IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 12, DECEMBER 2022

3191

CAMDNN: Content-Aware Mapping of a Network

of Deep Neural Networks on Edge MPSoCs

Soroush Heidari*”, Mehdi Ghasemi ™, Young Geun Kim, Carole-Jean Wu*', and Sarma Vrudhula

Abstract—Machine Learning (ML) workloads are increasingly deployed at the edge. Enabling efficient inference execution while
considering model and system heterogeneity remains challenging, especially for ML tasks built with a network of deep neural networks
(DNNSs). The challenge is to maximize the utilization of all available resources on the multiprocessor system on a chip (MPSoC) at the
same time. This becomes even more complicated because the optimal mapping for the network of DNNs can vary with input batch sizes
and scene complexity. In this paper, a holistic hierarchical scheduling framework is presented to optimize the execution time for a network
of DNN models on an edge MPSoC at runtime, considering varying input characteristics. The framework consists of a local and a global

scheduler. The local scheduler maps individual DNNs in the inference pipeline to the best-performing hardware unit while the global
scheduler customizes an Integer Linear Programming (ILP) solution to instantiate DNN remapping. To minimize scheduler runtime
overhead, an imitation learning (IL) based scheduler is used that approximates the ILP solutions. The proposed scheduling framework
(CAMDNN) was implemented on a Qualcomm Robotic RB5 platform. CAMDNN resulted in lower execution time of up to 32% than
heterogeneous earliest finish time, and by factors of 6.67X, 5.6X and 2.17X than the CPU-only, GPU-only and Central Queue schedulers.

Index Terms—Machine learning, scheduling, edge, IoT, deep neural networks, DNN serving

1 INTRODUCTION

DEEP Neural Networks (DNNSs) are increasingly used in a
variety of applications such as computer vision, speech
recognition, and recommender systems [4], [14], [15], [16],
[31]. The increasing complexity of machine learning (ML)
tasks drives the adoption of an end-to-end inference pipeline
using multiple models, which are best represented as a net-
work of DNNSs [6], [25], [36], [37]. An example of a network
of DNNSs is shown in Fig. 1. A video stream is first subject to
object detection after which custom DNNs are invoked to
extract extra information specific to that object type.

A conventional approach to process such networks of
DNNs is to use a cloud server where the user-end device
sends only the input data to the cloud and receives the proc-
essed data [9], [27], [42]. Their primary disadvantages are
large communication latency and diminished security. With
the advances in the MPSoC design, there has been an increas-
ing trend to run ML workloads entirely at the edge [11], [21],
[24], [41]. However, efficient mapping of a network of DNN
models onto an MPSoC poses several challenges. First, it has
to be performed on a frame-by-frame basis as each frame can

e Soroush Heidari, Mehdi Ghasemi, Carole-Jean Wu, and Sarma Vrudhula
are with the School of Computing and Augmented Intelligence, Arizona
State University, Tempe, AZ 85281 USA.

E-mail: {sheidar1l, mghasem1, caroleje, vrudhula}@asu.edu.

o Young Geun Kim is with the Department of Computer Science and Engi-
neering, Korea University, Seoul 02841, Korea.
E-mail: younggeu_kim@korea.ac.kr.

Manuscript received 18 January 2022; revised 1 August 2022, accepted 28
August 2022. Date of publication 15 September 2022; date of current version
11 November 2022.

This work was supported in part by NSF under Grants 2008244, CCF-
1652132 and CCF-1618039, and in part by the Center for Embedded Systems,
NSF under Grant 1361926.

(Corresponding author: Soroush Heidari.)

Digital Object Identifier no. 10.1109/TC.2022.3207137

present different numbers of objects and different numbers
of each object type, reflecting changes in the scene complex-
ity. Fig. 2 shows an example scene where the complexity of
the scene is reflected in both the number of objects as well as the
number of object types. Second, modern MPSoCs are heteroge-
neous multi-core processors that consist of CPUs, graphic
processing units (GPUs), digital signal processors (DSPs)
and possibly custom accelerators, with different per-
formance characteristics, presenting various acceleration
opportunities. Third, the practice of batching input requests
of a model to exploit data locality is made more complicated
due to the heterogeneity of the MPSoC and the dynamically
changing scene. Fourth, the runtime scheduling can be con-
sidered as a sequential decision-making problem where each
scheduling decision depends on both current scene complex-
ity and the current state of resources. This makes static
scheduling solutions suboptimal.

An optimal (or near-optimal) workload-specific schedul-
ing policy that uses the information mentioned above can
be found using constrained optimization techniques such as
mixed integer programming [3], [5] and constrained pro-
gramming [34]. However, these approaches are not practical
in a dynamic environment where scene complexity can
change on a frame-by-frame basis and the execution over-
head of these policies becomes prohibitive at runtime. To
resolve these issues, imitation learning (IL) techniques [35]
can be utilized to approximate the optimal policy (a.k.a.
Oracle) with minimum runtime overhead.

In this paper a new approach, called CAMDNN, is pro-
posed for mapping a network of DNNs onto a heteroge-
neous MPSoC. Its objective is to minimize the processing
delay, thereby reducing the number of dropped frames.
CAMDNN is a hierarchical scheduling framework including
two main components: a local scheduler which maps indi-
vidual DNNSs in the inference queue to the best execution

0018-9340 © 2022 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3063-5835
https://orcid.org/0000-0003-3063-5835
https://orcid.org/0000-0003-3063-5835
https://orcid.org/0000-0003-3063-5835
https://orcid.org/0000-0003-3063-5835
https://orcid.org/0000-0003-3947-5639
https://orcid.org/0000-0003-3947-5639
https://orcid.org/0000-0003-3947-5639
https://orcid.org/0000-0003-3947-5639
https://orcid.org/0000-0003-3947-5639
https://orcid.org/0000-0002-9032-7239
https://orcid.org/0000-0002-9032-7239
https://orcid.org/0000-0002-9032-7239
https://orcid.org/0000-0002-9032-7239
https://orcid.org/0000-0002-9032-7239
https://orcid.org/0000-0001-9278-2959
https://orcid.org/0000-0001-9278-2959
https://orcid.org/0000-0001-9278-2959
https://orcid.org/0000-0001-9278-2959
https://orcid.org/0000-0001-9278-2959
mailto:sheidar1@asu.edu
mailto:mghasem1@asu.edu
mailto:caroleje@asu.edu
mailto:vrudhula@asu.edu
mailto:younggeu_kim@korea.ac.kr

3192

People Feature Classifier
of People

Object Detection,

Input Stream
I EEE > Ml

of Cars E ei’{ E

Car Feature Classifier

Extracted Features

of Bicycles
M4

Bicycle Feature Classifier

Fig. 1. The network of DNN models in a surveillance application. After
identifying objects, specific DNN models are used for further processing
of car and person and bicycles.

target in a greedy fashion and a global scheduler that is
invoked infrequently to adjust the existing allocation. The
global scheduler initiates DNN remapping on the basis of
the overall reduction in latency when compared to simply
running the local scheduler with current allocation. The
global scheduler customizes an Integer Linear Program-
ming solution (ILP) incorporating dependency structure of
the network of DNNSs, scene complexity, DNN-specific fea-
tures and hardware heterogeneity. To minimize scheduler
runtime overhead, an imitation learning (IL) based sched-
uler is used that approximates the ILP solutions at runtime.
The IL-based scheduler imitates the optimal scheduler
devised and implemented at design time. To construct the
IL-based scheduler, a set of optimal scheduling demonstra-
tions are captured along with relevant system states. Differ-
ent scene complexities are simulated by enumerating the
number of objects in the scene.

