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Optimal Causal Rate-Constrained Sampling of the Wiener Process

Nian Guo and Victoria Kostina

Abstract—We consider the following communication scenario.
An encoder causally observes the Wiener process and decides
when and what to transmit about it. A decoder makes real-
time estimation of the process using causally received codewords.
We determine the causal encoding and decoding policies that
jointly minimize the mean-square estimation error, under the
long-term communication rate constraint of R bits per second.
We show that an optimal encoding policy can be implemented
as a causal sampling policy followed by a causal compressing
policy. We prove that the optimal encoding policy samples the

Wiener process once the innovation passes either

√

1

R
or −

√

1

R
,

and compresses the sign of the innovation (SOI) using a 1-
bit codeword. The SOI coding scheme achieves the operational
distortion-rate function, which is equal to D

op(R) = 1

6R
.

Surprisingly, this is significantly better than the distortion-rate
tradeoff achieved in the limit of infinite delay by the best non-
causal code. This is because the SOI coding scheme leverages
the free timing information supplied by the zero-delay channel
between the encoder and the decoder. The key to unlock that
gain is the event-triggered nature of the SOI sampling policy. In
contrast, the distortion-rate tradeoffs achieved with deterministic
sampling policies are much worse: we prove that the causal
informational distortion-rate function in that scenario is as high
as DDET(R) = 5

6R
. It is achieved by the uniform sampling policy

with the sampling interval 1

R
. In either case, the optimal strategy

is to sample the process as fast as possible and to transmit 1-bit
codewords to the decoder without delay. Finally, we show that
the SOI coding scheme also minimizes the mean-square cost of
a continuous-time control system driven by the Wiener process,
and controlled via rate-constrained impulses.

Index Terms—Causal lossy source coding, sequential estima-
tion, sampling.

I. INTRODUCTION

A. System Model

Consider the system in Fig. 1. A source outputs a

continuous-time standard Wiener process {Wt}Tt=0, within the

time horizon [0, T ]. An encoder observes the process and

decides to disclose information about it at a sequence of non-

decreasing codeword-generating time stamps

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN ≤ T. (1)

These time stamps can be random and they can causally

depend on the Wiener process. Consequently, the total number

of time stamps N can also be random. At time τi, the encoder

chooses to generate a binary codeword Ui, with a length

ℓi ∈ Z
+, based on the past observed process {Wt}τit=0. Then,

the codeword Ui is passed through a noiseless digital channel

to the decoder without delay. Upon receiving the codeword

Ui at time τi, based on all the received codewords U i and
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the codeword-generating time stamps {τ1, . . . , τi}, the decoder

updates its running estimate of the Wiener process, yielding

{Ŵt}Tt=τi
. The decoder updates its estimate {Ŵt}Tt=τi+1

once

the next codeword Ui+1 is received at τi+1.

encoder channel decoder
Wt (Ui, τi) (Ui, τi) Ŵt

Fig. 1: System Model.

The communication between the encoder and the decoder is

subject to a constraint on the long-term average transmission

rate,

1

T
E

[

N
∑

i=1

ℓi

]

≤ R (bits per sec). (2)

The distortion is measured by the long-term mean-square

error (MSE) between Wt and Ŵt, 0 ≤ t ≤ T ,

1

T
E

[

∫ T

0

(Wt − Ŵt)
2dt

]

≤ d. (3)

We aim to find the jointly optimal encoding and decoding

policies that achieve the best tradeoffs between the rate in (2)

and the MSE in (3).

B. Literature Review

Finding sampling policies at the encoder and estimation

policies at the decoder to jointly minimize the end-to-end

distortion under transmission constraints falls into the realm

of optimal scheduling and sequential estimation problems.

These problems are often encountered in network control

systems, and has attracted significant research interest with

the development of robotics, the Internet of things, and the

smart grid.

Åström and Bernhardsson [1] compared uniform and sym-

metric threshold sampling policies1 (referred to as Riemann

and Lebesgue sampling, respectively) in continuous-time first-

order stochastic systems with a Wiener process disturbance,

and showed that the Lebesgue sampling gives a lower dis-

tortion than the Riemann sampling under the same average

sampling frequency. Imer and Başar [2] considered causal

estimation of i.i.d. processes under MSE and the constraint

on the total number of transmissions over a finite time hori-

zon, and showed via dynamic programming, that the time-

varying symmetric threshold sampling policy is optimal for

i.i.d. Gaussian processes [2]. For causal estimation of mul-

tidimensional discrete-time Gauss-Markov processes, Cogill

1The symmetric threshold sampling corresponds to sampling the process if
its current value exceeds or falls short of the previous sample by exactly a
certain threshold.
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et al. [3] aimed to find a sampling policy that minimizes a

cost function combining the average weighted MSE and the

average transmission cost over the infinite horizon. Cogill et

al. [3] proposed a threshold policy that transmits a sample

once the absolute value of the squared error exceeds some

constant, and proved that this suboptimal policy leads to a

cost that is within a factor of 6 of the optimal achievable

cost. Using dynamic programming and majorization theory,

Lipsa and Martins [4] proved that a time-varying symmetric

threshold policy and a Kalman-like filter jointly minimize a

discounted cost function consisting of MSE and a communi-

cation cost, for scalar discrete-time Gauss-Markov processes

over a finite time horizon. For partially observed discrete-time

Gauss-Markov processes, Wu et al. [5] fixed an event-triggered

policy, where the encoder transmits only if the L-infinity

norm of the Mahalanobis transformation of the measurement

innovation exceeds a constant, and derived both the accurate

and approximate (assuming Gaussian samples) minimum MSE

(MMSE) estimator to combine with that sampling policy. Wu

et al. [5] also derived the relation between the transmission

frequency and the threshold of the event-triggered policy.

Rabi et al. [6] formulated the problem of causal estimation

of continuous-time scalar linear diffusion processes under the

constraint on the total number of transmissions over a finite

time horizon as an optimal stopping time problem. Rabi et

al. [6] solved the optimal stopping time problem iteratively

to show that the optimal deterministic sampling policy for

the Wiener process is a uniform sampling policy, and that

the optimal event-triggered sampling policy is a time-varying

symmetric threshold policy. Rabi et al. [6] derived a dynamic

program that can be used to numerically compute the optimal

sampling policy for the Ornstein-Uhlenbeck process. Nar and

Başar [7] extended the optimal stopping time problem in [6]

to the multidimensional Wiener process, and proved that a

symmetric threshold policy remains optimal over both finite

and infinite time horizons. In particular, Nar and Başar [7]

showed that the optimal threshold over the infinite horizon

is a constant depending on the average sampling frequency.

For autogressive Markov processes driven by an i.i.d. process

with unimodal and symmetric distribution, Charkravorty and

Mahajan [8] used ideas from renewal theory to prove that

there is no loss of optimality if one focuses on sampling

policies with time-homogeneous thresholds over the infinite

time horizon. Charkravorty and Mahajan [8] also proved

that a symmetric threshold sampling policy together with

an Kalman-like estimator achieves the distortion-transmission

function, where the distortion-transmission function is defined

as the minimum achievable expected average (or discounted)

distortion subject to the expected average (or discounted)

number of transmissions. For the same scenario as in [8],

Molin and Hirche [9] proposed an iterative algorithm to

show that the optimal event-triggered policy converges to a

symmetric threshold policy.

In contrast to the scenarios in [1]-[9], where the commu-

nication channel is assumed to be perfect, [10]-[12] consider

imperfect communication channels, such as a channel with

an i.i.d. delay [10], a channel with i.i.d. Gamma noise [11], a

fading channel [12], and a packet-drop channel [13]. Sun et al.

[10] proved that a symmetric threshold policy remains optimal

even when the samples of the Wiener process experience an

i.i.d. random transmission delay, but the threshold depends

on the distribution of channel delay and is different from

the one in [7]. Using dynamic programming, Gao et al. in

[11] derived the optimal sampling, encoding and decoding

policies for event-triggered sampling of an i.i.d. Laplacian

source with subsequent transmission over a channel with a

Gamma additive noise, under an average power constraint.

For discrete-time first-order autogressive Markov processes

considered in [8]-[9], Ren et al. [12] introduced a fading

channel between the encoder and the decoder, where a suc-

cessful transmission depends on both the channel gains and

the transmission power, and found the optimal encoding and

decoding policies that minimize an infinite horizon cost func-

tion combining the MSE and the power usage. For first-order

autogressive sources considered in [8][9][12], Chakravorty and

Mahajan [13] further proved that the optimal estimation policy

is a Kalman-like filter and the optimal sampling policy is

symmetric threshold policy when the communication channel

is a packet-drop channel with Markovian states, where the

packet-drop probability depends on the channel state and the

transmission power chosen by the encoder.

Nayyar et al. [14] considered a scenario where the encoder

relies on the energy harvested from the environment to trans-

mit messages to the estimator, with each transmission costing

1 unit of energy, and proved that the optimal sampling strategy

is a symmetric threshold policy, provided that the finite-

state Markov source has symmetric and unimodal distribution

and the distortion measure is either the Hamming distortion

function or the power of the estimation error |x− y|p. For the

non-causal lossy source coding of a uniformly sampled Wiener

process, Kipnis et al. [15] derived the trade-offs between

the sampling frequency, the communication bitrate and the

estimation MSE, achievable in the limit of infinite delay.

Kofman and Braslavsky [16] designed a quantized

event-triggered controller for noiseless partially observed

continuous-time LTI systems with an unknown initial state to

ensure asymptotic convergence of the system to the origin with

zero average rate, seemingly violating the data-rate theorem.

Similar to [16], the fact that sampling time stamps of event-

triggered policies carry information is also exploited in [17]-

[20]. Pearson et al. [17] considered encoding the determin-

istic and possibly nonuniformly sampled states of noiseless

continuous-time LTI systems into symbols in a finite alphabet

with a free symbol representing the absence of transmission.

