
Energy-Efficient Mapping for a Network of DNN
Models at the Edge

Mehdi Ghasemi1, Soroush Heidari1, Young Geun Kim2, Aaron Lamb3, Carole-Jean Wu1, and Sarma Vrudhula1

1Arizona State University, (mghasem1, sheidar1, carole-jean.wu, vrudhula)@asu.edu
2Soongsil University, younggeun.kim@ssu.ac.kr

3Qualcomm Inc., alamb@qti.qualcomm.com

Abstract—This paper describes a novel framework for execut-
ing a network of trained deep neural network (DNN) models
on commercial-off-the-shelf devices that are deployed in an IoT
environment. The scenario consists of two devices connected
by a wireless network: a user-end device (U), which is a low-
end, energy and performance-limited processor, and a cloudlet
(C), which is a substantially higher performance and energy-
unconstrained processor. The goal is to distribute the compu-
tation of the DNN models between U and C to minimize the
energy consumption of U while taking into account the variability
in the wireless channel delay and the performance overhead
of executing models in parallel. The proposed framework was
implemented using an NVIDIA Jetson Nano for U and a Dell
workstation with Titan Xp GPU as C. Experiments demonstrate
significant improvements both in terms of energy consumption
of U and processing delay.

Index Terms—edge computing, deep neural networks, energy

I. INTRODUCTION

Deep Neural Networks (DNNs) are widely used for tasks,
such as object detection, image classification, speech recog-
nition, ranking and recommendation [11], [23], [12], [4]. To
enable quality of experience, servers in the cloud are used
to provide high performance, real-time processing. However,
conventional cloud computing approaches come with large
communication overhead. To overcome such overhead and
to leverage the ever-increasing performance of devices at the
edge [9], edge computing has been proposed where computa-
tion can occur on a local cloudlet (C) close to the first recipient
of data (referred to as user-end device U) or directly on U itself
[7], [25]. This style of execution is becoming increasingly
common for applications, such as virtual/augmented reality,
robots, and drones [24], [20], [3], [5]. The workloads of these
applications now consist of a network of DNN models instead
of a single model, as shown in Figure 1. For example, on a
drone, objects on the scene are detected first and then different
types of objects, such as cars or human, are classified. In
such a workload, a first-stage DNN identifies objects and then
activates other DNNs specialized for different types of objects.

Running an entire network of DNNs on U is often not
feasible due to its limited energy capacity and functionality.
Existing works addressed the energy constraint by distributing
computation within a single DNN between a user-end device
and the cloud [14], [17], [6] Considering the energy cost
of computation and communication, the optimal partitioning
leads to minimized energy consumption of U , which is crucial

post1objpre1 final

post2lprpre2

post4car-lpre4

post3carpre3
࢐૛࢈ࡻ

Fig. 1: An example of a network of DNN models. The
first DNN detects objects and the parallel branches classify
different types of objects identified in the first step.

for the edge domain [3], [25]. However, the above techniques
do not consider run-time variations, which have a large impact
on the energy efficiency of U . In real use cases, many devices
can be connected to and work with a cloudlet. Thus, the
utilization of the cloudlet can significantly affect the execution
time on C. In addition, the communication delay between
devices especially over WiFi often exhibits stochastic behavior
due to the distance between devices, signal interference, traffic
in the network, etc. Even worse, the above techniques do not
consider the overhead of parallel execution of DNNs. Due
to limited computing resources on U , running two DNNs in
parallel affects the performance of each other in the network
of DNN models, resulting in higher energy consumption. For
these reasons, the conventional partitioning approaches often
fail to find the optimal mapping of flow graph nodes for
participating devices, leading to energy inefficiency.

This paper presents an energy-efficient solution for compu-
tation offloading targeting the energy minimization of U when
executing a network of DNNs. At the beginning of processing
each frame, the device U queries the status of C and the
network delay. The run-time solution partitions the flow graph
between U and C based on the response from C. Given a
network of DNNs as a flow graph, the proposed approach
constructs a modified weighted flow graph in such a way that
the energy-optimal partitioning can be obtained using a min-
cut procedure. The overhead of parallel execution of multiple
DNNs is taken into account.

