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Over the past decade machine learning has made significant advances in approximating density
functionals, but whether this signals the end of human-designed functionals remains to be seen. Ryan
Pederson, Bhupalee Kalita and Kieron Burke discuss the rise of machine learning for functional design.

In 2016, DeepMind’s AlphaGo made history as
the first computer program to defeat a professional
human player in the board game Go. Aside from
excelling at board games with human-designed rules,
machine learning (ML) has seen impressive applications
in scientific research [1] where the rules are instead
governed by nature, such as protein folding and, more
recently, density functional theory (DFT). But can
the ML approach to DFT approximations significantly
outperform human-designed ones and solve long-standing
challenges?

1. DFT EVERYWHERE

In physical sciences, DFT is often the go-to
computational method for solving electronic structure
problems. DFT provides fully quantum solutions at a
fraction of the cost of solving the Schrödinger equation
directly, by mapping the coupled many-body problem
to a single-particle problem. The electronic energy is
considered as a functional (a function of a function) of the
electron (probability) density, with only a small portion,
the exchange-correlation energy, being approximated.

It is staggering to see just how important DFT
calculations have become. Each year, tens of
thousands of papers report useful predictions from
DFT calculations, and today about one third of the
National Energy Research Scientific Computing Center
supercomputing resources use DFT [2] . John Perdew,
who developed many of the formulas in current use, is
one of the most cited physicists of all time.

2. THE GIGO PRINCIPLE IN DFT

The GIGO principle is an old adage in computing
standing for: garbage in, garbage out. In DFT
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this means that a calculation is only as good as the
approximate functional used. Humans have worked
at this for almost a century, and nowadays hundreds
of different approximations are in use. Some build
in well-studied limits, such as the uniform electron
gas, and satisfy many known physical constraints of
the exact functional, while others are tuned and fitted
to reference datasets. Regardless, general failures
have been identified over the years. A decade-old
review [3] focused on the struggle to describe strongly
correlated systems. This most grievous failure can be
understood from the perspective of fractional charges
(systems with noninteger total charge) and fractional
spins (systems with noninteger spin magnetization). The
exact energy is a linear interpolation of the energy of
the adjacent integer systems, but approximations miss
this, producing embarrassingly large systematic errors
in strongly correlated systems as simple as stretched
H2. Overcoming such fundamental DFT challenges is
essential to expanding its applicability and reliability in
condensed matter physics.

3. MACHINE LEARNING DFT

A proof of principle for ML-DFT appeared 10 years
ago. For a simple problem, the kinetic energy of non-
interacting fermions in a 1D box, a ML method (kernel
ridge regression) could be used to find an approximation
of the functional by training on examples from accurate
numerical calculations [4]. The resulting functional
was far more accurate than anything ever designed by
humans, but only useful for simple model systems such
as those it was trained on. The associated learning
efficiency was also low, as hundreds of training examples
were needed to reach high accuracy for a rather compact
chemical space.

Later, the density was machine-learned directly from
the external potential [5]. This demonstrated the
practical usefulness of ML in DFT through realistic
examples, such as proton transfer in a ML molecular
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dynamics simulation of malonaldehyde. However, unlike
traditional DFT approximations, such ML models rarely
generalize across elements.

Since then, there have been many attempts to
bring the promise of ML to practical, generalizable
functional construction. These efforts can be divided
into two categories: those starting from traditional
approximate forms suggested by humans (which are
biased toward local and semi-local approximations) and
those that use the entire density (that is, a non-local
approximation) in some hard-to-understand way. Such
non-local functionals can have poor generalizability, as
the input feature space becomes vastly more complicated
than local and semi-local forms which depend only on the
density and its gradient at each point.

As described in Ref. [6] a neural network (NN)
functional was trained on accurate densities as well as
energies of just three molecules, producing semi-local ML
approximations that worked as well as human-designed
functionals for 150 test molecules, generalizing very
well. A similar approach was used in Ref. [7] but non-
local forms based on convolution NNs were also used
to learn an entire dissociation curve within chemical
accuracy, including the strongly correlated region, with
only two training examples. The model also generalized
well for other new (but similar) strongly correlated
molecules that were not encountered in training. During
training, an end-to-end differentiable DFT code (where
all components are differentiable) was used to obtain
gradient information by backpropagation through the
entire self-consistent calculation. Such robust gradient-
based training results in impressive generalization of
functional approximations.

But the most recent exciting development comes once
again from DeepMind [8]. A bevy of 17 researchers,
using vast computational resources, revived an old
human-designed suggestion, a local hybrid functional [9],
that had been difficult to control. Their new NN-
based functional, DM21, was trained by evaluating
the energy non-self-consistently using approximate
densities. The regression loss consisted of an energy loss
plus an explicit gradient regularization term, thereby
making this training approach substantially cheaper
than Ref. [7]. DM21 was trained on thousands of
molecular systems, orders of magnitude more than
previous ML training sets, and outperforms most other

hybrid functionals on standard molecular benchmarks
with impressive generalization. This ML functional
can be used for main-group chemistry calculations, like
most human-designed functionals. By including training
on simple systems with fractional charges and spins,
DM21 appears to perform significantly better than
earlier approaches for strongly correlated systems. For
instance, DM21 correctly dissociates systems such as H2,
H+

2 , and N2, meeting the long-standing DFT challenge
of strong correlation in molecular systems.

4. WILL DFT GO THE WAY OF GO?

Researchers all over the world are currently trying out
DM21, testing many different aspects to see if it lives
up to its promise. The world of DFT applications is
far too vast for DM21 developers to run even a fraction
of useful tests in their original paper. Many promising
approximations run into unexpected difficulties when
tried in practice. The community will examine
computational cost, accuracy, and transferability when
testing DM21.

A basic issue is whether DeepMind’s approach can
also work for materials. DM21 was trained and tested
only on molecules, where wave function-based quantum
chemistry provides high accuracy benchmark data. If
such data were available for materials, for example,
via computationally-expensive Quantum Monte Carlo
simulations, a similar performance might be expected.
However, the real aim of DFT is to find a single
functional that works for both molecules and materials
simultaneously, so that you can calculate everything in
between, such as surfaces, clusters, and defects. Harsh
experience suggests that accuracy for molecules degrades
when good performance for solids is also required [10].

But, in the grand scheme of things, does this
development signal the beginning of the end for human-
designed functionals? Just as the world’s best Go player
cannot compete with AlphaGo, can human insight and
ingenuity long survive against huge data benchmarks,
teams of coders, and almost unlimited computational
resources? Or will human insight and ingenuity always
be needed to choose the forms that machines learn from?
The next decade will likely answer this question.
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