
A Neuroeconomics Approach to Obesity 

Ohad Dan1,2, Emily Wertheimer1,2, and Ifat Levy1,2,3,4 

1Department of Comparative Medicine, 2Wu-Tsai Institute, 3Department of Neuroscience and 
4Department of Psychology, Yale University 

Mailing address: 

Ifat Levy 

Department of Comparative Medicine 

Yale School of Medicine 

P.O.Box 208016 

New Haven CT 06520 

Phone: 203-9889146 

Email: ifat.levy@yale.edu 

Running title: A neuroeconomics approach to obesity 

Keywords: Decision-making, reinforcement-learning, behavioral economics, intertemporal 

choice, uncertainty, energy balance 

mailto:ifat.levy@yale.edu


ABSTRACT 

Obesity is a heterogeneous condition, affected by physiological, behavioral, and environmental 

factors. Value-based decision-making is a useful framework for integrating these factors at the 

individual level. The disciplines of behavioral economics and reinforcement learning provide tools for 

identifying specific cognitive and motivational processes that may contribute to the development and 

maintenance of obesity. Neuroeconomics complements these disciplines by studying the neural 

mechanisms underlying these processes. Here we survey recent literature on individual decision 

characteristics that are most frequently implicated in obesity: discounting the value of future 

outcomes, attitudes towards uncertainty, and learning from rewards and punishments. Our survey 

highlights both consistent and inconsistent behavioral findings. These findings underscore the need 

to examine multiple processes within individuals in order to identify unique behavioral profiles 

associated with obesity. Such individual characterization will inform future studies on the 

neurobiology of obesity, as well as the design of effective interventions that are individually tailored. 



Value-based decision-making in obesity 

Over the last 50 years, obesity rates in the United States have nearly tripled and 40% of American 

adults are now considered obese (1). Obesity has detrimental health consequences to the individual, 

and leads to tremendous costs to society (2). From a biomedical perspective, obesity results from 

sustained energy imbalance, with intake exceeding expenditure (3). This imbalance is affected by a 

myriad of factors, including both individual characteristics (genetic, neurobiological, and 

psychological) and environmental influences (cultural, economic, and public policy) (4). In recent 

years, there has been a growing understanding of the need to identify behavioral profiles that may be 

associated with obesity (5). A useful framework for integrating many of the signals influencing feeding 

behavior is that of value-based decision-making. In this framework, decisions about energy 

consumption and expenditure involve maximization of “subjective value” or the utility of the choice 

to the individual decision-maker. The subjective value of a food option can be computed by integrating 

over its different attributes (6) - including smell and taste (7), perceived health, (8)  and nutritional 

content (9) - together with the decision-maker’s  goals (e.g. losing or gaining weight) (10) and satiety 

level (11). Subjective values are also influenced by the same factors that affect virtually any decision 

we make: the balance between potential rewards and punishments (consuming highly palatable junk 

food at the cost of impaired health), likelihood estimates (the food is bound to be rewarding, but 

consuming it has uncertain health outcomes), and the temporal schedule of potential outcomes (the 

food is rewarding now, but may lead to impaired health in the future). While under some 

circumstances these individual characteristics can be modified (12), they are broadly considered stable 

traits (13,14). Individual differences in any of these processes may therefore play a role in the 

development and maintenance of obesity.  

The disciplines of behavioral economics and reinforcement learning combine experimental designs 

that tease apart various decision characteristics with computational modeling, revealing otherwise 

unobservable latent variables. In behavioral-economics research, participants make a series of choices 

between options whose values vary parametrically across different attributes, such as the reward 

offered, the likelihood for reward, the time of receiving it, and the cost for obtaining it. In 

reinforcement learning paradigms, participants sample different available options, experience the 

outcomes of their choice, and learn to identify the better options. Behavior in those paradigms can be 

used to infer individual decision characteristics such as sensitivity to reward, aversion to uncertainty, 

discounting of future rewards, and the rate of learning associations between cues and outcomes. 

Neuroeconomics research combines these behavioral methods with neurobiological techniques to 

study the neural basis of value-based decision-making. The latent variables revealed by the behavioral 



analysis are used in the neural analysis to identify biomarkers and functional patterns that relate to 

behavioral dimensions like risk and delayed rewards (15).  

Neuroeconomics research implicates striatal and prefrontal regions in encoding the subjective value 

of available options (Figure 1). Activity in the ventral striatum and ventromedial prefrontal cortex 

(vmPFC) scales as a function of subjective value (16) across different domains (17), including food (18), 

and integrates over various nutritional attributes (19). These subjective value representations 

incorporate individual characteristics, such as attitudes towards uncertainty (20) and temporal 

discounting of future rewards (16). Striatal and prefrontal areas are both targets of midbrain 

dopaminergic inputs from the ventral tegmental area (VTA) and substantia nigra (21). Phasic activity 

of these dopamine neurons encodes reward prediction error – the discrepancy between expected and 

obtained reward (22). 

In the case of food choices, value representations are likely modulated by homeostatic signals (18). 

Hormones such as leptin, ghrelin, and insulin control satiety, hunger, and fat levels by targeting 

neurons in the hypothalamus and brain stem, whose activity can promote or inhibit feeding behaviors 

and energy expenditure (23). Most relevant for the present review is the contribution of homeostatic 

signals to value computations. Rather than two separate pathways, the homeostasis and value 

systems work in concert to influence behavior (6,24).  

A number of studies have applied the neuroeconomics approach to psychiatric research (25) and 

identified associations between specific symptoms and unique features of decision-making and 

learning across a wide range of disorders (26–30). Recent studies have begun to apply a similar 

approach to obesity, yielding interesting findings and mixed results. This review aims to highlight the 

potential of the neuroeconomics approach to provide an integrative perspective on obesity by 

surveying the literature and identifying directions for future research. In the following sections, we 

review studies that use behavioral economics and reinforcement-learning experimental paradigms to 

study decision-making in obesity (Supplementary Table 1). Our review focuses on human studies with 

healthy participants but is also informed by research on eating disorders and animal studies. We also 

examine to what extent these potential links are domain-specific (only occur in the food domain) or 

domain-general (occur in both monetary and food domains) (Figure 2).  

We identify both consistent and variable findings across studies. In addition to methodological 

differences between studies, we suggest that these differences reflect the heterogeneous nature of 

obesity. Thus, we propose that longitudinal studies of multiple decision characteristics within 

individuals should be used to create an individualized behavioral profile as a basis for behaviorally 

informed neurobiological research. 



Intertemporal preferences  

Food choices have outcomes that extend beyond the present moment. In particular, options that are 

more immediately gratifying (such as high-calorie and high-fat food) are often more detrimental to 

our future health (Fig. 2.A). For most people, subjective values of future rewards diminish over time, 

a phenomenon known as temporal discounting (31). To estimate individual discount rates, economists 

typically ask participants to make a series of choices between rewards of different magnitudes that 

are received at different times (e.g., would you rather have $20 now or $40 in a month?).  