The proposed approach is demonstrated on a real platform,
consisting of an NVIDIA Jetson Nano for U and a high
performance workstation with an NVIDIA Titan Xp for C. Ex-
periments demonstrate that our proposed design significantly

25

2021 IEEE International Conference on Smart Computing (SMARTCOMP)

DOI 10.1109/SMARTCOMP52413.2021.00024

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

m
ar

t C
om

pu
tin

g
(S

M
A

R
TC

O
M

P)
 |

97
8-

1-
66

54
-1

25
2-

0/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SM

A
R

TC
O

M
P5

24
13

.2
02

1.
00

02
4

��
�����
	��$
$���$�������� .$�$� -���

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:04:31 UTC from IEEE Xplore. Restrictions apply.

improves the energy efficiency of U by an average of 42% and
64% over the baseline settings where all the computations are
executed on U and C, respectively.

The contributions of this work are summarized as below:
• This paper provides a detailed characterization for ex-

ecuting a network of DNN models in a realistic edge
environment. The results highlight the importance of
considering run-time variations and parallel execution for
optimal partitioning of the network of DNN models.

• This paper presents an energy-efficient partitioning so-
lution between a user-end device and the cloudlet for
running a network of DNN models based on the energy
profiles of nodes in the flow graph.

II. RELATED WORK

Offloading Algorithms: Kaya et al. [15] get the call graph
of a Java program and bi-partition the nodes of the given
graph using the FM algorithm [8]. The method was applied
on conventional object recognition algorithms. Gao et al. [10]
address the stochastic behavior of the execution times in
applications, during code-offloading from a mobile device
to a cloud server. The aforementioned stochastic behavior
is modeled using a semi-Markov chain. Indeed, no formal
optimization is involved in their approach.
Offloading for DNNs: Due to the computational-intensive
nature of DNN models and the high power consumption of
running these workloads on resource-constrained IoT devices,
different computation offloading strategies have been proposed
in the literature. The idea of collaborative execution between
U and cloud server has been proposed first in [14] and then
used in [17]. In fact, the DNN is partitioned between the cloud
server and mobile device in the granularity of a singe layer.
JointDNN [6] is a recently-proposed method for collaborative
execution of DNNs. The presented method in [6] is based on
the shortest path problem specifically for DNNs. In order to
use the shortest path method to solve the partitioning problem,
the number of nodes in the graph is duplicated. The generality
of the shortest path solution has not been discussed. The
studies [14] and [6], only considered a sequence of layers
inside a single DNN. Consequently, those approaches would
not be a solution to networks with parallel nodes.

MoDNN [18] and DeepThings [26] target the implementa-
tion of DNNs on resource-constrained devices such as mo-
bile phones. These frameworks distribute the computation of
DNNs/CNNs on a cluster of IoT devices connected using
a wireless network based on partitioning the input data.
Autoscale [16] presents a reinforcement learning solution to
determine where to execute the whole DNN inference with the
options of CPU and co-processors in the mobile device, or a
locally connected device. It considers the resource interference
and signal strength variation.

Prior works are limited to mapping a single DNN model.
In this paper, we address a more complex and challenging
problem of mapping a network of DNN models across edge
devices. The proposed solution considers, among other things,
the overhead of parallel execution of computationally-intensive

nodes and the effect of variations of the communication delay
and the computation time of the cloudlet. These aspects have
not been included in earlier works.

III. MODELS AND PROBLEM FORMULATION

This section first describes the hardware components and
the workload model. Next, the delay and energy models are
explained followed by a formal definition of the problem.

A. Hardware: The system consists of three components: a
user-end device U with limited energy capacity and limited
performance, a cloudlet C that can deliver much higher
performance than U and is not energy-constrained, and a
wireless medium W connecting these two devices.

B. Workload Model: The workload consists of DNN models
for various functions, such as object detection, forming a
network of DNN models. The workload is modeled as a flow
graph G = {VG, EG}, where the vertices VG represent the
computational blocks of different models, and the edges EG

represent data dependencies.
C. Delay Model: The total completion time of processing

the flow graph for an input data is dependent on computation
and communication delays. The computation delay of node i
in the flow graph on U and C are denoted with δ(i|U) and
δ(i|C). The term δ(i|C) depends on the utilization (i.e., the
number of concurrent requests) of the cloudlet. These values
are obtained during the profiling step. The wireless commu-
nication delay between devices exhibits significant variations
and is expressed as (see [2])

δiU,C = Si/B +RTT, (1)

where RTT is the roundtrip time (ms), B is the bandwidth
(MBps), and Si is the size of the data in node i (KB).

