Towards Optimal Tradeoff Between Data Freshness
and Update Cost in Information-update Systems

Zhongdong Liu, Bin Li, Zizhan Zheng, Y. Thomas Hou, and Bo Ji

Abstract—In this paper, we consider a discrete-time
information-update system, where a service provider can proac-
tively retrieve information from the information source to update
its data and users query the data at the service provider. One
example is crowdsensing-based applications. In order to keep
users satisfied, the application desires to provide users with fresh
data, where the freshness is measured by the Age-of-Information
(Aol). However, maintaining fresh data requires the application
to update its database frequently, which incurs an update cost
(e.g., incentive payment). Hence, there exists a natural tradeoff
between the Aol and the update cost at the service provider
who needs to make update decisions. To capture this tradeoff,
we formulate an optimization problem with the objective of
minimizing the total cost, which is the sum of the staleness
cost (which is a function of the Aol) and the update cost.
Then, we provide two useful guidelines for the design of efficient
update policies. Following these guidelines and assuming that
the aggregated request arrival process is Bernoulli, we prove
that there exists a threshold-based policy that is optimal among
all online policies and thus focus on the class of threshold-based
policies. Furthermore, we derive the closed-form formula for
computing the long-term average cost under any threshold-based
policy and obtain the optimal threshold. Finally, we perform
extensive simulations using both synthetic data and real traces
to verify our theoretical results and demonstrate the superior
performance of the optimal threshold-based policy compared
with several baseline policies.

Index Terms—Data freshness, update cost, MDP, threshold-
based policy, Age-of-Information.

I. INTRODUCTION

With the remarkable development of communication net-
works and smart portable devices in recent years, we have
witnessed significant advances in crowdsensing-based appli-
cations (e.g., Google Waze [2] and GasBuddy [3]). These
applications provide services to users by resorting to the
community to sense and send back real-time information
(e.g., traffic conditions and gas prices) [4]. To satisfy the
diverse needs of users, such applications need to maintain

The work of Bo Ji and Zhongdong Liu was supported in part by the NSF
under Grants CNS-2112694 and CNS-2106427. The work of Zizhan Zheng
was supported in part by the NSF under Grant CNS-1816943. The work of
Y. T. Hou was supported in part by ONR MURI grant N00014-19-1-2621,
Virginia Commonwealth Cyber Initiative (CCI), and Virginia Tech Institute
for Critical Technology and Applied Science (ICTAS). A preliminary version
of this work was presented at ICCCN 2022 as an invited paper [1].

Zhongdong Liu (zhongdong@vt.edu) and Bo Ji (boji@vt.edu) are with
the Department of Computer Science, Virginia Tech, Blacksburg, VA.
Bin Li (binli@psu.edu) is with the Department of Electrical Engineer-
ing, the Pennsylvania State University, State College, PA. Zizhan Zheng
(zzheng3 @tulane.edu) is with the Department of Computer Science, Tulane
University, New Orleans, LA. Y. Thomas Hou (thou@vt.edu) is with the
Bradley Department of Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA.

Information Source
(e.g., points of interest)

(e.g., gas prices)

Fig. 1: An illustration of our system model. Upon receiving
a request from the users, the server can either first update the
data and then reply (red path: A1-A4) or simply reply with
local data (blue path: B1-B2).

their knowledge of a set of distributed points of interest
(Pol). For example, GasBuddy monitors gasoline prices at a
large number of scattered gas stations in a certain area. In
order to quickly and accurately respond to users’ requests,
the applications need to keep their data fresh. However, given
the dynamic changes of the data, maintaining the freshness
of data introduces a natural tradeoff between data freshness
and update cost. On the one hand, users are unsatisfied if
the responses to their requests are outdated; on the other
hand, there is a cost for the applications to update their
data because updating data relies on user feedback and often
requires monetary payment to incentivize users [3], [4].

In fact, the tradeoff between data freshness and update cost
does not only exist in crowdsensing-based applications, but
also in a wide variety of time-sensitive data-driven appli-
cations that require timely information updates [5]-[9]. For
example, in stock analysis applications, the server keeps track
of the prices of a large number of stocks and generates
different versions of the analysis reports for the stocks at
certain times, and users send requests to query these analysis
reports [9]. To ensure that users receive the real-time analysis
of the stock they are trading with, the server needs to retrieve
timely information (e.g., various stock market indexes) from
the stock market, which incurs an update cost (e.g., band-
width resources). Similar applications also include news feeds,
weather updates, and flight aggregators.

The aforementioned applications have two notable charac-
teristics: First, the server can proactively retrieve information
from the information source to update its data, and users
need to query the server to obtain the data (i.e., the “Pull”
model [6], [10]); Second, the responses to users’ requests (e.g.,
gas prices) typically do not require significant processing, and

the packet size is usually small, making the packet trans-
mission time negligible. However, retrieving the data from
the information source often requires certain resources and
introduces costs. These two characteristics not only distinguish
such applications from other ones whose update costs mainly
come from service and communication delays [11]-[13] but
also lead to the tradeoff between the data freshness and the
update cost.

To that end, in this work, we aim to optimize the tradeoff
between data freshness and update cost. Specifically, we
consider a discrete-time system in the setting where a ser-
vice provider can proactively retrieve information from the
information source and users obtain the data at the service
provider by sending requests (see Fig. 1). The freshness of
the data received by users is measured by a popular timeliness
metric called Age-of-Information (Aol) [5], which is defined
as the time elapsed since the most recent update occurred.
To represent the dissatisfaction of users receiving stale data,
we introduce the staleness cost, which is a non-decreasing
function of the Aol (see formal definition in Section III).
Clearly, one needs to account for both the update cost and
the staleness cost when designing an online update policy.

We summarize our main contributions as follows.

First, we study the tradeoff between the data freshness and
the update cost by formulating an optimization problem to
minimize the sum of the staleness cost (which is a function
of the Aol) and the update cost.

Second, we provide two useful guidelines for the design of
optimal update policies. These guidelines suggest that 1) the
service provider should update the data only at a point when it
receives a request, and 2) the server should perform an update
when the staleness cost is no smaller than the update cost.

Third, following these guidelines and assuming that the
request arrival process is Bernoulli, we reformulate our prob-
lem as a Markov decision process (MDP) and show that
there exists a threshold-based policy that is optimal among all
online policies, which motivates us to focus on the class of
threshold-based policies. Furthermore, we derive the closed-
form expression of the average cost under any threshold-based
policy and obtain the optimal threshold.

Finally, we perform extensive simulations using both syn-
thetic data and real traces to verify our theoretical results and
evaluate the performance of our proposed policy compared
with several baseline policies. Our simulation results show
that the threshold-based policy outperforms the baselines in
more general settings (e.g., when the request arrival process
is non-Bernoulli).

The remainder of this paper is organized as follows. We
first discuss related work in Section II. The system model is
described in Section III. Two guidelines for designing update
policies are provided in Section IV. Then, we prove that our
MDP formulation admits an optimal threshold-based policy
and derive the optimal threshold in Sections V and VI, respec-
tively. Finally, we present the numerical results in Section VII
and conclude our paper in Section VIII.

II. RELATED WORK

Ever since the concept of Aol was introduced in [5], the
study on the Aol has attracted a lot of research interest. There
is a large body of work that provides detailed analyses on the
Aol performance of information-update systems under differ-
ent queueing models (M/M/1, M/D/1, etc.) and scheduling
policies (FCFS, LCFS, etc.) [14], [15].

Another important line of research focuses on Aol mini-
mization. One specific type of optimization problem, which
is similar to our work, is the joint minimization of Aol and
certain costs [16]-[18]. In [16], the authors consider a discrete-
time system where an information source is monitored over a
communication channel with a transmission cost. They investi-
gate the optimal policy for minimizing the sum of transmission
cost and the inaccuracy of the state information at the monitor.
It turns out that the optimal policies also have a threshold-
based structure. Note that in their model, they assume that
the source is governed by a random walk process and there
are no users, which is different from ours. A similar source
monitoring problem is considered in [17], where the goal is
to minimize the sum of transmission costs and an unknown,
time-varying penalty function of the Aol. They consider
both single-source and multi-source scenarios and propose
online learning algorithms with provable regret. In [18], the
authors consider a source-monitor pair with stochastic arrival
of updates at the source. The source pays a transmission cost
to send the update, and its goal is to minimize the weighted
sum of Aol and transmission costs. Under the assumption that
the update arrival process is Poisson, they propose an optimal
threshold-based policy. Their work differs from ours in their
continuous-time setting and no user involvement.

Along this line, researchers have also considered Aol
minimization with constraints (see a survey in [19]). The
considered constraints can be viewed as a special type of
update cost. For example, in wireless networks, the update
of data consumes wireless channel resources. Therefore, the
number of packets that can be transmitted depends on the
interference model [20]. Similarly, for caching services, the
cache server can only update certain contents at a time due
to the capacity constraint [21]-[24]. Another example is the
energy constraint [25]-[28], which is common in energy-
constrained [oT systems. In these models, the update cost is
usually imposed as a constraint of the optimization problem.