The proposed approach is demonstrated on a real plat-
form. The mobile MPSoC is a Qualcomm Robotic RB5 which
is equipped with CPU, GPU, and DSP units. Experiments
demonstrate CAMDNN improves the execution time by up
to 32% compared to a baseline scheduler. The baseline
scheduler maps individual DNN to a unit on the MPSoC
based on the unit’s time of availability and the predeter-
mined execution time of the DNN on that unit. CAMDNN
also leads to 6.67x, 5.60x, and 2.17x improvement compared
with other schedulers including CPU-only, GPU-only and
Central Queue.

2 BACKGROUND AND MOTIVATION

In this section, principal characteristics of DNNs that must
be included in the optimization problem are described.
These include different performance profiles of models on
hardware units, their loading time, and the impact of batch
size on performance. Optimal scheduling decisions depend on

Fig. 2. An example of input frame [2]. The objects of interest are cars,
people, and bikes. The other detected objects are ignored.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 12, DECEMBER 2022

50
45

47
27 iy 27
25
20 16
15 12 0 13
5 I 3
0 |]

CPU GPU DSP CPU GPU DSP CPU GPU DSP CPU GPU DSP
MobileNet V1

me (ms)
W W b
S W O

Inference Ti

Inception V1 Nasnet Squeezenet

Fig. 3. The inference time of different models on CPU, GPU, and DSP.
Nasnet and SqueezeNet were not supported on DSP.

the scene complexity of inputs to the network of DNNS, the design
and implementation of specific synchronization mechanism for
input batching and previous model mapping decisions on hard-
ware units.

DNNs and Hardware Characteristics. DNN kernel execution
time is determined by neural network architectures and specific
hardware. Fig. 3 shows that the different models have differ-
ent performance profiles on different hardware units of
Qualcomm RB5 development kit. In addition, not all models
are available on every processor. Optimal mapping has to
account for such differences.

Kernel Loading. Model loading time is significant and varies
across DNNs and hardware execution targets.Even though dif-
ferent hardware accelerators show lower execution times
for different models, they are usually associated with a sig-
nificant overhead of loading time for each model. This limits
the migration of DNN models between different processors
at runtime. Although the loading cost can be avoided by ini-
tialization of all DNN models on each hardware resource
before runtime, this is not practical due to limited resources
on mobile MPSoCs. Fig. 4 shows that loading time depends
on the model size and hardware type.

Input Content Characteristics. Performance can be improved
by as much as 2 times if the model mapping decision considers
input contents explicitly.In a scene, multiple objects of the
same type (e.g., people) will invoke multiple instances of
the same DNN. Therefore, as the scene changes, both the
total number of objects and the number of each object type
change. Not every model is available on each processor.
Thus, all three of these factors need to be accounted for in
determining the optimal mapping, from scene to scene.

Inference Batching. Additional improvement in performance
can be achieved with an optimal setting of batch size.To make
the most efficient use of different hardware resources, sev-
eral inference requests must be executed in batches. Besides
improving the execution time per inference, batching can
decrease the overhead associated with context switching of
different DNN models on the same hardware resource.
Therefore, it is better to avoid switching between different
DNN models and run different inference requests from the
same DNN in a batch.

The choice of optimal batch size (i.e., the batch size that
minimizes the execution time per inference for a specific
model on a specific hardware type) depends on the hardware
type, model’s size and architecture. Fig. 5 shows the average
inference time of four representative image classification

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

HEIDARI ET AL.: CAMDNN: CONTENT-AWARE MAPPING OF A NETWORK OF DEEP NEURAL NETWORKS ON EDGE MPSOCS

2500

2028
2000
1500

1000

Loading Time (ms)

609.6 551 583.5
500

470
325.1
60 I 66.5 37 I 20.6
0 - - — —

CPU GPU DSP CPU GPU DSP CPU GPU DSP CPU GPU DSP

Inception V1 Nasnet MobileNet V1 Squeezenet

Fig. 4. The loading time of different models on CPU, GPU, and DSP. Nas-
net and SqueezeNet were not supported on DSP.

DNN models with varying batch size. For example, the opti-
mal batch size for running Inception V1 on CPU is three. Note
that although performance versus batch size are monotonic
for some models, the best joint batch size for a scene may not
correspond to the minimum point of each curve.

Additional improvement in performance related to
batching may be realized by waiting for a sufficient number
of images to be prepared prior to dispatching them as
inputs of the DNN models. Delaying the scheduling, typi-
cally by a small amount is beneficial due to the asynchro-
nous arrival patterns of the inference requests. This
happens because after object detection, the images are pre-
pared in parallel by multiple CPU cores [8]. To avoid the
increase in latency due to batching inference requests from
multiple frames, our approach is limited to batching infer-
ence requests that originated from the same frame and
model.

Fig. 6 shows the result of an optimal mapping for an
example scene with 13 people, 11 cars and 2 bikes. The map-
ping algorithm should select the best execution target and
also the combination of batch sizes. In this example, the
optimal batch size combination on the DSP for people is
(0,0,1,0,2), which denotes one batch of three requests and
two batches of five requests. Similarly, three batches of cars
each of size one are processed by the CPU and two batches
of cars each of size four are processed by the GPU. Both
bicycles are processed by the DSP as a batch of size 2. The
optimal choice of batch size is dependent on the profiling
shown in Fig. 5.

. Inception V1 MobileNet V1
2
£30 14
=
525 12 '\o—.§/
Ex 10
=
o 15 6
210 4
25 2
o)
= 0 0
- 1 2 3 4 5 1 2 3 4 s
Batch Size Batch Size
—e—CPU GPU DSP ——CPU GPU DSP
s Nasnet Mobile SqueezeNet
2
£50 20
~ .—‘_—4_0—_—0
240 1s
=30
= 10

Batch Size Batch Size

—CPU GPU ——CPU GPU

Fig. 5. The effect of batch size on the inference time per request is
dependent on the model type and the hardware unit.

3193
CAMDNN
12345 " .
00000 1xpM E 13 x
Glo000O0 oo o0 e rey
7] ZX —;
£ plootoz et) .
N 12345 3 §
> 300007 X
= Gl00020 2x 3d
A ploooool 22X @& & @
6(2)840(5) colormap
Gl100000 1x 3b3d
DL0O1000

Fig. 6. The left figure shows optimal mapping of models to processors
and the best combination of batch size is shown in matrices for each
object type. The rows in the matrices correspond to computing resour-
ces and the columns correspond to different batch sizes. CAMDNN can
process the given frame in Fig. 2 more than 2x faster compared to opti-
mal static scheduler which ignores scene complexity and batching
opportunities.

In contrast, Static-DIST scheduler assigns the network of
DNNs to different processors considering only the depen-
dency structure and heterogeneous execution time. How-
ever, scene complexity and batching are not considered.
Therefore, all 13 people and two bicycles are being proc-
essed by DSP (one-by-one), all 11 cars being processed by
GPU. That results in more than 2x higher processing time
compared to the proposed approach.

3 RELATED WORK

There has been an increasing interest in running DNNs on
mobile devices. Several platforms such as TensorFlow
Lite [1] and Qualcomm SNPE [30] are available.

