PROMAL: Precise Window Transition Graphs for Android via
Synergy of Program Analysis and Machine Learning

Changlin Liu’ Hanlin Wang! Tianming Liu? Diandian Gu® Yun Ma®
Haoyu Wang* Xusheng Xiao!

1Case Western Reserve University, 2Monash University

3Peking University, *Beijing University of Posts and Telecommunications

1{cxll029,hxw458,xusheng.xiao}@case.edu, ZTianming.Liu@monash.edu, 3{gudiandianl998,mayun}@pku.edu.cn,

*haoyuwang@bupt.edu.cn

ABSTRACT

Mobile apps have been an integral part in our daily life. As these
apps become more comple, it is critical to provide automated anal-
ysis techniques to ensure the correctness, security, and performance
of these apps. A key component for these automated analysis tech-
niques is to create a graphical user interface (GUI) model of an app,
i.e., a window transition graph (WTG), that models windows and
transitions among the windows. While existing work has provided
both static and dynamic analysis to build the WTG for an app, the
constructed WTG misses many transitions or contains many infea-
sible transitions due to the coverage issues of dynamic analysis and
over-approximation of the static analysis. We propose PROMAL, a
“tribrid” analysis that synergistically combines static analysis, dy-
namic analysis, and machine learning to construct a precise WTG.
Specifically, PROMAL first applies static analysis to build a static
WTG, and then applies dynamic analysis to verify the transitions
in the static WTG. For the unverified transitions, PRoMAL further
provides machine learning techniques that leverage runtime in-
formation (i.e., screenshots, Ul layouts, and text information) to
predict whether they are feasible transitions. Our evaluations on 40
real-world apps demonstrate the superiority of PROMAL in building
WTGs over static analysis, dynamic analysis, and machine learning
techniques when they are applied separately.

CCS CONCEPTS

« Theory of computation — Program analysis; - Software and
its engineering — Software testing and debugging; - Comput-
ing methodologies — Machine learning,.

KEYWORDS

mobile apps; window transition graph; static analysis; deep learning

ACM Reference Format:
Changlin Liu, Hanlin Wang, Tianming Liu, Diandian Gu, Yun Ma, Haoyu
Wang, Xusheng Xiao. 2022. PROMAL: Precise Window Transition Graphs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °22, May 22-27, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05...$15.00
https://doi.org/10.1145/3510003.3510037

for Android via Synergy of Program Analysis and Machine Learning. In
Proceedings of the 44th IEEE/ACM International Conference on Software Engi-
neering (ICSE’22), May 22-27, 2022, Pittsburgh, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3510003.3510037

1 INTRODUCTION

Mobile applications (i.e., apps) have become an integral part of
our daily life, from entertainment, travel, education, and even to
business [12, 53]. Thus, it is critical to improve the quality and
reliability of these apps by developing automated analysis tech-
niques to ensure the correctness, security, and performance of these
apps [19, 26, 41, 47, 47, 54, 69, 70]. As a key component for these
automated analysis techniques, we focus on creating a graphical
user interface (GUI) model of an app, i.e., a window transition graph
(WTG). In WTG, nodes represent windows and edges represent
transitions between windows, triggered by callbacks executed in
the GUI thread. For example, clicking a button in the GUI will result
in the execution of a callback that changes the screen to display an-
other window. WTG can be directly used for understanding, testing,
and exploring apps’ behaviors (7, 26, 54]. It can also assist static
analyses, such as detecting security-sensitive behaviors and other
non-functional properties like energy efficiency [9, 10, 63, 65].
While considerable research efforts have been spent to construct
WTGs [26, 41, 47, 54, 70] via either static analysis techniques or
dynamic analysis techniques, it is still challenging to obtain an
accurate WTG. On one hand, dynamic analysis such as dynamic
exploration [26, 41, 54] is precise in identifying transitions between
windows, but this type of techniques suffer from the notorious
coverage problem as other dynamic analysis techniques [14, 64,
66]. On the other hand, while static analysis that models the GUI
objects, events, and callbacks [47, 69, 70] shows promising results
in constructing a more comprehensive WTG, the imprecision in
reference analysis and over-approximation in computing data flows
often result in infeasible transitions. For example, if the imprecision
of the reference analysis causes several buttons to be aliases with
each other, then a transition triggered by one button will also result
in the model to include incorrect transitions from the other buttons.
Such incorrect transitions will further cause the imprecision for the
downstream analysis such as control and data flow analysis [47, 69].
To address these challenges, we propose a novel “tribrid anal-
ysis” approach, PRoMaL, that synergistically combines static/-
dynamic program analysis and machine learning techniques
to construct a WTG for an app. In particular, PROMAL aims to
benefit from the precise analysis from dynamic analysis, and at the

https://doi.org/10.1145/3510003.3510037

same time mitigate the low coverage of dynamic analysis and the
imprecision caused by the static analysis. @ Specifically, PRoMAL
first combines static analysis and dynamic analysis: PROMAL applies
static analysis to construct a WTG, and then runs dynamic analy-
sis to verify the detected transitions. Due to the coverage issues of
dynamic analysis and over-approximation of the static analysis,
it is expected that a substantial amount of transitions cannot be
verified by the dynamic analysis. @ Instead of including all these
unverified transitions in the WTG, which potentially will gener-
ate many infeasible transitions, PROMAL further uses a machine
learning technique, window transition prediction, that leverages the
features for the unverified transitions (e.g., screenshots and text) to
predict which transition to include. Our novel techniques (O for
verifying static WTGs using dynamic WTGs and @ for pre-
dicting unverified transitions) allowing PROMAL to construct
a more precise WTG that can benefit downstream analysis
techniques.

Existing static analysis techniques [47, 69, 70] are effective in
detecting transitions among windows, but are limited in detecting
transitions among dialogs. PROMAL improves the existing static
analysis by modeling the dialog builder APIs and detects transitions
buried in the callbacks of dialogs to identify the transitions from di-
alogs to other windows and dialogs. As dynamic analysis [26, 41, 54]
typically models the window transitions differently from the static
analysis, PROMAL instruments the app under analysis, which will
record the information that can be used to align the dynamic WTG
with the static WTG. This includes the identifiers of GUI widgets
(i.e., XPath) and interaction events. Moreover, the instrumentation
will collect the runtime information, including screenshots of the
windows, the view tree! [23], and the text shown in the windows.
The runtime information is later used by the machine learning tech-
niques to predict unverified transitions. For the windows found by
static analysis but dynamic analysis cannot reach due to coverage
issues, PROMAL uses static Ul rendering based on ADT (Android
Developer Tools) [3, 32] to render the UI layouts for obtaining the
screenshots and the view tree, and applies static analysis on the UL
layout file to obtain the text.

To predict whether unverified transitions should be included in
the WTG, we construct a model of window transition prediction
based on machine learning techniques. Given a GUI widget in a
window and another window, the model first extracts features of
them to learn their low-dimensional representations, which are
then fed into a link predictor to estimate the likelihood of whether
these exists a transition between the widget and window. However,
due to the large amount of parameters in the prediction model, it is
difficult to directly train the model since obtaining a large amount
of manually labelled WTGs is infeasible. To address this issue, we
adopt a two-phase training models: (1) pre-training on the dynamic
WTGs collected by dynamic program analysis from a large amount
of apps, and (2) fine-tuning on the manually labelled WTGs from a
small set of apps. The essence of the design lies in getting a model
general enough to accurately predict window transitions.

We implement PROMAL upon GATOR [47, 69, 70] and PALADIN [41],
and evaluate PROMAL on a diversified set of real apps (40 apps with

LA tree structure shows that hierarchy of the GUI widgets and the layout containers
(e.g., LinearLayout and RelativeLayout).

~ 2.5 million LOC). These apps have non-trivial WTGs of differ-

ent sizes (# of edges ranging from 5 to 538). We apply PALADIN to

construct WTGs for these apps, and compare the WTGs with the

groundtruth WTGs. We pre-train our prediction model on 1,625

apps explored by PALADIN, and fine-tune the model using 90% of

the apps in our evaluation dataset. We perform 10-fold validation to
predict the transitions for each app. The results show that ProMAL
effectively identifies the feasible transitions among the windows
in constructing WTGs, achieving a precision of 90.18%, a recall of

79.69%, and a F;-score of 82.82% on average. Moreover, the WTGs

built by PRoOMAL achieves a significantly better F;-score than the

WTGs built by GATOR (46.24%) and the combined WTGs built by

GaTOR and PALADIN (61.93%). These results reveal the limitations

of static analysis in modeling windows/callbacks for diversified

real apps, and demonstrate the effectiveness of PROMAL in using a

synergy approach of program analysis and machine learning.
This paper makes the following main contributions:

o A novel approach, PRoMaL, that synergistically combines static/-
dynamic analysis and machine learning to construct WTGs for
Android apps.

o A novel static analysis technique that builds static WTGs with
transitions among windows and dialogs.

o A novel dynamic analysis technique that instruments apps un-
der analysis and leverages app exploration techniques to build
dynamic WTGs and collect runtime information for window
transition prediction.

o A machine-learning model to predict window transitions, which
can be pre-trained on apps explored by dynamic analysis and
fine-tuned using labelled WTGs to improve the performance.

e An evaluation on a diversified set of Android apps to demonstrate
the effectiveness of PROMAL. The tool and the results are available
at the project website [4].