For discrete-time linear systems with additive disturbances,

Khina et al. [18] considered a setting where at each discrete-

time instant, the encoder chooses to either transmit 1 bit or

transmit the free symbol, and designed an adaptive scalar

quantizer with three bins using a Lloyd-Max algorithm with

the quantization bin of the largest probability corresponding

to the free symbol. Ling [19] designed a periodic event-

triggered quantization policy to stabilize continuous-time LTI



systems subject to i.i.d. feedback dropouts, bounded network

delay and bounded noise, which leads to a stabilizing rate

that is lower than the one the data-rate theorem requires

for time-triggered policies. Khojasteh et al. [20] considered

sampling noiseless continuous-time LTI systems when the

state estimation error exceeds an exponentially decaying func-

tion, and found that the information transmission rate re-

quired for stabilizing systems can be any positive value for

small enough delays and starts to increase when the delay

exceeds a critical value. Quantized event-triggered control

has also been studied for continuous-time LTI systems with

bounded disturbances [21], for partially-observed continuous-

time LTI systems without noise [22] and with bounded noise

[23], for discrete-time noiseless linear systems [24], and for

partially observed continuous-time LTI systems with time-

varying network delay [25]. Event-triggered control schemes

to guarantee exponential stabilization were designed both for

continuous-time LTI systems with bounded disturbances under

a bounded rate constraint [26] and for noiseless continuous-

time LTI systems under time-varying rates constraints and

channel blackouts [27].

C. Contribution

In this paper, we adopt an information-theoretic approach to

continuous-time causal estimation, by considering the optimal

tradeoff between the achievable MSE and the average number

of bits communicated. This is different from the models

studied in [1]-[14], where communication cost is measured

by the number of transmissions, and each infinite-precision

transmission can carry an infinite amount of information. For

communication over digital channels, a bitrate constraint, rou-

tinely considered in information theory, is more appropriate.

Our setting is also different from [15] in that we do not ignore

delay: our distortion at time t is measured with respect to the

actual value of the process at time t; whereas [15] permits an

infinite delay, following a standard assumption in information

theory. In contrast to the works [16]-[27] that do not claim

or consider the optimality of the proposed event-triggered

policies, we show the optimality of the SOI coding scheme

for our problem setting in Section I-A.

We first show that an optimal encoding policy that achieves

the operational distortion-rate function (ODRF) can be im-

plemented as a causal sampling policy coupled with a com-

pressing policy. Then, we prove that the optimal encoding

policy is a symmetric threshold sampling policy with threshold

±
√

1
R

and a 1-bit SOI compressor. The optimal decoding

policy causally estimates the Wiener process by summing up

the received innovations. This coding scheme, termed the SOI

coding scheme, achieves the ODRF Dop(R) = 1
6R .

In the SOI coding scheme, the encoder continuously tracks

the process, generating a bit once the process passes the

threshold. To reconstruct the process, both those bits and their

time stamps are required at the decoder. In the scenario where,

due to implementation constraint, the sampler is process-

agnostic, or the decoder has no access to timing information,

one has to adopt a deterministic sampling policy. We prove

that a uniform sampling policy with the sampling interval
1
R

achieves the informational distortion-rate function (IDRF),

which is equal to DDET(R) = 5
6R . To define the IDRF for the

deterministic sampling policies, we change the rate constraint

(2) to a directed mutual information rate constraint, which

serves as an information-theoretic lower bound to (2). This

is a consequence of our real-time distortion constraint. Had

we allowed delay, coding gains would have been possible

by, for example, jointly compressing blocks of those bits.

To confirm that the IDRF is a meaningful gauge of what is

achievable in the zero-delay causal compression, we imple-

ment the greedy Lloyd-Max compressor [18] to compress the

innovations Wτi − Ŵτi−1 , and verify that the performance of

the resulting scheme is close to the IDRF.

To study the tradeoffs between the sampling frequency and

the rate per sample under a rate per second constraint R, we

define operational and informational distortion-frequency-rate

function (ODFRF and IDFRF). The ODFRF and the IDFRF

are both minimized by the maximum sampling frequency R

and the minimum rate 1 bit/sample, implying that sampling

the process as fast as possible under the rate constraint and

transmitting 1-bit codewords to the decoder without delay is

optimal.

Surprisingly, the distortion achieved by the SOI coding

scheme is smaller than the distortion achieved by the best non-

causal codes. The reason is that in the SOI coding scheme,

the encoder and the decoder know the random sampling time

stamps perfectly, whereas in classical non-causal coding, this

free timing information is not considered.

We also show that the SOI coding scheme continues to

be optimal when there is a fixed channel delay between the

codeword-generating time and the codeword-delivery time. We

show that if the decoder is allowed to wait for only the next

codeword before decoding, the MSE can be further decreased.

Finally, we prove that the SOI coding scheme is also optimal

in a rate-constrained event-triggered control scenario with a

continuous-time stochastic plant driven by the Wiener process

and controlled via impulse control. The SOI code minimizes

the mean-square cost between the state of the stochastic plant

and the desirable state 0.

A part of this work will be presented at the 57th Annual

Allerton Conference [38]; the conference version does not

contain Section VI or any proofs.

D. Paper organization

In Section II, we define causal codes, distortion-rate and

distortion-frequency-rate functions. In Section III, we state

the main results of this paper, including the optimal causal

sampling and compressing policies and the tradeoffs between

the sampling frequency and the rate per sample. In Section IV,

we show the proof of the main results. In Section V, we discuss

the distortion-rate tradeoffs when delays are allowed at both

the encoder and the decoder, at the decoder only, and at the

communication channel. In Section VI, we show the optimal

causal sampling and compressing policies in a rate-constrained

event-triggered control system.



E. Notations

We denote by {Wt}τi+1

t=τi
and {Wt}τi<t<τi+1 the parts

of the Wiener process within time intervals [τi, τi+1], and

(τi, τi+1), respectively. For M ∈ Z
+, [M ] , {1, . . . ,M}.

For a possibly infinite sequence x = {x1, x2, . . . }, we write

xi = {x1, x2, . . . , xi} to denote the vector of its first i

elements.

II. DISTORTION-RATE FUNCTIONS

In this section, we define the operational and the informa-

tional causal distortion-rate functions, and we show that an

optimal encoder can be separated into a sampler followed by

a compressor.

A. Encoding and decoding policies

The standard Wiener process is defined as follows.

Definition 1. (standard Wiener process, e.g. [31]) A standard

Wiener process {Wt}t≥0 is a stochastic process characterized

by the following three properties:

(i) time-homogeneity: for all non-negative s and t, Ws and

Ws+t −Wt have the same distribution (W0 = 0);

(ii) independent increments: Wti − Wsi (i ≥ 1) are

independent whenever the intervals (si, ti] are disjoint;

(iii) Wt follows the Gaussian distribution N (0, t).

Throughout, we assume that both encoder and decoder know

the initial state W0 = 0 at τ0 = 0.

Next, we formally define the encoding and decoding poli-

cies2. Denote the set of continuous functions on the time

interval [0, t] by C[0,t]. Define the Wiener process stopped at

a stopping time τ (e.g. [33, Eq. 3.9]) as:

Wt(τ) =

{

Wt if t ≤ τ

Wτ if t > τ.
(4)

Definition 2. (An (R, d, T ) causal code) An (R, d, T ) causal

code for the Wiener process {Wt}Tt=0 is a pair of encoding

and decoding policies defined as follows.

The encoding policy consists of

(i) the causal sampling policy πT = {τ1, τ2, . . . } that

decides the codeword-generating time stamps in (1) that are

stopping times of the filtration σ({Wt}Tt=0), and

(ii) the compressing policy fT = {f1, f2, . . . }3,

fi : C[0,T ] →
[

2ℓi
]

. (5)

The codeword generated at time τi is Ui = fi

(

{Wt(τi)}Tt=0

)

.

The codewords’ lengths must satisfy the long-term average

rate constraint (2).

The decoding policy causally maps the received codewords

and the codeword-generating time stamps to a continuous-time

process estimate {Ŵt}Tt=0 using

Ŵt , E[Wt|U i, τ i, t < τi+1], t ∈ [τi, τi+1). (6)

2We refer to encoding and decoding policies to emphasize their causal
nature.

3In some scenarios, we allow randomness in the mapping fi, replacing the
deterministic mapping fi in (5) by a transition probability kernel.

Together, the encoding and the decoding policies must

satisfy the long-term MSE constraint in (3).

In this work, we focus on the causal sampling policies

satisfying the following natural assumptions:

(i) The sampling interval between any two consecutive stop-

ping times, τi+1 − τi, satisfies

E[τi+1 − τi] < ∞, i = 0, 1, . . . (7)

(ii) For all i = 0, 1, . . . , the conditional pdf fτi+1|τi exists.

The decoding policy in (6) forces the estimate Ŵt to be

equal to the conditional expectation of Wt given all the

received information and the information that the next sample

has not been transmitted yet. As we will show in the proof

of Theorem 1, given the optimal sampling policy, the optimal

decoding policy Ŵt, t ∈ [τi, τi+1) can be simplified to the

following equation,

Ŵt = Ŵτi , E[Wτi |U i, τ i], t ∈ [τi, τi+1). (8)

Allowing more freedom in the design of a decoding policy

cannot yield a lower MSE because (6) is the MMSE estimator

of Wt during t ∈ [τi, τi+1). This is a consequence of the

zero-delay MSE constraint (3) at the decoder. As we explain

in Section V-B below, had we allowed delay at the decoder,

we could have improved performance by e.g. using linear

interpolation between recovered samples at the decoder.

B. Operational distortion-rate function

We now define the operational distortion-rate function.

Definition 3. (Operational distortion-rate function (ODRF))

The ODRF is the minimum distortion compatible with rate R

achievable by causal rate-R codes in the limit of infinite time

horizon:

Dop(R) , lim sup
T→∞

inf{d : ∃ (R, d, T ) causal code}. (9)

Equivalently, the ODRF is

Dop(R) = lim sup
T→∞

inf
πT∈ΠT

fT∈FT :
(2)

1

T
E

[

N
∑

i=0

∫ τi+1

τi

(Wt − Ŵt)
2dt

]

,

(10)

where τN+1 , T , and ΠT , FT denote the sets of all

sampling and all compressing policies over the time horizon

T respectively.
It turns out that the ODRF can be decomposed into the dis-

tortion due to sampling and the distortion due to quantization.

Proposition 1. The ODRF for the Wiener process can be

written as

Dop(R) = lim sup
T→∞

inf
πT∈ΠT

1

T

{

E

[

N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]

(11a)

+ inf
fT∈FT :

(2)

E

[

N
∑

i=1

(τi+1 − τi)(Wτi − Ŵτi)
2

]}

,

(11b)



where Ŵτi is given in (8). Furthermore, if randomized com-

pressing policies are allowed, there is no loss of optimality

if at time τi, a compressing policy only takes into account

the innovation Wτi −Ŵτi−1 , past codewords U i−1 and timing

information τ i, rather than the whole process up to time τi,

as permitted by Definition 2.