Activation levels in the valuation system, including the vmPFC and the striatum, are influenced by the 

delay in receiving the reward and by individual discount rates (16). Subjective value representations 

may be modulated by indirect inputs from dorsolateral prefrontal cortex (dlPFC) (32). Activity in this 

area and its connectivity with vmPFC were higher for choices of delayed, compared to immediate, 

rewards and were predictive of individual discount rates (33); disruption of activity in the same area 

increased preference for immediate rewards (34). Consistent with this role, dlPFC activity may inhibit 

choices of immediate food rewards (35) by modulating vmPFC activity for tasty but unhealthy foods 

(36). 

Discount rates are quite stable within individuals (14,37), suggesting that they may be a personality 

trait and a potential marker for unhealthy behaviors. Indeed, higher discount rates are associated with 

addictive behaviors (38), including drug use (39), smoking  (40), and gambling  (41). Similarly, unhealthy 

food choices lead to immediate food rewards, but future negative health outcomes (Fig. 2A). Several 

scholars have suggested a similar association between high discount rates and unhealthy diet, which 

in turn is associated with obesity (42–44).  

Empirical results, however, are mixed. Studies that examine food decisions consistently report 

increased delay discounting in individuals with obesity (45). Most studies, however, examine 

monetary choices, and in that domain, findings are more varied. Some studies identify increased 

discount rates in individuals with obesity compared to their healthy-weight counterparts (46–64), 

while others do not (65–69). One small-sample study reported lower monetary discounting in 

individuals with obesity compared to relatives without obesity, but this was specific to individuals 

committed to weight loss (70).  

Findings in eating disorders are also mixed. For example, there are reports of either decreased (71) or 

increased (72) discount rates for women with bulimia compared to controls, and reports of either 

higher (63) or similar (73) discount rates in binge-eating disorder (BED) compared to controls.  



Methodological differences may account for some of the mixed results in the literature, including the 

use of real or hypothetical rewards and the modeling approach. A recent review (42) suggested that 

incentive-compatible paradigms, in which participants receive real rewards based on the choices they 

make, were more likely to show correlation between steeper discount rates and BMI. Studies also 

differ in sample size, demographic characteristics, and criteria for obesity status. Still, even after 

accounting for all these factors, substantial variability remains.  

Uncertainty preferences 

Ecological decision-making often involves uncertainty. Individuals’ idiosyncratic attitudes towards 

uncertainty, and their ability to tolerate it, may therefore play important roles in decisions about food 

consumption and energy expenditure (Fig. 2.B). Behavioral economics provides useful tools for 

estimating individual uncertainty attitudes in the laboratory (74). The simplest form of uncertainty is 

risk – when probabilities for different outcomes are fully known (e.g. 50% chance for heads or tails on 

a coin toss (75)).  

There is some evidence that individuals with obesity and overweight individuals tend to be more 

tolerant of risk in the monetary domain compared to healthy-weight individuals (53,76–78). 

Interestingly, some studies suggest that increased risk tolerance in obesity is specific to men, whereas 

in women with obesity it is reduced or unaltered (79,80). This willingness to accept greater uncertainty 

for potentially higher rewards may also play a role in eating behavior, where choosing unhealthy but 

gratifying foods is accompanied by uncertain health outcomes.  

Outside of the laboratory, probabilities for different outcomes are seldom precisely known - rather, 

they are at least partly ambiguous (81). Individual risk and ambiguity attitudes are not strongly 

correlated across individuals (82–84) and make distinct contributions to psychopathology. For 

example, individuals with posttraumatic stress disorder (PTSD) show increased aversion to ambiguous, 

but not risky, losses (30), while individuals with antisocial personality disorder are more tolerant of 

ambiguity than healthy controls (85). Similarly, transient increases in tolerance to ambiguity, but not 

risk, predicted relapses in opioid users undergoing treatment (82). These studies suggest that 

examining both risk and ambiguity attitudes in obesity may be beneficial. 

Another important aspect of probabilistic decisions is that they typically involve a trade-off between 

gains and losses. Loss aversion – favoring the avoidance of losses over the pursuit of gains – is a widely 

observed phenomenon (86,87). Studies that utilized the prospect theory formulation of loss aversion 

(75) and estimated the loss aversion parameter from behavior in risky-choice tasks did not find a 

significant difference between individuals with obesity and healthy-weight groups (53,88). There is 



some evidence, however, for increased sensitivity to losses in individuals with obesity. Participants 

with obesity were more risk-seeking than healthy-weight individuals specifically in trials that did not 

incur large losses (76), and exhibited greater neural differences between losses and neutral outcomes 

(89). Considering its potential centrality for health-related decisions, more studies that specifically 

target loss aversion using behavioral-economic approaches are still needed to clarify its role in obesity. 

Just like temporal delay, value representations in ventral striatum and vmPFC incorporate individual 

attitudes towards risk and ambiguity (20,90), as well as loss attitude (17). The level of uncertainty is 

reflected by activation patterns in several brain areas including posterior parietal cortex (PPC) (83), 

anterior insula (91–93), and the lateral orbitofrontal cortex (OFC) and ventrolateral prefrontal cortex 

(vlPFC) (83,93–95). Activity in PPC (83,96,97), as well as its structure (98,99), reflects individual risk 

attitudes. The structural and functional connectivity of the amygdala also reflects risk attitudes (100). 

These studies outline potential neural mechanisms for increased risk tolerance that may promote 

obesogenic decision-making.  

Overall, existing evidence suggests that, in some individuals, obesity may be associated with 

decreased risk aversion and increased loss aversion. Health-promoting behaviors, such as exercising 

and healthy diets can be viewed as “losses” compared to a present lifestyle that does not include 

them; at the same time, the negative outcomes of engaging in unhealthy behaviors are uncertain. 

Heightened aversion to perceived losses in lifestyle, amplified by an increased tolerance to the risk 

associated with these choices, may thus promote obesity-inducing behaviors. 

Learning from Rewards and Punishments 

Altered reward learning has been associated with obesity across a number of studies (101). To quantify 

learning abilities, simple paradigms present participants with repeated choices between several cues 

that are predictive of different outcomes, such as higher or lower rewards. In these tasks, learning is 

assessed by the rate and magnitude of preference that participants develop towards better 

alternatives. In individuals with obesity, there is some evidence for impaired learning on such tasks 

with both food and monetary rewards (102,103), but also evidence for improved learning with food 

(104). In learning from passive observation of outcomes, without active choice, women with obesity 

rated both cues that predicted food, and those that did not, as highly predictive of food (103); no such 

generalization effect was observed in the monetary domain, where women with obesity acquired 

correct stimulus-reward associations and were able to flexibly change them (103).  

The inappropriate generalization of food reward-learning in individuals with obesity may result from 

a failure to learn from negative prediction errors (105). This failure may be part of a general learning 



abnormality in some individuals (89,102), but specific to food in others. In this framework, impaired 

learning could contribute to obesity as the association between unhealthy food choices and unhealthy 

(“negative”) outcomes is not properly learned. Impaired learning was also reported in participants 

with anorexia (106), especially when learned cue-food associations had to be updated (107). However, 

when participants were explicitly told that only one cue can be followed by reward at any phase of 

the experiment (precluding generalization), individuals with obesity exhibited better learning with 

food (but not money) compared to healthy-weight controls (104). This suggests that subtle changes 

in the structure of the environment may have substantial effects on attention and learning. 