While the tradeoff between Aol and costs has been studied,
most of them fall into the category where the costs primarily
come from service (e.g., CPU cycle and storage) and/or
communication (e.g., channel resources, delay, and energy
consumption). In [29], the authors consider a system where
multiple devices can sample and transmit (or retransmit) up-
dates to one receiver via unstable wireless channels, with each
sampling and transmission coming with a sampling cost and
a transmission cost, respectively. The objective is to minimize
the sum of the expected total sampling costs and transmission
costs under the expected Aol constraints. A similar problem
is also considered in [30], where the objective is to minimize

the expected Aol under the expected energy cost constraint,
which is the sum of sampling costs and transmission costs.
Slightly different from [30], the work of [31] studies the
problem of minimizing the sum of expected Aol and the
expected energy cost under the expected transmission cost
constraint. We note that those energy costs in [29]-[31] are
similar to the update cost in our work (especially regarding
their mathematical formulation), but the origins of costs are
slightly different. In the applications that we consider, the
responses to users’ requests (e.g., gas prices) are usually small
and have negligible processing time, but retrieving the data
from the information source often requires certain resources
(e.g., monetary payment) and introduces update costs. More
importantly, our work differs from those works in that we
emphasize users’ perspective and focus on user-perceived data
freshness. In our work, users can proactively query the server
to obtain the data (i.e., the “Pull” model [6], [10]), and our
primal concern is to optimize the data freshness perceived by
the users (which is a penalty function of Aol) rather than at
the server. The considered pull model and the concern of user-
perceived data freshness bring new challenges to the server:
upon users’ requests, how to balance the tradeoff between the
freshness of the data perceived by users and the update costs?

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a discrete-time information-update system that
consists of an information source, a service provider (or server
for short), and multiple users (see Fig. 1). The server can
communicate with the information source and update its data
with the latest information. The users need to query the server
to obtain the data.

We consider an aggregated arrival process' formed by
the requests from all the users (which will be assumed as
Bernoulli process in Section V for further analysis). The
requests arrive at the beginning of the time-slot, and the server
replies to the requests with the most recently updated data at
the end of a time-slot. We use the metric Age-of-Information
(Aol) to measure the freshness of data, which is defined as
the time elapsed since the most recent update. For ease of
exhibition, we assume that the Aol drops to 0 after the update
at the end of a time-slot?. The evolution of A(#) is as follows:

if u(t) = 0;

Alt—1)+1,
if u(t) =1, M

am={ 5

where u(t) indicates whether the server updates the data at
time-slot . We assume that the time-slot is indexed from
1 and the initial Aol also equals 1, i.e., A(1) = 1. Let u;
denote the -th update time. Then, an update policy 7 can be
denoted by the update times: 7 = {uf}$2,. An illustration
of a typical Aol evolution is shown in Fig. 2. To reflect

I'This is because in the applications we consider, the requested information
by each user is the same (e.g., in the Gasbuddy application, users who live
close by are often interested in the gas prices in the same area), so we can
aggregate their requests together.

2Some work also assumes that the Aol drops to 1 [17], [32]. We assume
that the Aol drops to O to make the discussion concise and clear.

A(t)

S = N W s

Fig. 2: An illustration of the Aol evolution at the server. There
are two updates (in time-slots u; and us) during the process
of serving three requests (in time-slots 71, 72, and r3).

the dissatisfaction level of the users when they receive stale
data, we also introduce a staleness cost for each response
of the server. Specifically, the staleness cost is defined as
a penalty function f(A) of the Aol A, where the function
f :]0,00) — [0,00) is assumed to be measurable, non-
negative, and non-decreasing. For simplicity, we let f(0) = 0.

At the beginning of each time-slot, the server can decide
whether to update the data or not. If it does, it needs to pay
a constant update cost p and receives the latest data from
the information source at the end of time-slot. To avoid the
staleness cost, the server can first update the data and then
reply to the request with the latest data. Let 7; be the arrival
time of the j-th request. After the server receives the request
at r;, if the server chooses to update the data before replying
to the request, its Aol drops to O after the update and its
staleness cost becomes f(0) = 0. In such a case, the server
needs to pay an update cost p though. Otherwise, if the server
does not update and replies with the current local data, the
server needs to pay a staleness cost f(A(r;)).

Assume that the number of updates during the process of
serving N requests under policy 7 is U™ (N), i.e.,

U™(N) £ max{i|uf <ry}.)

Then, the total cost of serving N requests, which is the sum
of update costs and the staleness costs, is defined as

N
C™(N) 2 Zf(A(rj)) +pU™(N). 3)

The objective is to find an update policy 7 that minimizes the
long-term average expected cost per request (or average cost
for short), which is defined as

E[C"(N) @

N b

where the expectation is taken over the randomness in the
arrival process and the update policy. Here, we assume that
the limit of average cost under policy 7 exists. We focus on
the set of online policies, denoted by II, under which the
information available at time ¢ for making update decisions
includes the update history, the arrival times of requests that
arrive until ¢, and the update cost p. Then, we can formulate
the following optimization problem:

173161%[10 . 5)

cra

lim
N—oo

IV. GUIDELINES FOR ALGORITHM DESIGN

In this section, we provide two useful guidelines for the
design of efficient update policies. Through a sample-path-
dominance argument, we show that policies following these
guidelines can achieve a lower total cost than those that do
not. Therefore, we can reduce the search space of problem (5)
to a certain class of online policies.

A. Reactive Policies

In this subsection, we present our first guideline for the
design of update policies. As described in Section III, the
server can update the data at any time. However, we show
that to achieve a lower total cost, it is sufficient for the
update policy to just consider updating the data immediately
upon receiving a new request. We call such policies Reactive
Policies as the server does not need to update the data when
there is no request. We use IT1” to denote the set of reactive
policies:

7 2 {7 eI | uf € {r;};2, forall k}. (6)

Next, we show that restricting to reactive policies does not
incur any performance loss.

Lemma 1. For any policy m € 11, there exists a reactive policy
7' € TI7 that achieves an average cost no larger than that of
policy «, ie., CT < C™.

We provide the detailed proof in Appendix A and explain
the key ideas as follows. Intuitively, postponing the update
until a request arrives does not increase the total cost because
the total number of updates remains the same, but doing this
achieves a lower staleness cost since the update time is closer
to the request arrival time. Therefore, reactive policies can
achieve a smaller total cost than those non-reactive policies.

Lemma 1 implies that the search space of Problem (5) can
be further reduced from the set of online policies II to the set
of reactive policies II*. Now, consider any reactive policy 7.
Upon receiving a request, the server needs to decide whether
to update the data or not before responding. Therefore, we use
I7T to denote the decision made by the server upon receiving
the j-th request for the data at time r;:

1
T A ?
I7 = {0’

B. Capped Reactive Policies

if the server updates the data at time 7;

otherwise.

In this subsection, we present the second guideline for the
design of update policies. In Section IV-A, we show that the
reactive policies achieve a smaller or equal average cost by
postponing the update until a request arrives. In fact, after the
server receives the request, if the staleness cost is no smaller
than the update cost, it is better for the server to update the
data to avoid a larger staleness cost. Doing so not only leads
to a smaller cost for this request but also benefits the next few
requests. We use ITT to denote the set of reactive policies
that satisfy the above guideline:

et 2 (r e I7 | IT =1 for all j when f(A(r;)) > p}.

Fig. 3: The relationship between online policies 1I, reactive
policies TI%, capped reactive policies IT7**, threshold-based
policies II7, an overall optimal policy 7* (see Theorem 1),
and an optimal threshold-based policy 7(7*) (see Corollary 1).
Note that policy 7(7*) is also an overall optimal policy and
could be the same as policy 77* in some cases.

That is, for any policy = € II®*, it must update the data
when the staleness cost is no smaller than the update cost;
otherwise, it can choose to update the data or not. We call
such policies Capped Reactive Policies because the staleness
cost of such policies is capped by the update cost. Fig. 3
illustrates the relationship between II* and II%*. Note that
the condition f(A(r;)) > p can also be expressed as A(r;) >
A*, where A* is the smallest Aol such that the staleness cost
is no smaller than the update cost, i.e.,

A* 2 min{A|f(A) > p}. @)

In the following, we show that restricting to capped reactive
policies does not incur any performance loss.

Lemma 2. For any policy = € IIT, there exists a capped
reactive policy ' € TI%F that achieves an average cost no
larger than that of policy «, ie., CT < C™.

We provide the detailed proof in Appendix B and explain
the key ideas in the following. Upon receiving a request,
policy 7’ performs an update if the staleness cost is no smaller
than the update cost. Compared to policy 7 that does not
make such an update, doing so incurs an update cost for
policy 7/, but it avoids a larger staleness cost. Besides, it also
reduces the staleness cost for the requests that arrive thereafter.
Therefore, policy 7’ can achieve a total cost no larger than
that of policy .

By Lemma 2, we can further reduce the search space to the
class of capped reactive policies II**. Therefore, Problem (5)
can be further reduced to the following:

min C™. ()
mellR+

Till this point, we do not make any assumption on the
request arrival process. The aforementioned guidelines can be
applied to general request arrival processes. In the following,
unless otherwise specified, we focus on the capped reactive
policies IT1#+. This capped property plays an important role
in characterizing the threshold-based structure of an optimal
policy for solving the MDP formulation in Section V.