In [7], the capabilities of mobile devices for running
deep learning workloads are explored and an extension
to the TensorFlow framework to support training is pro-
posed. In [18], [19], the performance analysis of running
DNNs on several mobile devices (chipsets from Qual-
comm, HiSilicon, Samsung, MediaTek, and Unisoc) is
presented. There has also been prior work on mapping a
single DNN onto hardware units on a mobile device. A
framework called Pipe-it is described in [39] where the
convolution layers in a single DNN are partitioned
between big and LITTLE cores on a multi-core mobile
device.

Reinforcement learning (RL) and Imitation learning (IL)
have witnessed growing popularity for sequential decision
making problems such as runtime task scheduling. How-
ever, lack of simulation environment makes RL-based
solutions not practical for runtime scheduling on resource-
constrained devices due to slow convergence [26], [27]. In
contrast, the use of imitation learning can be a better
approach where the optimal solution can be formulated
and generated offline. In [23], an imitation learning based
approach for task scheduling in heterogeneous many-core
processors is proposed which aims at wireless streaming
application with static application graph. However, the
proposed runtime scheduler distributes the workload
while ignoring data locality and hardware compatibility/
memory constraints.

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

3194

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 12, DECEMBER 2022

1, instances

M2 \l
/! Converting SDF to DAG I
11
11
sie —{ M1 Col vz A 3@ —) ast s : é—’ =
1 7! ! M3
1
7 W
M4 M4

Fig. 7. The data flow graph of the application. In order to improve the processing delay, duplicates of the models are generated depending on how

many objects are detected after object detection model (M1).

Another category of works partition the computation of
a single or multiple DNNs between devices in an IoT envi-
ronment. MoDNN [28] and DeepThings [44] were designed
to execute DNNs on resource-constrained mobile devices.
They partition the input data of a DNN model and offload
the computation of a segment of the input to a device. In
[13], the computation of a network of DNNSs is partitioned
between a user-end device and a cloudlet. The goal is to
reduce the energy consumption of the user-end device by
the optimal collaboration between the user-end device and
the cloudlet. However, this work is not aware of the varia-
tion in the content of input data.

AutoScale [21] targets energy-efficiency of DNN infer-
ence. It employs reinforcement learning to select the suit-
able computing unit with the options of CPU, co-processors
on the mobile device, and a connected edge device in the
network. MABSTA [20] distributes the stages of a computa-
tion flow graph to different devices on the network to mini-
mize the total processing delay. The method is also based
on a reinforcement learning to select the suitable execution
target considering the heterogeneity of devices and the vari-
able network delays.

Efforts to improve the execution of ML workloads are
now focusing on running several DNNs in the form of net-
work of DNNs. Google’s MediaPipe framework [25] and
visual question answering (VQA) [6], [36] are recent exam-
ples. The frameworks presented in [9], [10], [32], [33] are
cloud-based DNN serving solutions which either do not
consider or make general assumption in regards to scene
complexity, reallocation overhead, hardware heterogeneity
and application graph dependency. For instance, Inferline
[9] tries to meet end-to-end tail latency constraints of predic-
tion pipelines while minimizing the overall hardware cost.
Inferline schedules different stages of ML pipeline with
multiple DNNs onto hardware resources on the cloud
server. A low-frequency planner selects the hardware type
for each stage of pipeline and a high frequency planner
reacts to the changes in the input arrival patterns. However,
this work does not address the problems of workload map-
ping on resource-constrained edge MPSoCs.

To the best of the authors” knowledge, this paper is the
first work that addresses the mapping of a network of
DNNs on an edge MPSoC that is content-aware and exploits
the DNN properties such as batching, and model load time.
In addition, the proposed method is evaluated on a state-of-
the-art MPSoC.

4 SyYSTEM MODEL AND OPTIMIZATION OBJECTIVE

4.1 Hardware Model

The mobile MPSoC used in this work had several process-
ing units, namely, CPU, GPU and DSP. Each processing
unit is denoted by p;.

4.2 Application Model

The application consists of running several DNN models for
each input frame where each model ; is designed specifi-
cally for a recognition task. For example, as it is shown in
Fig. 1, distinct models are used for processing different
types of objects. The application can be modeled as a data
flow graph G = (M, E)) where M is the set of DNNs and F
denotes the precedence between different models. Depend-
ing on the content of input data, the number of times that
the models are executed (r;) changes. Therefore, modeling
the application graph as a directed acyclic graph (DAG) is
not correct as it ignores the dynamic nature of the workload
and model’s repetition in a single frame. Typically, the real-
time streaming applications that perform a set of periodic
tasks with fixed data production and consumption rates are
modeled as a synchronous dataflow graph (SDF). For exam-
ple, the production rate for an object detection model is the
number of objects found in the scene and consumption rate
is the input batch size which represents the number of
frames that can be processed at each model’s invocation.
The consumption and production rates are not known at
design-time and rates are solely dependent on each frame’s
content and the scheduling decisions in our application.

Assuming an acyclic application graph, the acyclic SDF
can be transformed to DAG in polynomial time where each
model is duplicated based on its repetition number. For
example, in the SDF graph on the left in Fig. 7, parameters
9, T3 and 74 represent the number of objects for three types
in the scene. These parameters are known only after run-
ning the object detection model.

Requests for the same model are batched together and
sent to a computing resource. The execution time of model ¢
on processing unit j with batch size k is denoted with
t.(i, j, k). The list of notations can be seen in Table 1.

4.3 Optimization Objective
The goal is to map different DNNs to processing units and
determine the batching size for models (considering the

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

HEIDARI ET AL.: CAMDNN: CONTENT-AWARE MAPPING OF A NETWORK OF DEEP NEURAL NETWORKS ON EDGE MPSOCS

TABLE 1

List of Notations
Notation Description
M; model i
M set of all the models in application graph {M;|1 < i < n,,}
sre, dst source and destination nodes
T total number of invocations for model ¢
P; priority of model 4
Dj processor j
P set of all the available processing units {p;|1 < j < n,}
N; maximum number of distinct running models on processor j

rem; remaining time that takes for processor j to become idle
T; total execution time on processor j

Tonar maximum execution time on all processors (makespan)
k the batch size (1 < k <)

bi(i, J) the number of instances of M; running on p; with batch k
a(i, 7) setto1,if >, b(¢,) # 0 for a given i, j
te(i,4,k) execution time of model i on p; with batch size of &
ti(i,) loading time of model 7 on processor j

ts(i,9) start time of model 7 on processor j

tr(4,7) finish time of model i on processor j

epoch scheduling interval

change in the content of input data) such that the frame
processing time (1,,,,,) is minimized.

5 PROPOSED APPROACH

Fig. 8 shows the overall scheme of the proposed approach
CAMDNN. It shows the global and local schedulers and
their interaction. The time horizon is divided into an infi-
nite number of time intervals of fixed duration equal to
epoch. Aside from initial mapping, the global scheduler
operates every epoch and re-allocates DNN models (con-
sidering all the DNNs in the flow graph) whenever there
are dramatic changes in the scene complexity or hardware
availability (rem;). As it can be seen, the local scheduler is
the final decision maker in the scheduling pipeline and the
global scheduler is invoked infrequently in a fixed sched-
uling interval to re-calibrate the existing allocation. In
between two such invocations, the local scheduler tweaks
that allocation by making local changes without knowledge
of the whole graph.

Even though the global scheduler produces optimal
results, it is impossible to imitate the optimal scheduler at
runtime without any regression error. Therefore, the local

Application CAMDNN

Waiting Inf. Requests

Incoming Inference

— Request (M)

(1) '
/]’

count +=1

Fig. 8. The overall scheme of our proposed approach.