Proof. Appendix A.

In (11a), Wτi is the MMSE estimator of Wt at t ∈ [τi, τi+1),
given the past lossless samples {Wτj}ij=1 and the codeword-

generating time stamps τ i. The expectation in (11a) is the

sampling distortion due to causally estimating the Wiener

process from its lossless samples {Wτj}ij=1 taken under the

sampling policy πT .

The expectation in (11b) is the mean-square quantization

error of the samples, accumulated over sampling intervals of

length τi+1− τi, i = 1, . . . , N . According to the compressing

policy described in Proposition 1, the minimization problem

in (11b) is the operational zero-delay causal distortion-rate

function of the discrete-time stochastic process formed by

the samples. Furthermore, the encoding policy can be imple-

mented as a sampler followed by a compressor. See Fig. 2.

The sampler takes measurements of the Wiener process under

sampler compressor
Wt Wτ1 , . . . ,Wτi U1, . . . , Ui

Fig. 2: Decomposition of the encoder.

a sampling policy and outputs samples without delay to the

compressor. Upon receiving a new sample, the compressor

immediately generates a codeword under the compressing

policy described in Proposition 1.

C. Informational distortion-rate function

The directed information I(Xn → Y n) from a sequence

Xn to a sequence Y n is defined as [32]

I(Xn → Y n) =

n
∑

i=1

I(X i;Yi|Y i−1). (12)

The directed information captures the information due to the

causal dependence of Y n on Xn.

A sampling policy πT = {τ1, τ2, . . . } is deterministic if

its sampling time stamps (1) are deterministic. We denote the

set of all deterministic sampling policies by ΠDET
T . Under a

deterministic sampling policy, the total number of samples N

within the time horizon [0, T ] is constant.

Definition 4. (Informational distortion-rate function (IDRF))

The IDRF for the Wiener process under deterministic sampling

policies can be written as

DDET(R) ,

lim sup
T→∞

inf
πT∈ΠDET

T

1

T

{

E

[ N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]

+ (13a)

inf⊗N
i=1 P

Ŵτi
|Wτi ,Ŵ

τi−1 :

I(WτN →ŴτN )
T

≤R

E

[ N
∑

i=1

(τi+1 − τi)(Wτi − Ŵτi)
2

]

}

,

(13b)

The minimization problem (13b) in DDET(R) is the causal

IDRF for the discrete-time stochastic process formed by the

samples. Note that (13b) is minimized over the directed infor-

mation rate, which gives an information-theoretic lower bound

to the rate considered in (2). Thus, the following relation holds

according to [36, Eq. (43)].

D
op
DET(R) ≥ DDET(R), (14)

where D
op
DET(R) is the ODRF for deterministic sampling

policies defined by (11) with the minimization constraint in

(11a) replaced by πT ∈ ΠDET
T .

D. Operational and informational distortion-frequency-rate

function

According to Proposition 1, an optimal encoder can be

implemented as a sampler followed by a compressor. To gain

insight into the tradeoffs between the sampling frequency f

at the sampler and the rate per sample Rs at the compressor,

we define an (f,Rs, d, T ) causal code.

Definition 5. (An (f,Rs, d, T ) causal code) An (f,Rs, d, T )
causal code for the Wiener process {Wt}Tt=0 is a triplet of

causal sampling, compressing and decoding policies:

(i) the causal sampling policy4 πT = {τ1, τ2, . . . } satisfies

the average sampling frequency constraint

1

T
E[N ] = f ; (15)

(ii) the compressing policy fT = {f1, f2, . . . }5 is

fi : R× R
i−1 × R

i →
[

2ℓi
]

. (16)

The codeword generated at time τi is Ui = fi
(

Wτi , U
i−1, τ i

)

.

The codewords’ lengths must satisfy

1

E[N ]
E

[

N
∑

i=1

ℓi

]

≤ Rs (bits per sample); (17)

(iii) the decoding policy causally maps the received

codewords and the codeword-generating time stamps to a

continuous-time process estimate {Ŵt}Tt=0 using (6).

Together, the causal sampling, compressing and decoding

policies must satisfy the long-term MSE constraint in (3).

4The causal sampling policy is defined in Definition 2(i)
5Here we slightly abuse the notation: we have used fT in Definition 2(ii),

and have shown in Proposition 1 that the compressing policy fT can be
simplified to (16).



We define the operational distortion-frequency-rate function.

Definition 6. (Operational distortion-frequency-rate func-

tion(ODFRF)) The ODFRF is the minimum distortion achiev-

able by causal frequency-f and rate-Rs codes in the limit of

infinite time horizon:

Dop(f,Rs) , lim sup
T→∞

inf{d : ∃ (f,Rs, d, T ) causal code}.
(18)

Using the method used to decompose Dop(R) in Proposi-

tion 1, we can write Dop(f,Rs) as

Dop(f,Rs) =

lim sup
T→∞

inf
πT∈ΠT :

(15)

1

T

{

E

[

N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]

(19a)

+ inf
fT∈FT :

(17)

E

[

N
∑

i=1

(τi+1 − τi)(Wτi − Ŵτi)
2

]}

, (19b)

where the expectation in (19a) is the sampling distortion, and

the expectation in (19b) is the mean-square quantization error

of the samples weighted by the lengths of sampling intervals

τi+1 − τi, i = 1, . . . , N .

We define the informational distortion-frequency-rate func-

tion for deterministic sampling policies. The informational

equivalent of Dop(f,Rs) replaces (17) by the constraint on

the directed information, that is, for deterministic sampling

policies,

1

N
I(W τN → Ŵ τN ) ≤ Rs. (20)

Definition 7. (Informational distortion-frequency-rate func-

tion (IDFRF)) The IDFRF for the Wiener process under

deterministic sampling policies can be written as

DDET(f,Rs) ,

lim sup
T→∞

inf
πT∈ΠDET

T :
(15)

1

T

{

E

[ N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]

(21a)

+ inf⊗N
i=1 P

Ŵτi
|Wτi ,Ŵ

τi−1 :

(20)

E

[ N
∑

i=1

(τi+1 − τi)(Wτi − Ŵτi)
2

]

}

(21b)

Similar to DDET(R) in Definition 3, (21b) is the IDRF for

the Gauss-Markov process formed by the samples, but it is

worth noticing that the rate considered in (21b) is the rate per

sample Rs rather than the rate per second R considered in

(13b).

III. MAIN RESULTS

The first theorem of this section shows the optimal causal

sampling and compressing policies that achieve Dop(R).

Theorem 1. In causal coding of the Wiener process, the

optimal causal sampling policy is the following symmetric

threshold sampling policy:

τi+1 = inf

{

t ≥ τi : |Wt −Wτi | ≥
√

1

R

}

, i = 0, 1, 2, . . .

(22)

The optimal compressing policy is a 1-bit sign-of-innovation

(SOI) compressor:

Ui =

{

1 if Wτi+1 −Wτi ≥ 0

0 if Wτi+1 −Wτi < 0.
(23)

The SOI coding scheme achieves the ODRF:

Dop(R) =
1

6R
. (24)

Proof. Section IV-A.

Together with the optimal encoding policy in Theorem 1, the

optimal decoding policy (6) accumulates the received noiseless

innovations to estimate the current value of the process.

The next theorem shows the optimal deterministic sampling

policy that achieves DDET(R).

Theorem 2. In causal coding of the Wiener process, the

uniform sampling with the sampling interval equal to

τi+1 − τi =
1

R
, i = 0, 1, 2, . . . , (25)

achieves

DDET(R) =
5

6R
. (26)

Proof. Section IV-D.

Theorem 3. In causal coding of the Wiener process, the

ODRF satisfies

Dop(R) = min
f>0,Rs≥1 :

fRs≤R

Dop(f,Rs), (27a)

=Dop(R, 1), (27b)

and the IDRF under deterministic sampling policies satisfies

DDET(R) = min
f>0,Rs≥1 :

fRs≤R

DDET(f,Rs) (28a)

=DDET(R, 1). (28b)

Proof. See Section IV-B for the proof of (27). See Sec-

tion IV-C for the proof of (28).

Using Theorem 3, we can formulate the working principle

of an optimal encoding policy as follows. A sampler takes

measurements of the Wiener process as fast as possible subject

to a rate constraint, and the most recent sample is used to

generate a 1-bit codeword, which is transmitted to the decoder

without delay. In the setting of Theorem 1, the 1-bit SOI

compressor associated with the symmetric threshold sampling

policy uses the most recent sample to calculate the innovation

and to produce a 1-bit codeword. In the setting of Theorem 2,

although evaluating DDET(R) does not give us an operational



compressing policy, we know that the stochastic kernel that

achieves the causal IDRF for discrete-time Gauss-Markov

processes formed by the samples under uniform sampling

policies has the form
⊗∞

i=1 PŴτi
|Wτi

−Ŵτi−1
,Ŵτi−1

[35, Eq.

(5.12)], suggesting that at the encoder, it is sufficient to

compress the quantization innovation Wτi − Ŵτi−1 only. The

decoder computes the estimate Ŵτi as Ŵτi = Ŵτi−1 +

qi(Wτi−Ŵτi−1), where qi = gi◦fi, fi
(

Wτi − Ŵτi−1

)

∈
[

2ℓi
]

is the i-th binary codeword, and gi(c) ∈ R is the quantization

representation point corresponding to c ∈
[

2ℓi
]

. In practice,

one can use the greedy Lloyd-Max compressor [18] that runs

the Lloyd-Max algorithm for the quantization innovation in

each step based on the prior probability of the quantization

innovation. Specifically, the prior for (i+1)-th step is the pdf

of the quantization innovation Wτi+1 − Ŵτi , which can be

computed as the convolution of the pdfs of the quantization

error Wτi −Ŵτi and the process increment Wτi+1 −Wτi . The

globally optimal scheme has a negligible gain over the greedy

Lloyd-Max algorithm even in the finite time horizon [18].
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Fig. 3: MSE versus rate

Fig. 3 displays distortion-rate tradeoffs obtained in

Theorems 1 and 2, as well as a numerical simulation of

the uniform sampling in Theorem 2 with the greedy Lloyd-

Max quantization of innovations. The symmetric threshold

sampling policy followed by a 1-bit SOI compressor leads to

a much lower MSE than uniform sampling. Indeed, according

to Theorems 1 and 2,
DDET(R)
Dop(R) = 5, and D

op
DET(R) for the

uniform sampling is even higher than DDET(R) by (14).