2 BACKGROUND

In an Android app, an activity provides a window to draw the
GUI [23]. A GUI consists of GUI widgets (e.g., buttons and text
boxes) and layout models (e.g., linear layout) that describe how to
arrange Ul widgets. Each GUI widget can respond to several events,
where each event triggers a sequence of callbacks. For example, the
click event in a button corresponds to clicking the button, and it
triggers the event handler callback that is registered to the click
event, such as onciick. A callback can open a new window. For
example, this can be done via calling the API startactivity. When
a new window is opened, it causes a window transition. Besides
widget event callbacks, hardware events (e.g., pressing BACK or
HOME button) can also trigger callbacks to cause window transi-
tions. In particular, Android maintains a back stack that stores the
order of the opened window, so that it can be used to decide which
window to return to when the BACK button is pressed.

Window transition graph (WTG) is a type of GUI model that
represents window transitions. Existing work [47, 69, 70] defines
a WTG as a directed graph, where nodes represent windows and
edges represent transitions. The edges in WTG are annotated with
three types of labels (i.e., €, §, o), where € represents the event to
trigger the transition, § represents a sequence of window stack

Activity: Root Activity: Menu
°v 0
[
fi Service "SMS-inform" -

L 4

< subscription Peckage Connection
] iy S

g Subscrtion and Package

{hcase o cting he basic o exension packages) @ Disable Subseription /

Figure 1: Example Uls of “Subscriber Assistant Application”
and a window transition

operations that push or pop the window to the window stack?, and
o represents the sequence of callbacks for the transition. Besides
widget events such as click events, the model further supports
five default events that corresponds to pressing the BACK, HOME,
POWER, MENU buttons and rotating the phone. A series of static
analysis techniques are then developed to identify GUI widgets,
associate their callbacks, and build a static WTG. While dynamic
analysis such as app exploration [26, 40, 41, 54] usually does not
explicitly build a WTG, they provide their own models to represent
UI states, which can be considered as another type of WTGs with
different representations for windows and their transitions.
Applications of WTGs. WTGs can be used to improve various
types of software analysis, such as testing, security vetting, and
performance profiling [11, 56, 60, 62, 63, 68]. Wu et al. [62] gen-
erates GUI tests based on the paths in the WTGs and analyzes
the UI callbacks and activity life cycle methods to examine sen-
sors that are not properly released. Yang et al. [68] uses a WTG
to determine which activities can reach more other activities to
prioritize test exploration. Another GUI testing tool [11] uses a
statically computed WTG to guide which widget to trigger when
the other exploration rules fail. Besides testing, WTGs are also used
for performance profiling and security vetting. Wang et al. [60] pro-
file potential resource demanding tasks in the UI thread by using
WTGs to identify callbacks that trigger “janky” operations and the
window transition sequences that trigger such callbacks. Tang et
al. [56] build a Ul-oriented program dependence graph, which is
essentially a WTG, to discover link hijacking vulnerabilities. All
these applications rely on WTGs built explicitly or implicitly, and
thus it is crucial to improve the precision of the built WTGs for
improving the effectiveness of these applications.

3 MOTIVATION EXAMPLE

Figure 1 shows the UI (after translation) of an example window
transition of the app “Subscriber Assistant Application”3, which
allows users to subscribe various services in Russia. When the
highlighted button is clicked, the Ul transits from the activity root to
the activity venu, resulting in a window transition. We can construct

2Window stack is a generalization of Android back stack that includes more types of
windows (dialogs and menus) and models the changes of the stack.
3Package name of the app is “com.olsoft.sa.ntvplus”.

a1:Favorites

A

e10:back

e6:back

e7:gallery,
y click

Y

a2:SendCommand

e8:list,
click

1
I e12:list,
I click

Figure 2: Partial WTG of “Subscriber Assistant Application”

View Tree of [a0:Root]

Activity: Root

-

android.widget.FrameLayout

I

[android.widget.LinearLayout

I

android.widget.FrameLayout }

!

android.widget.LinearLayout

{android.widget.LinearLayoutJ [android.widget.ListView }

android.widget.LinearLayout

XPath: /FrameLayout/LinearLayout/FrameLayout/LinearLayout/ListView/LinearLayout
Bounds: [0,620][1080,813]

Figure 3: Example view tree of Root window

a WTG for this app to model these transitions, where 8 nodes are
used to represent the activities and 125 edges are used to represent
the transitions among them. Due to space limit, Figure 2 shows
the partial WTG of the app. There are 5 nodes and 12 edges in
the WTG. The nodes show the name of the activity (e.g., a0: Root
and a1: Favorite). The labels on the edges represent the events to
trigger the transition (e.g., e3: btn, click means that after clicking
the button, the active window of app will transit from the activity
Root to the activity Favorite).

To obtain this WTG, PRoMAL first applies both static and dy-
namic WTG analysis to obtain the static WTG and the dynamic
WTG, respectively. Then, PRoMAL aligns the static WTG and the dy-
namic WTG to form a single WTG. As shown in Figure 2, the solid
edges represent matching edges between the static WTG and the
dynamic WTG, i.e., , verified edges. Due to the over-approximation
of static WTG analysis and the coverage issue of the dynamic WTG
analysis, there always will be some edges in the static WTG that
cannot be verified by the dynamic WTG. The one dashed edge in
Figure 2 represents such kind of unverified edge. To address this
problem, PRoMAL further uses window transition prediction to pre-
dict whether the unverified edges are likely to be transitions or not.
To do so, PROMAL collects the screenshots and the text information

(Alignment of)
Static WTG E> Static/Dynamic

WTG

¥

Unverified Edges
and Static Uls

Analysis

N

APK B .
Dynamic WTG Analysis

i
App
Instrumentation
Dynamic App Runtime
\ Exploration Information @
\ /

RS - Window
Transition

Window a Prediction
Window Transition E> Transition
Training Learning Model U
APKs

WTG

&

=
=| "W
=

i

Figure 4: Workflow of PRoMAL

of the activities (as shown in Figure 1) and also the structural infor-
mation of the Ul layout, i.e., the view tree. Figure 3 shows the partial
view tree of the activity root. As we can see, the view tree shows the
hierarchy of the UI widgets (e.g., Listview) and the layout container
(e.g., LinearLayout), and also the boundary of each UI widget (i.e.,
represented using screen coordinates). Since Android uses XML
layout files to build view trees at runtime, XPath [1] can be used
to locate the UI widget and the layout container. For example, the
XPath shown at the bottom of Figure 3 points to a LinearLayout that
can be clicked, and the “Bounds” shows its boundary in the UI using
screen coordinates. With the screenshots and the text information
of the activities and the view tree as input, the window transition
prediction correctly predicts the transition from the activity root to
the activity menu) in Figure 1, enhancing the WTG constructed by
the static and dynamic WTG analysis.

4 OVERVIEW

Figure 4 shows the workflow of PROMAL. PROMAL consists of three
major components: static WTG analysis, dynamic WTG analysis,
and window transition prediction. PROMAL accepts an Android
app APK file as input and applies both static and dynamic WTG
analysis to obtain the static and dynamic WTGs, respectively. The
static WTG analysis performs static analysis on the GUI layout
files and the code of the APK file and outputs a static WTG. The
dynamic WTG analysis consists of two steps: it firsts performs app
instrumentation, which adds the code component into the APK
file to collect runtime information, and then applies dynamic app
exploration to explore apps’ behaviors for building the dynamic
WTG. PROMAL then aligns the static and dynamic WTGs to obtain
the edges (i.e., window transitions) that are verified by the dynamic
WTG analysis (i.e., verified edges). For the unverified edges, Pro-
MaL uses the window transition prediction to predict whether the
unverified edges are likely to be feasible transitions. The window
transition prediction trains its model on a set of training APK files,
and uses the runtime information (i.e., screenshots, text informa-
tion, and UI layouts) to predict window transitions. As unverified
edges are not explored by the dynamic analysis, PROMAL statically
renders the GUIs involved in the unverified edges for obtaining the
information required for the prediction. The output WTG contains
only the verified edges and the edges predicted to be feasible edges.