V. MDP FORMULATION AND THRESHOLD STRUCTURE

Under a capped reactive policy, the server makes update
decisions upon receiving requests and pays a cost (an update

cost or a staleness cost) based on the decision. Naturally,
this sequential decision process can be modeled as an MDP.
In this section, we assume that the request arrival process
is Bernoulli® with rate A\ € (0,1), denoted by Bernoulli(\),
i.e., the probability that a request arrives in a time-slot is .
Then, we reformulate Problem (8) as a discrete-time MDP
and show that there exists a stationary threshold-based policy
that solves the Bellman equation of the considered MDP and
is thus optimal among all online policies.
The MDP formulation has the following key components:
{N,S, A, p(- | s,a),c(s,a) :neN,s €S,a € A}, where
1) N ={1,2,---} is the set of decision epochs. Under a
capped reactive policy, the n-th decision epoch is the
time-slot when the n-th request arrives.
2) § ={0,1,---} is the set of system states (which are
all possible values of the Aol). We use s,, to denote the
Aol value when the n-th request arrives.
3) A, is the set of actions when the system state is s. Let
a € As denote the possible actions, where a = 1 means
updating the data and ¢ = 0 means not. Under a capped
reactive policy, there are two sets of actions depending
on the state s: when the staleness cost f(s) is no smaller
than the update cost p, the only available action is to
update, i.e., Afsp(s)>p} = {1}; otherwise, the system
can either update or not, i.e., Afs.¢(s)<py = 10,1}
4) The transition probability can be calculated as

p(z | s,a) =
(1= X)) if z> 1 and a = 1;
(1—=X)>*57I\ ifz> s, f(s) <p, and a = 0;
0, otherwise.

That is, when the system is in state s, if the server
updates the data, the system will enter state z (z > 1)
with probability (1 —)\)271 A because the request arrival
process follows Bernoulli()\); otherwise, if the server
does not update, under a capped reactive policy, the
system will enter state z (z > s) with probability
(1—X)""*"'X only when the staleness cost f(s) is
smaller than the update cost p.
5) The cost at each decision epoch can be expressed as

That is, when the system is in state s, updating the data
incurs an update cost of p; otherwise, there is a staleness
cost of f(s). Note that under a capped reactive policy,
we always have c(s,a) < p.

ifa=1;

if a=0. ©)

3The motivation for this assumption is that the probabilistic analysis shows
that the arrivals in certain arrival-type processes (i.e., users’ arrival to a bank
in each second, and job arrivals to the server at each time slot) are independent
random variables, which can be modeled as independent Bernoulli trials [33],
[34]. In addition, the Bernoulli arrival process is actually a discrete-time
analog of the Poisson arrival process, which is widely used in modeling the
arrival process in real life [33]-[35]. Therefore, it also makes sense to model
the arrival process in the discrete-time system as a Bernoulli process. This
assumption is also widely adopted in recent Aol-related work [32], [36]-[38].

The objective of the MDP is to find a stationary capped
reactive stationary update policy that minimizes the long-term
average expected cost, i.e.,

E, c(Sp,an)|s1 =s

. . 1
i, —= . a0

M=

where E[-] represents the conditional expectation, given that
policy 7 is employed; s, and a, are the state and action
taken at decision epoch n, respectively; and s is the initial
state. We emphasize that, unlike traditional MDP formulations
that mainly focus on optimization over time (where the state
of the MDP should consist of two variables: one denotes
the Aol value in the slot and the other denotes whether
there is a request arriving in the slot or not. Obtaining the
simple solutions (e.g., threshold structure) for the MDPs
with multiple state variables is usually more challenging and
involves more sophisticated techniques.), by following our
proposed guidelines (especially the reactive guideline), we can
optimize our MDP over only users’ requests (so now our state
includes just one variable: the Aol value when the request
arrives). This allows us to reduce the state space and thus
facilitate the theoretical analysis. Note that the objective in
Problem (10) is the same as that in Problem (8) except that
we specify the initial state s in Problem (10). In other words,
an optimal policy for Problem (10) is also an optimal policy
for Problem (8). Next, we show that there exists an optimal
policy for Problem (10) that has a threshold-based structure,
which enables us to search for an optimal policy in the class of
threshold-based policies (see Section VI). We state this result
in Theorem 1.

Theorem 1. There exists an optimal stationary capped reactive
policy ™ € II®* that has a threshold-based structure.

We provide the detailed proof in Appendix C and present
an outline of the proof in the following. First, we study
a discounted MDP and derive its optimal value function.
Second, based on the optimal value function, we derive the
Bellman equation of the expected total average cost and show
that the Bellman equation has a threshold-based structure.
Specifically, the server needs to update the data when the
current Aol value (i.e., the state) is no smaller than a certain
fixed threshold s* (see definition in Eq. (20)); otherwise, it
does not. Now consider a stationary capped reactive policy
7* € TI7* that makes update decisions based on threshold
s*. Apparently, policy 7* minimizes the Bellman equation
for any state, thus it is an overall optimal policy [39, Chapter
V, Theorem 2.1]. The threshold structure of the optimal policy
7* indicates that among all threshold-based policies, there is
an overall optimal policy (see Fig. 3). This motivates us to
search for the optimal threshold-based policy in Section VI.

Remark 1: Our proposed guidelines (especially the capped
reactive policy) play an important role in characterizing the
threshold-based structure of an optimal policy. By following
our guidelines, we can restrict ourselves to the policies whose
cost at each decision epoch is no greater than the update

cost p. This additional property enables us to characterize the
monotonicity of the optimal value function of the discounted
MDP and the monotonicity of the Bellman equation, and
ultimately address the overall problem by finding a simple
threshold-based optimal policy.

VI. OPTIMAL THRESHOLD-BASED POLICY

Theorem 1 tells us that we can further reduce the search
space from the set of capped reactive policies to the set of
capped reactive threshold-based policies. In this section, we
formally define threshold-based policies and derive the closed-
form expression of the average cost of the threshold-based
policies. Using the closed-form expression, we can find the
optimal threshold-based policy. Furthermore, we show that
the optimal threshold-based policy is also an optimal policy
among all online policies.

We begin with the definition of threshold-based policies.

Definition 1 (Threshold-based Policies). A policy in II7 is
called a threshold-based policy if it performs updates accord-
ing to the following rule with a predetermined positive integer
threshold T: for the request arriving at time r;j, we have

Q=={;’ A(ry) >

A(rj) < T.
That is, the server updates the data at r; before replying if
the Aol at r; is no smaller than threshold T; otherwise, the
server simply replies with the current local data.

We consider an integer threshold because the values of
the Aol are integers. Let 7(7) be the threshold-based policy
with threshold 7, and let TIT be the set of all threshold-based
policies. Fig. 3 shows the relationship of TI%?, TI**, and TI7.

Assume that the request arrival process is Bernoulli, we can
derive the closed-form expression of the average cost under
any threshold-based policy. We state this result in Theorem 2.

Theorem 2. Assume that the request arrival process is
Bernoulli(\), the staleness cost function is f(A), and the
update cost is p. Then, for any policy m(t) € IIT with a
positive integer threshold T, the average expected cost can be
computed as follows:

T—1
e AL) +p
=N ES S (an

We provide the detailed proof in Appendix F and present an
outline of the proof in the following. Since the request arrival
process is Bernoulli, under a threshold-based update policy,
the lengths of update intervals are independent and identically
distributed (i.i.d.). Thus, the update process is a renewal
process. Due to the ergodicity of the process, the expected av-
erage cost can be computed as C™(7) = E[C},]/E[N}], where
E[Cy] and E[N}] are the expected total cost and the expected
number of requests in the k-th update interval, respectively.
In addition, by exploiting the properties of Bernoulli arrival
process, we can further derive the closed-form expressions

of E[C)] and E[Ng], which are shown in the numerator and
denominator of Eq. (11), respectively.

With the result in Theorem 2, we can also easily compute
the optimal threshold 7*. In fact, this optimal threshold-based
policy 7(7*) is also an overall optimal policy, which is shown
in Corollary 1.

Corollary 1. Assume that the request arrival process is
Bernoulli(\). Then, the threshold of the optimal threshold-
based policy 7(7*) € IIT is the following:

™ = argmin C™(7) }
re{lm ,[71}

where 7' is the real number that achieves the smallest expected
average cost (i.e., 7' = argmin,~o C™7)). Furthermore, the
optimal threshold-based policy (7*) € 1T is also an overall
optimal policy among all online policies.

(12)

Proof. Theorem 1 states that there exists an overall optimal
capped reactive threshold-based policy 7* € II%+ N II7.
For the optimal threshold-based policy 7(7*) € II7, we
have C™(™) < C7 . On the other hand, since policy 7*
is an overall optimal policy, we also have C™(") > C7".
Therefore, we have C™("") = C™" . This implies that the
optimal threshold-based policy 7(7*) € IIT is also an overall
optimal policy among all online policies. O

Here, the real number 7’ in Eq. (12) can either be theo-
retically calculated if the expression of Z;ll f(t) in C™(7)
is known (see below for two examples) or be numerically
calculated otherwise. The optimal threshold 7* may not be
unique, depending on the staleness cost function f. Also,
policy 7(7*) could be the same as policy ©* in some cases.

In the following, we provide the average expected cost and
optimal threshold when the staleness cost is a linear function
and a square function of the Aol, respectively.

Example 1 (A linear staleness cost function). Assume that the
request arrival process is Bernoulli(\), f(A) = A, and the
update cost is p. Then, for any policy m(t) € IIT with a
positive integer threshold T, we have

A(t—=1)/2+p

(7)) —
¢ AMr—1)+1 "~

13)

and the optimal threshold T = {arg minfe{LT,J’[T/]}C_’”(T) }
where 7' = (\2pA = A+ 1T+ A =1)/\

Example 2 (A quadratic staleness cost function). Assume that
the request arrival process is Bernoulli(\), f(A) = A2, and
the update cost is p. Then, for any policy 7(7) € 1T with a
positive integer threshold T, we have

M =173+ (r=1/2+ (1 = 1)/6] +p

AMr—=1)+1 ’
a4
and the optimal threshold T* = {arg minTe{Lr,J’rTq}C”(ﬂ }
where 7' is the solution of

1—6p— 67+ 672+ \4r —1)(1 —1)* =0.

o) —

VII. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we perform extensive simulations and
experiments to verify our theoretical results and compare
the performance of the optimal threshold-based policy with
several baseline policies using both synthetic data and real
traces. Throughout this section, we consider two types of
the staleness cost: a linear function (i.e., f(A) = A) and
a quadratic function (i.e., f(A) = A?).