Note that the greedy Lloyd-Max curve is rather close to the

DDET(R) curve, indicating that the IDRF is a meaningful

gauge of what is attainable in zero-delay continuous-time

causal compression.

The optimal sampling policies of Theorems 1 and 2, i.e.

the symmetric threshold and the uniform sampling policies,

are the same as the corresponding optimal sampling policies

that achieve the minimum sampling distortion [6, Sec. 3.1]

[7] subject to an average sampling frequency constraint (15)

with f = R. The value of Dop(R) (24) achieved by the sym-

metric threshold sampling policy is the same as the sampling

distortion, since the 1-bit SOI compressor is able to compress

each innovation noiselessly due to the size-2 alphabet of the

innovations, resulting in zero quantization distortion (11b).

In contrast, for deterministic sampling policies, quantization

distortion is unavoidable, since the samples are Gaussian. If

we only consider the constraint on the sampling frequency, the

optimal deterministic sampling policy for the Wiener process

is uniform sampling [6, Sec. 3.1]. Nevertheless, the result in

Theorem 2 implies that uniform sampling is still optimal in

the IDRF sense, whether or not the quantization distortion is

taken into account.

IV. PROOFS OF THE MAIN RESULTS

A. Proof of Theorem 1

To prove that the SOI coding scheme in Theorem 1 achieves

the ODRF, we first derive a lower bound to the ODRF, and

then we show that this lower bound is achieved by the SOI

coding scheme. The MSE achievable by causal rate-R codes

is lower bounded in the following way,

inf
πT∈ΠT ,
fT∈FT :

(2)

1

T
E

[ N
∑

i=0

∫ τi+1

τi

(Wt − E[Wt|U i, τ i, t < τi+1])
2dt

]

(29a)

≥ inf
πT∈ΠT :
E[N ]
T

≤R

1

T
E

[ N
∑

i=0

∫ τi+1

τi

(Wt − E[Wt|{Ws}τis=0, τ
i,

t < τi+1])
2dt

]

(29b)

= inf
πT∈ΠT :
1
T
E[N ]≤R

1

T
E

[ N
∑

i=0

∫ τi+1

τi

(Wt − E[Wt|Wτi , τi])
2dt

]

(29c)

= inf
πT∈ΠT :
1
T
E[N ]≤R

1

T
E

[ N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]

, (29d)

where (29b) holds since σ(U i) ⊂ σ({Wt}τit=0) and

E[N ] ≤ E

[

N
∑

i=1

ℓi

]

; (30)

(29c) holds due to [39, Cor. 1.1] where the Wiener process

satisfies the regularity conditions in [39]; (29d) is due to the

strong Markov property of the Wiener process.

It remains to show that the lower bound (29d) is achieved by

the SOI coding scheme. First, we notice that the optimization

problem in (29d) corresponds to determining the optimal

sampling policy that minimizes the MSE subject to an average

sampling frequency constraint, where N can be considered as

the total number of samples taken within [0, T ]. According to

[7, Eq. (20)], the optimal sampling policy that achieves the

lim supT→∞ of (29d) is given by (22). Second, we know that

each innovation

∆Wi , Wτi+1 −Wτi , i = 0, 1, 2, · · · , (31)



is equiprobabily distributed on a size-2 alphabet
{

±
√

1
R

}

.

Thus, ∆Wi can be noiselessly encoded using 1-bit codewords

U i, while satisfying the inequality in (30) with equality.

Therefore, the lim supT→∞ of (29d) is achieved by the SOI

coding scheme.

From the equality in (29c) and the fact that the SOI coding

scheme attains (29a), we conclude that the optimal decoding

policy (6) can indeed be simplified to (8) given the optimal

encoding policy in Theorem 1.

B. Proof of Theorem 3 (27)

Dop(f,Rs) is lower-bounded by the sampling distortion

(19a). This lower bound is achieved by a symmetric threshold

sampling policy with thresholds ±
√

1
f

, and a 1-bit SOI

compressor, where the symmetric threshold sampler achieves

the minimum of (19a), which is equal to 1
6f [7, Eq. (20)].

Since the 1-bit SOI compressor results in zero quantization

distortion (19b),

Dop(f,Rs) =
1

6f
, (32)

for any Rs ≥ 1. Plugging (32) into the minimization problem

in (27a), we obtain

min
f>0,Rs≥1 :

fRs≤R

Dop(f,Rs) = Dop(R, 1), (33a)

Dop(R, 1) =
1

6R
. (33b)

Comparing (33) to (24), we conclude that (27) holds.

C. Proof of Theorem 3 (28)

Since the samples taken under a deterministic sampling

policy form a Gauss-Markov process, we first compute

DDET(f,Rs) building on existing results on the causal IDRF

(21b) of discrete-time Gauss-Markov processes.

Lemma 1. The IDFRF under deterministic sampling policies

can be written as

DDET(f,Rs) = lim sup
N→∞

DN (f,Rs), (34a)

DN (f,Rs) = inf
TN≥0 :

(35)

f

N





N
∑

i=0

T 2
i

2
+ min

DN≥0 :
(36)

N
∑

i=1

TiDi



 ,

(34b)

where the minimization constraints in (34) are

1

N

N
∑

i=0

Ti =
1

f
, (35)

and

z
(

DN
)

,
1

N

(

N−1
∑

i=1

log

(

1 +
Ti

Di

)

+ log

(

T0

DN

)

)

≤ 2Rs,

(36a)

Di−1 + Ti−1 ≥ Di, i = 1, . . . , N. (36b)

Proof. Appendix B.

The optimization variable TN in (34) is the vector of

sampling intervals TN = {T0, T1, . . . , TN}, where

Ti = τi+1 − τi, i = 0, . . . , N − 1,

TN = T − τN ,
(37)

that determine a deterministic sampling policy. The optimiza-

tion variable DN in (34) is the vector of sample distortions

DN = {D1, . . . , DN}.

Note that DDET(R) in (13) is related to DDET(f,Rs) in

(34) as follows,

DDET(R) = lim sup
N→∞

inf
f>0,Rs≥1 :

fRs≤R

DN(f,Rs). (38)

We observe that (28a) does not directly follow (38), since the

right-hand side of (28a) switches the order of lim sup and inf
in (38).

We will use Lemmas 2 to 5 that follow to prove (28a) in

Theorem 3.

Lemma 2. DN(f,Rs) is lower-bounded as

DN (f,Rs) ≥ DN (f,Rs), (39a)

, inf
T0≥0,TN≥0
T0+TN≤N

f

f

2

(

T 2
0 + T 2

N + 2 log eλ∗(f,Rs, N)

N

+
N − 1

N
T ∗(f,N)

√

T ∗(f,N)2 + 4 log eλ∗(f,Rs, N)

)

,

(39b)

where T ∗(f,N) is given by,

T ∗(f,N) ,
N

f(N − 1)
− T0 + TN

N − 1
, i = 1, . . . , N − 1, (40)

and λ∗(f,Rs, N) ≥ 0 is the unique solution to

z
(

DN∗
)

= 2Rs, (41)

with DN in (36a) replaced by

D∗
i =

−Ti +
√

T 2
i + 4 log eλ∗(f,Rs, N)

2
, i = 1, . . . , N − 1,

(42a)

D∗
N =

λ∗(f,Rs, N) log e

TN

, (42b)

and Ti, i = 1, . . . , N − 1 in (36a) replaced by T ∗(f,N) in

(40).

Proof. Appendix C.

Lemma 3. DN(f,Rs) is upper-bounded as

DN (f,Rs) ≤ D̄N(f,Rs), (43a)

,
N

f(N + 1)2
+

log eλ∗(f,Rs, N)f

N

+
N − 1

2(N + 1)

√

(

N

f(N + 1)

)2

+ 4 log eλ∗(f,Rs, N), (43b)



where λ∗(f,Rs, N) ≥ 0 is the unique solution to (41) with

DN in (36a) replaced by (42) and Ti, i = 0, . . . , N in (36a)

equal to

T0 = T1 = · · · = TN =
N

f(N + 1)
. (44)

Proof. Appendix D.

Lemma 4.

DDET(f,Rs) =
1

2f
+

1

f(22Rs − 1)
, (45)

where (45) can be achieved by a uniform sampling policy with

sampling intervals equal to

Ti =
1

f
, i = 0, 1, . . . (46)

Proof. Appendix E.

Lemma 5.

DDET(R) = min
f>0,Rs≥1 :

fRs≤R

DDET(f,Rs). (47)

Proof. Appendix F.

Using Lemma 5, we conclude that (28a) in Theorem 3 holds.

It remains to minimize DDET(f,Rs) in (28a) over feasible f

and Rs to prove (28b).

DDET(R) = min
Rs≥1

DDET

(

R

Rs

, Rs

)

(48a)

= DDET(R, 1) (48b)

=
1

2R
+

1

3R
=

5

6R
, (48c)

where (48a) holds because DDET(f,Rs) in (45) decreases

monotonically in f for any given Rs ≥ 1, and (48b) holds

because DDET

(

R
Rs

, Rs

)

increases monotonically as Rs in-

creases in the range Rs ≥ 1. Thus, DDET(R) is achieved

at f = R, Rs = 1. Note that 1
2R in (48c) comes from the

sampling distortion and 1
3R comes from the causal IDRF for

the discrete-time samples.

D. Proof of Theorem 2

From (48), we conclude that (26) holds. Using Lemma 4

and (28b), we conclude that the uniform sampling policy with

sampling frequency R achieves DDET(R).

V. RATE-CONSTRAINED SAMPLING WITH DELAYS

In our communication scenario in Section I-A, the code-

words are delivered from the encoder to the decoder without

delay, and the distortion constraint (3) penalizes any delay

at the encoder or the decoder. While those are realistic

assumptions in some scenarios of remote tracking and control,

in this section we consider how the achievable distortion-rate

tradeoffs are affected if those assumptions are weakened.