5 DESIGN OF PROMAL

In this section, we first provide the formal definition of window
transition graph (WTG), and then describe the three major compo-
nents of PROMAL: static WTG analysis, dynamic WTG analysis, and
window transition prediction.

5.1 Definition of WTG

We represent a WTG as a directed graph G = (Win, E, €), where
Win represents a set of nodes where each node represents a window
of an app, E C (Win X Win) is the set of edges that represent
transitions among windows, and € : E — Eut represents the edge
labels that describe the events Evt that cause the transitions.
Window. We consider 3 categories of windows that users can in-
teract with as a node in a WTG: activities, menus, and dialogs. An
activity is often presented to the users as a full-screen window,
serving as the build block of an app’s GUIL. Menus include Options-
Menu which is associated with activities and ContextMenu which is
associated with GUI widgets. Dialogs are short-lived windows that
often need user actions to proceed to the next window.

Edge (Transition). An edge e = (wins, win;) represents a transi-
tion from a source window wing to a target window win;, and the
labels on the edges describe the events that cause the transition,
such as a button click. Without loss of generality, we treat back
edges as the other edges but with a special “back” label, which
makes it easier to match the back edges identified in the static
WTG with the dynamically observed ones. Moreover, we exclude
loops in E. A loop is an edge ¢; = (wing, win;) that points to it-
self, i.e., wing = win;. For example, when the user clicks a button
representing numbers in a calculator app, which does not result in
a window transition but stays at the same window, resulting in a
loop. As GUI widgets that do not cause inter-window transitions
will result in loops, these edges are of a large amount. Thus, adding
loops to E only complicates a WTG without providing more useful
information.

Event. An event evt = (w,t) is a label associated with an edge
e = (wing, win;), where w represents a GUI widget in wg and ¢ is the
type of this event (e.g., w is a button and ¢ is “long_click”). We model
two types of events: widget events and default events. Widget events
correspond to the interactions with a GUI widget (e.g., clicking a
button), which are categorized into two groups: (1) click events,
including touch, select, click, item_click, and item_selected, and (2)
long click events, including long_click and item_long_click. We
exclude several widget events because they mainly cause loops,
such as scroll, drag, focus_changed, and enter_text. In fact, in our
evaluation dataset, all 181 edges corresponding to these events
are loops. Default events correspond to the interactions with the
physical buttons or rotating the device. We focus on the events
caused by pressing the back button and the menu button, and
exclude events caused by rotating the phone and pressing the home
button and the power buttons since these excluded default events
only cause loops and app switches. In our dataset, 1,116 out of 1,430
edges related to these events are loops, and the remaining 314 edges
represent app switches. For example, when an app shows a menu
or a dialog and the user presses the home button, the phone exits
the app and shows the home screen; when the user goes back to the
app, the app shows the parent activity of the menu or the dialog.

While it seems like a “transition” from the menu or the dialog back
to the activity, it is in fact an app switch, which is generally not
interesting in app explorations or testing [26, 41, 54, 72].

Our model currently does not include System events since they
usually do not trigger window transitions but rather changing the
states of a window. System events correspond to changes of system
states, such as receiving new messages and volume adjustment [5,
17, 42, 45, 54, 59]. These events are of a huge amount and can
significantly damper the performance of the testing tool, and thus
they are randomly injected during testing [45, 54].

5.2 Dynamic WTG Analysis

Dynamic WTG analysis instruments apps and leverages app ex-

ploration techniques to automatically explore apps’ behaviors and

collect the runtime information for building dynamic WTGs and

predicting window transitions. We next describe the app instru-

mentation and runtime information collection.

App Instrumentation. PROMAL instruments an app to record

widget interactions and window transitions. Specifically, based

on our WTG definition, PROMAL monitors two major types of

interaction events:

o Widget Events: PROMAL records the click events, the click coordi-
nates, and the GUI widgets.

o Default Events: PROMAL records the default events for pressing
the BACK and the MENU buttons.

To correctly identify window transitions, the instrumentation
records the foreground activity before each interaction, and lever-
ages the changes of the foreground activity to identify the source
window and the target window when a transition happens. During
the exploration, we collect the attributes of the visited windows
(e.g., titles and texts), the call stacks of their parent methods, and
the screenshots of dialogs and menus.

Since some GUI widgets may not possess widget IDs, PROMAL
further uses coordinates and XPath to identify GUI widgets in a win-
dow, as illustrated in Figure 3. PROMAL hooks the dispatchTouchEvent
API to obtain the screen coordinates for each interaction (e.g., click-
ing a button), and leverages UlAutomator [25] to obtain the infor-
mation of the GUI state after the interaction, which includes a view
tree and a screenshot. As Android’s GUI is rendered based on an
XML layout file, the rendered GUI state can be represented as a
view tree, where the root element is a layout container such as
LinearLayout. Based on this view tree, we can use XPath to describe
the path from the root element to the XML element of the clicked
GUI widget. Besides, a view tree provides the boundaries of each
GUI widget, which enables PROMAL to locate the GUI widgets in the
view tree using the screen coordinates of an interaction, and then
generate the XPath of the clicked widget accordingly. To ensure
the interaction event is fully executed when we capture the GUI
state, the dynamic exploration adds a waiting period of two seconds
between two interaction commands.

Building Dynamic WTG. To build a dynamic WTG, PROMAL first
identifies windows from the data collected during app exploration.
ProMaL leverages two types of information to uniquely identify a
window: (1) window type (i.e., “Activity”,'Dialog”,'Menu”) and (2)
resource name. For an activity, the resource name is the resource
id of the activity. For a menu, the resource name is the resource

id of the activity that owns the menu. For a dialog, the resource
name is the resource id of the activity that owns the dialog (i.e.,
host activity) plus the method calls that create the dialog, which
can distinguish different dialogs opened from the same activity.
Then, PROMAL leverages the source window, the target window,
the class of the GUI widget, the widget ID, and the coordinates of
the interaction as the attributes to uniquely identify edges among
the windows. These identified edges and windows are then used to
build the dynamic WTGs.

5.3 Static WTG Analysis

Static WTG analysis applies static analysis to identify windows,
GUI widgets, and the transitions among the windows. Based on
our definition, three types of windows are considered: activities,
dialogs, and menus. Note that we consider both the classes “Con-
textMenu” and “OptionsMenu” as menus. PROMAL first applies the
existing static analysis technique (i.e., Gator) [47, 70] to identify
edges among windows as we defined in 5.1. It performs a constraint
graph based reference analysis to model Android GUI related objects
(e.g., Activities, Views, and callback listeners) and their association
relationship. It then builds a WTG based on the analysis of the
GUI event callbacks and the window lifecycle callbacks. Besides
modeling GUI related objects, PRoOMAL extracts GUI widget infor-
mation (i.e., title and text) from the view tree, which is later used for
matching the dynamic WTGs. For events that trigger transitions,
our static analysis focuses on widget events (i.e., “Click” and “Long
Click” events) and default events (i.e., pressing the back and the
menu buttons).
Dialog Transitions. Existing static analysis [47, 69] mainly identi-
fies transitions from activity window to dialogs, but fails to identify
transitions from the dialogs to other windows. The major reason is
that these transitions are often buried in the callbacks of dialogs,
which are defined using specific APIs in dialog builders (e.g., the
setItems API of AlertDialog.Builder). To 1dent1fy these transitions,
we extend the static analysis techniques to identify these APIs,
and associate the callbacks built through these APIs to the dialog
constructed by the dialog builders. Specifically, our extended static
analysis techniques identify the following dialog transitions:

o To Other Dialogs: the analysis examines whether a known dialog
allocation API call is found in the associated callbacks.

o To Host Activities: executing APIs such as dismiss O cancel and
registering a nul1 or nop handler will trigger a transition to the
host activity of the dialog. To detect such transitions, our analysis
first leverages the dynamic runtime information collected in
Section 5.2 to identify the host activities for all the dialogs; if a
dialog is not covered during dynamic exploration, our analysis
uses the callback registration sites identified by the static analysis
techniques to infer the activity.

o To Other Activities: the analysis examines the activity transition
calls (e.g., startactivity () and startactivityForresult) and the val-
ues of their 1atent arguments to identify the other activities.

o To Previous Activities: calling APIs like activity.finish Will cause
transitions to the previous activity. These transitions are inferred
based on the collected dynamic exploration traces.