We first evaluate the performance of threshold-based poli-
cies with different thresholds when the staleness cost is a
linear function of Aol in Fig. 4. The setting of the simula-
tions is as follows. The request arrival process is Bernoulli
with rate A = 0.1, and the update cost is p = 100. The
simulation results are the average of 100 simulation runs,
where each run consists of N = 10* requests (which is
our default setting for the synthetic simulations). We also
include a breakdown of the results in terms of average
staleness cost @ = Z;V:1 f(A(r;))/N and average update
cost p = pU™(N)/N. We observe that the simulation results
of average total cost under threshold-based policies perfectly
match the theoretical results in Example 1. Clearly, as the
threshold increases, the update cost decreases, but the stal-
eness cost increases. This is as expected because a higher
threshold leads to less frequent updates, which results in a
smaller update cost but a larger staleness cost. As a result, the
average total cost, which is the sum of the two, first decreases
and then increases. The optimal cost C™(") ~ 36.22 is
achieved at 7* = {argmin{LT/HTq}C”(T)} = 37, where
7' = (V2pX — X+ 14+A—1)/X = 36.72. Similar observations
can also be made from Fig. 5, where the staleness cost is
a quadratic function of Aol. As expected, the staleness cost
increases remarkably with the threshold, since the staleness
cost function is quadratic.

Next, we compare the performance of the optimal threshold-
based policy with several baselines in Figs. 6 and 8, where
the staleness cost function is linear and quadratic, respectively.
We consider three baselines: (i) a naive policy, (ii) periodic
policies, and (iii) the optimal offline policy. The naive policy
is a capped reactive threshold-based policy with a threshold
being equal to A* = [p] when f(A) = A (or A* = [/p]
when f(A) = A?). That is, upon receiving a request, this
policy naively updates the data when the staleness cost is
no smaller than the update cost, otherwise it does not. A
periodic policy has a positive integer period d and updates
the data every d time-slots, i.e., u; = id for ¢ = 1,2,....
Note that a periodic policy is not a reactive policy. Following
a similar argument in the proof of Theorem 2, we can show
that the average cost under a periodic policy with period d is
(p+Ad(d—1)/2)/Xd when f(A) = A (or (p+A((d —1)3/3+
(d—1)%2/2 + (d — 1)/6))/Ad when f(A) = A?). In the
comparisons, we only consider the optimal periodic policy
with d* = {\/Qp/)\z‘, when f(A) = A (or d* being the
solution of 4\d® — 3A\d*> — 6p = 0 when f(A) = A?).
The optimal offline policy has the exact knowledge of all the
request arrival times and is obtained based on the dynamic

100 : :
|| =—=Total Cost

'\ = -Total Cost (Theory)

80 - .
= % Optimal Point (Theory)
8 60 | LSJtp(ilate Cocs;t t |
% aleness Cos /
o 401 1
>
<

201

0 boaneee®?

0 20 40 60 80 100
Threshold
Fig. 4: Average cost under threshold-based policies with

different thresholds when f(A) = A, where A = 0.1 and
p = 100.

100 y

80| =—=Total Cost
= — =Total Cost (Theory)
S ol % Optimal Point (Theory) |
» Update Cost
2 < |==== Staleness Cost
o 407 -
> O
< s

201 G

(R

0 10 20 30 40 50
Threshold
Fig. 5: Average cost under threshold-based policies with

different thresholds when f(A) = A2, where A = 0.1 and
» = 100.

programming approach. Hence, the average cost under an
optimal offline policy can be viewed as a lower bound of
all online policies.

Fig. 6a shows the results for the setting with a fixed
update cost p = 50 and a varying request arrival rate A
when the staleness cost function is linear. We observe that
the optimal threshold-based policy outperforms all the other
online policies and is very close to the optimal offline policy.
When the request arrival rate is small, the optimal periodic
policy performs poorly. This is because Bernoulli process
with a small rate A results in a larger mean (i.e., 1/)\) and
a larger variance (i.e., (1 — \)/A?) of the inter-arrival time
of the requests. Hence, the inter-arrival time of the requests
is usually larger and more random. In this case, a periodic
policy that updates the data at fixed time instants resulting in
a larger staleness cost. On the other hand, the interarrival time
of requests is large when the rate A approaches 0, resulting
in a large Aol (and thus a high staleness cost) when the
requests arrive. All the capped reactive policies as well as
the offline optimal policy would make an update decision
for each request, making their average cost close to the
update cost p. This aligns well with our theoretical result
when we let A = 0 in Eq. (13). When the request arrival
rate becomes larger, the performance of the optimal periodic

50 [y ‘ 25 ‘ — 15 ‘ ‘ ‘ ‘
] Naive || |[=== Naive o L NS e o
4014 — -Periodic 20 ||~ ~Periodic o 3’."’
% "_‘ \ == Threshold-based 40,- == Threshold-based o B 10 ;ﬁ_,.,-'“' """ ST mmme
83l Optimal Offline 8 Optimal Offline X | 8
S 30 |\ P S 1 o = o P e
o | LT T T © s o ~ . o |
o) N =) o e o |
© 20t 2GRN © 10 K3 - - © "
q>_) ~\~ o (]>.) ““: - _’_— q>_) 5 ’ ==xx Najve
< e R < PRI < 7| — -Periodic
L 5 O O 51 - 27 | == Threshold-based
; P Optimal Offline
0 : : : : 0 ‘ ‘ ‘ ‘ 0 : : : :
0 0.2 0.4 0.6 0.8 1 0 10 20 30 40 50 0 200 400 600 800 1000

Request arrival rate

(a) Fixed update cost p = 50

Fig. 6: Performance comparisons of different policies with different request arrival
rate A and different update cost p when f(A) = A, respectively.

Update cost
(b) Fixed request arrival rate A = 0.5

Number of requests

Fig. 7: Performance comparisons of dif-
ferent policies using trace dataset, where
update cost p = 25, request arrival rate
A =04, and f(A) = A.

50 R \ 25 ¥ g
\ . // e® ltlu‘“ Ve ——— 4
PN 801y
0 \\ > \ 20 i I 50 U U O O bk Naive
@ e, A 17} -, “,n":" g — -Periodic
830l Ml S 15 P S 603 — - Threshold-based
% e, % PRI %] Optimal Offline
0 e — T e T I ¢ ’ DX =S40
] ees Naive ==u.Z= O ’ // Naive Q
< — =Periodic < 1) = =Periodic < 20 e e o e o e
10 [|= = Threshold-based Sr o2y == Threshold-based|]| i
0 Optimal Offline 0 (l/ Optimal Offline O‘U‘
0 0.2 0.4 0.6 0.8 1 0 10 20 30 40 50 0 200 400 600 800 1000

Request arrival rate

(a) Fixed update cost p = 50

Fig. 8: Performance comparisons of different policies with different request arrival
rate \ and different update cost p when f(A) = A2, respectively.

policy improves and is close to that of the optimal threshold-
based policy. This is because a large request arrival rate A
leads to a small period d*. In this case, the requests arrive
more frequently, and the updates also occur more frequently.
Hence, the staleness cost becomes small, and the update cost
becomes dominant. We also observe that the naive policy
performs poorly compared to the other policies when A is
large. This is because the naive policy is agnostic about
the request arrival rate. The update period under a naive
policy is roughly equal to p regardless of the request arrival
rate. However, when A\ becomes large, there could be many
more requests arriving during an update interval of length p,
which results in a large staleness cost. In addition, when the
request arrival rate A approaches 1, the optimal threshold-
based policy and the optimal periodic policy have the same
optimal threshold/period (i.e., 7% = d* [\/ﬁ]) as well as
the same average cost (i.e., v/2p — 1/2), and their knowledge
about the future request arrival process is almost the same
as the optimal offline policy (i.e., there is a request arriving
in every time-slot), so their performance is also very close.
Similar observations can also be made from Fig. 8a, where the
staleness cost function is quadratic. We omit the explanation
since they are almost identical.

Fig. 6b shows the results for the setting with a fixed request

Update cost
(b) Fixed request arrival rate A = 0.5

Number of requests

Fig. 9: Performance comparisons of dif-
ferent policies using trace dataset, where
update cost p = 50, request arrival rate
A =04, and f(A) = A%

arrival rate A 0.5 and a varying update cost p when
the staleness cost function is linear. We observe that the
optimal threshold-based policy again outperforms all the other
online policies and performs closely to the optimal offline
policy. The optimal periodic policy performs poorly because
it is not a reactive policy, it cannot update timely according
to the staleness cost of the requests, resulting in a large
total staleness cost. We also observe that as the update cost
increases, the naive policy performs much worse compared to
the other policies. This is because the average cost under a
naive policy increases at a rate of O(p), while the average
cost under the other policies increases at a rate of O(,/p).
In Fig. 8b, we show the results under the same setting except
that the staleness cost function is quadratic. Again, the optimal
threshold-based policy outperforms all other online policies.
The optimal periodic policy performs poorly at all update
costs. This is because its staleness costs become much larger
due to the quadratic function and its inability to update timely
upon the arrival of requests. The average cost under the naive
policy has several jumps. The reason is that when the threshold
A* is set to [\/ﬂ the integral change of [\/ﬂ leads to a high
increase in the average cost. For example, when the update
cost p in the range of [26, 36], the threshold A* under the naive
policy is [\/;B] = 6 and the average cost increases linearly

with respect to p according to Eq. (14). However, when the
update cost is in the range of [37,49], the threshold A* under
the naive policy becomes [\/ﬂ =7, which results in a much
larger average cost compared to when A* = 6 according to
Eq. (14). This also explains the jumps in the optimal threshold-
based policy, but the jump is almost unnoticeably (e.g., when
p = 46) since it chooses the optimal thresholds and thus
mitigates the jumping effect.