3195

scheduler is proposed to act on each DNN inference requests
in a greedy fashion without any information about inference
requests of other models. Its decision is made based on the
current system state (hardware availability rem;) and col-
lected profiling information ¢.(4, j, k) and ¢4, 5). The local
scheduler also utilizes the new allocation and number of
duplicates of each DNN from the global scheduler (explained
more in Section 5.2).

5.1 Gilobal Scheduler

The goal of the global scheduler is to obtain the optimal
mapping and scheduling of DNNs to computing resources
with the knowledge of all the DNNs inside a frame. The
problem can be formulated precisely as an Integer Linear
Programming (ILP) problem. However, the execution over-
head of the ILP solver becomes prohibitive at runtime. This
challenge is addressed by using imitation learning methods.
Learning optimal scheduler by imitation can give us an
scheduler with minimal runtime overhead compared to
well-known heuristics. The design of both ILP-based opti-
mal scheduler and the IL-based scheduler are explained as
follows.

5.1.1 ILP-Based Optimal Scheduler

The ILP formulation includes the DNN-specific profiling
information, the number of objects, the number of object
types and previous allocation in the frame. The ILP formu-
lation can be used for general heterogeneous multiprocessor
task assignments with task/data dependency. However,
embedded DNN-specific characteristics in the formulation
result in higher performance improvement for DNN serv-
ing. The DNN-specific profiling information includes execu-
tion time ¢, (7, §, k) of model i on processor j with batch size
k. The ILP formulation is given below. The decision variables
are the start and finish time (¢,(4, 5), t¢(¢,5)) of model i on
processor j and bg(%, j) (shown bold in the ILP formulation).
The number of decision variables in the ILP solution
depends on the application graph and the given target
device. Therefore, we have ((n, x n,) x (2+n;)) decision
variables. The auxiliary variable 7},,,, is the upper bound on
the total delay in processing a given frame. Minimizing
T'nar minimizes the finish time of a given frame among all

processors.

\%
\ Y% Hardware
\\ \\
Schedule T

t, remy

I

Global Scheduler
EN

RARLRLRLL

IL-based Scheduler

[a]"ew
[b]" !

-
-
P TN
-~
TTTITTTT)

UL

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

3196

min(Thaz),

// Finish time on every processor j is less than T4,
Tj+rem; < Tpew Vi (cl)

// Finish time of model ¢ on processor j is equal to its
start time, execution time based on the mapped batching,

and the loading time if a model is needed to be loaded.

p

E(imj) = Zbk(7‘7.7) X te(ivj, k)
k=1

epoch
diff(i,) = (la(i,)" [a(i))™)
// Precedence constraint in the flow graph
7;1 < i? : ts(i2:j) > tf(zlaj) V_] (63)
// Priority constraints based on the critical path
p’il > loi2 :
ts(i2,5) = ts(i1,5) + e, j) (cd)
// Sum of batches for each model over all processors

tf(iaj) = ts(inj) + e(i, j) + (c2)

equals to the total number of objects for that model

np ny

D> kxb(ig) =ri (cH)

=1 k=1
// Setting allocation variables based on batch variables

Q) is a big integer number (e.g., maximum execution time)

p

D obk(i,5) = (1-Qx (L—ali.f) Vij (c6)

k=1
ny
> bi(i,g) < Q xali,j) Vi,j ()
k=1

// Processor constraints for number of mapped model
m
> ali.j) < N; Vi
i=1

(c8)

//bi(i, §) is an integer variable

bi(i,5) € NT (c9)

// Start and finish times are positive continuous variables
t5(i,5),t:(i,5) € RT (c10)

There are three distinct elements considered in the above
ILP formulation.

e Variations across scenes result in variations in the
workloads associated with each model. Conse-
quently, a fixed assignment of models to processing
units will be suboptimal, and often, significantly so.
The ILP formulation will result in the best distribu-
tion of the models, including multiple instances of
the same model, across the processors.

e The ILP solver will find the optimal combination of
batch sizes of each model on different processors.
This can have significant impact on the latency.

e Embedding the reallocation overhead in the ILP for-
mulation will result in the optimal allocation which
minimizes the average processing delay over the
next scheduling epoch.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 12, DECEMBER 2022

e The ILP formulation will reduce the overhead of con-
text switching between different models through the
assignment of priorities to models. For example, all
instances of a given model are assigned a unique pri-
ority, resulting in each being scheduled one after
another, and thereby reducing the overhead of con-
text switching. The priority is derived based on the
critical path at design time. The unique priority of
each DNN model is designed to be the summation of
its upward rank (maximum distance from model i to
terminal node) and downward rank (maximum dis-
tance from start node to model 7) [38], [43].

5.1.2 IL-Based Scheduler

IL-based scheduler aims to learn a scheduling policy 7 that
approximates the performance of the optimal scheduler 7*
when either the optimal scheduler is not available or it is
computationally expensive to run it at runtime. The first
step is to produce a set of scheduling demonstration P*
induced by the optimal scheduler (ILP-based scheduler) 7*.
Given this pre-collected set of demonstration, the IL-based
scheduler (77y) parameterized by 6 learns to take the correct
scheduling decision 7*(s) = a* for a given input state s min-
imizing the imitation loss L. The imitation learning problem
can be formulated as follows:

6" = argming (s orp+ L[a", 7o(s)].

We have used off-the-shelf machine learning method of
deep neural networks to construct the IL-based scheduler.
The imitation learning problem is modeled as supervised
multi-output regression problem which maps the input fea-
ture vector to the batching matrix by (4, j). The output matrix
encompasses both allocation and number of instances of
each DNN on different processors. To solve the regression
problem, we construct an MLP (Multi Layer Perceptron)
neural network with weight parameter 6.

State Representation. The ability to learn the scheduling
policy greatly depends on state and action representations
and the choice of imitation loss. One of the key challenges is
designing a node embedding which preserves and aggre-
gates all DNN features and their dependency structure in
the network of DNNSs. In our scheduling problem, DNN fea-
tures that are used in the ILP formulation are execution time
t. on different heterogeneous processing elements, priority,
and total number of invocations. The priority assignment
encompasses the information about the dependency struc-
ture. Also, the number of invocations encodes scene com-
plexity which is the dynamic component of the input
feature vector changing at runtime. Besides DNN features,
remaining time that takes for processor j to become idle
rem; is considered to represent current hardware state.

Loss Function.The next challenge is designing a loss func-
tion which minimizes the regression error which represents
the Mean of Absolute Errors (MAE) over the entire training
set. As it was shown in Fig. 6, the batching matrix which is
the expected output of the proposed regression model is
inflated with zero values. This is what is referred to as
zero-inflated multi-target regression problem [22]. The
meta-learning [40] is one of common approaches to tackle
zero-inflated regression. The basic idea is to train a

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

HEIDARI ET AL.: CAMDNN: CONTENT-AWARE MAPPING OF A NETWORK OF DEEP NEURAL NETWORKS ON EDGE MPSOCS

multi-stage network with a combination of a Classifier and
Regressor. The multi-label classifier decides if the output is
zero. After classifier, a multi-target regression model is used
to predict the non-zero values. Also, we have imposed the
data dependent constraint (c5) introduced in Section 5.1.1
by adding extra penalty term [29] to the the loss function.