5.4 Alignment of Static and Dynamic WTG

After obtaining the static WTG and the Dynamic WTG of an app,
ProMaL aligns them by matching each edge in the static WTG to
an edge in the dynamic WTG. We next describe the detailed steps.
Matching Windows. PRoMAL matches windows using different
attributes based on their types: (1) for activities, PRoOMAL checks
their activity names; (2) for menus, PRoMAL checks the names of the
activities that create the menus; (3) for dialogues, PROMAL checks
the call stack of the functions that creates the dialogs.
Matching Events and GUI Widgets. To match the event on an
edge, we first check if the event types are identical. For widget
events that associate with a certain GUI widget, PROMAL tries to
obtain the widget ID in both the static WTG and the dynamic WTG
to match the widgets. However, the edges in the static WTGs do
not always possess a widget ID. Sometimes they can only provide
a class name of the GUI widgets or even provide nothing to infer
the associated widgets. This imprecision of static analysis makes it
impossible for users to pinpoint the widgets, and hence they are
regarded as unmatched.

The edges in the static WTGs that cannot be matched will be
subject to further machine learning prediction.

5.5 Window Transition Prediction

The window transition model is used to predict the unverified edges
in the static WTGs. As shown in the example of Figure 5, the win-
dow transition model consists of the embedding models (the widget
embedding model and the window embedding model) and the link
predictor. Given a pair of a GUI widget and a window, PRoMAL
first extracts the features from them, such as screen snapshot and
text, and then feeds these features into the embedding models to
obtain the embedding vectors of the GUI widget and the window.
The link predictor then uses the two embedding vectors to tell how
likely there is a link between the widget and the window. We next
describe the embedding models and the link predictor in detail.
Window Embedding Model. The window embedding model uses
the features of a window (i.e., screen snapshot, text information,
and GUI tree) to generate a low-dimensional embedding vector. We
next describe the features of a window:

o Screenshot: The screenshot of a window displays all visible frag-
ments of an app activity in one image. Following the recent
success in using CNN for modeling images [22, 29, 37], we adopt
a block of DenseNet [31] to retrieve useful information from the
screenshots.

o Text: Users can easily understand the window’s purpose and func-
tionality from the texts in GUIs. To utilize these texts, PROMAL
segments the texts and uses a pre-trained Word2Vec [43] model
to generate the representations of each word. Then, PRoMAL
computes the average word embedding as the feature vector for
the window. Figure 5 shows how the window embedding model
computes the embedding of all the text in the target window.

o GUI Tree: A GUI tree contains all the GUI widgets in a window.
A GUI widget can be an instance of a system widget class (e.g.,
buttons and checkboxes) or a customized widget class extending
the class android.view.view. Thus, the name of a GUI widget class’s
superclass, which we regard as the GUI widget’s “tag”, contains
the information about the basic functionality of this widget, and

one-hot embedding is used to represent the tag. Besides the tags,
the positions and sizes of the GUI widgets may also be used to
infer the functionality of widgets. To encode all the GUI widgets
in a window, PROMAL traverses the GUI tree via in-order tree
traversal to generate a widget sequence, and adapts LSTM [22, 29,
30] to learn the representation of the widget sequence. Figure
5 shows how the tags and other information in a GUI tree are
unrolled to a sequence.

The representations of these three features are then concatenated
and fed to a fully connected layer (FC) to generate the window
embedding vector.

Widget Embedding Model. To generate an embedding vector
for a GUI widget, besides the features of the source window, the
widget embedding model also extracts the features of a GUI widget,
including the widget screenshot, the text, and the GUI properties.
The feature extraction for the source window adopts the same
approach as the window embedding model. We next describe the
other three features:

o Widget Screenshot: The widget embedding model uses a block
of DenseNet for modeling the screenshot of the source window,
and another block of DenseNet for modeling the screenshot of
the GUI widget, as shown in the red frame in Figure 5.

o Text: The widget embedding model segments both the texts in
the source window and the GUI widget and feed both sequences
of words to the Word2Vec model to generate two vectors. As
shown in Figure 5, the widget embedding model computes the
word representation of the text “Does not repeat” in the GUI
widget as well as the average embedding of every word in the
source window.

GUI Property: The widget embedding model encodes the GUI tree

using a similar approach as the window embedding model. Apart

from the widget sequence of the source window, it also extracts
the tag, the size, and the position of the GUI widget, and feeds
these features to a fully connected layer to generate a vector, as

shown in Figure 5.

The feature vectors of the source window and the GUI widget are
concatenated and fed into a fully connected layer to generate the
widget embedding vector.

Link Predictor. The widget embedding and window embedding
generated by the embedding models will be fed to the link predictor
to infer whether there is a link between the widget-window pair.
The link predictor is designed by leveraging the neural tensor net-
work (NTN) [52], which relates the two inputs (i.e., the widget em-
bedding and window embedding vectors) multiplicatively instead
of only implicitly through the non-linearity as with the standard
neural networks where the entity vectors are simply concatenated.
Thus, it provides a more powerful way to infer the relationship
between entities than a standard neural network layer.

Let w represent a GUI widget and a represent a window of
an app activity. ¢,, is the widget embedding model and ¢, is the
window embedding model. The link predictor computes a score of
how likely there is a link between them, which is represented by
¥ (¢hw(w), pa(a)). The score is computed by using the following

Screenshot of
Source Window

Texts

<node class="LinearLayout" bounds=...>
<node class="FrameLayout" bounds=...>

Widget S l Unrolling
[FrameLayout, 0, 0, 1080, 1776], [LinearLayout, ...],

[FrameLayout, ...], ..., [EditText, ...], ...

Does not repeat [

l Title”, “Cegff”, “Rff”,..., “Does not repeat”, ... \\:
GUI Tree Block Text
<node class="FrameLayout" bounds ="[0,0][1080,1776]">

concat
Word2Vec v
UlTree
Representation
-LSTM []
Screenshot E@Eﬁ
Representation Widget
DenseNet 1— Embedding
Block Text
Representation concat

Screenshot N
Representation N
\

Representation

Widget Screenshot Texts l “Does not repeat”

}_rﬁ Word2Vee |—[_1

GUI Property l [TextView, 186, 1604, 846, 65]

Texts

“Does not repeat”, “Every hour”, “Every day”, ...

GUI Tree

<node class="LinearLayout" bounds="[0,0][1080,1776]">
<node class="FrameLayout" bounds=...>
<node class="View" bounds=...>

Every hour
Every day

Every week

Every month

Every year <node class="LinearLayout" bounds=...>

Specific days of the week

<node class="ImageView" bounds=...>

DenseNet

Block Text Window
Representation
—1]

UlTree i| NTN || [Prediction
= Representation /,' ! Layer ! Result
- -“--““I:;';t-l-(-Predictor
Widget Embedding Model
Screenshot ™

Representation

UlTree

H
!
!
concat i Embedding
|
Representation H
}

Screenshot of
Target Window

---Unrolling
Widget Seq |
[LinearLayout, 0, 0, 1080, 1776], [FrameLayout, ...], . .
[View, ...], [LinearLayout, ...], [ImageView, ...], ... Window Embedding Model

Figure 5: Illustration of how the window transition model predicts whether interacting with a GUI widget in a source window
causes a transition to a target window. The figure shows part of the extracted features for the GUI widget, the source window,
and the target window, and illustrates how they are processed in the embedding models to produce the embedding vectors,

which are used by the link predictor to make the prediction.

function:

Pw(w)

V(G (),9a(@) = wi f(Gu(0) Wy N gala) + v | 7

+bR)
1)

where f = tanh is a standard non-linearity applied element-wise
and WR[lzk] € R9%dxk i 3 tensor. ¢W(w)TWR[1:k]¢a(a) is a bilinear

tensor product and results in a vector d € R, where each entry is

computed by one slice m = 1,.. ..k of the tensor: ¢W(W)TWR[m] da(a).

The other parameters for relation R are the standard form of a neural
network: Vg € R¥<2d and U € R¥, bg € R¥ [52].

Two-Phase Training. Due to the large amount of parameters
in the model, we have to use a correspondingly large amount of
widget-window pairs as the training data, which are infeasible to
be manually labeled. To address this challenge, we adopt a two-
phase training process. We first apply dynamic app exploration
techniques [26, 41, 54] to automatically explore a large number of
apps dynamically and pre-train the model based on the dynamically
observed transitions. The variety of apps makes the embedding
models general enough. As these transitions bias towards the tran-
sitions that can be easily found by dynamic analysis, we further
fine tune the pre-trained model based on the manually identified
window transitions from a smaller set of apps. In the fine tuning

process, the parameters of the embedding models are frozen (i.e.,
weights and biases), meaning that these parameters do not change,
while the parameters of the link predictor are set trainable to adapt
the patterns related to window transitions.