In Fig. 7, we also compare the performance of different
policies using the real trace dataset [40] when the staleness
cost function is linear. The trace dataset collects around 700
billion user requests (each contains a timestamp, anonymized
key, operation, etc.; see details in [40]) from 54 Twemcache
clusters, which are the in-memory caching used by Twitter.
In order to simplify the analysis and presentation, we focus
on the user request arrival times at the cache of the 26th
Twemcache cluster, whose request arrival rate is about 0.4.
The request arrival process is no longer Bernoulli. In Fig. 7,
we assume that the update cost is p = 25 and show the
performances of different policies using the trace dataset in
the first 10® requests. For the optimal offline policy, we still
apply the dynamic programming to obtain the optimal update
times. For the naive policy, we simply let its threshold equal
the update cost of 25. For the threshold-based policy, we
obtain the optimal threshold 7* = 9 by plugging A = 0.4
into Eq. (12). Similarly, we obtain the optimal period d* = 11
for the periodic policy. We observe that the optimal threshold-
based policy outperforms the other online policies even though
the request arrival process is now non-Bernoulli. In Fig. 9,
we change the setting to update cost p = 50 and a quadratic
staleness cost function. Clearly, the optimal threshold-based
policy still outperforms the other online policies.

VIII. CONCLUSION

In this paper, we considered a fundamental tradeoff between
the data freshness and the update cost in a time-sensitive
information-update system. We provided useful guidelines for
the design of update policies. Assuming Bernoulli request
arrival process, we also proposed a threshold-based update
policy and proved its optimality. Our simulations based on
both synthetic data and real traces corroborated the theoretical
results and showed that the optimal threshold-based policy
outperforms the baseline policies. For future work, one inter-
esting direction would be to consider more general settings
where users are interested in multiple contents.

APPENDIX
A. Proof of Lemma 1

Proof. For any given policy 7 € II, there are two cases: (i)
7 € % and (i) 7 € T\ IT%.

Case (i) is trivial as we can simply choose 7’ = 7. In Case
(i), we construct a reactive policy 7’ € II*? in the following
manner. Consider any sample path with N requests: 1) for
all the updates performed by policy 7 at some request arrival
times, policy 7’ also has such updates; 2) for each update
performed by policy 7 that is not at any of the request arrival

Ti-1 U Ty
Fig. 10: An illustration of the advantage of a constructed
reactive policy 7/ € II® over an arbitrary given non-reactive
policy € TI\IT**, where the solid black curve and the dashed
red curve denote the Aol trajectories under policies 7 and 7/,
respectively.

times, policy 7’ postpones the update to the time instant when
the next request arrives. Clearly, policy 7’ constructed in the
above manner is a valid reactive policy.

Next, we want to prove that in Case (ii), policy 7’ achieves
a total cost smaller than that of policy 7 by induction. Note
that at time 1, the Aol under policy 7’ is no larger than that of
policy 7. (Although since the Aol at time 1 is equal under both
policies, we want to use “no larger than” instead of “equal”
here so that the argument can later be repeatedly applied.) Let
uy, be the first time at which policy 7 updates the data when
no request arrives, let r; be the arrival time of the first request
that arrives after time uy. Fig. 10 provides an illustration of
such a scenario, where the solid black curve and the dashed
red curve denote the Aol trajectories under policies 7 and 7/,
respectively. We want to show that policy 7’ has a smaller
total cost than that of policy 7 during interval [1,7].

We first compare the total cost during interval [1,uy)
under both policies. Note that under policy 7, all the updates
performed before time uy, are at request arrival times because
uy, is the first time at which policy 7 updates the data when
no request arrives. Due to Step 1) of the above construction,
policy 7’ must update the data in a way that is exactly the same
as policy 7 during interval 1,y). Hence, the total update cost
during interval [1,uy) must be the same under both policies.
Also, the Aol under policy m/ must remain no larger than
that under policy 7 during interval [1,ug). Hence, policy 7’
must have a total staleness cost no larger than that of policy m
during interval [1,ug). This implies that policy 7’ has a total
cost (including both update cost and staleness cost) no larger
than that of policy 7 during interval [1,uy).

We now compare the total cost during the interval [ug, 7]
under both policies. Due to Step 2) of the construction of
policy 7', it does not update the data at time wuy but postpones
the update to time r;. Then, under policy 7’ the total cost
during interval [ug, ;] is equal to p because the only update
is performed at time r; at which the only request arrives. On
the other hand, policy 7 has a total cost strictly larger than p
because it performs one update at time wu; and needs to pay
either a staleness cost at time r; or at least an additional update
cost during interval (uy,r;]. Hence, policy 7’ has a total cost

-

T

r T Uk

Fig. 11: An illustration of the advantage of a constructed
capped reactive policy 7/ € II#* over an arbitrary given non-
capped reactive policy m € ITF\IT#*, where the solid black
curve and the dashed red curve denote the Aol trajectories
under policies 7 and 7/, respectively.

smaller than that of policy 7 during interval [ug,).

With the above discussions, we show that policy 7’ achieves
a total cost smaller than that of policy 7 during interval [1, ;]

Since the Aol under policy 7’ becomes 1 at time 741,
the Aol under policy 7’ is apparently no larger than that of
policy 7 at time 7;1. Then, we can view time ;4 as a new
starting point and inductively apply the above argument. This
completes the proof. [

B. Proof of Lemma 2

Proof. For any given policy m € II%, there are two cases: (i)
7 € ITPF and (i) m € 17\ 17+,

Case (i) is trivial as we can simply choose ' = 7. In Case
(i), we construct a capped reactive policy 7/ € It in the
following manner. Consider any sample path with N requests:
1) for all the updates performed by policy 7, policy 7’ also
has such updates; 2) for every request r; such that A(r;) > s*
(see definition of s* in Eq. (7)), policy 7’ updates the data
at r; regardless of policy 7’s update decision at 7;. Clearly,
policy 7’ constructed in the above manner is a valid capped
reactive policy.

Next, we want to show that in Case (ii), policy 7’ achieves
a total cost smaller than that of policy 7 by induction. Recall
that the system starts with A(1) = 1. Let r; be the first
request arrival time at which A(r;) > s* but policy 7 does
not update the data. Then, the Aol trajectories before time r;
are exactly the same under policies 7’ and 7. Due to Step 2)
of the above construction, policy 7' must update the data at
r; because A(r;) > s*. Let uy, be the first update performed
after r; under policy 7. Then, policy 7’ must also update the
data at time wug due to Step 1) of the above construction.
Fig. 11 provides an illustration of such a scenario, where the
solid black curve and the dashed red curve denote the Aol
trajectories under policies m and 7', respectively. It is easy to
see that policy 7’ has a smaller Aol than that under policy 7
during interval (7, ug).

We now compare the total cost during interval [1, ux| under
both policies. First, note that the Aol trajectories before time
r; are exactly the same under policies 7’ and , i.e., both
policies have the same cost during interval [1,7;). Then, it is

easy to see that at time 7, policy 7’ has an update cost p but
no staleness cost, and policy 7 has a staleness cost A(r;) but
no update cost. Hence, policy 7’ achieves a smaller total cost
than that of policy 7 at time 7; because A(r;) > s*. Also, note
that policy 7’ has a smaller Aol than that of policy 7 during
interval (7, uy) and that there is no update under both policies
during interval (r;,uy). Hence, policy 7' achieves a smaller
total cost than that of policy 7 during interval (r;,ug). At
time wug, both policies have an update cost p but no staleness
cost since neither of them updates the data. Combining the
above discussions, we show that policy 7’ achieves a smaller
total cost than that of policy 7 during interval [1,u].

Since A(uy) drops to 0 at time wuy under both policies, we
can view time (uy + 1) as a new starting point and repeatedly
apply the above argument. This completes the proof. O

C. Proof of Theorem 1

Proof. Our proof includes two steps: 1) We study a discounted
MDP and show that the optimal value function of the dis-
counted MDP is non-decreasing in the initial state s; 2) Based
on the optimal value function of the discounted MDP, we
derive the Bellman equation of the average expected cost
and show that it has a threshold-based structure, where the
threshold is based on the Aol. This implies that there exists
an optimal threshold-based stationary capped reactive policy
for the average expected cost.

Step 1): In general, the derivation and properties of the
Bellman equation of the average expected cost are not easy
to obtain, and we usually rely on the study of the discounted
MDP to get some insights towards the design of an optimal
policy [39].

The expected total a-discounted cost of a capped reactive
policy 7 € I is defined as

o0
Cr(s) =2 E, Z Q" te(sp,an)ls1 = 5|, (15)
n=1
where 0 < o < 1 is the discount factor. Here, C7(s) is well

defined, given that for any n, we have E;[c(sp, a,)|s1 = s] <
p under a capped reactive policy 7, and thus, we have

o0
cr(s) <Y anlp= L
n=1

s (16)

Let C, (s) £ minC7(s) be the optimal value function.