Accumulating evidence points to alterations in dopamine function in obesity (108). In rodents, high-

fat diets lead to alterations in dopamine signaling (109,110). In humans, high-fat diets correspond with 

changes in binding potential of D2/D3 dopamine receptors (111–114), indicating changes in receptor 

availability or dopaminergic tone (115). OFC is also heavily implicated in value encoding (116–118) and 

its role may be specific to updating values with new information (119). Failure to properly update 

value representations in OFC has been shown in animal models of addiction (120) and may be similarly 

involved in overeating. In a small study, activity in OFC tracked prediction errors more accurately in 

healthy-weight women compared to women with obesity (121). Women with anorexia included in the 

same study showed stronger encoding of prediction errors in OFC compared to healthy controls (121), 

suggesting dissociable mechanisms for impaired learning in obesity and anorexia.  

The simple paradigm utilized in many of these studies is helpful in identifying robust learning 

differences but is not sensitive to more subtle aspects of learning. Two-stage learning paradigms (122) 

allow distinction between two reinforcement learning strategies, model-free and model-based (123). 

While model-free learning relies on simple cue-outcome or action-outcome associations, model-

based learning strategies incorporate the structure of the environment into the decision-making 

process. Model-based learning is more computationally demanding than model-free learning, but it 

allows for more flexible and context-specific decisions. Thus, model-based learning is considered more 

goal-oriented, in contrast to model-free learning which is linked to habit-formation (124). The 

tendency to utilize model-free learning increased with BMI (125) and was more pronounced in 

individuals with binge-eating disorder (126). Similarly, reduced goal-directed learning correlated with 

the degree of obesity (127,128), suggesting a link between obesity and the use of model-free 

strategies. Under model-free learning, it may be harder to adapt previously advantageous habits, 

developed to conserve energy, to changes in the environment (129).  

Furthermore, the greater reliance on model-free learning may serve not only as the cause for 

obesogenic dietary choices, but also as the outcome of such choices. Obesity-related changes in 

dopamine function likely influence reward sensitivity and learning and may underlie the greater 



reliance on model-free learning (130,131) as well as the reduced learning from negative prediction 

errors (89,105). Predicting the direction of these effects is not straightforward, however, because 

dopamine signaling is affected by multiple direct and indirect mechanisms (132), which may vary 

nonlinearly with the degree of obesity (115). 

A key concept driving food-related decisions is the extent to which pleasurable stimuli are rewarding, 

or the psychobiological trait of “sensitivity to reward.” Increased sensitivity to reward induces 

differential motivational drive that may promote excessive eating. Indeed, sensitivity to reward 

predicted emotional overeating (133), preference for foods high in fat and sugar, and BMI (134). A 

behavioral approach to estimate the subjective value of specific items uses paradigms that quantify 

food demand. In these paradigms, subjective value is estimated based on willingness to pay – the 

maximum price decision-makers are willing to pay to acquire an item (135), or willingness to work – 

the effort that participants are willing to exert to acquire an item, for example by repeatedly pressing 

a button (136). Several studies demonstrated higher willingness to work for food rewards in 

individuals with obesity compared to controls (136–138), but this pattern may reverse when physical 

effort is required (139). Interestingly, excessive eating is cost-dependent in some animal models such 

that obesity develops in low-effort environments but not in high-effort ones (140,141). This result 

suggests that rather than affecting the value of food, dopamine affected the rats’ motivation or 

sensitivity to effort (142).  

In addition to testing the role of decision traits in food-related choices, animal models allow testing 

the reverse causal relation, the effect of specific dietary regimes on decision-making. In particular, the 

effects of the Western diet, a diet high in fat and sugar, were studied in relation to changes in feeding 

patterns and decision characteristics. When exposed to Western diets, rats developed binge-like 

feeding behavior (143) and demonstrated impairment in learning and cognitive functions (144,145). 

Moreover, rats that were chronically exposed to such diets experienced alteration in striatal areas that 

promote goal-directed behavior, leading to reduced sensitivity to outcome values (146). These 

alterations could relate to increased inflammatory markers in the hippocampus, a critical region 

involved in memory (147). These findings suggest a bi-directional relationship between impaired 

learning and obesity, whereby obesogenic diet is not only the outcome of impaired learning but also 

its cause. Together, these factors point to a potentially vicious cycle by which impaired learning is 

caused by obesity and then behaviorally aggravates it (148). 

An additional perspective on food-related learning is the dysregulated food consumption associated 

with eating disorders. A few small-sample studies suggest that this dysregulation may be associated 

with alterations in the reinforcing value of food. For example, women with bulimia (n=10) worked 

more than controls (n=10) for food reward in a “binge” condition, but this pattern was reversed in a 



condition that allowed participants to “drink comfortably” (149). More research, however, is needed 

to establish this connection between food-related learning and eating disorders. 

From isolated features to holistic decision profiles 

A mechanistic understanding of obesity is critical for devising behavioral and pharmacological 

interventions. Behavioral economics and reinforcement learning paradigms identify individual 

preferences that, interacting with the environment, can contribute to the development and 

maintenance of obesity. Neuroeconomic approaches validate these traits by identifying a neural basis 

for general traits and individual differences in behavior. A central concept in neuroeconomics is that 

of value: from an economic perspective, an obesogenic choice could result from altered subjective 

valuation. Emerging literature points to several features of value-based decision-making which may 

be linked to obesity, including increased preferences for immediate rewards, increased risk tolerance, 

and altered reward learning.  

A bulk of the literature focuses on intertemporal choice. These studies suggest that individuals with 

obesity are, on average, more present-oriented compared to healthy-weight controls. While findings 

are quite consistent in the food domain, in the monetary domain results are mixed, with about half of 

the studies reporting no correlation between temporal discounting and obesity. This is one example 

for the potential role that neural measures can play in shaping our understanding of the mechanisms 

of obesity.  While there is ample evidence for overlapping representations of value across domains 

(150), there are also unique neural substrates for food valuation (6,90). Valuation alterations in obesity 

may thus be unique to the food domain in some cases, but more general in others.  

There is also some evidence for increased risk tolerance in obesity, although findings here are also 

mixed. To our knowledge, ambiguity - a type of uncertainty with unknown probabilities that is of 

particular interest for eating behavior - has not been studied in obesity using behavioral economics 

tools. Finally, reward learning seems to play a role in obesity. Obesity is associated with greater 

reliance on habit-like, model-free decisions in contrast to goal-oriented, model-based ones. It is also 

associated with less efficient utilization of new evidence for guiding future decisions, in both humans 

and animals. Similar to delay discounting, the domain specificity of the learning effects is not clear, 

with reports of both food-specific effects (103,104) and domain-general effects (102). Longitudinal 

studies are needed to explore the bi-directional causal relationship between obesity and learning in 

humans.  

The strength of the neuroeconomics approach is the ability to tease apart specific computations that 

underlie the decision process. Studying the neural basis of obesogenic decision-making allows for the 



development of biologically-sound behavioral models and thus a better understanding of the behavior 

leading to obesity. Obesity, however, is a multidimensional phenomenon of which individual decision-

making is just one facet. There are bound to be substantial individual differences in the path to obesity, 

with subgroups of individuals exhibiting decision variations. We propose that the next stage in 

applying the neuroeconomics approach to obesity is to examine the various processes described here 

within individuals in order to construct individual behavioral profiles. Such examination is also 

important because the various decision characteristics are not independent. For example, individual 

uncertainty attitudes may be confounded with discount rates (151), or influence reinforcement 

learning (152).  