A. Delay at the encoder and the decoder

In the scenario of encoding the entire process for the

purpose of preserving it for future, a large delay is permissible.

In the extreme, the encoder may wait until the whole input

process {Wt}Tt=0 is observed before coding, and the decoder

is allowed to wait until T before estimating the process. This

corresponds to the classical scenario of non-causal (block)

compression. The IDRF for this scenario is given by

Dnoncausal(R) =

lim
T→∞

inf
P

{Ŵt}
T
t=0

|{Wt}
T
t=0

:

1
T
I({Wt}

T
t=0;{Ŵt}

T
t=0)≤R

E

[

1

T

∫ T

0

(Wt − Ŵt)
2dt

]

.

(49)

Berger [34] derived the distortion-rate function for the Wiener

process using reverse water-filling over the power spectrum of

the process,

Dnoncausal(R) =
2 log2 e

π2R
bits/s. (50)

The ODRF continues to be lower-bounded by the IDRF in

this non-causal scenario, D
op
noncausal (R) ≥ Dnoncausal (R)

(cf. (14)). As for the achievability, Berger showed that (50)

can be achieved in the following sense: given a rate R ≥ 0,

and ǫ > 0, there exists a code with rate R+ǫ that achieves the

distortion Dnoncausal(R)+ǫ. Berger’s coding scheme operates

as follows [34]: the Wiener process is divided into successive

time intervals of a large enough length T seconds. For each

interval, the Karhunen-Loève (KL) coefficients of the process

are calculated, and at most 2T (R+ǫ) codewords are used to

jointly encode these coefficients with a resulting MSE per

second equal to Dnoncausal(R) + ǫ. In parallel with the KL

expansion coefficients encoding scheme, an integrating delta

modulator is employed to encode each endpoint of the length-

T intervals with MSE per second ǫ using ǫ bits per second.

Comparing Dnoncausal(R) in (50) with Dop(R) in (24), we

see that, surprisingly, the optimal zero-delay policy outper-

forms the best infinite delay one:

Dop(R)

Dnoncausal(R)
≈ 0.57. (51)

This is because in zero-delay causal coding, the timing in-

formation is free. Indeed, the decoder knows the codeword-

generating time stamps that are stopping times of the filtra-

tion generated by the Wiener process. In classical noncausal

(block) lossy compression, no encoder and decoder synchro-

nization is assumed, and thus the encoder is tasked with

encoding both the values of the Wiener process and the time

stamps corresponding to these values. In many operational

scenarios of remote tracking and control, the encoder and

decoder are naturally synchronized, providing free timing in-

formation. Since Berger’s distortion-rate function in (50) does

not take that into account, it cannot adequately characterize the

fundamental information-theoretic limits in those scenarios.



B. Delay at the decoder

In the scenario of causal coding where some small delay

is tolerated but the data is not recorded for storage, e.g.

speech communication, one can leverage both the free timing

information and the coding delay to improve distortion-rate

tradeoffs. A one sample look-ahead decoder waits for the

next codeword Uτi+1 before estimating Wt, τi ≤ t < τi+1,

introducing a maximum average delay of E(τi+1 − τi) =
1
R

at the decoder. As we are about to see, this one sample

look-ahead decoder greatly reduces the MSE compared to the

ODRF obtained in (24) under causal estimation.

With the encoding policy in Proposition 1, the decoder is

permitted to estimate Wt at time t′, t ≤ t′ ≤ T using not

only the codewords received before time t, but also the extra

codewords received during the time [t, t′]. In the extreme, t′ =
T , the decoder can jointly use all the codewords and codeword-

generating time stamps in time horizon [0, T ] to recover the

Wiener process. Using Wolf and Ziv’s decomposition of MSE

in [28], the ODRF with decoder delay can be decomposed as

D
op
dec delay(R) = lim sup

T→∞
inf

πT∈ΠT

fT∈FT :
(2)

1

T
E

[ N
∑

i=0

∫ τi+1

τi

(Wt − W̄t)
2

+
(

W̄t − Ŵt

)2

dt

]

,

(52)

where W̄t is the MMSE estimator of the process at the encoder

using the samples and the times that they were taken: for t ∈
[τi, τi+1),

W̄t , E[Wt|{Wτj}Nj=1, τ
N ] = E[Wt|Wτi ,Wτi+1 , τi, τi+1],

(53)

where (53) holds because Wt − (Wτi ,Wτi+1τi, τi+1) −
({Wτj}i−1

j=1, {Wτj}Nj=i+1, {τj}i−1
j=1, {τj}Nj=i+1) form a Markov

chain in that order. Therefore, given all the noiseless samples,

W̄t only depends on the previous sample and the next sample.

In particular, when the samples are taken under a determinis-

tic sampling policy, (Wτi ,Wt,Wτi+1) is a Gaussian random

vector, thus W̄t in (53) is the linear interpolation between Wτi

and Wτi+1 . Ŵt is the MMSE estimator of the process at the

decoder using all the received information,

Ŵt =E[Wt|UN , τN ] (54a)

=E[E[Wt|{Wτj}Nj=1, U
N , τN ]|UN , τN ] (54b)

=E[W̄t|UN , τN ], (54c)

where (54c) holds due to the Markov chain Wt −
({Wτj}Nj=1, τ

N )− UN and (53). Since the one sample look-

ahead decoder only waits until the next codeword Ui+1 is

received at τi+1, Ŵt is specified to E[W̄t|U i+1, τ i+1] for

t ∈ [τi, τi+1).
We append the one sample look-ahead decoder to the opti-

mal encoding policy in Theorem 1 and calculate the resulting

MSE. Under symmetric threshold sampling policies, the sam-

ples are not necessarily Gaussian, and the linear interpolation

can be suboptimal. Yet, if in (52) we substitute for W̄t a

suboptimal estimate
Wτi+1

+Wτi

2 , then the resulting the MSE is

equal to 1
12R , a two-fold improvement over (24). We append

the one sample look-ahead decoder to the uniform sampling

policy in Theorem 2, and ignore the potential reduction in

quantization distortion brought by the decoder’s ability to look

ahead by one sample. The resulting sampling distortion is

1
T
E

[

∑N
i=0

∫ τi+1

τi
(Wt − W̄t)

2

]

= 1
6R , a 3-fold improvement

over the sampling distortion 1
2R (48c) causally attainable with

a uniform sampling policy. Thus, the total MSE is at most 1
2R ,

a 1.67-fold improvement over (26).

C. Delay at the channel

Consider the communication scenario in Fig. 1 with a fixed

channel delay between the codeword-generating time stamp

and the codeword-delivery time stamp. We show that the

optimal coding policy remains the SOI code in Theorem 1.

Denote the channel delay by δ ≥ 0. If the sampling time is

τi, the delivery time is τi + δ. The encoder and the decoder

are clock-synchronized. The decoder knows the delivery time

and the fixed delay, thus it knows the sampling time since the

channel delay is fixed. The distortion is however measured in

real time as in Section I-A (3) rather than after a delay as in

Sections V-A and V-B.

The MSE that we aim to minimize under the rate constraint

(2) is given by

Dch(R) = lim sup
T→∞

inf
πT∈ΠT

fT∈FT :
(2)

1

T
E

[

N
∑

i=0

∫ τi+1+δ

τi+δ

(Wt − Ŵt)
2dt

]

,

(55)

where, similar to [6] and [10], we use the following MMSE

decoding policy,

Ŵt , E[Wt|U i, τ i], t ∈ [τi + δ, τi+1 + δ). (56)

Unlike Theorem 1 where we proved that conditioning on the

event t < τi+1 in the decoding policy (6) can be ignored to

yield (8) without loss of optimality, here we do not delve into

the issue of whether ignoring the known event t < τi+1 + δ

in the conditional expectation (56) is optimal.

Proposition 2. In causal coding of the Wiener process with

a fixed channel delay and decoding policy (56), the optimal

sampling and compressing policy remains the SOI coding

scheme in Theorem 1, and

Dch(R) =
1

6R
+ δ. (57)

Proof. Appendix G.

The optimal sampling policy in the fixed-delay scenario

coincides with the optimal sampling policy in the delay-free

scenario. This differs from the result of [10], according to

which the optimal causal sampling policy for the Wiener

process through a channel with an i.i.d. delay Yi is a symmetric

threshold sampling policy,

τi+1 = inf{t+ τi + Yi : |Wt+τi+Yi
−Wτi | ≥ β}, (58)



where β is a threshold that depends on the distribution of Yi

and the sampling frequency constraint. The setting in [10] is

different from our setting in this Section V-C, since the channel

is only allowed to serve one sample at a time in a first-in-first-

out (FIFO) principle. Because recent samples must wait in a

queue before the previous sample is delivered, the optimal

encoder in [10] takes a new sample after the previous sample

is delivered, whereas in our setting, the encoder may take a

new sample after or before the previous sample is delivered.

This results in the policy in [29] attaining a larger MSE in

the constant-delay scenario of Proposition 2 than indicated in

(57). We also notice that with the random delay, we cannot

simply append an SOI compressor to the optimal symmetric

threshold policy (58) to obtain the optimal rate-constrained

code. Indeed, the innovation Wτi+1+Yi
− Wτi may not be a

binary random variable for all i = 0, 1, . . . since waiting for

the delivery of the previous sample may cause the thresholds

not to be hit with equality at the time τi.

VI. RATE-CONSTRAINED EVENT-TRIGGERED CONTROL

The SOI coding scheme proposed in Theorem 1 can also

be applied to the following rate-constrained event-triggered

control scenario.

stochastic plant

sampler

compressor

controller

Xt

XτiUi

Zt

Fig. 4: Control system.

The stochastic plant evolves according to

dXt = Ztdt+ dWt, (59)

where Wt is the standard Wiener process and Zt is the control

signal generated by the controller. A sampler samples the

plant Xt at a sequence of non-decreasing stopping times

τ1, τ2, . . . adapted to the filtration generated by {Xt}Tt=0. Note

that the sampler does not need to know the control signal.

At time τi, the sampler outputs Xτi , and the compressor

generates codewords Ui based on causally received samples.