Then, we can obtain the Bellman equation of the a-discounted
MDP with C,(s) [39], which is

Cy(s) = min {c(s,a) +a > p(z] s,a)Ca(z)}. (17)

a€EA; z€8

The Bellman equation Eq. (17) states that the value of the
initial state s (i.e., Cy(s)) equals the expected return of the
best action, which is the discounted expected value of the
next state (i.e., @) g p(2 | 8,a)Cq(2)), plus the immediate
cost along the way (i.e., ¢(s,a)). In the following, we show
that C,,(s) is non-decreasing in s. This property enables us
to show that the Bellman equation of the average cost (i.e.,
Lemma 4) has a threshold-based structure.

Lemma 3. The optimal value function Cy(s) is non-
decreasing in the initial state s.

We provide the proof of Lemma 3 in Appendix D and
explain the key ideas in the following. The goal is to construct
a sequence {Cl, , (s)} that is non-decreasing in s for any n,
where Cy, ,,(s) is the minimal expected discounted cost in an
n-stages problem. Then, we show that C,,(s) = nlgr;o Can(s),
which implies that C, (s) is also non-decreasing in s.

Step 2): With the optimal value function of the a-
discounted MDP (i.e., C,(s)), we can derive the Bellman
equation of the average cost as follows.

Lemma 4. Let h(s) = IE[CQ(S) —Co(1)] and g = 11311(1 -
a)Cy(1). Then, the Bellman equation of the averagz cost is
given by the following:

h(s) +g =
p+ > (1= N""Mh(z), if s > A*;
z=1

min {p + i (1= X An(2),

HOESDY

z=s+1

(1—)\)Z_s_l/\h(z)} L if s < A*

(18)

We provide the proof of Lemma 4 in Appendix E and
explain the key ideas in the following. First, given the defi-
nitions of h(s) and g, we show that Eq. (18) does hold. To
this end, we define h,(s) = Cy(s) — Co(1) and substitute
ha(s) into the Bellman equation of the a-discounted MDP
Eq. (17). Then, we prove that we can find a sequence
{am} — 1 such that li_r>n ha,, (s) = h(s) for any s and

lim (1—ay)Ca,, (1) = 9. Taking the limit m — o0 on both
sides of the Bellman equation of h,(s), we obtain Eq. (18).
Second, we show that Eq. (18) is the Bellman equation for
the average expected cost. This can be done by applying the
same techniques used in [39, Chapter V, Theorem 2.1].

Next, we show that the Bellman equation Eq. (18) has
a threshold structure, which guides us to find the optimal
threshold-based stationary capped reactive policy.

Assume that the current state is s. Based on the Bellman
equation Eq. (18), it is optimal to update when s > A*; and
when s < A*, it is optimal to update if

fe)+a 3 (1=N"n(z) 2

z=s+1

N (19)
p4ad (1= (2),
z=1

where the right hand side is a constant. It is easy to check
that h(s) is non-decreasing in s given that C, (s) is non-

decreasing in s. Hence, we can find s* as follows:

oo

D A= AR(z) >

z=s+1

s*2 min {s cf(s)+a

- (20)

p+a Z (1—)\)z_l)\h(z)}.
z=1

Set s* = A* when s* > A*. Now consider a capped reactive
policy 7* € II%+: upon receiving a request, policy 7* updates
the data if the current state is no smaller than s*; otherwise,
it does not update the data and replies with the current local
data. Clearly, policy 7* is a stationary threshold-based policy.
Besides, policy 7* selects the action that minimizes the right
hand side of the Bellman equation Eq. (18) for any state. Thus,
it is an optimal policy [39, Chapter V, Theorem 2.1]. O

D. Proof of Lemma 3

Proof. Our proof idea is to construct a sequence {Cly ,, (s)}
that is non-decreasing in s for any n, where C,, ,,(s) is the
minimal expected discounted cost in an n-stages problem.
Then, we show that Cy(s) = nhﬂn;(} Co,n(s), which implies
that C,, (s) is also non-decreasing in s.

First, we show how to construct the sequence {Cy , (s)}.
Consider an n-stage problem of our a-discounted MDP.
Denote the minimal expected discounted cost of this n-stage
problem by
Con(s) £ min {c(s,a) + aZp(z | s,a)Ca,nl(z)}

a€Ag
i zeS

pHad (1=N"""ACon 1(2), if s > A*;

z=1
—{ min {p + ioj (1-)\)Z_l)\Ca,n,l(z),
z=1
fs)+a > (1- A)Z“Aca,nl(z)} ,if s < A,
z=s+1

where the terminal cost is Cy, 1 (s) £ min{p, f(s)}.

Then, we prove by induction that our constructed sequence
{Can ()} is non-decreasing in s for any n. Obviously,
Cy1(s) is non-decreasing in s. We assume that Cy ,—1($)
is non-decreasing in s. Next, we show that C, ,,(s) is non-
decreasing in s. When s > A*, C,, »(s) is a constant and is
independent of s. On the other hand, when s < A*, to better
present our discussion, we denote

cEptad (1-XN)""Aan 1(2)
z=1

and
C(;,n,1<8) éf(s) + o Z (1 -)‘)z_s_l)‘camfl(z)
z=s+1

=f(s)+ad (1=N"""NCon1(s+E),
k=1

where the last step follows by setting k¥ = z — s. We want
to show that Cy, ,,_;(s) is non-decreasing in s. To see this,

[0}

consider two states: 7 > ¢ > 0. Then, we have
Con(d) — Co 1 (4)
= f(43) — f(i)

+ « i (1 -)\)kil)\(ca,nfl(j + k) - Ca,nfl(i + k))
k=1

Since f(s) is non-decreasing in s, we have f(j) > f(i). By
inductive hypothesis that C,, ,,—1(s) is non-decreasing in s, we

have Cy, ,—1(j+k) > Cy n—1(i+k) for any k& > 0. Therefore,
Chn(j) = CL (1) >0, ie., Cqn(s) is non-decreasing in s.
This, along with ¢ being a constant, implies that C, ,(s) =
min{c, CY, ,,_1(s)} is also non-decreasing in s when s < A*.
Till this point, we have shown that C,, ,,(s) is non-decreasing
in s when s < A* and when s > A*, respectively. In addition,
since Cy,n(9) achieves a smaller value when s < A* (ie.,
min {¢,C,,,_,(s)}) compared to the case of s > A* (i.e.,
c), this 1mp11es that C, ,, (s) is non-decreasing in s for any n.
Finally, given any non-negative integer s, by the definition
of Cq.(s) and the fact that the cost in each stage is non-
negative, we know that C, ,(s) is non-descreasing in n. In
addition, Cy p(s) is bounded. Indeed, the cost in each stage is
bounded by the update cost p under our considered policy. As
such, Co n(s) < >0 o' 'p=(1—a")p/(1 —a) <p/(1-—

). Therefore, by monotone convergence theorem, we have
lim Cy p (s) = Co (s), 21

n—roo

holding for any state s = 0,1,2,.... It still remains to
prove that C,, (s) is non-decreasing in s. We prove this by
contradiction. Suppose that C,, (s) is decreasing in s, i.e.,
there exists ¢,j € S such that i < j and C, (i) > C, (§).
Let

r=Cq (i) = Ca (j) > 0. (22)

Note that C, , (s) converges to C, (s) pointwise for any s,
there exists positive integers N7 and N5 such that for any
n > max{Ny, Na},

Cali) = Canl)] < 23)
and |Ca () = Cani)l < 5, 24)
which are equivalent to
r _ _ r
—3 < Co(i) = Con(i) < 3 (25)
and — 2 < Calj) = Canli) < 5. (26)
By subtracting Eq. (25) from Eq. (26), we have
2
~5 < (Cali) = Caunli) = (Cali) = Can(i)) < T, @T)
Note that
(Cald) = Can(j)) = (Cali) = Can(i))
(Ca n(Z) Ca n(])) - (Ca(l) - Ca(])) (28)
(Oa (i) — Oa,n(j)) -Tr
Then, we have
Con(i) = Con(j) > = >0, 29)

which contradicts the fact that C, ,, (s) is non-decreasing in s
for any n. Therefore, C,, (s) must be non-decreasing in s. [J

E. Proof of Lemma 4

Proof. The proof consists two steps: 1) given the definitions
of h(s) and g, we show that Eq. (18) dose hold; 2) we show
that Eq. (18) is the Bellman equation for the average cost.
Step 1): As we can see that the Bellman equation Eq. (18)
consists of two cases: s > A* and s < A*. In this proof, we
only prove the case of s < A*, and a similar proof can also
be applied to the case of s > A*.
Define
ha(s) 2 Ca(s) — Ca(1), (30)
and substituting C,(s) into the Bellman equation of the a-
discounted MDP Eq. (17) gives
ha(s) + (1 —a)Cyh(1)

(o]

. z—1
= min + a — Mo (2
pra g =Tl gy
s+a Y (1=X)""""Nha(z }
z=s+1

Our idea is to find a sequence {a,,} — 1 (where 0 <
a, < 1 for any m) such that lim h,, (s) = h(s) for any s
—00

and lim (1 — a,)Ch,, (1) = Z
m—o0

From Eq. (17), we know that
ha(s) = Ca(s) — Ca(1)

<p+ Oéi (1 — /\)2_1/\(]@(3) - Ca(l)

z=1
=p+ ai (1= X" ACo(2) + (@X — 1)C4(1)
§p+a§:(1 "ACa(2),

where the last quantity is a constant and we denote it as
M2 p+aX®, (1—X1)7""AC,(2). This immediately gives
|ha(s)] < M because C, (s) is non-decreasing in s and
thus hs(s) > 0, which also implies that h(s) is uniformly
bounded for all s and . Because every bounded sequence
contains a convergent subsequence [41, Bolzano—Weierstrass

