as feasible solutions into
(34b) to obtain the right-hand side of (43).

E. Proof of Lemma 4

From Lemmas 2 and 3, and (34a),
liminf Dy (f, R,) < limsup Dy (f, Rs).
N—o00 N— 00

(98)
We prove (45) by showing that both bounds are equal to the
right-hand side of (45).

To compute the lower bound in (98), we need to understand
the behavior of T*(f, N), \*(f,Rs,N) and T, T as N
goes to infinity, where T;7, T'x; achieve the minimum of the
left-hand side of (98). T{; and T3, must increase as

T5‘+T]*{,:O(\/N),

R,) < Dpgr(f,

99)

T32+T%? . . .
or ~—-— in (39b) will blow up to infinity as N — oo.

Substituting (99) to (40), we obtain

1 1
T*(f,N _—+O<—). (100)
N =540\ TR
We proceed to compute
A2 lim A*(f, Rs, N). (101)
N—oo

For given T, T% and Rs, © = X*(f,Rs,N)loge is the
unique solution to (92) with Ty, T, and T'(N) replaced by
T5, Tx and T*(f, N) in (40). We prove that

Aloge > (102a)

1
22R f2 ’

Aloge < — (102b)

2f2

We substitute (99) and (100) into the left-hand side of (92)
and take limpy_,o, to conclude that

P 12 2f2 < 0. (103)
Using the fact that the left-hand side of (92) is monotonically

decreasing in z, we conclude (102a) holds. To prove (102b),
we similarly compute

1 1
lim Ay (TJ,T;{,,T*(f,N),RS,Q—)

hm hn <T0,TN,T (f,N), Rs, 2R, f2) - 23R, f2 > 0.
(104)

Via the squeeze theorem, (102) implies

X(f,Rs,N) = O(1). (105)
Plugging (99), (100) and (105) into (92), and taking N — oo

on both sides of (92), we obtain

1 1
f2(22RS _ 1)2 + f2(22RS _ 1)'

A\ loge = (106)



Plugging (99), (100) and (106) into the right-hand side of
(39b) and taking limy_,~,, We compute

]Vlgnoo QN (f7 RS)

1 1 . : [ (T¢+T%
T of + f(22Rs — 1) + z\flgnooToz(lJI,l:/szo§ ( N
To+Tn<%
(107a)
1 1
(107b)

T @R )

where 0 is achieved in the last term of (107a) by choosing any
pair of Ty, T’ > 0 that satisfies

T0+TN:0(\/N).

We choose Ty and Ty in (44) that satisfy (108), such that
together with 74,...,Tn_; in (44), the lower bound of
Dprr(f, Rs) in (98) is achieved.

Now, we compute the upper bound in the right-hand side
of (98). A*(f, Rs, N)loge in (43b) is the unique solution to
(92). Note that (106) holds for any Ty and Ty that satisfy
(99). Since Ty and Ty in (44) satisfy (99), we conclude that
the limy 00 Of AN*(f, Rs, N)loge in (43b) is also equal to
(106). Plugging (106) into the right-hand side of (43b) and
taking limsupy_,.,, we calculate that the upper bound of
Dprr(f, Rs) in (98) is equal to (107b).

Furthermore, we observe that the uniform sampling inter-
vals (44) achieving both the upper and the lower bound of
Dprr(f, Rs), converge to % asymptotically. We conclude that
the uniform sampling policy with the sampling interval %
achieves Dprr(f, Rs). '

(108)

FE. Proof of Lemma 5
The max-min inequality and (38) imply that

P
Doer() < f>0r,111%15n21: (109)

fR:<R

limsup Dy (f, Ry).

N—o00

On the other hand,

DDET(R) Z lim inf
N—oo f>0,Rs>1:
FRs<R

Dy (f, Rs) (110a)

= inf lim (110b)

B f>0,R;>1: N—oo
fRs<R
where (110a) is by (38), and (110b) will be proved in the
sequel. Using (98) with both bounds equal to each other, (109)
and (110), we complete the proof of Lemma 5.

We proceed to prove (110b) via the fundamental theorem of
I"-convergence. Let X be a topological space and Gy : X —
[0,+00], N =1,2,..., be a sequence of functions defined on
X. A sequence of functions Gy, N = 1,2,... I'-converges
to its T-limit G: X — [0, 4-00] if [37]:

(i) For every z € X, and for every sequence xy € X', N =
1,2,... converging to z,

QN(fv RS)7

G(z) < liminf Gy (zN). (111)
N —o00

(ii) For every z € X, there exists a sequence xy € X', N =
1,2,... converging to x such that

G(z) > limsup Gy (zN). (112)

N—o00
A sequence of functions G, N =1,2,... is equicoercive
[37] if there exists a compact set K that is independent of IV,
such that

inf Gy(x) = zuelf/CGN(I) (113)

rcX
The fundamental theorem of I'-convergence [37] says that
if Gy is equicoercive and I'-converges to G: X — [0, +o0],
then we have,

min G(z) =

We will show that for any scalars f > 0, Rs > 1 and for
any sequences f(n) — f, Ryn) — Rs, we have

ngnoo Dy (fny, Ryny) = Doet(f, Rs),

lim inf Gn(z).