6 EVALUATION

In this section, we seek to evaluate the effectiveness of PROMAL to
construct window transition graphs for real-world Android apps.
We implement PROMAL in Java. PROMAL uses GATOR [47, 69, 70],
a state-of-the-art static Android GUI analysis tool, to build static
WTGs, and uses PALADIN [41], a state-of-the-art app exploration
tool, to build dynamic WTGs. PRoOMAL also uses Xposed [2] to in-
strument apps for collecting window transitions and other runtime
information. The window transition prediction is implemented us-
ing Keras[13]. Specifically, we aim to answer the following research
questions:
e RQ1: How effectively can PRoMAL build the WTGs?
e RQ2: How effectively can PROMAL improve over GATOR and
PALADIN?
e RQ3: How effectively can the NTN model and the two-phase
training improve PRoMAL’s window transition prediction?

Table 1: 40 apps used in our evaluations. The 35 real apps
are sorted by their densities and divided evenly in 7 groups.
F-Droid is the last group.

Group | Density LOC # Nodes | # Edges
Group 1 1.5-3.25 33,048 28 61
Group 2 3.3-4.8 46,508 28 59
Group 3 5.2-7.8 78,217 32 83
Group 4 8.8-12.7 344,144 40 136
Group 5 | 14.0-23.6 389,586 72 186
Group 6 | 25.5-37.4 823,086 76 246
Group 7 | 37.6-155.6 55,259 43 122
F-droid 1.5-35.8 714,044 50 178

Total - 2,483,892 369 1,071

6.1 Subjects and Evaluation Setup

We use a diversified set of apps from Google Play [24] as our evalu-
ation subjects. These apps are from 14 categories, such as Game, En-
tertainment, and Education. We also include popular open-sourced
apps from F-Droid [20] in our evaluation subjects. Once we down-
loaded an app, we applied GATOR to build static WTGs and excluded
the apps with less than 3 windows, since their WTGs are fairly sim-
ple and will not be proper subjects for assessing the effectiveness
of PROMAL. In total, we examined 4,326 apps and got 2,216 apps
with at least 3 windows. As shown in Figure 2, a node (window)
may have multiple edges (transitions) to another node in WTGs,
making the WTGs more complex than the WTGs that have one or
two transitions among windows. Thus, we use density to represent
the complexity of WTGs, where the density is computed using the
number of edges divided by the number of nodes in static WTGs.
Note that the edges in static WTGs may be infeasible, but they
can still form a reasonable estimation of the actual WTG. Based
on the density, we divided the apps into 7 groups equally, and ran-
domly sample a subset from each group to evaluate PRoOMAL on
the WTGs of different complexities. As there is no publicly avail-
able groundtruth WTG for these apps, we need to construct the
groundtruth WTGs by manually exploring the apps and inspecting
their source code. Because the number of edges grows drastically
as the complexity of the App grows, collecting the groundtruth
requires a non-trivial effort. Within our affordable efforts, we ran-
domly chose 5 apps from each group as our evaluation subjects.
Together with the 5 apps chosen from F-Droid, we have 40 apps
in 8 density groups. These apps also belong to different popular
categories (e.g., sports, game, tools). The total LOC of these apps is
~ 2.5 million. The summary of the apps is shown in Table 1, and
more details can be found on our website [4].

We then applied PALADIN and PROMAL on these 40 apps to build
dynamic WTGs and performed window transition predictions to
build the optimized WTGs. PALADIN is a dynamic app exploration
tool that models view trees as Ul states to avoid visiting the same
Ul states during the exploration. It triggers actionable widgets in
a Depth-First-Search manner to exercise as many behaviors as
possible. Among all the apps analyzed by PALADIN, the minimum
running time is 1.35 minutes, and the maximum time is around 97
minutes. The average running time for all the apps is about 15.8
minutes per app.

Obtaining Groundtruth WTGs. We installed these apps on an
Android phone, and manually explored the apps by interacting
with each GUI widget to construct the groundtruth WTGs. We
then matched the manually explored edges to the static WTGs,
and then manually verify the unmatched edges in the static WTGs.
As described in the studies [69, 70], due to the deficiencies in win-
dow/widget modeling [47] and event handler analysis [69], GATOR
will incorrectly include infeasible edges and also miss some feasible
edges in the built WTGs. Thus, we further manually inspected the
decompiled source code using Jadx [51] in the real apps and the
source code in open source apps. We analyzed all the method calls
of startactivity and all the callbacks of GUI widgets to identify the
windows and transitions that we cannot observe in the static WTGs.
The statistics of the groundtruth WTGs are shown in Table 1.
Training Prediction Model. To train the prediction model, we
collect the most popular 30 apps (indicated by the downloading
times) from each category of two app marketplaces, i.e., Google Play
and Wandoujia [58] (a leading Android app marketplace in China).
Then we use PALADIN to perform dynamic analysis on each of the
collected apps, and finally get dynamic WTGs from 1,625 apps. In
the pre-training process, the model learns the parameters for the
embedding model using these dynamic WTGs. In the fine-tuning
process, the model learns to explore the relationship between an
app widget and an app window. The model is evaluated using 10-
fold cross validation, which is repeated 10 times. For the model
parameters, we set the max word sequence length to 512, the word
embedding size to 100, the LSTM state size to 72, the fully connected
layer (FC) units of both the embedding models to 64, and the output
size of NTN layer to 16. We take a batch size of 32 in both the
pre-training and fine-tuning processes. Since there are far more
negative samples (i.e., widget-window pairs without edges) than
the positive samples (i.e., widget-window pairs with edges) in the
dataset, we apply the method of negative sampling, by which we
sample negative samples randomly for training. The final number
of the negative samples is four times of the number of positive
samples, so the class weights for the negative samples and the
positive samples are set to 1 and 4, respectively.

Metrics. To measure the effectiveness of PROMAL, we measure
the nodes and edges of the WTGs built by PROMAL, GATOR, and
PALADIN, and compare these WTGs with the groundtruth WTGs to
compute the precision, recall, and F;-score for the detected edges.
An edge (i.e., a window transition) in a WTG is considered as a
true positive (TP) only if the nodes (i.e., windows) of the edge
and the edge both match the corresponding nodes and edge in the
groundtruth WTG; otherwise, it is considered as a false positive
(FP).1f a WTG misses an edge in the groundtruth WTG, we consider
the missing edge as a false negative (FN); otherwise, it is a true

negative (TN). Based on these values, we compute the precision as
prec-rec

prectrec”

prec = %, recall as rec = %\], and F; =2 -

6.2 RQ1: Overall Effectiveness

Table 2 shows the details of the WTGs built by PROMAL for each
app. Column “# Nodes” shows the number of nodes in the WTG.
Column “# Edges” shows the number of edges in the WTG. Column
“Prec. (Edges)” and Column “Recall (Edges)” shows the precision
and the recall of the detected edges. As we can see, on average,

Table 2: Details of the WTGs built by PRoMaL

App Group | # Nodes | # Edges | Prec. (Edges)” | Recall (Edges)*
Group 1 26 56 89.00% 92.86%
Group 2 24 54 100.00% 92.95%
Group 3 28 63 97.33% 75.40%
Group 4 34 122 81.29% 71.08%
Group 5 52 148 83.98% 73.59%
Group 6 51 155 82.36% 59.34%
Group 7 36 107 90.37% 80.47%
F-Droid 27 154 97.09% 91.84%
Total 275 859 90.18% 79.69%

* Prec. and Recall are average values.

PrOMAL achieves a precision of 90.18%, a recall of 79.69%, and a
Fj-score of 82.82%. In particular, PROMAL achieves 97 + % precision
in Groups 2 and 3, and 92 + % recall for Groups 1 and 2. It also
achieves 91 + % precision and recall for the F-droid group. These
results show that PRoMAL is highly effective in identifying feasible
edges in building WTGs.