At time τi, the controller uses received codewords U i to form

an impulse control signal Zτi . The communication between

the compressor and the controller is subject to bits per sec

constraint (2). We aim to find the optimal sampling and

compressing policies such that the mean-square cost of Xt

from target state 0 is minimized

lim sup
T→∞

1

T
E

[

∫ T

0

X2
t dt

]

. (60)

We restrict our control signal to be the impulse control as in

[1],[40]. The impulse control only takes action at the stopping

times (1) decided by the sampling policy, i.e. Zt 6= 0 if and

only if t = τ1, τ2, . . . . The impulse control leads to

Xτ
+
i
= Xτi + Zτi , i = 0, 1, . . . (61)

where τ+i represents the time just after τi [41]. From (59) and

(61), we conclude that

Xt = Xτ
+
i
+Wt −Wτi , t ∈ (τi, τi+1]. (62)

Theorem 4. In the rate-constrained event-triggered control

system, the jointly optimal sampling and compressing policy

that minimizes (60) is the SOI coding scheme in Theorem 1,

and the optimal impulse control signal is

Zτi = −(Wτi −Wτi−1), i = 0, 1, . . . (63)

The minimum mean-square cost (60) is equal to 1
6R .

Proof. We calculate a lower bound to the MSE in (60) and

show that this lower bound can be achieved by the SOI coding

scheme. The MSE in (60) is equal to

lim sup
T→∞

1

T
E

[

N
∑

i=0

∫ τi+1

τi

(Xτ
+
i
+Wt −Wτi)

2dt

]

(64a)

= lim sup
T→∞

1

T
E

[

N
∑

i=0

∫ τi+1

τi

X2
τ
+
i

dt

]

(64b)

+ lim sup
T→∞

1

T
E

[

N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]

(64c)

+2 lim sup
T→∞

E

[

N
∑

i=0

Xτ
+
i

∫ τi+1

τi

(Wt −Wτi)dt

]

(64d)

≥ lim sup
T→∞

1

T
E

[

N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]

, (64e)

where (64a) is obtained by substituting (62) into (60); (64d) is

equal to zero since Xτ
+
i

is independent of
∫ τi+1

τi
(Wt−Wτi)dt

and E

[

∫ τi+1

τi
(Wt −Wτi)dt

]

= 0 for all i = 0, 1, . . . by the

reflection principle of the Wiener process [42, Chap.3, Thm.

A44]. To achieve the lower bound in (64e), we need Xτ+
i
= 0

for all i = 0, 1, . . . , thus, the optimal impulse control signal

is

Zτi = −Xτi, i = 0, 1, . . . , (65)

which is equal to (63). Using the arguments in the paragraph

below (30) in the proof of Theorem 1, we can easily verify

that the SOI coding scheme achieves the lower bound and is

therefore a jointly optimal sampling and compressing policy.

In contrast, if the sampler samples {Xt}Tt=0 with a uniform

sampling policy that satisfies the rate constraint (2) together

with some succeeded compressing policy, then we show



that the minimum achievable mean-square cost, denoted by

duniform, is lower bounded by

duniform >
1

2R
. (66)

To show (66), we first notice that (64a)–(64e) holds under

a uniform sampling policy, with the stopping times τ1, τ2, . . .

and random number of samples N replaced by deterministic

times t1, t2, . . . , and the fixed number of samples n. We

minimize the lower bound (64e) over all uniform sampling

policies that satisfy the following constraint

n

T
≤ R, (67)

and obtain that the minimum of (64e) is equal to 1
2R . This

lower bound corresponds to the scenario that we ignore the

quantization effect due to the compressing policy. The lower

bound is not achievable since the controller cannot output the

ideally optimal impulse control signal (63) to make Xt
+
i

zero

for all i = 0, 1, . . . This is because the sample innovation

Wti −Wti−1 , i = 1, 2, . . . is a Gaussian random variable that

cannot be noiselessly compressed using 1 bit.

VII. CONCLUSION

The results in this paper contribute to the rich literature on

optimal scheduling and causal sequential estimation problems

by introducing a transmission rate constraint beyond the pop-

ular sampling frequency constraint. The SOI coding scheme

is optimal for causal estimation of the Wiener process under

an expected rate constraint (Theorem 1). The performance of

the SOI coding scheme is much better than that of the best

non-causal code (Section V-A). This underscores the power of

free information contained in the codeword arrival times that

is not considered in the standard setting of non-causal (block)

compression. The SOI scheme remains optimal even if the

channel introduces a fixed delay (Proposition 2). The key to

transmit information via timing is to use process-dependent,

rather than deterministic, sampling time stamps, because the

latter contain zero information. The optimal deterministic

sampling policy is uniform (Theorem 2). In either setting,

the best strategy is to transmit lowest possible rate (1-bit

codewords) as frequently as possible (Theorem 3). This is

a consequence of the real-time distortion constraint (3). If

a delay is affordable, the MSE can be further reduced with

only one sample look-ahead at the decoder (Section V-B). The

SOI coding scheme also minimizes the mean-square cost of a

stochastic plant driven by the Wiener process, and controlled

via impulse control (Theorem 4).
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APPENDIX

A. Proof of Proposition 1

The objective function in (9) decomposes in the following

way.

1

T
E

[ N
∑

i=0

∫ τi+1

τi

(Wt − Ŵτi)
2dt

]

(68a)

=
1

T
E

[ N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2

]

+ (68b)

1

T
E

[ N
∑

i=0

(τi+1 − τi)(Wτi − Ŵτi)
2dt

]

+

1

T
E

[ N
∑

i=0

(Wτi − Ŵτi)

∫ τi+1

τi

(Wt −Wτi)dt

]

=
1

T
E

[ N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2

)

+ (68c)

1

T
E

[ N
∑

i=0

(τi+1 − τi)(Wτi − Ŵτi)
2dt

]

,

where (68a) uses the simplified decoding policy (8) that is

justified in the proof of Theorem 1; (68b) is obtained by

substituting Wt −Wτi +Wτi − Ŵτi for the term Wt − Ŵτi in

(68a), and (68c) holds due to the fact that
∫ τi+1

τi
(Wt−Wτi)dt

is orthogonal to Wτi − Ŵτi for all i = 0, 1, 2, . . . , N . Since

the encoder only influences the second term in (68c), we move

the minimization over the encoder fT in (9) directly in front

of the second term in (68c).

To show that fi only encodes Wτi − Ŵτi−1 given U i−1 and

τ i, we first recall a well-known fact. Consider the following

lossy source coding model in Fig. 5, where X ∈ X and

Y ∈ Y are available only at the encoder, C is the common

information, X̂ ∈ X̂ is the reproduction. Encoder PU|X,Y,C

and decoder P
X̂|U,C aim to achieve a given distortion d =

E

[

d(X, X̂)
]

, where d : X × X̂ → R
+ is the distortion

measure, subject to a constraint on the cardinality of the

alphabet U of U . Since

E

[

d(X, X̂)|C = c
]

=

∫

x∈X

dPX|C=c(x)·
∫

U∈U

dPU|X,C=c(u)

∫

x̂∈X̂

dP
X̂|U,C=c(x̂)d(x, x̂),

(69)

the knowledge of side information Y is useless at the encoder,

i.e. for any encoder-decoder pair
(

PU|X,Y,C , P
X̂|U,C

)

, the

pair
(

PU|X,C , PX̂|U,C

)

, where PU|X,C is the marginal of

PU|X,Y,CPY |X,C , achieves the same expected distortion.

In our problem, the infimum of the long-term average

MSE in (68c) corresponds to a causal sampling policy and

a sequence of sample distortion allocations E[Wτi − Ŵτi ]
2,

i = 1, 2, . . . . At time τ1, we take X = Wτ1 , Y = {Wt}0<t<τ1 ,

C = τ1, and d(X, X̂) = (X−X̂)2. To achieve a given sample

distortion E

[

(Wτ1 − Ŵτ1)
2
]

, the random compressing policy



encoder

Y,C

decoder

C

X U X̂

Fig. 5: Y only available at the encoder, C available at both

the encoder and the deocder

needs to only take into account Wτ1 and τ1. Inductively, at

time τi, the encoder knows {Wt}τit=0. Both the encoder and

the decoder know U i−1 and τ i. Since Ŵτi−1 is known once

U i−1 and τ i−1 are given,

E[Wτi − Ŵτi ]
2 =

E

[

(

Wτi − Ŵτi−1 − E

[

Wτi − Ŵτi−1 |U i, τ i
])2

]

.
(70)

Take X = Wτi − Ŵτi−1 , X̂ = E[Wτi − Ŵτi−1 |U i, τ i],
U = Ui, C = {U i−1, τ i}, and Y is everything known at the

encoder excluding X and C. It follows that for the purpose

of achieving the sample distortion E[Wτi − Ŵτi ]
2, at time τi,

the randomized compressing policy needs to only take into

account Wτi − Ŵτi−1 , U i−1, and τ i.

B. Proof of Lemma 1

Denote the IDRF for discrete-time samples of the Wiener

process

Wτi+1 = Wτi + Vτi , Vτi ∼ N (0, Ti) (71)

by D̃N(Rs) (21b). Using the representation of its dual in [29,

Eq. (18)] derived using a semi-definite programming approach,

we represent D̃N (Rs) as

D̃N (Rs) = inf
Di≥0, i=1,...,N :

Di−1+Ti−1≥Di, i=1,2,··· ,N,

1
N (

∑N
i=1

1
2 log(Di−1+Ti−1)−

1
2 logDi)≤Rs.

N
∑

i=1

TiDi.

(72)

Since the sampling intervals TN are deterministic, we

calculate the summand in (21a) as

E

[∫ τi+1

τi

(Wt −Wτi)
2dt

]

= E

[∫ Ti

0

W 2
t dt

]

=
T 2
i

2
. (73)

Plugging (72) and (73) into (21), we can write DDET(f,Rs)
as

DDET(f,Rs) = lim sup
T→∞

inf
πT∈ΠDET

T

(15)

1

T

(

N
∑

i=0

T 2
i

2
+ D̃N (Rs)

)

.

(74)

Note that when T → ∞, the number of samples N must

increase no slower than
√
T . Indeed, since the largest sampling

interval satisfies

max
i=0,...,N

Ti ≥
T

N + 1
, (75)

the summand in (74)

maxi T
2
i

2T
≥ T

2(N + 1)2
(76)

will blow up to infinity if N increases slower than
√
T .