D. Energy Model: The energy consumption is the product
of delay and power dissipation. The goal of this work is
to determine the optimal assignment of computation nodes
(VG) to the devices that minimizes the energy consumption
of U when executing a given workload. Given the flow graph
G = (VG, EG), let ai = 0 or 1 if i ∈ VG is to be executed
on U or C, respectively. The total energy consumption of
U consists of the computation and communication energy.
EU (i|U) denotes the computation energy consumption of U
when the computation block represented by node i ∈ VG is
executed on U . Therefore, EU (i|U) is expressed as:

EU (i|U) = δ(i|U)× Pcomp(i), (2)

where δ(i|U) is the delay of running node i on U , Pcomp(i)
is the average power consumption of computation on U for
node i. Similarly, EU (i|C) denotes the energy consumption
of U when block i is executed on C and is expressed as:

EU (i|C) = δ(i|C)× Pidle. (3)

Thus, it includes the energy consumption when U is idle and
the computation is performed on C.

Based on the assignment variable ai, the computation en-
ergy of node i denoted by EU (i) can be written as follows:

EU (i) = aiEU (i|C) + (1− ai)EU (i|U). (4)

26

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:04:31 UTC from IEEE Xplore. Restrictions apply.

EU (i|ds, j|dd) denotes the energy consumption due to data
communication associated with edge (i, j) ∈ EG, when node
i is executed on device ds and node j is executed on device
dd, for ds, dd ∈ (U,C).

There are four possibilities in the assignment of nodes to
devices for an edge of the graph. The terms EU (i|U, j|U) and
EU (i|C, j|C) are equal to zero since nodes i and j are both
executed on U or C and there is no internal energy overhead
in executing both i and j on U .

The term EU (i|U, j|C) is the energy consumption of U
when node i is executed on U and node j is executed on C.
In the flow graph, the result of node i is the input to node
j. Thus, the term EU (i|U, j|C) is the energy consumed by U
when transferring the results of node i from U to C.

The value of δU,C affects the total energy consumption of
U where there is a need for communication and transfer of
results between devices. The two cases for the communica-
tion are EU (i|U, j|C), EU (i|C, j|U). For instance, the term
EU (i|U, j|C) can be defined as below:

EU (i|U, j|C) = (Si/B +RTT)× Pcomm, (5)

where Pcomm is the average power consumption of U during
data transfer.

The communication energy consumption of U can now be
expressed in terms of the above quantities and the decision
variables, as follows:

EU (i, j) = ai(1− aj)EU (i|C, j|U) +

(1− ai)ajEU (i|U, j|C). (6)

E. Problem Formulation: As stated earlier, the objective
here is to determine the best assignment of computation nodes
to the devices (finding ai for node i in VG) that minimizes
the energy consumption of U while executing the workload.
The optimization of total energy consumption during the
workload execution including the computation energy and
communication energy can be expressed as below:

Minimize (
∑

i∈VG

EU (i) +
∑

(i,j)∈EG

EU (i, j)) (7)

IV. MOTIVATION FOR PROPOSED APPROACH

The proposed approach to minimize the energy consumption
of U takes into account several important factors: (1) the
execution time and the corresponding power consumption of
each node in the flow graph on U and C; (2) the amount of
data that needs to be transferred between U and C which
depends on the flow graph node; (3) the variations in the
network delay, and (4) the overhead when executing several
graph nodes in parallel.

Factors (1) and (2) are accounted for through extensive
profiling of the computation nodes on the devices. Factor (3) is
considered by sampling the round-trip time (RTT) at the start
of determining the optimal partition, and by using Equation (1)
to estimate the communication delay. The importance of (4)
is demonstrated in Table I and Table II. Two pairs of DNN
models (lpr, car) and (car, car-l) (shown in Figure 1) were

executed sequentially and in parallel on U (NVIDIA Jetson
Nano). Lpr is a relatively light-weight DNN comprising of
LPRNet [27], and car and car-l are both heavy-weight models
with ResNet structure [1].

Tables I and II show the computation delay of each model
under the two different scenarios (δsol(i|U) and δpar(i|U)).
The key observation is that in both cases, ignoring the over-
head due to parallel execution severely underestimates the
computation time and therefore energy consumption. The con-
sequence would be a highly sub-optimal partitioning solution.
Our approach to account for (4) is described in the following
section.

DNN model δsol(i|U) (solo) δpar(i|U) (parallel)
lpr 18.5 ms 43.1 ms
car 97.5 ms 107.7 ms

TABLE I: The parallel execution of a lightweight model (lpr)
and a complex one (car) on U affects each other. However, it
does not result in significant increase in the critical path.