5.2 Local Scheduler

As mentioned earlier, it is impossible to replicate the opti-
mal scheduler decisions at runtime without any regression
error. In case of zero loading time, running global scheduler
for every new frame would be sufficient to fix prior incor-
rect scheduling decisions due to regression error. However,
DNN loading time is significantly high and remapping
DNNs after every change in scene complexity and hard-
ware availability is impossible. Therefore, the local sched-
uler is devised to cope with incorrect scheduling decisions
from the IL-based scheduler.

Algorithm 1. Local Scheduler

Input: Inference request from model M, p;, [b]
Output: Update by(¢,5),1 < j<mnp,1 <k <my
Check w; (The number of waiting requests for M;)
if w; # bi(i, j) then
Start SyncTimer
end
while w; # bi(4, j)||SyncTimer < WaitTime do
wait()
7 end
8 Find the host based on preferred batch size k < w; for M;
9 HOST = argmin;{(rem; +t.(i,j, k) /k)
10 + (4, 5) x (1 —a(i, §))}
11 Wait until selected processor becomes ready, then batch all
available requests and update matrix [b]
12 Dispatch the inference request

AUl WIN -

The local scheduler is a modified version of Heterogeneous
Earliest Finish Time (HEFT) policy [38] which takes both
loading time and inference synchronization into account.
The runtime HEFT heuristic takes an inference request as
input, the time to execute it on different hardware resources
and the ready time of each hardware resource. The
Local Scheduler is illustrated in Algorithm 1. Given matrix
t.(i, j, k), a list of preferred batch sizes for a given model on
each processor can be obtained by taking into account the
average inference time per request shown in Fig. 5. For
example, the preferred batch sizes for MobileNet V1 on
CPU are [4,3,2,1,5]. The algorithm looks up the first batch
size k in the sorted list that is less than or equal to the num-
ber of waiting requests for model i (w;). To find the host,
local scheduler considers both execution time of model i on
processor j for a batch size of k and the loading time for
model i on processor j. If the model is already on the hard-
ware unit, the loading overhead is multiplied by (1 — a(4, j))
which makes it zero. The value of rem; is the time it takes
for processor j to become idle. Since both the execution time
and the starting time of the model is known to the sched-
uler, the remaining time can be calculated based on the
elapsed time of the current running model on each proces-
sor. The local scheduler implements inference synchroniza-
tion by introducing fixed wait time (=~ 5ms) to let other

3197

inference requests from the same DNN model arrive. The
local scheduler decisions match the sequence of schedules
generated by IL-based scheduler unless either there is a
change in scene complexity during current scheduling
epoch or the IL-based scheduler approximates the optimal
scheduler incorrectly (e.g., the output of IL-based scheduler
does not meet data dependent constraints mentioned in Sec-
tion 5.1.1). The time complexity of local scheduler is O(1)
which makes it quite responsive with minimal overhead.

5.3 CAMDNN Example

Fig. 1 shows an example application graph where Inception
V1, SqueezeNet and MobileNet are used for processing peo-
ple, cars, and bicycles. It is assumed that the camera cap-
tures 14 frames per second (fps) and the scheduling epoch
is fixed to 5 sec. As it can be seen in Fig. 8§, CAMDNN starts
with an initialization step in which the initial allocation is
assigned based on the optimal ILP-based solution. After the
initial step, the local scheduler is the final decision maker in
the scheduling pipeline and the global scheduler is only
invoked infrequently in a fixed scheduling interval to recali-
brate the existing allocation. Fig. 9 illustrates the CAMDNN
steps corresponding to the scenario depicted in Fig. 2 after
the object detection has completed. Below, the details of
important steps in CAMDNN are explained:

1) Initialization step: In this step, because there is no prior
frame to take into account, the the number of instances
of each model is assumed to be one, i.e.,r = (1,1,1).In
general, in any scheduling epoch, the number of
instances of each model collected in the most recently
processed frame is taken into account. In addition, the
loading time of the initial frame is ignored.

The initial allocation assigns a CPU to only serve
inference requests for the object detection model and
the other models are allocated to the GPU and DSP
units. The GPU serves the inference requests for the
car model and the DSP serves the inference requests
for people and bicycle models. Note: The object detec-
tion can only be executed on the CPU and it is invoked
just once for each frame.

2) Assume that the first frame (f1) in the scene shown in
Fig. 2 has 13 people, 11 cars and 2 bicycles. The corre-
sponding repetition vector is r = (13,11, 2). The local
scheduler schedules the individual DNN requests in a
greedy fashion (explained in Section 5.2) with respect
to the initial allocation. In this frame, the people infer-
ence requests are processed in one batch of three
requests and two batches of five requests on the DSP.
The 11 cars are processed by the GPU in two batches
of size five and one batch of size one. Both bicycles are
processed by the DSP as a batch of size two. This
results in a total processing delay of 97ms with a cor-
responding remaining time rem; = (0, 25, 0).

3) After processing the first frame, no model is assigned
to the CPU. The loading time of car model on the
CPU is 20.6 ms, while the GPU still has 25 ms of exe-
cution (remaining time remg,, = 25). Hence, the local
scheduler adjusts the current allocation and loads car
model on CPU. Now the car model is served by
the GPU and CPU. This allocation results in a total

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

3198

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 12, DECEMBER 2022

colormap

Q :05 epoch 1 epoch 2 1}105
§]] e
N 1 1
e‘// ([] (&} - &) - {72 73)
Ry I !
N @ T I
o 4 1 \v T
1x f ixfif o,
tae B 1 x fi
Lx 1x @ 2 xppaipR s
2 X rRn G G gl G 1 X Gon G G G 2 X% G G e
1Xx 3d3d 1 X G G0 Gon EonGn 1x 3535
Delay =97 ms 1X s ————
1x 33d d
Delay = 76 ms

Fig. 9. CAMDNN runtime example.

processing delay of 76ms with the corresponding
remaining time rem; = (5,0, 0).

Note that although the local scheduler considers
the accumulated remaining time on each processor
and its loading time, it acts in a greedy fashion by
allocating one inference request at a time. The
resource allocated may not be the optimal choice in
the long run as it does not consider other model infer-
ence requests.

4) After reaching the next scheduling epoch (time 5), the
ILP-based solution is called to re-allocate the current
allocation based on the most recently processed frame
(f70). This new allocation results in the total process-
ing delay of 70ms with corresponding remaining
time rem; = (0, 0,0). Had the ILP not been invoked at
time ¢t = 5 and the existing allocation remained intact,
then the remaining time increases to rem;=
(340, 335,321). The remaining time on CPU delays
the execution of object detection for the incoming
frames and consequently delays the execution of
other models assigned to the GPU and DSP. This
causes significant remaining time on all processors.
This shows the importance of reallocating the models
after sufficient time has elapsed due to possible
changes in the scene complexity.

6 EXPERIMENTAL METHODOLOGY

6.1 Hardware

Qualcomm Snapdragon RB5 development kit was selected
to demonstrate the efficiency of our proposed approach. As
shown in Table 2, this device is equipped with CPU, GPU,
and DSP.