These individual profiles are valuable because they may point to differences in the underlying 

mechanisms of obesity and guide individually tailored interventions. For example, behavioral nudges 

that make future consequences more salient are suitable interventions for domain-general steep 

discount rate (153–155) whereas food-specific learning impairments could be treated by easy-to-

follow dietary guidelines and external reinforcement to successful compliance. Individual differences 

may also relate to population differences. In particular, existing literature already hints at sex 

differences in food-as-reward processing. Identifying age- and sex-dependent decision characteristics 

could reveal their true effect magnitudes and prevalence and serve as the basis for more effective 

targeting of interventions. Tracking these profiles in longitudinal studies is important for revealing the 

underlying causal structure of the association between different decision characteristics and weight 

status; for example, whether impaired learning is the source or the outcome of dietary decisions. 

Many of the studies make some implicit assumptions. First, the prevalent comparison between 

healthy and unhealthy weights in the literature is useful, but implicitly assumes a linear relationship 

between weight status and the expected expression of a studied decision characteristic. However, 

different weight statuses, for example, overweight and obese, may be associated with different 

characteristics that define separate decision profiles. The non-linear relationship between obesity 

severity and dopaminergic tone offers neurobiological evidence that obesity is not necessarily “more 

of the same” behavior under overweight status (115). Second, most studies use BMI as an indication 

for obesity, but there is still debate on how accurately BMI defines obesity (156,157). Future studies 

should be aware of this heterogeneity and strive to better understand sources of obesity while being 

diligent in publishing “null findings”, e.g. those that do not identify discounting effects in population 

with obesity (158).  

How could these understandings be used to help decision-makers make better decisions? 

Restructuring menus to make healthier choices more attractive and salient, and picking healthier 

defaults (159); distancing calorically dense products from checkout counters to discourage impulse 



purchases (160); matching lower willingness to pay (demand) with cheaper supply of healthy foods; 

all these are examples of potential interventions that leverage the understanding of human decision-

making to structure environments that promote healthier food choices. The behavioral economics 

and neuroeconomics approaches integrate environmental factors and individual dispositions by 

considering the potential gains and losses underlying choice. Applying these approaches to the study 

of the neural mechanisms underlying obesity-inducing behaviors provides a pivotal perspective on the 

understanding of the complex phenomenon of obesity and the design of effective interventions.  

  



Acknowledgments 

The work was supported by NSF grant BCS-1829439 and NIH grant R01MH118215 to IL. 

We thank Megha Chawla, Or Duek, Ruonan Jia, and Ruby Larisch for very helpful comments on the 

manuscript. 

 

Disclosure 

The authors have nothing to disclose. 

  



References 

1. Hales CM, Carroll MD, Fryar CD, Ogden CL (2020): Prevalence of Obesity and Severe 

Obesity Among Adults: United States, 2017-2018. NCHS Data Brief 360. 

2. Malik VS, Willet WC, Hu FB (2020): Nearly a decade on — trends, risk factors and policy 

implications in global obesity. Nat Rev Endocrinol 16: 615–616. 

3. Bell CG, Walley AJ, Froguel P (2005): The genetics of human obesity. Nat Rev Genet 6: 

221–234. 

4. Hammond RA (2009): Complex systems modeling for obesity research. Prev Chronic Dis 

6. 

5. D’Ardenne K, Savage CR, Small D, Vainik U, Stoeckel LE (2020): Core Neuropsychological 

Measures for Obesity and Diabetes Trials: Initial Report. Front Psychol 11. 

6. Rangel A (2013): Regulation of dietary choice by the decision-making circuitry. Nature 

Neuroscience, vol. 16. Nature Publishing Group, pp 1717–1724. 

7. Seabrook LT, Borgland SL (2020): The orbitofrontal cortex, food intake and obesity. J 

Psychiatry Neurosci 45. 

8. Cosme D, Zeithamova D, Stice E, Berkman ET (2020): Multivariate neural signatures for 

health neuroscience: assessing spontaneous regulation during food choice. Soc Cogn 

Affect Neurosci 15: 1120–1134. 

9. Fisher G (2018): Nutrition labeling reduces valuations of food through multiple health and 

taste channels. Appetite 120: 500–504. 

10. Weygandt M, Spranger J, Leupelt V, Maurer L, Bobbert T, Mai K, Haynes JD (2019): 

Interactions between neural decision-making circuits predict long-term dietary treatment 

success in obesity. Neuroimage 184: 520–534. 

11. Gobbi S, Weber SC, Graf G, Hinz D, Asarian L, Geary N, et al. (2020): Reduced Neural 

Satiety Responses in Women Affected by Obesity. Neuroscience 447: 94–112. 

12. Jia R, Furlong E, Gao S, Santos LR, Levy I (2020): Learning about the Ellsberg Paradox 

reduces, but does not abolish, ambiguity aversion. PLoS One 15. 

13. Sahm CR (2012): How Much Does Risk Tolerance Change? Q J Financ 2. 

14. Kirby KN (2009): One-year temporal stability of delay-discount rates. Psychon Bull Rev 

2009 163 16: 457–462. 

15. Glimcher PW, Fehr E (2013): Neuroeconomics: Decision Making and the Brain. Academic 

Press. 



16. Kable JW, Glimcher PW (2007): The neural correlates of subjective value during 

intertemporal choice. Nat Neurosci 10: 1625–1633. 

17. Tom SM, Fox CR, Trepel C, Poldrack RA (2007): The neural basis of loss aversion in 

decision-making under risk. Science (80- ) 315: 515–518. 

18. Simon JJ, Wetzel A, Sinno MH, Skunde M, Bendszus M, Preissl H, et al. (2017): Integration 

of homeostatic signaling and food reward processing in the human brain. JCI insight 2: 

1–17. 

19. Suzuki S, Cross L, O’Doherty JP (2017): Elucidating the underlying components of food 

valuation in the human orbitofrontal cortex. Nat Neurosci 2017 2012 20: 1780–1786. 

20. Levy I, Snell J, Nelson AJ, Rustichini A, Glimcher PW (2010): Neural representation of 

subjective value under risk and ambiguity. J Neurophysiol 103: 1036–1047. 

21. Schultz W (2007): Multiple dopamine functions at different time courses. Annual Review 

of Neuroscience, vol. 30. Annual Reviews, pp 259–288. 

22. Schultz W, Dayan P, Montague PR (1997): A neural substrate of prediction and reward. 

Science (80- ) 275: 1593–1599. 

23. Horvath TL (2005): The hardship of obesity: a soft-wired hypothalamus. Nat Neurosci 2005 

85 8: 561–565. 

24. Kenny PJ (2011): Reward Mechanisms in Obesity: New Insights and Future Directions. 

Neuron, vol. 69. Cell Press, pp 664–679. 

25. Zald DH, Treadway MT (2017): Reward Processing, Neuroeconomics, and 

Psychopathology. Annu Rev Clin Psychol 13: 471–495. 

26. Pushkarskaya H, Tolin D, Ruderman L, Kirshenbaum A, Kelly JML, Pittenger C, Levy I 

(2015): Decision-making under uncertainty in obsessive–compulsive disorder. J 

Psychiatr Res 69: 166–173. 