Combination of GATOR and PALADIN. We compare the WTGs
built by PRoMAL and the combination of GATOR and PALADIN. The
results show that the WTGs built by combining the WTGs of GATOR
and PALADIN achieve a precision of 53.95%, a recall of 88.47%, and
a Fi-score of 61.93% on average. Since all the edges produced by
PALADIN are feasible edges, the low precision is caused by a huge
number of infeasible edges introduced by GATOR. For the 40 apps
in our dataset, GATOR yields 3, 236 edges in total, while only 12.2%
can be found in the WTGs built by PALADIN. Thus, the majority
of edges in GATOR are further analyzed by the window transition
prediction. For the 2, 841 unverified edges, 47.1% (1, 337) contains in-
complete information (e.g., missing Ul layout information or unable
to locate the widget based on GATOR’s widget information). Our
model hence regards these edges as infeasible edges and predicts
the remaining 1,504 edges. It is also noteworthy that 245 of the
remaining edges from GATOR are not specified with a widget ID.
Instead, the widgets of these edges are often assigned to a whole
window or an anonymous MenuItem, OI a certain type of class name.
To address such imprecision of GATOR, PROMAL considers all the
clickable widgets that fit the widget information provided by GATOR
in the source window of these edges as the edges’ source widgets,
and predicts whether the edges are feasible. For edges with back
events, we consider them as feasible if a non-back edge from the
target window to the source window can be found in the predicted
WTG. Only the edges that are predicted to be feasible edges are
kept in the final WTGs. With the window transition prediction,
the precision of the built WTGs is significantly improved (from
53.95% to 90.18%), which results in a significant improvement of
Fj-score (from 61.93% to 82.82%). These results clearly demonstrate
the effectiveness of PROMAL in using a synergy approach of program
analysis and machine learning.

FPs and FNs. Due to the FPs and the FNs, PRoMAL achieves
a relatively low precision in Groups 4, 5, 6 and a relatively low
recall in Group 6 (i.e., more than 5% lower). Figure 6 illustrates how
ProMaL produces an FP and an FN. The window on the left is from
the activity Mainpage. PROMAL correctly identifies a transition from

MainPage t0 the activity preference, resulted from clicking the “info”

button (highlighted in green). However, PROMAL also incorrectly
identifies another transition to the activity preference, resulted from

FN

Figure 6: Example FP and FN produced by PRoMAaL
Table 3: Details of the static WTGs built by GaTor

App Group | # Nodes | # Edges | Prec. (Edges)” | Recall (Edges)*
Group 1 20 36 62.64% 46.22%
Group 2 23 48 62.36% 48.54%
Group 3 32 120 64.87% 77.00%
Group 4 44 212 48.99% 71.92%
Group 5 79 552 28.49% 77.02%
Group 6 117 832 28.47% 56.51%
Group 7 48 1219 22.75% 69.48%
F-Droid 29 217 50.00% 32.44%
Total 392 3,236 46.07% 59.89%

* Prec. and Recall are average values.

clicking the “High” button (highlighted in red). This FP is caused by
the patterns learned by the machine learning model. Figure 6 also
includes a FN produced by PROMAL. In the preference activity, if the
“More App” button is clicked, the app will transit to the more activity,
which serves as a built-in browser and displays a website to users.
Due to the drastic changes of the UI states, the window transition
prediction model cannot infer any close relationship between the
source window and the target window from their Ul layouts and
screen snapshots, and thus produces a FN.

Furthermore, the limitations of GATOR’s model hinders the per-
formance of PROMAL. First, gator have trouble distinguishing wid-
gets without widget IDs and will associate them with all pos-
sible handlers declared in the same method. This type of over-
approximation makes PROMAL generate extra edges. Second, a
large number of false negatives are caused by Gator failing to iden-
tify dialog instances. Thus PROMAL cannot detect transitions from
these dialogs.

6.3 RQ2: Comparison with PALADIN and GATOR

Comparison with GATOR Table 3 shows the details of the WTGs
built by GaTor for each app. As indicated by the results, many
of the edges found by GATOR are infeasible edges, i.e., FPs. These
results show that the WTG built by GATor for each app is rather
inaccurate, achieving a precision of 46.07%, a recall of 59.89%, and
a Fi-score of 46.24%.

Upon further investigations, we find that GATOR performs poorly
on both precision and recall for two main reasons. The first reason
is due to the imprecision of GATOR. We empirically find out that
GATOR often yields multiple transitions with different target win-
dows from the same UI widget, while most of them turn out to be
infeasible. Figure 7 shows an example transition from the game app
“com.twobitinc.cornholescore”. The left window is from the activity
optionsactivity, which shows 5 buttons for users to customize cer-
tain game parameters such as the color of the team and the scoring

Set Color For Team A

Click

HooKey
. » »l
3.07-20 M st Michigan 81 Tourney

03-06-20 MSU at Michigan

02:29-20 MSU at Notre Dame

022820 MSU at Notre Dame

02:22:20 MSU vs Ohlo State

022120 MSU vs Ohio State

Figure 8: Example FN produced by GaTor

mode. When the “Set Color” button is clicked, the Ul transits to the
activity rgbpickactivity. However, due to the imprecision in asso-
ciating widget IDs and event handler methods, GATOR infers that
clicking any of the button will transit to 3 different activities. In
this way, GATOR infers 2 infeasible edges for each of the 5 buttons,
and results in 10 FP edges for a single activity, which significantly
reduces GATOR’s precision.

Second, GATOR often fails to identify transitions between activi-
ties due to the limitation in modeling certain transitions. Figure 8
shows an example transition for the app “com.jacobsmedia.sparts”.
Upon clicking the “hockey” button, the app transits from the ac-
tivity main to another activity xmipage. But GATOR fails to infer this
edge. Actually, the built WTG for this app indicates that the activity
xmlPage, along with two other activities, have only transitions to
themselves. However, there are in fact 9 edges among the three
activities in the groundtruth WTGs, which cause 9 FN's for GATOR.

Compared to GATOR, PROMAL significantly improves both the
precision and the recall in building WTGs, with the help of dynamic
analysis and window transition prediction. The predictions on the
unverified edges in total rule out 2, 351 out of 2,399 FP edges, hence
significantly improving the precision of PROMAL by 95.02%, from
46.24% to 90.18%. By adding the 708 edges detected by PALADIN and
the 63 edges from GATOR’s WTGs, the recall of the WTG built by
ProMAL is improved from 59.89% to 79.69%.

Comparison with PALADIN. Table 4 shows the details of the
WTGs built by PALADIN. As PALADIN adopts dynamic analysis, the

Table 4: Details of the dynamic WTGs built by PALaDIN

App Group | # Nodes | # Edges | Prec. (Edges)” | Recall (Edges)*
Group 1 26 55 100.00% 91.04%
Group 2 24 44 100.00% 76.36%
Group 3 26 54 100.00% 65.91%
Group 4 33 104 100.00% 67.68%
Group 5 51 122 100.00% 64.31%
Group 6 45 107 100.00% 46.61%
Group 7 35 82 100.00% 68.23%
F-Droid 45 140 100.00% 89.87%
Total 285 708 100.00% 71.25%

* Prec. and Recall are average values.

precision in finding feasible edges is always 100%. On average, the
WTGs built by PALADIN achieve an average recall of 71.25% in
finding feasible edges. We can observe that PROMAL improves the
built WTGs with the help of static analysis and window transition
prediction. On average, PROMAL improves the recall of PALADIN
by 8.44% and in turn improves the Fj-score by 2.35%. In particular,
ProOMAL improves the recall significantly for Group 2 (from 76.36%
to 92.95%) and Group 7 (from 68.23% to 80.47%). The increased recall
will enable testing to cover more behaviors with tolerable extra efforts
on the reported infeasible transitions, with the precision still being
90 + %.

6.4 RQ3: Window Transition Prediction

We first compare the performance of the alternative models for the
link predictor, and then measure the improvement brought by the
two-phase training.

Comparison of Link Predictor Models. We compare our NTN
model with the bilinear model [33, 55], which is also an effective
way to model the relationships between entities. We train both
models using the window transitions collected from the dataset
of 1,625 apps, which are automatically explored by PALADIN. The
results show that NTN achieves a precision of 96.97%, a recall of
95.26% and a Fj-score of 95.73%, while the bilinear model only
achieves a precision of 83.64%, a recall of 75.40% and a F;-score of
73.98%. Thus, NTN is a better choice for the link predictor.
Effectiveness of Two-Phase Training. By performing our two-
phase training, the prediction model achieves a precision of 50.00%,
arecall 73.91%, and a F;-score of 59.65%. However, if we directly
use 90% of the groundtruth WTGs to train the model, the prediction
model achieves a precision of 33.82%, a recall of 67.65%, and a F; -
score of 45.10%. This clearly demonstrates the improvement brought
by the two-phase training. Moreover, even though the two-phase
training improves the performance of the prediction, the overall
performance of prediction is still not satisfactory. The reason is that
for these unverified edges, PROMAL uses static GUI rendering [3, 32]
to render the layout files to obtain the view trees and screenshots,
which are not as accurate as dynamic analysis. Even so, when it is
applied on only the unverified edges, PROMAL can achieve further
improvement by combining the prediction results of the unverified
edges with the verified edges, improving the F;-score to 82.82%. If
we use the model without pre-training in PROMAL, the precision
drops to 61.12%, the recall becomes 78.31%, and the F;-score is only
65.33%, indicating the importance of two-phase training.