6.2 Application

The applications consist of an object detection model and
several classification models (Fig. 1). The object detection
model is based on a MobileNet-V1 SSD (single-shot detector)
model (model M1). The classification models include Incep-
tion V1, Inception V2, MobileNet V1, Nasnet Mobile, Squee-
zeNet, and MobileNet V2. Different models with different
precisions including INTS, FP16, and FP32 were tested. The

pool of DNNs were simply selected as good representatives
of small/medium/large DNN workloads from the Google
tflite model hub with different precision support. These
models were executed on the MPSoC using TFLite frame-
work. The CPU, GPU, and DSP implementation were done
using xnnpack, OpenCL, and Hexagon delegates. Also, the
global scheduler is compiled and implemented on ARM pro-
cessor using Cbc (Coin-or branch and cut) which is an open-
source mixed integer programming solver written in C++
[12]. The IL-based solution is a multi-layer perceptron which
is trained over 12,000 scheduling demonstrations using Ten-
sorflow framework. The training set is obtained based on the
enumeration of a reasonable range of scene complexity (e.g.,
from 0 to 14 objects for each object type) and a random set of
remaining time for a given application graph and target
device. The extra latency caused by errors in the neural net-
work approximation of the ILP is about 3.5% compared to
the optimal ILP solution tested with 100 random scene com-
plexities. To run the trained model on the mobile device, the
model is converted to TFLite model [1].

6.3 Effect of Content Change

The effect of content change on the processing delay was
evaluated. A tuple (r2,73,74) denotes the number of objects
for each type. Two cases of content change were evaluated.
The first case was changing the total number of objects in
the scene. The second one was keeping the total number of
objects fixed and evaluating different permutations of object
numbers.

6.4 Comparison With Other Approaches
CAMDNN was compared with a set of static and dynamic
solutions. In the static approach, the model allocation is

TABLE 2
The Hardware Characteristics of the Mobile MPSoC

CPU Qualcomm Kyro 585 ARM CPU
GPU Qualcomm Adreno 650

DSP Qualcomm Hexagon
DRAM LPDDR5/LPDDR4X SDRAM
Operating System Linux

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

HEIDARI ET AL.: CAMDNN: CONTENT-AWARE MAPPING OF A NETWORK OF DEEP NEURAL NETWORKS ON EDGE MPSOCS

CAMDNN ——Static-DIST CPU-Only GPU-Only

778.00
500.00 652.00

190.00

84.00

50.00

Processing Delay (ms) — Log,, Scale

5.00
12345678 91011121314151617 181920212223 2425 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Total Number of Objects

Fig. 10. Comparison between processing delay of CAMDNN, Static-
DIST, CPU-only, and GPU-only over different number of objects. Each
value on the abscissa represents the total number of objects. The corre-
sponding value on the ordinate shows the average delay for all permuta-
tions of objects with the given total number of objects.

TABLE 3
Comparison Between Average Processing Delay of CAMDNN,
Static-DIST, GPU-Only, and CPU-Only Over Different
Combinations of Number of Objects

Processing Delay (CAMDNN =1)
MEAN STD
Static-DIST 1.83 2.57
CPU-only 6.67 8.04
GPU-only 5.60 6.87

The presented data are normalized to CAMDNN.

determined once before runtime, and remains fixed through-
out the processing of the frame. Three static approaches
were evaluated: Static-DIST, CPU-only and GPU-only. Static-
DIST ignores the content of the scene and simply distributes
the network of DNN models onto an MPSoC based on their
heterogeneous execution time and their precedence struc-
ture. CPU-only and GPU-only run all the workloads on the
CPUs and GPUs respectively. The dynamic scheduling poli-
cies include HEFT [38] and Central Queue (CQ) [17]. HEFT is
a greedy algorithm in which the content of input data and
the batching are not considered and scheduling decisions are
based on the execution time of models and the remaining
workload on each hardware unit. CQ only selects the fastest
hardware unit among those that are available. As simple as
these schemes are, they are indeed the common approaches
described in the literature. Also, CAMDNN was compared
with the IL-based scheduler proposed in [23] which in case
of small graph sizes shows insignificant difference compared
to HEFT performance.

7 EXPERIMENTAL RESULTS

7.1 Static Solutions

In Fig. 10, the performance of three static solutions are com-
pared with CAMDNN over different permutations of tuple
(r9,73,74). The z-axis represents the total number of objects
and the corresponding ordinate value is the average com-
pletion time or delay over all numbers of object with the
given total. As it can be seen, when there is only one of each
object type in the scene, CAMDNN and static-DIST have
identical performance which is also better than CPU-only

3199
TABLE 4
Performance Sensitivity to Object Distribution
With a Fixed Total Number of Objects
Total = 21 ro=17 r3 =17 ra =7
Mean STD Mean STD Mean STD
CAMDNN 60.05 1573 51.01 394 6159 1292
Static-DIST 111.67 45.84 99.00 3.36 113.33 40.48
CPU-only 393.00 52.62 393.00 93.56 393.00 49.19
GPU-only 330.00 42.43 330.00 85.57 330.00 49.19

The result for each column corresponds to fixing the number of objects for one
type (r;) and considering different combinations of objects for other types.

TABLE 5
Comparison Between Average Processing Delay of CAMDNN,
HEFT, CQ Over 16 Different Scene Complexities

Processing Delay (CAMDNN =1)
MEAN STD
HEFT 1.32 1.45
CQ 217 2.56

The presented data are normalized

and GPU-only. However, when the number of objects in the
scene starts growing the performance gap between our
approach compared to others becomes more significant.

Table 3 shows CAMDNN outperforms Static-DIST, CPU-
only, and GPU-only solutions as much as 1.83x, 6.67x, and
5.60x. Moreover, the CAMDNN shows much lower perfor-
mance variation (lower standard deviation) compared to
other static solutions.

Table 4 shows the performance sensitivity to different
distribution of objects. In this case, the total number of
objects was set to 21, which is the most frequent sum over
all permutations of tuple (rs,rs,74). CAMDNN shows a
much lower mean and variance in the processing delay
compared to the others. Also, multiple interesting observa-
tions can be noted as follow.

e Objects associated with SqueezeNet have a greater
impact on performance. Due to DSP being limited to
only INT8 models, SqueezeNet can only be executed
on CPU and GPU. Therefore, the performance varia-
tion can be dependent on accuracy constraints.

e Performance variation for CPU-only and GPU-only
shows linear relationship with the execution time of
the model on CPU and GPU respectively. However,
the performance variation for CAMDNN is related
to the execution times, allocation and hardware
compatibility.

These observations further emphasize the need for a con-

tent-aware scheduler which is also aware of hardware
heterogeneity.

7.2 Dynamic Solutions

CAMDNN was compared to two runtime schedulers, HEFT
and CQ, over 16 different scene complexities. HEFT and CQ
are suboptimal due to lack of batching support and ignoring
the large overheads of model loading on different processing
units. Also, they ignore the dependencies in the application
graphs and the cost of context switching between different
models. All of these contribute to their suboptimal results.

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

3200
250
@
g 200
N
g
= 150
@)
en
= 100
0
%]
S 50 | | J’
—_—
0
SRR
— N S S a8 dadwn oA Do S
- S n S e O A= 1n o e auvn.g
vvvvvvvvv SR S S)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 12, DECEMBER 2022

250 ——CAMDNN
HEFT

200

150

~ N A A A~ ~ ~ ~ ~ ~ ~ =~ =~ ~ ~

N =

Fig. 11. The variation in the processing delay using our proposed approach versus HEFT. The tuple shows the number of objects for each type.

There were 50 frames between each content change epoch = 5sec.

Table 5 shows the average and standard deviation of
delay for 16 cases of scene complexity. As shown in Table 5,
CAMDNN shows 32% and 2.17x lower processing delay on
average compared with the HEFT, and CQ approaches
respectively. Moreover, the proposed approach leads to
lower standard deviation and more stable performance
compared with other approaches.