27. Ernst M (2012): The Usefulness of Neuroeconomics for the Study of Depression Across 

Adolescence into Adulthood. Biol Psychiatry 72: 84–86. 

28. Miu AC, Miclea M, Houser D (2008): Anxiety and decision-making: Toward a 

neuroeconomics perspective. Adv Health Econ Health Serv Res 20: 55–84. 

29. Monterosso J, Piray P, Luo S (2012): Neuroeconomics and the study of addiction. 

Biological Psychiatry, vol. 72. Elsevier USA, pp 107–112. 

30. Ruderman L, Ehrlich DB, Roy A, Pietrzak RH, Harpaz-Rotem I, Levy I (2016): 

POSTTRAUMATIC STRESS SYMPTOMS AND AVERSION TO AMBIGUOUS LOSSES 

IN COMBAT VETERANS. Depress Anxiety 33: 606–613. 



31. Frederick S, Loewenstein G, O’Donoghue T (2003): Time discounting and time preference: 

A critical review. Time and Decision: Economic and Psychological Perspectives on 

Intertemporal Choice, vol. 40. Russell Sage Foundation, pp 13–86. 

32. Ballard K, Knutson B (2009): Dissociable neural representations of future reward 

magnitude and delay during temporal discounting. Neuroimage 45: 143–150. 

33. Hare TA, Hakimi S, Rangel A (2014): Activity in dlPFC and its effective connectivity to 

vmPFC are associated with temporal discounting. Front Neurosci 8. 

34. Figner B, Knoch D, Johnson EJ, Krosch AR, Lisanby SH, Fehr E, Weber EU (2010): Lateral 

prefrontal cortex and self-control in intertemporal choice. Nat Neurosci 2010 135 13: 538–

539. 

35. Chen F, He Q, Han Y, Zhang Y, Gao X (2018): Increased BOLD Signals in dlPFC Is 

Associated With Stronger Self-Control in Food-Related Decision-Making. Front 

Psychiatry 9: 1–8. 

36. Hare TA, Camerer CF, Rangel A (2009): Self-control in decision-Making involves 

modulation of the vmPFC valuation system. Science (80- ) 324: 646–648. 

37. Odum AL, Becker RJ, Haynes JM, Galizio A, Frye CCJ, Downey H, et al. (2020): Delay 

discounting of different outcomes: Review and theory. J Exp Anal Behav 113: 657–679. 

38. Amlung M, Vedelago L, Acker J, Balodis I, MacKillop J (2017): Steep delay discounting 

and addictive behavior: a meta-analysis of continuous associations. Addiction 112: 51–

62. 

39. Bickel WK, Marsch LA (2001): Toward a behavioral economic understanding of drug 

dependence: delay discounting processes. Addiction 96: 73–86. 

40. Audrain-McGovern J, Rodriguez D, Epstein LH, Cuevas J, Rodgers K, Wileyto EP (2009): 

Does delay discounting play an etiological role in smoking or is it a consequence of 

smoking? Drug Alcohol Depend 103: 99–106. 

41. MacKillop J, Amlung MT, Few LR, Ray LA, Sweet LH, Munafò MR (2011): Delayed reward 

discounting and addictive behavior: A meta-analysis. Psychopharmacology (Berl) 216: 

305–321. 

42. Tang J, Chrzanowski-Smith OJ, Hutchinson G, Kee F, Hunter RF (2019): Relationship 

between monetary delay discounting and obesity: a systematic review and meta-

regression. Int J Obes 43: 1135–1146. 

43. Story GW, Vlaev I, Seymour B, Darzi A, Dolan RJ (2014): Does temporal discounting 

explain unhealthy behavior? A systematic review and reinforcement learning perspective. 



Frontiers in Behavioral Neuroscience, vol. 8. p 76. 

44. Epstein LH, Salvy SJ, Carr KA, Dearing KK, Bickel WK (2010): Food reinforcement, delay 

discounting and obesity. Physiol Behav 100: 438–445. 

45. Amlung M, Petker T, Jackson J, Balodis I, MacKillop J (2016): Steep discounting of 

delayed monetary and food rewards in obesity: A meta-analysis. Psychol Med 46: 2423–

2434. 

46. Kekic M, McClelland J, Bartholdy S, Chamali R, Campbell IC, Schmidt U (2020): Bad 

Things Come to Those Who Do Not Wait: Temporal Discounting Is Associated With 

Compulsive Overeating, Eating Disorder Psychopathology and Food Addiction. Front 

psychiatry 10: 978. 

47. Price M, Higgs S, Maw J, Lee M (2016): A dual-process approach to exploring the role of 

delay discounting in obesity. Physiol Behav 162. 

48. Wainwright K, Green BE, Romanowich P (2018): The Relationship Between Delay and 

Social Discounting, and Body Mass Index in University Students. Psychol Rec 68: 441–

449. 

49. Fields SA, Sabet M, Reynolds B (2013): Dimensions of impulsive behavior in obese, 

overweight, and healthy-weight adolescents. Appetite 70: 60–66. 

50. Lawyer SR, Boomhower SR, Rasmussen EB (2015): Differential associations between 

obesity and behavioral measures of impulsivity. Appetite 95: 375–382. 

51. Price M, Lee M, Higgs S (2013): Impulsivity, eating behaviour and performance on a delay 

discounting task. Appetite 71: 483. 

52. Bickel WK, George Wilson A, Franck CT, Terry Mueller E, Jarmolowicz DP, Koffarnus MN, 

Fede SJ (2014): Using crowdsourcing to compare temporal, social temporal, and 

probability discounting among obese and non-obese individuals. Appetite 75: 82–89. 

53. Dogbe W, Gil JM (2019): Linking risk attitudes, time preferences, and body mass index in 

Catalonia. Econ Hum Biol 35: 73–81. 

54. Dodd MC (2014): Intertemporal discounting as a risk factor for high BMI: Evidence from 

Australia, 2008. Econ Hum Biol 12: 83–97. 

55. Garza KB, Harris C V., Bolding MS (2013): Examination of value of the future and health 

beliefs to explain dietary and physical activity behaviors. Res Soc Adm Pharm 9: 851–

862. 

56. Kang M Il, Ikeda S (2016): Time discounting, present biases, and health-related behaviors: 

Evidence from Japan. Econ Hum Biol 21: 122–136. 



57. Simmank J, Murawski C, Bode S, Horstmann A (2015): Incidental rewarding cues 

influence economic decisions in people with obesity. Front Behav Neurosci 9: 1–16. 

58. Richards TJ, Hamilton SF (2012): Obesity and hyperbolic discounting: an experimental 

analysis. J Agric Resour Econ 181–198. 

59. Klement J, Kubera B, Eggeling J, Rädel C, Wagner C, Park SQ, Peters A (2018): Effects 

of blood glucose on delay discounting, food intake and counterregulation in lean and 

obese men. Psychoneuroendocrinology 89: 177–184. 

60. Jarmolowicz DP, Cherry JBC, Reed DD, Bruce JM, Crespi JM, Lusk JL, Bruce AS (2014): 

Robust relation between temporal discounting rates and body mass. Appetite 78: 63–67. 