7 DISCUSSION

Static Analysis. PROMAL builds the static analysis upon Gator [47,
69, 69], and extends the static analysis to detect dialog transitions
buried in the callbacks of dialogs. While Gator provides a compre-
hensive model of Android environment (e.g., back stacks, events,
and callbacks), it adopts an over-approximation algorithm that ap-
plies only weak updates when associating the widget IDs and event
handler callbacks. Such problems can be mitigated by applying
more expensive but precise analysis such as path-sensitive analysis
like FlowDroid [6] and symbolic execution [21, 34, 36, 44, 49].
Dynamic Analysis. Dynamic app exploration [26, 27, 40, 41, 54]
has been used to generate GUI tests, discover app behaviors, and de-
tect violations ad fraud. PRoMAL leverages dynamic app exploration
to build the dynamic WTG for an app. While these approaches can
automatically trigger both Ul widget events and hardware events
(e.g., pressing BACK button), they still suffer from coverage issues
due to various environment dependencies. This issue can be mit-
igated by using developer-provided test cases as seeds [8, 71] to
improve app exploration.

Window Transition Prediction. Due to the functionality and
design differences between different apps, many transition features
are quite unique. Therefore, the prediction model has a rather good
performance in apps similar to its training set and performs poorly
in other apps. In future work, we plan to extract more features such
as whether the widget is clickable or not to improve the prediction.
Threats to Validity Our evaluation subjects may not be represen-
tative of the entire market. To mitigate the issue, we choose apps
that have WTGs of different complexities, and the subjects used
for pre-training (1,625 apps) also alleviate the issue. We plan to
address this limitation by including more diversified market apps
to further reduce the threats. Also, we discard apps that cannot be
analyzed by either PALADIN or GATOR, which are mainly caused by
the compatibility problem of the libraries and SDK versions. This
can be mitigated by upgrading the libraries and adding support for
later SDK versions. Inaccuracies in the manual code inspection are
inevitable due to the lack of the ground truth WTGs. In addition,
there may be human errors in collecting statistics and studying the
evaluation results. These threats are mitigated by double-checking
all manual work and ensuring that the results were agreed upon
by at least two authors.

8 RELATED WORK

Android UI Modelling. Rountev et al’s Gator [47, 69, 70] is among
the first to provide a static analysis framework for modeling An-
droid apps’ Uls. Gator models GUI-related Android objects, their
flow through the application, and their interactions with each other
via the abstractions defined by the Android platform [47], and pro-
vides a context-sensitive static analysis of callback methods to link
callback methods to GUI objects [69]. Built upon this static analysis,
Gator further generalizes the analysis with explicit modeling of the
window stack to generate a static WTG [70]. Besides static anal-
ysis, dynamic analysis builds a Ul model that represents different
states for windows, which can be considered as a finer grained
WTG [26, 40, 41, 54]. These Ul states are used to guide the dynamic
exploration to either discover more behaviors or identify certain
violations (e.g., ad frauds). PRoMaL’s WTG analysis is built upon

these static and dynamic analysis techniques, where the dynamic
analysis is used to verify the results of the static analysis.

Hybrid Program Analysis. Hybrid program analysis has been
used to improve the precision of various static analysis. Check ’n’
crash [15, 16] takes the error conditions inferred using theorem
proving techniques by a static checker and produces test cases to
determine whether an error truly exists. This technique has shown
advantages over both static checking and automatic testing indi-
vidually. Blended analysis [18, 61] combines dynamic and static
analysis by first applying dynamic analysis to capture runtime infor-
mation and then performing static analysis on each dynamic trace
to identify solutions, which has been shown to achieve promising re-
sults in performance understanding and taint analysis. Another im-
portant line of hybrid analysis is concolic testing [21, 49, 57, 66, 67],
where dynamic analysis is used to collect constraints along the
executed program paths and static symbolic analysis and constraint
solver are used to derive new inputs to explore more program
paths. PROMAL’s “tribrid analysis” is inspired by the idea of hybrid
program analysis, where machine learning techniques are used to
address the limitations of both static and dynamic analysis.
Machine-Learning Based Link Prediction. Link prediction is a
fundamental problem in link mining that attempts to predict the
existence of a link between two nodes based on observed links and
the attributes of nodes[50]. Link prediction and recommendation
problem was first proposed by Liben-nowell et. al [39]. Tradition-
ally, there are two ways of making link predictions: one way to
make this prediction is based on structural properties of the net-
work [39], another way is to make use of attribute information for
link prediction [46]. Recently, a lot of methods based on machine
learning techniques are proposed [35, 38, 48]. The first to study the
link prediction problem as a supervised learning problem is Hasan
et. al. [28], where the existing and non-existing social links are
treated as the positive and negative instances respectively. PROMAL
is related to link prediction but focuses on predicting transitions
among windows using app-specific Ul information.

9 CONCLUSION

We have proposed PROMAL, a synergistic analysis that combines
static analysis, dynamic analysis, and machine learning to construct
a precise WTG. PROMAL applies static analysis and dynamic analy-
sis to build the static WTG and the dynamic WTG for an app, and
identifies the verified edges by matching the edges in these two
WTGs. PRoMAL then leverages machine learning techniques to pre-
dict the unverified edges in the WTG to determine whether they are
feasible transitions. Our evaluations on 40 real-world apps demon-
strate the superiority of PRoMAL in building WTGs over static
analysis and dynamic analysis when they are applied separately.

ACKNOWLEDGMENTS
Xusheng Xiao’s work is partially supported by the National Sci-

ence Foundation under the grants CCF-2046953 and CNS-2028748.
Xusheng Xiao is the corresponding author.

REFERENCES

[1] 1999. XML Path Language (XPath). https://www.w3.0rg/TR/1999/REC-xpath-
19991116/.
[2] 2017. Xposed. http://repo.xposed.info/module/de.robv.android.xposed.installer

http://repo.xposed.info/module/de.robv.android.xposed.installer

[10]

[11

[12

[13]
[14]

[15

[16

[17]

[18

[19]

[20]
[21

[22]

[23

[24]
[25]

[26

[27

[28]

[29]

[30

[31]

2019. Android Development Tools (ADT).
https://marketplace.eclipse.org/content/android-development-tools-eclipse.
2021. Promal Project Website. https://github.com/promal-android/Promal.
2021. Ul/Application Exerciser Monkey. https://developer.android.com/studio/
test/monkey. Accessed: 2021-01-30.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI).

Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of Android apps. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA).

Domagoj Babi¢, Lorenzo Martignoni, Stephen McCamant, and Dawn Song. 2011.
Statically-directed dynamic automated test generation. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA).

Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury.
2018. EnergyPatch: Repairing resource leaks to improve energy-efficiency of
Android apps. IEEE Transactions on Software Engineering (TSE) 44, 5 (2018),
470-490.

Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoud-
hury. 2014. Detecting energy bugs and hotspots in mobile apps. In Proceedings of
the ACM International Symposium on Foundations of Software Engineering (FSE).
Farnaz Behrang and Alessandro Orso. 2019. Test migration between mobile
apps with similar functionality. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE).

buildfire. 2020. Mobile App Download and Usage Statistics (2020).
https://buildfire.com/app-statistics/. Accessed: 2021-01-30.

Francois Chollet et al. 2015. Keras. https://keras.io.

Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated test input generation for Android: Are we there yet?. In Proceedings of
IEEE/ACM International Conference on Automated Software Engineering (ASE).
Christoph Csallner and Yannis Smaragdakis. 2005. Check "N’ Crash: Combining
static checking and testing. In Proceedings of the International Conference on
Software Engineering (ICSE).

Christoph Csallner, Yannis Smaragdakis, and Tao Xie. 2008. DSD-Crasher: A
hybrid analysis tool for bug finding. ACM Transactions on Software Engineering
and Methodology (TOSEM) 17, 2 (2008), 8:1-8:37.

Zhen Dong, Marcel Bohme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel testing of Android apps. In Proceedings of the ACM/IEEE International
Conference on Software Engineering (ICSE).

Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2007. Blended analysis for
performance understanding of framework-based applications. In Proceedings of
the ACM International Symposium on Software Testing and Analysis (ISSTA).
Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner,
Franziska Roesner, Karl Koscher, Paulo Barros, Ravi Bhoraskar, Seungyeop Han,
Paul Vines, and Edward XueJun Wu. 2014. Collaborative verification of informa-
tion flow for a high-assurance app store. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS).

F-Droid. 2021. FOSS Apps for Android. https://f-droid.org/

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed auto-
mated random testing. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI).

Tan J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.
MIT Press. http://www.deeplearningbook.org/

Google. 2017. Android View System. https://developer.android.com/guide/topics/
ui/declaring-layout.html.