Thus, N → ∞ as T → ∞. Therefore, we can replace

the lim supT→∞ in (74) by lim supN→∞ and obtain (34),

where we replace T in (74) by f
N

as permitted by (15), and

we replace the minimization constraint (15) in (74) by its

equivalent (35).

C. Proof of Lemma 2

We split DN (f,Rs) (34b) into the following optimization

problems:

DN (f,Rs) , inf
T0≥0,TN≥0 :
T0+TN≤N

f

DN (f,Rs, T0, TN ), (77a)

DN (f,Rs, T0, TN ) ,

min
T1,...,TN−1≥0 :

1
N

∑N−1
i=1 Ti=

1
f
−

T0+TN
N

f

N

(

N
∑

i=0

T 2
i

2
+DN

(

f,Rs, T
N
)

)

,

(77b)

DN

(

f,Rs, T
N
)

, min
DN≥0 :

(36)

N
∑

i=1

TiDi. (77c)

Denote by DN (f,Rs, T
N) the lower bound to

DN (f,Rs, T
N) obtained by deleting the minimization

constraint (36b) in (77c), i.e.

DN (f,Rs, T
N) , min

DN≥0 :
(36a)

N
∑

i=1

TiDi, (78)

Denote by DN (f,Rs, T0, TN ) the corresponding lower bound

to DN (f,Rs, T0, TN) in (77b):

DN (f,Rs, T0, TN ) ,

min
T1,...,TN−1≥0 :

1
N

∑N−1
i=1 Ti=

1
f
−

T0+TN
N

f

N

(

N
∑

i=0

T 2
i

2
+DN

(

f,Rs, T
N
)

)

.

(79)

We will calculate the corresponding lower bound to

DN (f,Rs):

DN (f,Rs) , min
T0≥0,TN≥0 :
T0+TN≤N

f

DN (f,Rs, T0, TN). (80)

We first show that the optimization problem in the right-hand

side of (78) is a convex optimization problem that satisfies

Slater’s condition, i.e. strong duality holds. Then, we solve

its Lagrangian dual problem to get the optimal D∗
1 . . . , D

∗
N in

(42) that achieve the minimum in the right-hand side of (78),

where λ∗(f,Rs, N) ≥ 0 is the unique solution to (41).



The objective function
∑N

i=1 TiDi (78) is an affine function

in DN . Furthermore, z
(

DN
)

is a convex function since

∂2z
(

DN
)

∂D2
i

=
log eTi(2Di + Ti)

N(D2
i +DiTi)2

≥ 0, ∀i = 1, . . . , N − 1,

(81a)

∂2z
(

DN
)

∂D2
N

=
log e

ND2
N

≥ 0, (81b)

∂2z
(

DN
)

∂Di∂Dj

= 0, ∀i, j = 1, . . . , N. (81c)

Therefore, the minimization problem in the right-hand side of

(78) is convex. Notice that z(D,D, . . . , D) decreases from

+∞ to −∞ as D increases from 0 to ∞. Thus, there exists

D̃ ≥ 0 such that Slater’s condition is satisfied, i.e.

z
(

D̃, D̃, . . . , D̃
)

< 2Rs. (82)

We conclude that 1) the strong duality holds, 2) D(f,Rs, T
N)

can be obtained via its Lagrangian dual problem, and 3) there

must exist an optimal Lagrangian multiplier λ∗(f,Rs, N) ≥
0 that satisfies the complementary slackness (41) in the

Karush-Kuhn-Tucker conditions. Indeed, (41) always has a

non-negative solution λ∗(f,Rs, N), since as a function of

λ∗(f,Rs, N), z
(

DN∗
)

is continuous and monotonically de-

creasing from +∞ to −∞ as λ∗(f,Rs, N) increases from 0
to +∞.

Plugging DN∗ (42) into (78), we obtain DN

(

f,Rs, T
N
)

and proceed to evaluate DN (f,Rs, T0, TN ) in (79), which is

given by

DN (f,Rs, T0, TN ) = min
T1,...,TN−1≥0 :

1
N

∑N−1
i=1 Ti=

1
f
−

T0+TN
N

g(T1, . . . , TN−1),

(83)

where

g(T1, . . . , TN−1) ,
f

2N

[

T 2
0 + T 2

N + 2 log eλ∗(f,Rs, N)

+
N−1
∑

i=1

Ti

√

T 2
i + 4 log eλ∗(f,Rs, N)

)

.

(84)

We make use of the Schur-convexity of (84) to calculate

DN (f,Rs, T0, TN ). Recall that if a function f(xd) is sym-

metric and its first partial derivative with respect to each xi,

i = 1, . . . , d exits, then f(xd) is Schur-convex if and only if

(xi−xj)

(

∂f(xd)

∂xi

− ∂f(xd)

∂xj

)

≥ 0, ∀ i, j = 1, . . . , d. (85)

It is clear that g(T1, . . . , TN−1) is symmetric since it is

invariant to the permutations of T1, . . . , TN−1. To calculate

the partial derivatives of (84), we first compute the implicit

differentiation
∂λ∗(f,Rs,N)

∂Ti
by taking the derivative with re-

spect to Ti on the both sides of (41), yielding

∂λ∗(f,Rs, N)

∂Ti

=
1

√

T 2
i + 4 log eλ∗(f,Rs, N)

·

2λ∗(f,Rs, N)

1 +
∑N−1

k=1
Tk√

T 2
k
+4 log eλ∗(f,Rs,N)

.
(86)

Using (86) to compute the first partial derivative, we obtain

∂g(T1, . . . , TN−1)

∂Ti

(87a)

=
f

2N

(

2 log e
∂λ∗(f,Rs, N)

∂Ti

+
√

T 2
i + 4 log eλ∗(f,Rs, N)

+
T 2
i + 2 log eTi

∂λ∗(f,Rs,N)
∂Ti

√

T 2
i + 4 log eλ∗(f,Rs, N)

(87b)

+
N
∑

k=1
k 6=i

2 log eTk
∂λ∗(f,Rs,N)

∂Ti
√

T 2
k + 4 log eλ∗(f,Rs, N)

)

(87c)

=
f

N

√

T 2
i + 4 log eλ∗(f,Rs, N). (87d)

Using (87), we can verify that g(T1, . . . , TN−1) satisfies (85):

(Ti − Tj)
f

N
·
(

√

T 2
i + 4 log eλ∗(f,Rs, N)

−
√

T 2
j + 4 log eλ∗(f,Rs, N)

)

≥ 0,

(88)

for all i, j = 1, . . . , N − 1. Therefore, g(T1, . . . , TN−1) is a

Schur-convex function.

Let x = (x1, . . . , xd) ∈ R
d, y = (y1, . . . , yd) ∈ R

d be two

non-increasing sequences of real numbers. Recall that x is

majorized by y if for each k = 1, . . . , d,
∑k

i=1 xi ≤
∑k

i=1 yi
with equality if k = d. For a Schur-convex function f , if

x is majorized by y, then f(x) ≤ f(y). In our case, the

feasible Ti’s must satisfy the minimization constraint of the

optimization problem in (83). Any sequence T1, . . . , TN−1

that satisfies the minimization constraint of the optimization

problem in (83) majorizes the sequence in (40). Therefore, the

infimum in (83) is achieved by the sequence T ∗
1 , . . . , T

∗
N−1 in

(40).

Plugging T ∗
1 , . . . , T

∗
N−1 (40) into (83), we obtain

DN (f,Rs, T0, TN) =
f

2

(

T 2
0 + T 2

N + 2 log eλ∗(f,Rs, N)

N

+
N − 1

N
T ∗(f,N)

√

T ∗(f,N)2 + 4 log eλ∗(f,Rs, N)

)

.

(89)

Plugging (89) into the right-hand side of (80) completes the

proof.

D. Proof of Lemma 3

Plugging (44) into (42), we obtain the corresponding opti-

mal sample distortions,

D∗
1 = · · · = D∗

N−1 =

− N
f(N+1) +

√

(

N
f(N+1)

)2

+ 4 log eλ∗(f,Rs, N)

2
, (90a)

D∗
N =

f(N + 1)

N
log eλ∗(f,Rs, N), (90b)



where λ∗(f,Rs, N) is defined in Lemma 3.

We first show that the TN in (44) and the corresponding

DN in (90) satisfy the deleted constraint (36b), then we can

plug TN (44) and DN (90) as feasible solutions into the

minimization problem associated with DN(f,Rs) in (34b) to

obtain the upper bound in (43).

When i = 2, . . . , N − 1, the deleted constraint (36b) is

satisfied trivially, since Di−1 = Di and Ti−1 ≥ 0. To prove

that the deleted constraint (36b) also holds at i = 1 and N ,

we upper bound λ∗(f,Rs, N) for every N > 2. When

T1 = · · · = TN−1, (91)

we can rearrange terms in the complementary slackness con-

dition (41) and conclude x = λ∗(f,Rs, N) log e is the unique

solution to the following equation,

hN (T0, TN , T1, Rs, x)− x = 0, (92)

where

hN (T0, TN , T1, Rs, x) ,

T 2
1

22Rs+
2

N−1Rs−
log T0+log TN

N−1 + log x
N−1 − 1

+

(

T1

22Rs+
2

N−1Rs−
log T0+log TN

N−1 + log x
N−1 − 1

)2

.

(93)

Note that the left-hand side of (92) monotonically decreases

as x increases.

Given Rs, plugging (44) into the left-hand side of (92),

we conclude that the λ∗(f,Rs, N) in Lemma 3 is the unique

solution to the following equation,

hN

(

N

f(N + 1)
,

N

f(N + 1)
,

N

f(N + 1)
, Rs, x

)

− x = 0,

(94)

Plugging

x =
N2

2f2(N + 1)2
(95)

into (94), we observe that the left-hand side of (94) is less or

equal to 0 for all N > 2. Thus, we conclude

λ∗(f,Rs, N) log e ≤ N2

2f2(N + 1)2
, ∀ N > 2. (96)

Plugging (96) into (90), we obtain

D∗
1 ≤

√

λ∗(f,Rs, N) log e ≤ N

f(N + 1)
, (97a)

D∗
N ≤ N

2f(N + 1)
, (97b)

Substituting (44) and (97) into (36b), we conclude that (36b)

holds for i = 1 and i = N .

Now, we can plug (44) and (90) as feasible solutions into

(34b) to obtain the right-hand side of (43).