DNN model δsol(i|U) (solo) δpar(i|U) (parallel)
car 97.5 ms 172.2 ms

car-l 90.6 ms 183.2 ms

TABLE II: The parallel execution of two complex DNN
models on U affects the performance of both models and the
critical path significantly.

V. PROPOSED APPROACH

To minimize the energy consumption of the user-end device
(U), a run-time decision is made at the start of processing each
frame. For each frame, U queries the status of C (execution
time for each node of the flow graph on C and network delay).
Based on the data received, and the known energy costs of
running nodes on U itself, U decides how to partition the
computation.

Given the energy profiles, the problem can be cast as a
graph bi-partitioning problem that can be solved optimally
using the maxflow algorithm. This was demonstrated in [22],
which addressed a different problem of hardware-software
bi-partitioning for reconfigurable systems. In that work, the
computation blocks of a workload, represented as a control-
dataflow graph (CDFG), are statically assigned and executed
on a microprocessor or on a dynamically reconfigurable
FPGA, with the objective of minimizing the total energy con-
sumption. Included in their formulation are the computation
and communication time, as well as the energy consumption
of computation blocks on both devices.

The method presented in [22] involves transforming a
given computation graph G = (VG, EG) to another graph
G̃(ṼG, ẼG), such that the minimum cut in G̃ corresponds to
the optimal bi-partitioning of G. The proof of optimality of
this polynomial-time transformation appears in [21]. Here only
the basic steps involved in the transformation are presented in
the context of computation offloading problem [22].

The transformation involves (1) adding two distinguished
nodes, s (source) and t (sink) to the set of nodes, (2) adding

27

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:04:31 UTC from IEEE Xplore. Restrictions apply.

A B

C

D

E

NO

YES

Mapping of
Nodes to
Devices

A B CD E
Mapping of

Nodes to
Devices

CD E

T

A B

S

A B

C

D

E

S

T

(1)

(1)

(2)

(2)

(3)

(2)

(2)
(3)

(1)

(1)

Parallel inference nodes
scheduled on U?

Fig. 2: The flow of the partition-
ing algorithm. First, the proposed
algorithm finds the min-cut in
the transformed flow graph based
on solo energy profiles of the
graph nodes. If parallel inference
nodes are scheduled on U , an-
other checking is done based on
the energy profile of super nodes.

an edge from s to each node and from each node to t;
(3) replacing each edge in G by a pair of edges. Figure 2 shows
an example of this transformation with the steps labeled. First,
the value of EU (i|C) is used to assign the cut values of links
between source and all nodes in the original graph. Likewise,
EU (i|U) is used to obtain the cut value between the sink and
the other nodes. The values of capacities C̃E from the source
to all nodes and from all nodes to the sink are assigned to the
edges as follows:

C̃E(s, i) = EU (i|C) +
∑

(j,i)∈EG

EU (j|C, i|C),

C̃E(i, t) = EU (i|U) +
∑

(j,i)∈EG

EU (j|U, i|U).
(8)

Let

C̃F
E (i, j) = EU (i|U, j|C)− EU (i|C, j|C), (i, j) ∈ EG,

C̃B
E (i, j) = EU (j|C, i|U)− EU (j|U, i|U), (j, i) ∈ EG.

(9)

Then, the capacity of edge C̃E(i, j) can be obtained as below:

C̃E(i, j) = C̃F
E (i, j) + C̃B

E (i, j). (10)

The relations EU (i|U, j|C) ≥ EU (i|C, j|C) and also
EU (j|C, i|U) ≥ EU (j|U, i|U) hold in the computation of-
floading problem. Thus, the cut values will not be negative.
Finally, the algorithm returns the new set of nodes and edges
and their cut values which is used in the partitioning algorithm.

The partitioning algorithm applies the transformations de-
scribed above to the flow graph G = (V,E). Then, a minimum
capacity cut on the transformed graph G̃ is obtained by the
maxflow algorithm. The assignment variable ai is found for
all the nodes based on the cut, which divides the nodes into
two sets. Note that the complexity of maxflow algorithm is
O(|VG

3|) [19].
If two parallel nodes end up being scheduled on U , the

solution should be invalidated. In such a situation, the effect
of parallel nodes is taken into account by forming a super
node, as shown in the lower part of Figure 2. Using the energy
profiles of super nodes, the partitioning algorithm generates a
new partitioning in which the nodes inside a super node are
scheduled on the same device. In the general approach, every
combination of more than two nodes running in parallel on a

same device should be considered. Since the maximum level
of parallelism is limited to four threads in most commodity
devices, the overhead of decision making is not significant.
The implementation of parallel nodes was done using input
and output queues for each DNN. When there is a request
inside the input queue, the pre-processing function (pre1 in
Figure 1) is executed. When post-processing is completed for
the request, the output queue is written, which then triggers
the input queue of the parallel branches in the next stage.