Google. 2017. Google Play Store. https://play.google.com/store?hl=en.

Google. 2020. UI Automator. https://developer.android.com/training/testing/ui-
automator.

Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of An-
droid applications via model abstraction and refinement. In Proceedings of the
International Conference on Software Engineering (ICSE).

Shuai Hao, Bin Liu, Suman Nath, William G. J. Halfond, and Ramesh Govindan.
2014. PUMA: Programmable Ul-automation for large-scale dynamic analysis
of mobile apps. In Proceedings of the Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys).

Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki. 2006.
Link prediction using supervised learning. In Proceedings of SDM workshop on
Link Analysis, Counterterrorism and Security.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning
algorithm for deep belief nets. Neural Computing 18, 7 (2006), 1527-1554.
Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-
ity of data with neural networks. Science 313, 5786 (2006), 504-507.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE

(32]

[33

(34]

(35]

[36

(37]

[38

[39

=
=

[41

[42]

[43

[44

=
i)

[46

(47

[48

[54

[55

[56

Conference on Computer Vision and Pattern Recognition (CVPR).

Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. 2015. SUPOR: Precise and scalable sensitive user input
detection for Android apps. In Proceedings of the USENIX Security Symposium
(USENIX Security).

Rodolphe Jenatton, Nicolas Le Roux, Antoine Bordes, and Guillaume Obozinski.
2012. A latent factor model for highly multi-relational data. In Proceedings of the
Advances in Neural Information Processing Systems (NIPS).

Jinseong Jeon, Kristopher K. Micinski, and Jeffrey S. Foster. 2012. SymDroid:
Symbolic execution for dalvik bytecode. Technical Report. CS-TR-5022, Department
of Computer Science, University of Maryland, College Park.

Mohammad Mehdi Keikha, Maseud Rahgozar, and Masoud Asadpour. 2021.
DeepLink: A novel link prediction framework based on deep learning. Jour-
nal of Information Science 47, 5 (2021), 642-657.

James C. King. 1976. Symbolic execution and program testing. Communications
of ACM (CACM) 19, 7 (1976), 385-394.

Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks 3361,
10 (1995), 1995.

Xin Li and Hsinchun Chen. 2009. Recommendation as link prediction in bipartite
graphs: A graph kernel-based machine learning approach. Decision Support
Systems 54, 2 (2009), 213-216.

David Liben-nowell and Jon Kleinberg. 2010. The link prediction problem for
social networks. Journal of the American Society for Information Science and
Technology (JASIST) 58, 7 (2010), 1019-1031.

Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. 2014. DECAF: Detecting and
characterizing Ad fraud in mobile apps. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI).

Yun Ma, Yangyang Huang, Ziniu Hu, Xusheng Xiao, and Xuanzhe Liu. 2019.
Paladin: Automated generation of reproducible test cases for Android apps. In
Proceedings of the International Workshop on Mobile Computing Systems and
Applications (HotMobile).

Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated
testing for android applications. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

Nariman Mirzaei, Sam Malek, Corina S. Pasareanu, Naeem Esfahani, and Riyadh
Mahmood. 2012. Testing Android apps through symbolic execution. ACM
Software Engineering Notes (SEN) 37, 6 (2012), 1-5.

Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement learning based curiosity-driven testing of Android applications.
In Proceedings of the ACM International Symposium on Software Testing and
Analysis (ISSTA).

A Popescul. 2003. Statistical relational learning for link prediction. In Proceedings
of the IJCAI Workshop on Learning Statistical MODELS From Relational Data.
Atanas Rountev and Dacong Yan. 2014. Static reference analysis for GUI objects
in Android software. In Proceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization (CGO).

Salvatore Scellato, Anastasios Noulas, and Cecilia Mascolo. 2011. Exploiting
place features in link prediction on location-based social networks. In Proceedings
of the ACM International Conference on Knowledge Discovery and Data Mining
(KDD).

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing
engine for C. In Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE).

Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. 2016. A survey
of heterogeneous information network analysis. IEEE Transactions on Knowledge
and Data Engineering (TKDE) 29, 1 (2016), 17-37.

skylot. 2020. JADX - Dex to Java decompiler. https://github.com/skylot/jadx.
R. Socher, D. Chen, C. D. Manning, and A. Y. Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In Proceedings of the International
Conference on Neural Information Processing Systems (NIPS).

Statista. 2020. Global ~ mobile = OS market share.
https://www.statista.com/statistics/266136/global-market-share-held-by-
smartphone-operating-systems/.

Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI
testing of Android apps. In Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE).

Ilya Sutskever, Joshua Tenenbaum, and Russ R Salakhutdinov. 2009. Modelling
relational data using bayesian clustered tensor factorization. Advances in neural
information processing systems 22 (2009).

Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo, Hao Zhou, and Zhou Xu. 2020.
All your app links are belong to us: understanding the threats of instant apps

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://keras.io
https://f-droid.org/
http://www.deeplearningbook.org/

[57

[58]

[59]

[60]

[61]

[62]

[63]

[64]

based attacks. In Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE).

Nikolai Tillmann and Jonathan de Halleux. 2008. Pex - White box test generation
for NET. In Proceedings of the International Conference on Tests and Proofs (TAP).
wandoujia. 2017. WanDouJia App Store. http://www.wandoujia.com/apps. Ac-
cessed: 2021-01-30.

Jue Wang, Yanyan Jiang, Chang Xu, Chun Cao, Xiaoxing Ma, and Jian Lu. 2020.
ComboDroid: generating high-quality test inputs for Android apps via use case
combinations. In Proceedings of the ACM/IEEE International Conference on Software
Engineering (ICSE).

Yan Wang and Atanas Rountev. 2016. Profiling the responsiveness of android ap-
plications via automated resource amplification. In Proceedings of the IEEE/ACM
International Conference on Mobile Software Engineering and Systems (MOBILE-
Soft).

Shiyi Wei and Barbara G. Ryder. 2013. Practical blended taint analysis for
JavaScript. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA).

Haowei Wu, Yan Wang, and Atanas Rountev. 2018. Sentinel: generating GUI tests
for Android sensor leaks. In Proceedings of the IEEE/ACM International Workshop
on Automation of Software Test (AST).

Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan Xu,
Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, , and Jian Lu. 2019. Deeplntent :
Deep icon-behavior learning for detecting intention-behavior discrepancy in mo-
bile apps. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS).

Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. 2013. Characteristic
studies of loop problems for structural test generation via symbolic execution. In
Proceedings of the International Conference on Automated Software Engineering

[65

[66

(67

[68

[69

[70

[71

]

]

(ASE).

Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, and Peng Gao. 2019.
IconIntent: Automatic identification of sensitive Ul widgets based on icon classifi-
cation for Android apps. In Proceedings of the International Conference on Software
Engineering (ICSE).

Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. 2011. Precise
identification of problems for structural test generation. In Proceedings of the
International Conference on Software Engineering (ICSE).

Tao Xie, Nikolai Tillmann, Peli de Halleux, and Wolfram Schulte. 2009. Fitness-
guided path exploration in dynamic symbolic execution. In Proceedings of the
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
Jiwei Yan, Hao Liu, Linjie Pan, Jun Yan, Jian Zhang, and Bin Liang. 2020. Multiple-
entry testing of android applications by constructing activity launching contexts.
In Proceedings of the IEEE/ACM International Conference on Software Engineering
(ICSE).

Shenggian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static control-flow analysis of user-driven callbacks in Android applications. In
Proceedings of the International Conference on Software Engineering (ICSE).
Shenggian Yang, Hailong Zhang, Haowei Wu, Yan Wang, Dacong Yan, and Atanas
Rountev. 2015. Static window transition graphs for Android. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering (ASE).
X. Yuan and A. M. Memon. 2007. Using GUI run-time state as feedback to generate
test cases. In Proceedings of the International Conference on Software Engineering
(ICSE).

Yujie Yuan, Lihua Xu, Xusheng Xiao, Andy Podgurski, and Huibiao Zhu. 2017.
RunDroid: recovering execution call graphs for Android applications. In Proceed-
ings of the ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE).

	Abstract
	1 Introduction
	2 Background
	3 Motivation Example
	4 Overview
	5 Design of ProMal
	5.1 Definition of WTG
	5.2 Dynamic WTG Analysis
	5.3 Static WTG Analysis
	5.4 Alignment of Static and Dynamic WTG
	5.5 Window Transition Prediction

	6 Evaluation
	6.1 Subjects and Evaluation Setup
	6.2 RQ1: Overall Effectiveness
	6.3 RQ2: Comparison with Paladin and Gator
	6.4 RQ3: Window Transition Prediction

	7 discussion
	8 Related Work
	9 conclusion
	References