61. Chabris CF, Laibson D, Morris CL, Schuldt JP, Taubinsky D (2008): Individual laboratory-

measured discount rates predict field behavior. J Risk Uncertain 37: 237–269. 

62. Reimers S, Maylor EA, Stewart N, Chater N (2009): Associations between a one-shot 

delay discounting measure and age, income, education and real-world impulsive 

behavior. Pers Individ Dif 47: 973–978. 

63. Davis C, Patte K, Curtis C, Reid C (2010): Immediate pleasures and future consequences. 

A neuropsychological study of binge eating and obesity. Appetite 54: 208–213. 

64. Graham Thomas J, Seiden A, Koffarnus MN, Bickel WK, Wing RR (2015): Delayed reward 

discounting and grit in men and women with and without obesity. Obes Sci Pract 1: 131–

135. 

65. VanderBroek-Stice L, Stojek MK, Beach SRH, vanDellen MR, MacKillop J (2017): 

Multidimensional assessment of impulsivity in relation to obesity and food addiction. 

Appetite 112: 59–68. 

66. Nederkoorn C, Smulders FTY, Havermans RC, Roefs A, Jansen A (2006): Impulsivity in 

obese women. Appetite 47: 253–256. 

67. Kishinevsky FI, Cox JE, Murdaugh DL, Stoeckel LE, Cook EW, Weller RE (2012): fMRI 

reactivity on a delay discounting task predicts weight gain in obese women. Appetite 58. 

68. de Oliveira ACM, Leonard TCM, Shuval K, Skinner CS, Eckel C, Murdoch JC (2016): 

Economic preferences and obesity among a low-income African American community. J 

Econ Behav Organ 131: 196–208. 

69. Conell-Price L, Jamison J (2015): Predicting health behaviors with economic preferences 

& locus of control. J Behav Exp Econ 54: 1–9. 

70. Budr’ia S, Lacomba Arias JA, Garc’ia, Lagosia FM, Swedberg P (2012): When obese 

people are more patient than non-obese people. A study of post-surgery individuals in a 



weight loss association. 

71. Hagan KE, Jarmolowicz DP, Forbush KT (2021): Reconsidering delay discounting in 

bulimia nervosa. Eat Behav 41: 101506. 

72. Kekic M, Bartholdy S, Cheng J, McClelland J, Boysen E, Musiat P, et al. (2016): Increased 

temporal discounting in bulimia nervosa. Int J Eat Disord 49: 1077–1081. 

73. Miranda-Olivos R, Steward T, Martínez-Zalacaín I, Mestre-Bach G, Juaneda-Seguí A, 

Jiménez-Murcia S, et al. (2021): The neural correlates of delay discounting in obesity and 

binge eating disorder. J Behav Addict 1–10. 

74. Levy I (2017): Neuroanatomical Substrates for Risk Behavior. Neuroscientist 23: 275–286. 

75. Kahneman D, Tversky A (1979): Prospect Theory: An Analysis of Decision under Risk. 

Econometrica 47: 263–292. 

76. Navas JF, Vilar-López R, Perales JC, Steward T, Fernández-Aranda F, Verdejo-García A 

(2016): Altered Decision-Making under Risk in Obesity. PLoS One 11. 

77. Patterson F, Shank C (2020): Health Habits and Behavioral Biases. SSRN Electron J. 

78. Anderson LR, Mellor JM (2008): Predicting health behaviors with an experimental measure 

of risk preference. J Health Econ 27: 1260–1274. 

79. Pastore C, Schurer S, Tymula A, Fuller N, Caterson I (2020): Economic Preferences and 

Obesity: Evidence from a Clinical Lab-in-Field Experiment. 

80. Koritzky G, Yechiam E, Bukay I, Milman U (2012): Obesity and risk taking. A male 

phenomenon. Appetite 59. 

81. Ellsberg D (1961): Risk, ambiguity, and the savage axioms. Q J Econ 75: 643–669. 

82. Konova AB, Lopez-Guzman S, Urmanche A, Ross S, Louie K, Rotrosen J, Glimcher PW 

(2020): Computational Markers of Risky Decision-making for Identification of Temporal 

Windows of Vulnerability to Opioid Use in a Real-world Clinical Setting. JAMA Psychiatry 

77: 368–377. 

83. Huettel SA, Stowe CJ, Gordon EM, Warner BT, Platt ML (2006): Neural signatures of 

economic preferences for risk and ambiguity. Neuron 49: 765–775. 

84. Tymula A, Belmaker LAR, Ruderman L, Glimcher PW, Levy I (2013): Like cognitive 

function, decision making across the life span shows profound age-related changes. Proc 

Natl Acad Sci U S A 110: 17143–17148. 

85. Buckholtz JW, Karmarkar U, Ye S, Brennan GM, Baskin-Sommers A (2017): Blunted 

Ambiguity Aversion during Cost-Benefit Decisions in Antisocial Individuals. Sci Rep 7: 1–

9. 



86. Schmidt U, Traub S (2002): An experimental test of loss aversion. J Risk Uncertain 25: 

233–249. 

87. Gächter S, Johnson EJ, Herrmann A (2007): Individual-level loss aversion in riskless and 

risky choices. 

88. Lim S-L, Bruce AS (2015): Prospect theory and body mass: characterizing psychological 

parameters for weight-related risk attitudes and weight-gain aversion. Front Psychol 6: 

330. 

89. Kube J, Mathar D, Horstmann A, Kotz SA, Villringer A, Neumann J (2018): Altered 

monetary loss processing and reinforcement-based learning in individuals with obesity. 

Brain Imaging Behav 12: 1431–1449. 

90. Levy DJ, Glimcher PW (2011): Comparing apples and oranges: Using reward-specific and 

reward-general subjective value representation in the brain. J Neurosci 31: 14693–

14707. 

91. Preuschoff K, Quartz SR, Bossaerts P (2008): Human Insula Activation Reflects Risk 

Prediction Errors As Well As Risk. J Neurosci 28: 2745–2752. 

92. Huettel SA, Song AW, McCarthy G (2005): Decisions under Uncertainty: Probabilistic 

Context Influences Activation of Prefrontal and Parietal Cortices. J Neurosci 25: 3304–

3311. 

93. Mohr PNC, Biele G, Heekeren HR (2010): Neural Processing of Risk. J Neurosci 30: 6613–

6619. 

94. Preuschoff K, Bossaerts P, Quartz SR (2006): Neural Differentiation of Expected Reward 

and Risk in Human Subcortical Structures. Neuron 51: 381–390. 

95. Kahnt T, Tobler PN (2017): Dopamine modulates the functional organization of the 

orbitofrontal cortex. J Neurosci 37: 1493–1504. 

96. Symmonds M, Wright ND, Bach DR, Dolan RJ (2011): Deconstructing risk: Separable 

encoding of variance and skewness in the brain. Neuroimage 58: 1139–1149. 

97. Bach DR, Seymour B, Dolan RJ (2009): Neural Activity Associated with the Passive 

Prediction of Ambiguity and Risk for Aversive Events. J Neurosci 29: 1648–1656. 

98. Grubb MA, Tymula A, Gilaie-Dotan S, Glimcher PW, Levy I (2016): Neuroanatomy 

accounts for age-related changes in risk preferences. Nat Commun 2016 71 7: 1–5. 