E. Proof of Lemma 4

From Lemmas 2 and 3, and (34a),

lim inf
N→∞

DN (f,Rs) ≤ DDET(f,Rs) ≤ lim sup
N→∞

D̄N (f,Rs).

(98)

We prove (45) by showing that both bounds are equal to the

right-hand side of (45).

To compute the lower bound in (98), we need to understand

the behavior of T ∗(f,N), λ∗(f,Rs, N) and T ∗
0 , T ∗

N as N

goes to infinity, where T ∗
0 , T ∗

N achieve the minimum of the

left-hand side of (98). T ∗
0 and T ∗

N must increase as

T ∗
0 + T ∗

N = O
(√

N
)

, (99)

or
T∗
0

2+T∗
N

2

N
in (39b) will blow up to infinity as N → ∞.

Substituting (99) to (40), we obtain

T ∗(f,N) =
1

f
+O

(

1√
N

)

. (100)

We proceed to compute

λ∗ , lim
N→∞

λ∗(f,Rs, N). (101)

For given T ∗
0 , T ∗

N and Rs, x = λ∗(f,Rs, N) log e is the

unique solution to (92) with T0, TN , and T (N) replaced by

T ∗
0 , T ∗

N and T ∗(f,N) in (40). We prove that

λ∗ log e ≥ 1

22Rsf2
, (102a)

λ∗ log e ≤ 1

2f2
. (102b)

We substitute (99) and (100) into the left-hand side of (92)

and take limN→∞ to conclude that

lim
N→∞

hN

(

T ∗
0 , T

∗
N , T ∗(f,N), Rs,

1

2f2

)

− 1

2f2
≤ 0. (103)

Using the fact that the left-hand side of (92) is monotonically

decreasing in x, we conclude (102a) holds. To prove (102b),

we similarly compute

lim
N→∞

hN

(

T ∗
0 , T

∗
N , T ∗(f,N), Rs,

1

22Rsf2

)

− 1

22Rsf2
≥ 0.

(104)

Via the squeeze theorem, (102) implies

λ∗(f,Rs, N) = O(1). (105)

Plugging (99), (100) and (105) into (92), and taking N → ∞
on both sides of (92), we obtain

λ∗ log e =
1

f2(22Rs − 1)2
+

1

f2(22Rs − 1)
. (106)



Plugging (99), (100) and (106) into the right-hand side of

(39b) and taking limN→∞, we compute

lim
N→∞

DN (f,Rs)

=
1

2f
+

1

f(22Rs − 1)
+ lim

N→∞
inf

T0≥0,TN≥0
T0+TN≤N

f

f

2

(

T 2
0 + T 2

N

N

)

(107a)

=
1

2f
+

1

f(22Rs − 1)
, (107b)

where 0 is achieved in the last term of (107a) by choosing any

pair of T0, TN ≥ 0 that satisfies

T0 + TN = o
(√

N
)

. (108)

We choose T0 and TN in (44) that satisfy (108), such that

together with T1, . . . , TN−1 in (44), the lower bound of

DDET(f,Rs) in (98) is achieved.

Now, we compute the upper bound in the right-hand side

of (98). λ∗(f,Rs, N) log e in (43b) is the unique solution to

(92). Note that (106) holds for any T0 and TN that satisfy

(99). Since T0 and TN in (44) satisfy (99), we conclude that

the limN→∞ of λ∗(f,Rs, N) log e in (43b) is also equal to

(106). Plugging (106) into the right-hand side of (43b) and

taking lim supN→∞, we calculate that the upper bound of

DDET(f,Rs) in (98) is equal to (107b).

Furthermore, we observe that the uniform sampling inter-

vals (44) achieving both the upper and the lower bound of

DDET(f,Rs), converge to 1
f

asymptotically. We conclude that

the uniform sampling policy with the sampling interval 1
f

achieves DDET(f,Rs).

F. Proof of Lemma 5

The max-min inequality and (38) imply that

DDET(R) ≤ min
f>0,Rs≥1 :

fRs≤R

lim sup
N→∞

D̄N (f,Rs). (109)

On the other hand,

DDET(R) ≥ lim
N→∞

inf
f>0,Rs≥1 :

fRs≤R

DN (f,Rs) (110a)

= inf
f>0,Rs≥1 :

fRs≤R

lim
N→∞

DN (f,Rs), (110b)

where (110a) is by (38), and (110b) will be proved in the

sequel. Using (98) with both bounds equal to each other, (109)

and (110), we complete the proof of Lemma 5.

We proceed to prove (110b) via the fundamental theorem of

Γ-convergence. Let X be a topological space and GN : X →
[0,+∞], N = 1, 2, . . . , be a sequence of functions defined on

X . A sequence of functions GN , N = 1, 2, . . . Γ-converges

to its Γ-limit G : X → [0,+∞] if [37]:

(i) For every x ∈ X , and for every sequence xN ∈ X , N =
1, 2, . . . converging to x,

G(x) ≤ lim inf
N→∞

GN (xN ). (111)

(ii) For every x ∈ X , there exists a sequence xN ∈ X , N =
1, 2, . . . converging to x such that

G(x) ≥ lim sup
N→∞

GN (xN ). (112)

A sequence of functions GN , N = 1, 2, . . . is equicoercive

[37] if there exists a compact set K that is independent of N ,

such that

inf
x∈X

GN (x) = inf
x∈K

GN (x). (113)

The fundamental theorem of Γ-convergence [37] says that

if GN is equicoercive and Γ-converges to G : X → [0,+∞],
then we have,

min
x∈X

G(x) = lim
N→∞

inf
x∈X

GN (x). (114)

We will show that for any scalars f > 0, Rs ≥ 1 and for

any sequences f(N) → f , Rs(N) → Rs, we have

lim
N→∞

DN (f(N), Rs(N)) = DDET(f,Rs), (115)

which means in particular that DDET(·, ·) is the Γ-limit of

DN (·, ·). We will also prove that DN (f,Rs) is equicoercive,

and (110b) will follow via the fundamental theorem of Γ-

convergence.

We verify that the reasoning in (99)-(107) goes through

replacing f and Rs by f(N) and Rs(N) respectively, hence

(115) holds.

It remains to prove that DN (f,Rs) is equicoercive. Ignoring

the two non-negative λ∗(f,Rs, N) terms in the right-hand side

of (39b), we observe that

DN (f,Rs)

≥ inf
T0≥0,TN≥0
T0+TN≤N

f

f

2

(

T 2
0 + T 2

N

N
+

N − 1

N
T ∗(f,N)2

)

(116a)

= inf
T0≥0,TN≥0
T0+TN≤N

f

1

2

(

f
T 2
0 + T 2

N

N

+
N

f(N − 1)

(

1− f(T0 + TN )

N

)2
)

, (116b)

where (116b) is obtained by plugging (40) into (116a). Denote

the objective function in (116b) by q(T0, TN). We prove

that q(T0, TN ) is a Schur-convex function: 1) q(T0, TN) is

symmetric, since it is invariant to the permutations of T0 and

TN ; 2) the first-order partial derivatives of q(T0, TN ) with

respect to T0 and TN are

∂q

∂T0
=

f

N
T0 +

f

N(N − 1)
(T0 + TN )− 1

N − 1
, (117a)

∂q

∂TN

=
f

N
TN +

f

N(N − 1)
(T0 + TN)− 1

N − 1
, (117b)

where (117) satisfies (85). Using the property of Schur-convex

functions stated in Lemma 2 after (88), we know that the

minimum of q(T0, TN ) is achieved by

T0 = TN = a. (118)



for some

0 ≤ a ≤ N

2f
. (119)

Plugging (118) into q(T0, TN), and minimizing q(a, a) under

the constraint (119), we find that the optimal a that minimizes

q(a, a) is given by

a =
N

(N + 1)f
. (120)

Plugging (118) and (120) into (116b), we obtain

DN (f,Rs) ≥
N2

2f(N + 1)2
. (121)

On the other hand, plugging (96) into the right-hand side of

(39), we obtain

D̄N(f,Rs) ≤
3N

2f(N + 1)2
+

√
3N(N − 1)

2f(N + 1)2
. (122)

Choosing f = R in (122), we conclude that

inf
f>0,Rs≥1
fRs≤R

DN (f,Rs) ≤
3N

2R(N + 1)2
+

√
3N(N − 1)

2R(N + 1)2
.

(123)

For any

f ∈
(

0,
R

3 +
√
3

)

, (124)

the right-hand side of (121) is larger than the right-hand side

of (123), thus f in (124) cannot attain the infimum in (123). It

follows that the infimum is attaned in the following compact

set for f ,

f ∈
[

R

3 +
√
3
, R

]

, (125)

where the upper bound of f is obtained by lower-bounding Rs

by 1. Correspondingly, Rs lies within the following compact

set,

Rs ∈
[

1, 3 +
√
3
]

, (126)

Using (125) and (126), we conclude that DN (f,Rs) is equico-

ercive.

G. Proof of Proposition 2

We derive a lower bound to (55), and show that the lower

bound is achieved by the SOI code. Note that (55) is lower

bounded by

lim sup
T→∞

inf
πT∈ΠT :
E[N ]
T

≤R

1

T
E

[

N
∑

i=0

∫ τi+1+δ

τi+δ

(Wt − W̃t)
2dt

]

, (127)

where

W̃t , E[Wt|{Ws}τis=0, τ
i] (128)

= Wτi , t ∈ [τi + δ, τi+1 + δ), (129)

since σ(U i) ⊂ σ({Ws}τis=0) and (30). Plugging (129) into the

lower bound (127), we obtain the objective function,

1

T
E

[

N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]

(130a)

− 1

T
E

[

N
∑

i=0

∫ τi+δ

τi

(Wt −Wτi)
2dt

]

(130b)

+
1

T
E

[

N
∑

i=0

∫ τi+1+δ

τi+1

(Wt −Wτi)
2dt

]

(130c)

=
1

T
E

[

N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]

(130d)

− 1

T
E

[

N
∑

i=0

δ2

2

]

(130e)

+
1

T
E

[

N
∑

i=0

δ2

2
+ δ(τi+1 − τi)

]

(130f)

=
1

T
E

[

N
∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]

+ δ. (130g)

Note that the first part of (130g) is equal to (29d) in the delay-

free case, and δ is a fixed number. Following the arguments in

the paragraph below (29d), we conclude that the SOI coding

scheme achieves (127).
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