N—oozeX

(114)

(115)

which means in particular that Dpgr(-,-) is the T-limit of
Dy (-, +). We will also prove that Dy (f, Rs) is equicoercive,
and (110b) will follow via the fundamental theorem of I'-
convergence.

We verify that the reasoning in (99)-(107) goes through
replacing f and R by f(n) and Ry () respectively, hence
(115) holds.

It remains to prove that D (f, Rs) is equicoercive. Ignoring
the two non-negative \*(f, R, N) terms in the right-hand side
of (39b), we observe that

QN(vas)
: f(T2+T}, N-1_, ,
> .
_TOZ(I)I?TfNZOZ N N T (fuN) (1163)
TO"FTNS%

1 T2 + T2
= inf _<fM
To>0,Tn>0 2

N
ToJrTNS%
N F(To+Tn)\>
TR <1— N > ) (116b)

where (116b) is obtained by plugging (40) into (116a). Denote
the objective function in (116b) by ¢(To,Tn). We prove
that ¢(Tp,Tn) is a Schur-convex function: 1) ¢(Tp,Twn) is
symmetric, since it is invariant to the permutations of 7 and
Tn; 2) the first-order partial derivatives of ¢(Tp,Tn) with
respect to T and Ty are

9 _ f f

00 _ Sy T o
8TN_NTN+N(N—1)(TO+TN) N_1 (117b)

where (117) satisfies (85). Using the property of Schur-convex
functions stated in Lemma 2 after (88), we know that the
minimum of ¢(Tp, T) is achieved by

To =Tn = a. (118)



for some
N

< —.
as g 7
Plugging (118) into ¢(7o, Tn), and minimizing ¢(a,a) under
the constraint (119), we find that the optimal a that minimizes
q(a,a) is given by

0< (119)

N

Plugging (118) and (120) into (116b), we obtain
2
Dy(f, Rs) > m (121)

On the other hand, plugging (96) into the right-hand side of
(39), we obtain

3N V3N(N —1)
s) < . 122
VRS ppvr e T g 0
Choosing f = R in (122), we conclude that
: 3N V3N(N —1)
f D s) < .
ot PR S Sy T SR 1)
fRs<R
(123)
For any
fe (0 i) (124)
) 3 —"_ \/g )

the right-hand side of (121) is larger than the right-hand side
of (123), thus f in (124) cannot attain the infimum in (123). It
follows that the infimum is attaned in the following compact
set for f,

fe [i R} (125)

3+v3 ]

where the upper bound of f is obtained by lower-bounding R,
by 1. Correspondingly, R lies within the following compact

set,
R, € [1,3 + \/5} ,

Using (125) and (126), we conclude that D y(f,
ercive.
G. Proof of Proposition 2

We derive a lower bound to (55), and show that the lower
bound is achieved by the SOI code. Note that (55) is lower

(126)

R;) is equico-

bounded by
T1+1+5
lim su inf —E / dt (127)
T—)oopWETGHT Z ritd )
ENl<R
where
Wy £ EW,{W.}o, 7] (128)
=W, t€[n+0,Ti41+9), (129)

since o(U?) C o({Ws}I",) and (30). Plugging (129) into the
lower bound (127) we obtain the objective function,

Ti+1

Z (W -

W) dt]

—IE (130a)

1 [ N Ti+6
) Z/ (W — Wy,)2dt (130b)
Li=0 v Ti
1 [ N Tit1+6
+ =E Z/ (W, — W,,)%dt (130c)
Li=0 v/ Ti+1
1 [ N Ti+1 9
= 7E Z;/T (Wi — W, ) dt (130d)
I N
1 52
- — 1
T ; 5 (130e)
1 [SL 62
+ B ; & (i1 = 7) (130f)
1 [ N Ti+1 9
= 7E ;/T (W = Wr)%dt| +6. (130g)

Note that the first part of (130g) is equal to (29d) in the delay-
free case, and ¢ is a fixed number. Following the arguments in
the paragraph below (29d), we conclude that the SOI coding
scheme achieves (127).
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