99. Gilaie-Dotan S, Tymula A, Cooper N, Kable JW, Glimcher PW, Levy I (2014): 

Neuroanatomy Predicts Individual Risk Attitudes. J Neurosci 34: 12394–12401. 

100. Jung WH, Lee S, Lerman C, Kable JW (2018): Amygdala Functional and Structural 



Connectivity Predicts Individual Risk Tolerance. Neuron 98: 394-404.e4. 

101. Gill H, Gill B, Lipsitz O, Rodrigues NB, Cha DS, El-Halabi S, et al. (2021): The impact of 

overweight/obesity on monetary reward processing: A systematic review. J Psychiatr Res 

137: 456–464. 

102. Coppin G, Nolan-Poupart S, Jones-Gotman M, Small DM (2014): Working memory and 

reward association learning impairments in obesity. Neuropsychologia 65: 146–155. 

103. Zhang Z, Manson KF, Schiller D, Levy I (2014): Impaired associative learning with food 

rewards in obese women. Curr Biol 24: 1731–1736. 

104. Meemken MT, Kube J, Wickner C, Horstmann A (2018): Keeping track of promised 

rewards: Obesity predicts enhanced flexibility when learning from observation. Appetite 

131: 117–124. 

105. Mathar D, Neumann J, Villringer A, Horstmann A (2017): Failing to learn from negative 

prediction errors: Obesity is associated with alterations in a fundamental neural learning 

mechanism. Cortex 95: 222–237. 

106. Perpiñá C, Segura M, Sánchez-Reales S (2017): Cognitive flexibility and decision-

making in eating disorders and obesity. Eat Weight Disord 22: 435–444. 

107. Hildebrandt T, Grotzinger A, Reddan M, Greif R, Levy I, Goodman W, Schiller D (2015): 

Testing the disgust conditioning theory of food-avoidance in adolescents with recent 

onset anorexia nervosa. Behav Res Ther 71: 131–138. 

108. Small DM (2017): Dopamine adaptations as a common pathway for neurocognitive 

impairment in diabetes and obesity: A neuropsychological perspective. Front Neurosci 

11: 134. 

109. Adams WK, Sussman JL, Kaur S, D’souza AM, Kieffer TJ, Winstanley CA (2015): Long-

term, calorie-restricted intake of a high-fat diet in rats reduces impulse control and ventral 

striatal D 2 receptor signalling - two markers of addiction vulnerability. Eur J Neurosci 42: 

3095–3104. 

110. Johnson PM, Kenny PJ (2010): Dopamine D2 receptors in addiction-like reward 

dysfunction and compulsive eating in obese rats. Nat Neurosci 13: 635–641. 

111. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. (2001): Brain 

dopamine and obesity. Lancet 357: 354–357. 

112. de Weijer BA, van de Giessen E, van Amelsvoort TA, Boot E, Braak B, Janssen IM, et 

al. (2011): Lower striatal dopamine D2/3 receptor availability in obese compared with 

non-obese subjects. EJNMMI Res 1: 1–5. 



113. Cosgrove KP, Veldhuizen MG, Sandiego CM, Morris ED, Small DM (2015): Opposing 

relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the 

dorsal striatum. Synapse 69: 195–202. 

114. Guo J, Simmons WK, Herscovitch P, Martin A, Hall KD (2014): Striatal dopamine D2-like 

receptor correlation patterns with human obesity and opportunistic eating behavior. Mol 

Psychiatry 19: 1078–1084. 

115. Horstmann A, Fenske WK, Hankir MK (2015): Argument for a non-linear relationship 

between severity of human obesity and dopaminergic tone. Obes Rev 16: 821–830. 

116. Schoenbaum G, Takahashi Y, Liu TL, Mcdannald MA (2011): Does the orbitofrontal 

cortex signal value? Ann N Y Acad Sci 1239: 87–99. 

117. Padoa-Schioppa, Camillo; Conen K (2017): Orbitofrontal Cortex: A Neural Circuit for 

Economic Decisions. Neuron 96: 736–754. 

118. Zhang Z, Fanning J, Ehrlich DB, Chen W, Lee D, Levy I (2017): Distributed neural 

representation of saliency controlled value and category during anticipation of rewards 

and punishments. Nat Commun 8. 

119. Gardner RS, Gold PE, Korol DL (2020): Inactivation of the striatum in aged rats rescues 

their ability to learn a hippocampus-sensitive spatial navigation task. Neurobiol Learn 

Mem 172: 107231. 

120. Groman SM, Lee D, Taylor JR (2021): Unlocking the reinforcement-learning circuits of 

the orbitofrontal cortex. Behav Neurosci 135: 120–128. 

121. Frank GKW, Reynolds JR, Shott ME, Jappe L, Yang TT, Tregellas JR, O’Reilly RC 

(2012): Anorexia Nervosa and Obesity are Associated with Opposite Brain Reward 

Response. Neuropsychopharmacology 37. 

122. Shahar N, Hauser TU, Moutoussis M, Moran R, Keramati M, consortium N, Dolan RJ 

(2019): Improving the reliability of model-based decision-making estimates in the two-

stage decision task with reaction-times and drift-diffusion modeling. PLOS Comput Biol 

15: e1006803. 

123. Sutton RS, Barto AG (2018): Reinforcement Learning: An Introduction. MIT press. 

124. Dolan RJ, Dayan P (2013): Goals and habits in the brain. Neuron, vol. 80. Cell Press, pp 

312–325. 

125. Janssen LK, Mahner FP, Schlagenhauf F, Deserno L, Horstmann A (2020): Reliance on 

model-based and model-free control in obesity. Sci Rep 10. 

126. Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J, et al. (2015): Disorders 



of compulsivity: A common bias towards learning habits. Mol Psychiatry 20: 345–352. 

127. Horstmann A, Dietrich A, Mathar D, Pössel M, Villringer A, Neumann J (2015): Slave to 

habit? Obesity is associated with decreased behavioural sensitivity to reward 

devaluation. Appetite 87: 175–183. 

128. Janssen LK, Duif I, van Loon I, Wegman J, de Vries JHM, Cools R, Aarts E (2017): Loss 

of lateral prefrontal cortex control in food-directed attention and goal-directed food choice 

in obesity. Neuroimage 146: 148–156. 

129. Huang Y, Yaple ZA, Yu R (2020): Goal-oriented and habitual decisions: Neural signatures 

of model-based and model-free learning. Neuroimage 215: 116834. 

130. Kroemer NB, Lee Y, Pooseh S, Eppinger B, Goschke T, Smolka MN (2019): L-DOPA 

reduces model-free control of behavior by attenuating the transfer of value to action. 

Neuroimage 186: 113–125. 

131. Sharp ME, Foerde K, Daw ND, Shohamy D (2016): Dopamine selectively remediates 

‘model-based’ reward learning: a computational approach. Brain 139: 355–364. 

132. DiFeliceantonio AG, Small DM (2019): Dopamine and diet-induced obesity. Nat Neurosci 

22: 1–2. 

133. Davis C, Strachan S, Berkson M (2004): Sensitivity to reward: Implications for overeating 

and overweight. Appetite 42: 131–138. 

134. Davis C, Patte K, Levitan R, Reid C, Tweed S, Curtis C (2007): From motivation to 

behaviour: A model of reward sensitivity, overeating, and food preferences in the risk 

profile for obesity. Appetite 48: 12–19. 