Fig. 11 shows the performance delay for 800 frames using
our approach versus (HEFT). The proposed approach is
close to HEFT for the tuple (1,1,1). However, when the num-
ber of objects increases, the gap between the performance of
two approaches increases. The performance is evaluated
over two different sequences of scene complexity. As men-
tioned earlier, the previous allocation of models has a signif-
icant impact on subsequent allocations. For example, the
transition from (20,5,5) — (5,5,20) triggers reallocation
and CAMDNN runs (5,5,20) combination in 60 ms but
(5,20,5) — (5,5,20) does not trigger reallocation because
the cost of reallocation is higher than its benefit and runs
(5,5,20) combination in 65ms.

7.3 Performance Sensitivity Analysis

Table 6 shows the sensitivity analysis of our content-aware
mapping algorithm for different rates of content change.
The cell values are the average processing delay for
CAMDNN and the HEFT over 10,000 random scene com-
plexities. As it can be seen, when the interval of content
change is decreased (faster rate of content change), the proc-
essing delay is increased in both approaches.

However, CAMDNN outperforms HEFT in all rates of
content change. Moreover, the rate of increase in processing
delay when the interval of content change is reduced is
lower for CAMDNN. This is due to the fact that CAMDNN
considers the loading time of the models and also optimizes
the batch size for running different models. To further

TABLE 6
Performance Sensitivity Analysis for a Fixed Scheduling Epoch
(Epoch=5000ms) and Different Rates of Content Change

Interval of Content Change (ms)

5000 1000 500 100
CAMDNN 58.70 76.97 83.20 84.08
HEFT 75.20 106.69 111.90 114.04

improve the proposed approach, the scheduling epoch can
be adjusted at runtime based on the rate of content change.

7.4 Overhead of Scheduler

The overhead of global and local scheduler were also mea-
sured on the mobile device. Recall, that the local scheduler
has a time complexity of O(1) since it only selects the best
target for the current DNN. The measured time for the local
scheduler was less than 1 ms. Also, the global scheduler
which is based on an IL-based solution using a multi-layer
perceptron (MLP) takes approximately 2.2 ms. The training
phase takes about 2 hours on a laptop with a discrete mobile
GPU RTX2060.

8 CONCLUSION

This paper presented a framework to map a network of
DNNs onto resources on a heterogeneous MPSoC. In order
to improve the processing delay, the framework considers
the performance profile of models on computing units,
loading time of models, and the batching of requests. More-
over, the presented method considers the variation in
the content of input and adapt the decisions at run-time.
The framework consists of a local and a global scheduler.
The local scheduler works on a granularity of a DNN model
inside the frame and chooses the suitable computing unit
while the global scheduler customizes an Integer Linear
Programming (ILP) solution to instantiate DNN remapping.
Experiment results on a Qualcomm RB5 development dem-
onstrates that the proposed approach shows on average up
to 32% and 2.17x lower processing delay compared with
(HEFT) and (CQ). Also, it shows on average up to 1.83x,
6.67x, and 5.60x lower processing delay compared to static-
DIST, CPU-only and GPU-only respectively.

In our approach, we did not explicitly include thermal
modeling in our decision making policy for two reasons: 1)
The device manufacturers do not share any information
about their thermal models. 2) The system that we have has
a heat sink and a fan. Therefore, any thermal issues could
not be observed. However, considering the power and ther-
mal constraints due to a limited battery capacity and/or
lack of active cooling, both thermal and power constraints
can be embedded into our problem formulation. This is a
part of our future work.

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

HEIDARI ET AL.: CAMDNN: CONTENT-AWARE MAPPING OF A NETWORK OF DEEP NEURAL NETWORKS ON EDGE MPSOCS

REFERENCES

[1]
[2]

[3]

[4]

[5]
[6]
[7]

[8]

]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Tensorflow lite. 2021. [Online]. Available: https:/ /www.tensorflow.
org/lite

Aleksey Bochkovskiy. YOLOv4 object detection. 2020. [Online]. Avail-
able: https://alexeyab84.medium.com/yolov4-the-most-accurate-
real-time-neural-network-on-ms-coco-dataset-73adfd3602fe

K. R. Baker and D. Trietsch, Principles of Sequencing and Scheduling.
Hoboken, NJ, USA: Wiley, 2013.

E. Bank-Tavakoli, S. A. Ghasemzadeh, M. Kamal, A. Afzali-
Kusha, and M. Pedram, “POLAR: A pipelined/overlapped
FPGA-based LSTM accelerator,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 28, no. 3, pp. 838-842, Mar. 2020.

S. Baruah, “An ILP representation of a DAG scheduling problem,”
Real-Time Syst., vol. 58, pp. 85-102, 2022.

A. F. Biten et al., “Scene text visual question answering,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 4291-4301.

Y. Chen, S. Biookaghazadeh, and M. Zhao, “Exploring the capabil-
ities of mobile devices in supporting deep learning,” in Proc.
ACM/IEEE 4th Symp. Edge Comput., 2019, pp. 127-138.

Y. Choi, Y. Kim, and M. Rhu, “Lazy batching: An SLA-aware batch-
ing system for cloud machine learning inference,” in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit., 2021, pp. 493-506.

D. Crankshaw et al., “InferLine: Latency-aware provisioning and
scaling for prediction serving pipelines,” in Proc. 11th ACM Symp.
Cloud Comput., 2020, pp. 477-491.

D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A low-latency online prediction serving
system,” in Proc. 14th USENIX Symp. Netw. Syst. Des. Implementa-
tion, 2017, pp. 613-627.

M. Farhadi, M. Ghasemi, S. Vrudhula, and Y. Yang, “Enabling
incremental knowledge transfer for object detection at the edge,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops,
2020, pp. 396-397.

J. Forrest et al. coin-or/Cbc: Release releases/2.10.8 (releases/
2.10.8). Zenodo, 2022. [Online]. Available: https://doi.org/
10.5281/zenodo.6522795

M. Ghasemi, S. Heidari, Y. G. Kim, A. Lamb, C.-J. Wy, and S. Vrud-
hula, “Energy-efficient mapping for a network of DNN models at
the edge,” in Proc. IEEE Int. Conf. Smart Comput., 2021, pp. 25-30.

S. A. Ghasemzadeh, E. B. Tavakoli, M. Kamal, A. Afzali-Kusha,
and M. Pedram, “BRDS: An FPGA-based LSTM accelerator with
row-balanced dual-ratio sparsification,” 2021, arXiv:2101.02667.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016. [Online]. Available: http://
www.deeplearningbook.org

U. Gupta et al., “The architectural implications of Facebook’s
DNN-based personalized recommendation,” in Proc. IEEE Int.
Symp. High-Perform. Comput. Architecture, 2020, pp. 488-501.

M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action, Cambridge, U.K.: Cambridge
Univ. Press, 2013.

A. Ignatov et al., “Al benchmark: Running deep neural networks
on Android smartphones,” in Proc. Eur. Conf. Comput. Vis. Work-
shops, 2018, pp. 288-314.

A. Ignatov et al.,, “Al benchmark: All about deep learning on
smartphones in 2019,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
Workshops, 2019, pp. 3617-3635.

Y.-H. Kao, K. Wright, P.-H. Huang, B. Krishnamachari, and F. Bai,
“MABSTA: Collaborative computing over heterogeneous devices
in dynamic environments,” in Proc. IEEE Conf. Comput. Commun.,
2020, pp. 169-178.