Theorem], we can find a sequence {asrll)} with lim a£}) =
m—00

lim h,1 (1) =
cause h (1>W(L 2) is aigo bounded, we can find a subsequence
{a!2} € {a¥} such that lim h2)(2) 2 h(2) exists.
Similarly, we can continue this argument for h(3) and so on.
Finally, let {a,} = {ozsﬁn)}, and when m — oo, it follows

such that h(1) exists. Furthermore, be-

that liinm he,, (1) = h(l)’mhgéo he,,(2) = h(2), and so on.
Therefore, lim h,,, (s) = h(s) for any s.
Under gHOZapped reactive policy m, we have
E.[e(sn,an)|s1 = s] < p. Then, for any «.,, we obtain
Cop (1) =Er | > ap e(sn, Va)ls1 =1
=t (32)

; lfam

which indicates C,,, (1) is bounded. This also implies that
both of C,,, (1) and (1 — @y,)Cy,, (1) are uniformly bounded
for all a,,. Hence, there exists a subsequence {a;5} C {ay,}
such that _li£n (1 — am)Ca,, (1) = g exists. Note that
lim hg,, (ZL) = h(s) also hold for any s.

m?’fﬁg a7 into the Bellman equation Eq. (31), we have

ham (8) + (1 — am)Ca,, (1) =
i Ldam S (1= A"\ ,
min{p+ 1+« J;(A) am (J) @3)

1= A" g, (4)

s+l4am >, (
Jj=s+1
By the Lebesgue’s Bounded Convergence Theorem [41] and
the boundedness of h,,, (s), it follows that

oo o0

Jim 3 (1= A T M, () = Y (1= N TIAR(G) (B4

=k =k

for any k. Finally, Eq. (18) holds by taking limit as m — oo
at both sides of Eq. (33).

Step 2): To prove that Eq. (18) is the Bellman equation for
the average expected cost, we apply the same techniques used
in [39, Chapter V, Theorem 2.1]. For the ease of expression,
we rewrite Eq. (18) as a compact form, i.e.,

c(s,a +sz|5a

}. (35)
zE€S

a€Ag

h(s)+gm1n{

First of all, we claim that g is the optimal average expected
cost, i.e.,

N
ﬂgﬁl}}+ ngnooE Z c(Snyan)|s1 = s] /N. (36)

g:

To see this, let H,, = (s1,a1,...,5n,a,) denote the history
of the process up to the decision epoch n. By the iterated
expectation, for any decision epoch 7 under policy 7, we have

Ex[h(si)] = Ex[Ex[h(si)|Hi-1]], (37

which gives
N

Z [h(s:) | Hi- 1]]1 =0. (9
Based on the definition of E[h(s;)|H;—1], we have
Erlh(si)| Hi-1]

=Y p(zlsi-1,ai-1)h(z)

z€eS
= c(si—1,ai-1) + Zp(z|8i—1, ai—1)h(z) — c(si—1,ai-1)
z€S
(@)
> irelgl c(si—1,a +ZP zlsi—1,a)h(2) | — c(si-1,ai-1)
z€S8
®)
= g+ h(si-1) — c(si-1,ai-1),

(39)

where (a) becomes equation under the optimal policy 7*, and
(b) holds because of Eq. (39).
Taking Eq. (39) into Eq. (38), we obtain

N
0<E, Z [h(si) — g — h(si—1) + c(si-1, ai—l)]] , (40)
i=1
which can be rewritten as
N
E. c(Si—1,ai—
- N N N ’

where the inequality becomes equality under the optimal

policy 7*. Taking the limit as N — oo and using the fact
that h(s) is bounded for any s, we have
N
< I = N
g < NgnooETr ;c(smanﬂsl 51 /N, 42)

with equality for the optimal policy 7* and any initial value
s1. That is, g is the optimal average expected cost. This also
implies that Eq. (18) is the Optimality Equation since any
h(s) and g satisfying Eq. (18) result in the optimal average
expected cost g. This completes the proof. O

F. Proof of Theorem 2

Proof. We start with some additional notations. For the k-th
update interval [u}_, + 1,u}], we use Nj and C} to denote
the number of requests that arrive in [u]_, + 1,u}] and the
total cost serving these Ny requests, respectively.

Since the request arrival process is Bernoulli, under a
threshold-based update policy, the lengths of update intervals
are i.i.d., so the update process is a renewal process. By the
ergodicity of the process, the average cost can be rewritten as

C™) = E[Ck]/E[Ny]. 43)

To calculate E[Ny], we consider the requests that arrive
in [uf_, + 1,uf]. Apparently, there is only one request
in [uf_, + 7,u}], which arrives exactly at u} because of
the threshold-based policy. Besides, the expected number of
requests arriving in [u}_, + L, uf_; +7 — 1] is A(7 — 1)
according to the Bernoulli process. Therefore, we have

E[Ng] =A(r—1)+ 1. (44)

The total cost in an update interval is composed of an update
cost and some staleness costs ie.,

Ce=p+ Z f(A
n=1
where 1., is the indicator function. Here, we slightly abuse
the notation of n and use it to denote the index of requests
arriving in [uf_, + 1,uf] (i.e., 7, is the arrival time of the
n-th request in [u}_, + 1,uf]). The staleness costs can be
rewritten as

Z f T‘n]l{Nk>O} = Z f rn]l{n<Nk}
n=1 (46)
Z rn]I{A(rn)<'r 1}

r71]l{Nk>0}a (45)

For the expected staleness cost of the m-th arrival of the
requests, we have

T—1

> FA®)pa(t),

t=1

]E[f(A(rn))ﬂ{A(rn)S'rfl}] = 47
where by slightly abusing the notation, we let ¢ denote the
index of time-slot after u]_,, and let p,,(t) be the probability
mass function that the n-th request arrives at time-slot ¢. Here
pn(t) follows the negative binomial distribution [42], i.e

t—1 t—n
A1 =X , t=n,n+1,---;
pu(t) = { (nil) (0,) otherwise. (48)
Plugging Eq. (48) into Eq. (47), we obtain
]E[f(A(Tn))]l{A(Tn)ST—l}]
(49)

T—1 t—1
-y s,

where the item in the summation equals 0 when ¢ < n.
We rewrite the expected total cost in an update interval as

E[C, p—i—ZE
oo T—1

=p+ > > FA(

n=1t=1

>>\"(1 -\

(rn) LN, >01]

(11) (1= A"
(11> A1 =N\
CL 11> A1 =)
i (2t

AMA4 (1 =)

7T—1 oo

AP BN

tlnl

+ZZf

tlnl

—p+Zf
(C) +Zf
=p+§jﬂAa»A

T—1
D3 r)N,
= (50)

where we interchange the order of summation in (a) because
the sum is finite, (b) is because the maximal number of
requests cannot exceed the length of the update interval, (c)
comes from the binomial theorem, and (d) is due to the
definition of the Aol. Finally, plugging Egs. (44) and (50)
into Eq. (43) gives Eq. (11). O

REFERENCES

[1] Z. Liu, B. Li, Z. Zheng, Y. Hou, and B. Ji, “Towards optimal tradeoff
between data freshness and update cost in information-update systems,”
in Proceedings of ICCCN 2022, 2022.

[2] Waze mobile app. [Online]. Available: https://www.waze.com/

[3] Gasbuddy mobile app. [Online]. Available: https://www.gasbuddy.com/

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. Li and J. Liu, “Achieving information freshness with selfish and
rational users in mobile crowd-learning,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 5, pp. 1266-1276, 2021.

S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in 2012 Proceedings IEEE INFOCOM, 2012, pp. 2731-
2735.

F. Li, Y. Sang, Z. Liu, B. Li, H. Wu, and B. Ji, “Waiting but not aging:
Optimizing information freshness under the pull model,” IEEE/ACM
Transactions on Networking, vol. 29, no. 1, pp. 465-478, 2021.

Z. Liu and B. Ji, “Towards the tradeoff between service performance
and information freshness,” in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), 2019, pp. 1-6.

Y. Ling and J. Mi, “An optimal trade-off between content freshness and
refresh cost,” Journal of Applied Probability, vol. 41, no. 3, p. 721-734,
2004.

Market data from morgan stanley. [Online].
/lus.etrade.com/l/f/disclosure-library/market-data
Y. Sang, B. Li, and B. Ji, “The power of waiting for more than one
response in minimizing the age-of-information,” in GLOBECOM 2017-
2017 IEEE Global Communications Conference. 1EEE, 2017, pp. 1-6.
L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” arXiv preprint arXiv:1504.05103, 2015.

K. Chen and L. Huang, “Age-of-information in the presence of error,”
in 2016 IEEE International Symposium on Information Theory (ISIT),
2016, pp. 2579-2583.

I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing
the age of information in broadcast wireless networks,” in 2016 54th An-
nual Allerton Conference on Communication, Control, and Computing
(Allerton), 2016, pp. 844-851.

M. Costa, M. Codreanu, and A. Ephremides, “Age of information
with packet management,” in 2014 IEEE International Symposium on
Information Theory, 2014, pp. 1583-1587.

E. Najm and R. Nasser, “Age of information: The gamma awakening,”
in 2016 IEEE International Symposium on Information Theory (ISIT),
2016, pp. 2574-2578.