135. Hursh SR (2000): Behavioral economic concepts and methods for studying health 

behavior. Reframing Heal Behav Chang with Behav Econ 27–60. 

136. LH E, JL T, BJ N, RJ S, RW E, JJ L (2007): Food reinforcement, the dopamine D2 

receptor genotype, and energy intake in obese and nonobese humans. Behav Neurosci 

121: 877–886. 

137. Saelens BE, Epstein LH (1996): Reinforcing Value of Food in Obese and Non-obese 

Women. Appetite 27: 41–50. 

138. Giesen JCAH, Havermans RC, Douven A, Tekelenburg M, Jansen A (2010): Will Work 

for Snack Food: The Association of BMI and Snack Reinforcement. Obesity 18: 966–970. 

139. Mathar D, Horstmann A, Pleger B, Villringer A, Neumann J (2016): Is it Worth the Effort? 

Novel Insights into Obesity-Associated Alterations in Cost-Benefit Decision-Making. 

Front Behav Neurosci 9: 1–13. 



140. Rasmussen EB, Reilly W, Buckley J, Boomhower SR (2012): Rimonabant reduces the 

essential value of food in the genetically obese Zucker rat: An exponential demand 

analysis. Physiol Behav 105: 734–741. 

141. Atalayer D, Robertson KL, Haskell-Luevano C, Andreasen A, Rowland NE (2010): Food 

demand and meal size in mice with single or combined disruption of melanocortin type 3 

and 4 receptors. Am J Physiol - Regul Integr Comp Physiol 298. 

142. Salamone JD, Correa M (2012): The Mysterious Motivational Functions of Mesolimbic 

Dopamine. Neuron, vol. 76. NIH Public Access, pp 470–485. 

143. M. Avena N, Rada P, Hoebel BG (2006): Sugar Bingeing in Rats. Curr Protoc Neurosci 

36. 

144. Kanoski SE, Davidson TL (2011): Western diet consumption and cognitive impairment: 

Links to hippocampal dysfunction and obesity. Physiol Behav 103. 

145. Greenwood CE, Winocurt G (1990): Learning and Memory Impairment in Rats Fed a 

High Saturated Fat Diet. BEHAVIORAL AND NEURAL BIOLOGY, vol. 53. 

146. Furlong TM, Jayaweera HK, Balleine BW, Corbit LH (2014): Binge-like consumption of a 

palatable food accelerates habitual control of behavior and is dependent on activation of 

the dorsolateral striatum. J Neurosci 34: 5012–5022. 

147. Morris MJ, Beilharz JE, Maniam J, Reichelt AC, Westbrook RF (2015): Why is obesity 

such a problem in the 21st century? The intersection of palatable food, cues and reward 

pathways, stress, and cognition. Neuroscience and Biobehavioral Reviews, vol. 58. 

Elsevier Ltd, pp 36–45. 

148. Hargrave SL, Jones S, Davidson T (2016): The Outward Spiral: A vicious cycle model of 

obesity and cognitive dysfunction. Physiol Behav 176: 100–106. 

149. Schebendach J, Broft A, Foltin RW, Walsh BT (2013): Can the reinforcing value of food 

be measured in bulimia nervosa? Appetite 62: 70–75. 

150. Bartra O, McGuire JT, Kable JW (2013): The valuation system: A coordinate-based meta-

analysis of BOLD fMRI experiments examining neural correlates of subjective value. 

Neuroimage 76: 412–427. 

151. Lopez-Guzman S, Konova AB, Louie K, Glimcher PW (2018): Risk preferences impose 

a hidden distortion on measures of choice impulsivity. PLoS One 13: e0191357. 

152. Morriss J, Christakou A, van Reekum CM (2016): Nothing is safe: Intolerance of 

uncertainty is associated with compromised fear extinction learning. Biol Psychol 121: 

187–193. 



153. Daniel TO, Stanton CM, Epstein LH (2013): The future is now: Comparing the effect of 

episodic future thinking on impulsivity in lean and obese individuals. Appetite 71. 

154. Kakoschke N, Kemps E, Tiggemann M (2017): Approach bias modification training and 

consumption: A review of the literature. Addict Behav 64: 21–28. 

155. Stein JS, Sze YY, Athamneh L, Koffarnus MN, Epstein LH, Bickel WK (2017): Think fast: 

rapid assessment of the effects of episodic future thinking on delay discounting in 

overweight/obese participants. J Behav Med 40: 832–838. 

156. Kennedy AP, Shea JL, Sun G (2009): Comparison of the Classification of Obesity by BMI 

vs. Dual-energy X-ray Absorptiometry in the Newfoundland Population. Obesity 17: 

2094–2099. 

157. Rahman M, Berenson AB (2010): Accuracy of current body mass index obesity 

classification for white, black and Hispanic reproductive-age women. Obstet Gynecol 

115: 982. 

158. Tincani M, Travers J (2019): Replication Research, Publication Bias, and Applied 

Behavior Analysis. Perspectives on Behavior Science, vol. 42. Springer International 

Publishing, pp 59–75. 

159. Kraak VI, Englund T, Misyak S, Serrano EL (2017): A novel marketing mix and choice 

architecture framework to nudge restaurant customers toward healthy food environments 

to reduce obesity in the United States. Obes Rev 18: 852–868. 

160. Thorndike AN, Sunstein CR (2017): Obesity Prevention in the Supermarket—Choice 

Architecture and the Supplemental Nutrition Assistance Program. Am J Public Health 

107: 1582. 

 

  



Figure legends 

Figure 1. A schematic model of value-based decision-making 

Value representations in the medial prefrontal cortex integrate external information about potential 

rewards (delay, uncertainty) with internal representations of these rewards (learning, memory) and 

homeostatic demands. dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; 

Hipp, hippocampus; Hyp, hypothalamus; OFC, orbitofrontal cortex; PPC, posterior parietal cortex; 

vlPFC, ventrolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex; VS, ventral striatum; 

VTA, ventral tegmental area 

Figure 2. Decision-making in the monetary and food domains. A. Temporal preferences depend on 

how subjective value diminishes over time. In the monetary domain, a preference for a small 

immediate monetary reward or a greater future reward is determined by an individual’s discounting 

rate. Similarly, discounting of future health outcomes affects choices between outcomes with low 

immediate satisfaction (apple), but better future outcome (good health), and high immediate 

satisfaction (pizza), but worse future outcome. B. Decision-making under uncertainty is often assessed 

by testing choices between alternatives that vary in outcome and in the likelihood for obtaining that 

outcome. In the monetary domain, a “safe” alternative (right) is associated with a certain outcome 

(more generally, with reduced outcome variability), whereas a “risky” alternative provides a chance 

for a greater reward but also a chance for a smaller one. Analogously, in the food domain, a safe 

alternative (an apple) may provide lower satisfaction while a riskier, but more rewarding, option 

(pizza) may incur health costs with some probability. C. Rewards and punishments imply a gain or loss 

of money in the monetary domain. In decisions regarding food choice, some food items (pizza) may 

be more rewarding than others (apple). Food choices may also incur punishments in the form of 

deteriorated health status. In a process of learning, gains and losses are integrated into values that 

guide decisions. 
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