Y. G. Kim and C.-J. Wu, “AutoScale: Energy efficiency optimization
for stochastic edge inference using reinforcement learning,” in Proc.
IEEE/ACM 53rd Annu. Int. Symp. Microarchit., 2020, pp. 1082-1096.

S. Kong et al., “Deep hurdle networks for zero-inflated multi-tar-
get regression: Application to multiple species abundance
estimation,” 2020, arXiv:2010.16040.

A. Krishnakumar et al., “Runtime task scheduling using imitation
learning for heterogeneous many-core systems,” 2020,
arXiv:2007.09361.

L. Liu, J. Tang, S. Liu, B. Yu, Y. Xie, and J.-L. Gaudiot, “z-rt: A run-
time framework to enable energy-efficient real-time robotic vision
applications on heterogeneous architectures,” Computer, vol. 54,
no. 4, pp. 14-25, Apr. 2021.

C. Lugaresi et al., “MediaPipe: A framework for building percep-
tion pipelines,” 2019, arXiv:1906.08172.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

3201

H. Mao, M. Alizadeh, 1. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proc. 15th
ACM Workshop Hot Topics Netw., 2016, pp. 50-56.

H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Ali-
zadeh, “Learning scheduling algorithms for data processing clusters,”
in Proc. ACM Special Int. Group Data Commun., 2019, pp. 270-288.

J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “MoDNN:
Local distributed mobile computing system for deep neural
network,” in Proc. IEEE Des. Autom. Test Europe Conf. Exhib., 2017,
pp- 1396-1401.

P. Marquez-Neila, M. Salzmann, and P. Fua, “Imposing hard
constraints on deep networks: Promises and limitations,” 2017,
arXiv:1706.02025.

Qualcomm Inc. Snapdragon Neural Processing Engine SDK,.
2022. [Online]. Available: https://developer.qualcomm.com/
software/qualcomm-neural-processing-sdk

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 779-788.

F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS:
Automated model-less inference serving,” in Proc. USENIX Annu.
Tech. Conf., 2021, pp. 397—411.

F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama:
A heterogeneous & serverless framework for auto-tuning video
analytics pipelines,” 2021, arXiv:2102.01887.

F. Rossi, P. Van Beek, and T. Walsh, Handbook of Constraint Pro-
gramming, Amsterdam, Netherlands: Elsevier, 2006.

S. Schaal, “Is imitation learning the route to humanoid robots?,”
Trends Cogn. Sci., vol. 3, no. 6, pp. 233-242, 1999.

A. Singh et al., “Towards VQA models that can read,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 8317-8326.

N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield, “Toward
low-flying autonomous MAV trail navigation using deep neural
networks for environmental awareness,” in Proc. IEEE/RS] Int.
Conf. Intell. Robots Syst., 2017, pp. 4241-4247.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260274, Mar.
2002.

S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania,
and T. Mitra, “High-throughput CNN inference on embedded
ARM big LITTLE multicore processors,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 39, no. 10, pp. 2254-2267,
Oct. 2020.

D. H. Wolpert, “Stacked generalization,” Neural Netw., vol. 5,
no. 2, pp. 241-259, 1992.

C.-J. Wu et al., “Machine learning at Facebook: Understanding
inference at the edge,” in Proc. IEEE Int. Symp. High-Perform. Com-
put. Archit., 2019, pp. 331-344.

W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri,
“Hetero-edge: Orchestration of real-time vision applications on
heterogeneous edge clouds,” in Proc. IEEE Conf. Comput. Com-
mun., 2019, pp. 1270-1278.

H. Zhao and R. Sakellariou, “An experimental investigation into the
rank function of the heterogeneous earliest finish time scheduling
algorithm,” in Proc. Eur. Conf. Parallel Process., 2003, pp. 189-194.

Z. Zhao, K. M. Barijough, and A. Gerstlauer, “DeepThings: Dis-
tributed adaptive deep learning inference on resource-constrained
IoT edge clusters,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 37, no. 11, pp. 2348-2359, Nov. 2018.

Soroush Heidari received the BS degree in elec-
trical engineering from the Sadjad University of
Technology, Mashhad, Iran, in 2010, and the MS
degree in electrical engineering from Oklahoma
State University, Stillwater, Oklahoma, in 2015.
He is currently working toward the PhD degree
with the School of Computing and Augmented
Intelligence, Arizona State University, Tempe, Ari-
zona, since 2017. He is a graduate research
associate with Arizona State University. His cur-
rent research interests focuses on enabling near

real-time content-aware edge computing and scheduling machine learn-
ing workloads on heterogeneous edge MPSoCs. He spent his graduate
research internship with RadiusAl, Inc., Tempe, Arizona, in 2019.

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://alexeyab84.medium.com/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe
https://alexeyab84.medium.com/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe
https://doi.org/10.5281/zenodo.6522795
https://doi.org/10.5281/zenodo.6522795
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk

3202

Mehdi Ghasemi received the BS degree in com-
puter engineering from the Ferdowsi University of
Mashhad, Mashhad, Iran, and the MSc degree in
computer engineering from Shahid Beheshti Uni-
versity, Tehran, Iran. He is currently working
toward the PhD degree with the School of Com-
puting and Augmented Intelligence, Arizona State
University, Tempe, Arizona, since 2017. He is a
graduate research associate with Arizona State
University. His research interests include Internet
of Things (loT), energy-aware computing, and
computation offloading at the edge.

Young Geun Kim received the BS and PhD
degrees from the Department of Computer Sci-
ence, Korea University, in 2014 and 2018, respec-
tively. He is currently an assistant professor with
the Department of Computer Science and Engi-
neering, Korea University. His research focus lies
in the domain of computer system architecture
with particular emphasis on energy-efficient and
low-power systems. His research has pivoted into
designing efficient systems for machine learning
execution at the edge.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 12, DECEMBER 2022

Carole-Jean Wu received the BSc degree from Cor-
nell University, and the MA and PhD degrees from
Princeton University. She is currently an associate
professor with Arizona State University, and is cur-
rently a research scientist with Facebook Al
Research. Her research lies in the domain of com-
puter systems. Her recent research focuses on
designing systems for machine learning execution

g at-scale and on tackling system challenges to enable
‘ efficient Al execution in a responsible way. She chairs
the MLPerf Recommendation Benchmark Advisory
Board and co-chaired MLPerf Inference. She was the recipient of the NSF
CAREER Award, the Facebook Al Infrastructure Mentorship Award, the IEEE
Young Engineer of the Year Award, the Science Foundation Arizona Bisgrove
Early Career Scholarship, and the Intel PhD Fellowship, among a number of
best paper awards.

Sarma Vrudhula received the BMath degree from
the University of Waterloo, Waterloo, ON, Canada,
and the MSEE and PhD degrees in electrical and
computer engineering from the University of South-
ern California, Los Angeles, California. He is a pro-
fessor of computer science and engineering with
Arizona State University, and and the director of the
NSF I/UCRC Center for Embedded Systems. Prior
to ASU, he was a professor with the ECE Depart-
ment, University of Arizona, Tucson Arizona, and
was on the faculty of the EE-Systems Department,
University of Southern California. He was also the founding director of the
NSF Center for Low Power Electronics, University of Arizona. His work
spans several areas in design automation and computer aided design for
digital integrated circuit and systems, focusing on low power circuit design,
and energy management of circuits and systems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:00:28 UTC from IEEE Xplore. Restrictions apply.