J. Yun, C. Joo, and A. Eryilmaz, “Optimal real-time monitoring of
an information source under communication costs,” in 2018 IEEE
Conference on Decision and Control (CDC), 2018, pp. 4767-4772.

V. Tripathi and E. Modiano, “An online learning approach to optimizing
time-varying costs of aoi,” in Proceedings of the Twenty-second Inter-
national Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, 2021, pp. 241-250.
K. Saurav and R. Vaze, “Minimizing the sum of age of information and
transmission cost under stochastic arrival model,” in JEEE INFOCOM
2021 - IEEE Conference on Computer Communications, 2021, pp. 1-10.
R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183—
1210, 2021.

N. Lu, B. Ji, and B. Li, “Age-based scheduling: Improving data freshness
for wireless real-time traffic,” in Proceedings of the eighteenth ACM
international symposium on mobile ad hoc networking and computing,
2018, pp. 191-200.

R. D. Yates, P. Ciblat, A. Yener, and M. Wigger, “Age-optimal con-
strained cache updating,” in 2017 IEEE International Symposium on
Information Theory (ISIT), 2017, pp. 141-145.

J. Zhong, R. D. Yates, and E. Soljanin, “Two freshness metrics for local
cache refresh,” in 2018 IEEE International Symposium on Information
Theory (ISIT), 2018, pp. 1924-1928.

M. Bastopcu and S. Ulukus, “Cache freshness in information updating
systems,” in 2021 55th Annual Conference on Information Sciences and
Systems (CISS), 2021, pp. 01-06.

H. Tang, P. Ciblat, J. Wang, M. Wigger, and R. D. Yates, “Cache
updating strategy minimizing the age of information with time-varying
files’ popularities,” in 2020 IEEE Information Theory Workshop (ITW),
2021, pp. 1-5.

A. Arafa, J. Yang, and S. Ulukus, “Age-minimal online policies for
energy harvesting sensors with random battery recharges,” in 2018 IEEE
International Conference on Communications (ICC), 2018, pp. 1-6.
X. Wu, J. Yang, and J. Wu, “Optimal status update for age of informa-
tion minimization with an energy harvesting source,” IEEE Transactions
on Green Communications and Networking, vol. 2, no. 1, pp. 193-204,
2018.

Available: https:

[27] B. T. Bacinoglu, Y. Sun, E. Uysal-Bivikoglu, and V. Mutlu, “Achieving
the age-energy tradeoff with a finite-battery energy harvesting source,”
in 2018 IEEE International Symposium on Information Theory (ISIT),
2018, pp. 876-880.

[28] Y. Dong, P. Fan, and K. B. Letaief, “Energy harvesting powered sensing
in iot: Timeliness versus distortion,” IEEE Internet of Things Journal,
vol. 7, no. 11, pp. 10897-10911, 2020.

[29] E. Fountoulakis, N. Pappas, M. Codreanu, and A. Ephremides, “Optimal
sampling cost in wireless networks with age of information constraints,”
in [EEE INFOCOM 2020-1EEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS). 1EEE, 2020, pp. 918-923.

[30] B. Zhou and W. Saad, “Joint status sampling and updating for minimiz-
ing age of information in the internet of things,” IEEE Transactions on
Communications, vol. 67, no. 11, pp. 7468-7482, 2019.

[31] H. Huang, D. Qiao, and M. C. Gursoy, “Age-energy tradeoff in fading
channels with packet-based transmissions,” in JEEE INFOCOM 2020-
IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS). 1EEE, 2020, pp. 323-328.

[32] V. Tripathi, R. Talak, and E. Modiano, “Age of information for discrete
time queues,” arXiv preprint arXiv:1901.10463, 2019.

[33] D. Bertsekas and J. N. Tsitsiklis, Introduction to probability. Athena
Scientific, 2008, vol. 1.

[34] R. G. Gallager, Stochastic processes: theory for applications.
bridge University Press, 2013.

[35] M. Harchol-Balter, Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press, 2013.

[36] N. Akar and O. Dogan, “Discrete-time queueing model of age of
information with multiple information sources,” IEEE Internet of Things
Journal, vol. 8, no. 19, pp. 14531-14 542, 2021.

[37] V. Tripathi and S. Moharir, “Age of information in multi-source
systems,” in GLOBECOM 2017-2017 IEEE Global Communications
Conference. 1EEE, 2017, pp. 1-6.

[38] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “The age
of information in a discrete time queue: Stationary distribution and
non-linear age mean analysis,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 5, pp. 1352-1364, 2021.

[39] S. M. Ross, Introduction to stochastic dynamic programming.
demic press, 2014.

[40] J. Yang, Y. Yue, and K. V. Rashmi, “A large scale analysis of hundreds
of in-memory cache clusters at twitter,” in /4th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). USENIX
Association, Nov. 2020, pp. 191-208.

[41] H. L. Royden and P. Fitzpatrick, Real analysis.
1988, vol. 32.

[42] S. M. Ross, Introduction to probability models. Academic press, 2014.

Cam-

Aca-

Macmillan New York,

Zhongdong Liu is a PhD student in the Depart-
ment of Computer Science at Virginia Tech. He re-
ceived his B.S. degree in Mathematics and Applied
Mathematics with honor from Northeast Forestry
University in 2016. His research interests are in
the modeling, analysis, control, and optimization of
complex network systems.

Bin Li (S’11-M’16-SM’20) received the B.S. degree
in Electronic and Information Engineering, M.S. de-
gree in Communication and Information Engineer-
ing, both from Xiamen University, China, and Ph.D.
degree in Electrical and Computer Engineering from
The Ohio State University. He is currently an as-
sociate professor in the Department of Electrical
Engineering at the Pennsylvania State University,
University Park, PA, USA. His research focuses on
the intersection of networking, machine learning,
and system developments, and their applications in
networking for virtual/augmented reality, mobile edge computing, mobile
crowd-learning, and Internet-of-Things. He is a senior member of the IEEE
and a member of the ACM. He received both the National Science Foundation
(NSF) CAREER Award and Google Faculty Research Award in 2020, and
ACM MobiHoc 2018 Best Poster Award.

Zizhan Zheng (S’07-M’10) received his Ph.D. in
Computer Science and Engineering from The Ohio
State University in 2010 and his M.S. in Computer
Science from Peking University, China, in 2005.
He worked as a postdoctoral researcher in the ECE
department at The Ohio State University from 2010-
2014 and as an associate specialist at UC Davis from
2014-2016. Dr. Zheng joined the CS department of
Tulane University as an assistant professor in 2016.
His current research interests include networking,
trustworthy Al, reinforcement learning, and security.
Dr. Zheng is a recipient of the NSF CAREER Award.

Y. Thomas Hou (Fellow, IEEE) is Bradley Dis-
tinguished Professor of Electrical and Computer
Engineering at Virginia Tech, Blacksburg, VA, USA.
He received his Ph.D. degree from NYU Tandon
School of Engineering in 1998. During 1997 to
2002, he was a Member of Research Staff at Fujitsu
Laboratories of America, Sunnyvale, CA, USA.
Prof. Hou’s current research focuses on developing
innovative solutions to complex science and engi-
neering problems arising from wireless and mobile
networks. He is also interested in wireless security.
He has over 350 papers published in IEEE/ACM journals and conferences.
His papers were recognized by nine best paper awards from the IEEE and
the ACM. He holds six U.S. patents. He authored/co-authored two graduate
textbooks: Applied Optimization Methods for Wireless Networks (Cambridge
University Press, 2014) and Cognitive Radio Communications and Networks:
Principles and Practices (Academic Press/Elsevier, 2009). Prof. Hou was
named an IEEE Fellow for contributions to modeling and optimization of
wireless networks. He was/is on the editorial boards of a number of IEEE
and ACM transactions and journals. He served as Steering Committee Chair of
IEEE INFOCOM conference and was a member of the IEEE Communications
Society Board of Governors. He was also a Distinguished Lecturer of the
IEEE Communications Society.

Bo Ji (S’11-M’12-SM’18) received his B.E. and
M.E. degrees in Information Science and Electronic
Engineering from Zhejiang University, Hangzhou,
China, in 2004 and 2006, respectively, and his Ph.D.
degree in Electrical and Computer Engineering from
The Ohio State University, Columbus, OH, USA,
in 2012. Dr. Ji is an Associate Professor in the
Department of Computer Science at Virginia Tech,
Blacksburg, VA, USA. Prior to joining Virginia
Tech, he was an Associate/Assistant Professor in the
Department of Computer and Information Sciences
at Temple University from July 2014 to July 2020. He was also a Senior
Member of the Technical Staff with AT&T Labs, San Ramon, CA, from
January 2013 to June 2014. His research interests are in the modeling,
analysis, control, and optimization of computer and network systems, such
as wired and wireless networks, large-scale IoT systems, high performance
computing systems and data centers, and cyber-physical systems. He has been
the general co-chair of IEEE/IFIP WiOpt 2021 and the technical program co-
chair of ACM MobiHoc 2023 and ITC 2021, and he has also served on
the editorial boards of the IEEE/ACM Transactions on Networking, IEEE
Transactions on Network Science and Engineering, IEEE Internet of Things
Journal, and IEEE Open Journal of the Communications Society. Dr. Ji is a
senior member of the IEEE and the ACM. He was a recipient of the National
Science Foundation (NSF) CAREER Award in 2017, the NSF CISE Research
Initiation Initiative Award in 2017, the IEEE INFOCOM 2019 Best Paper
Award, the IEEE/IFIP WiOpt 2022 Best Student Paper Award, and the IEEE
TNSE Excellent Editor Award in 2021 and 2022.