The approach based on the maxflow technique can be
used for any general graph structure. The cost function in
the optimization problem should be additive in the general
case of graph structure. This is true for the case of energy
consumption. In the case of delay optimization, the maxflow
method gives the optimal solution for the line graph.

VI. EXPERIMENTAL METHODOLOGY

Device Setup: An NVIDIA Jetson Nano was selected as
the user-end device (U) and a Dell workstation with an
NVIDIA Titan Xp as the cloudlet device (C). The devices
were connected using a Synology RT2600ac wireless access
point. The total power consumption of U was measured using
a Monsoon Power Monitor.
Workload: The workload consists of several DNN models as
shown in Figure 1. For each detection model, there are pre-
processing and post-processing steps which are done before
and after the inference step. First, the objects are detected
using Tiny YOLO v3 model [23]. The result of pre-processing
is fed into other branches for further processing. This em-
ulates tasks, such as, recognition of car license plates and
models [27], [1]. The final processing is performed based on
the results of all the models.
Performance Profiling: As expected, the execution time of
the inference nodes was the least on C. The utilization of
CPU cores and GPU on U was checked while running the
workload. The inference nodes fully utilized the GPU cores
for the obj, car, and car-l nodes (achieving 99% utilization
of the GPU) where lpr utilized 77% of the GPU. The pre-
processing and post-processing nodes utilized one of the CPU
cores.
Power Profiling: The highest power consumption (Pcomp(i))
is related to running the inference nodes since they utilize the

28

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:04:31 UTC from IEEE Xplore. Restrictions apply.

1.763

4.58
4.091

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

En
er

gy
 C

on
su

m
pt

io
n

of
 U

 (J
)

0.307

0.558
0.699

0
0.2
0.4
0.6
0.8

D
el

ay
 (s

)

post1objpre1 final

post2lprpre2

post4car-lpre4

post3carpre3
� �� � �

� � �

��

� ��

post1objpre1 final

post2lprpre2

post4car-lpre4

post3carpre3
� �� � �

� � �

��

� �

post1objpre1 final

post2lprpre2

post4car-lpre4

post3carpre3
� �� � �

� � �

��

� ��

3.001

4.58

8.007

0
1
2
3
4
5
6
7
8
9

En
er

gy
 C

on
su

m
pt

io
n

of
 U

 (J
)

0.378
0.558

1.358

0

0.5

1

1.5

D
el

ay
 (s

)

3.541 4.58

23.79

0

5

10

15

20

25

En
er

gy
 C

on
su

m
pt

io
n

of
 U

 (J
)

0.461 0.558

4.015

0
1
2
3
4
5

D
el

ay
 (s

)

�

(a) (b) (c)

obj: Object detection, lpr: License plate recognition, car: Car type recognition, car-l: Car type recognition with lower resolution

Fig. 3: Partitioning solutions in different scenarios of bandwidth ((a): 12 MBps, (b): 6MBps, (c): 2MBps). The white and blue
nodes refer to running on U and C respectively. The energy consumption of U and delay are compared with All-U and All-C
cases in different scenarios.

GPU. The average communication power consumption was
measured as 5.94W which makes offloading more beneficial
when compared with the inference power consumption of 8.58
W on U .
Network Delay Profiling: The size of input data decreases
throughout the execution of the flow graph. The ideal com-
munication bandwidth and the round-trip time between the
devices were measured as 12 MBps and 4.5ms respectively.
In the presence of obstacles or larger distance between the
devices, the observed bandwidth and round-trip time degraded
to 1 MBps and 25 ms respectively.

VII. EXPERIMENTAL RESULTS

Figure 3 (a) shows the proposed partitioning solution across
two devices, assuming the ideal bandwidth and execution time
on C (B = 12MBps). In this case, the first pre-processing
node (pre1) was scheduled on U while all other nodes were
executed on C. The reason for executing pre1 on U is that
the overhead of sending the input data is higher than running
the node on C, since U needs to send 8100 KB of input
data for node pre1. Figure 3 (a) shows that the optimal
partition obtained by our maxflow technique improves both
the energy consumption of U and the overall performance
when compared to the default solutions: All-U and All-C. In
particular, under the the ideal conditions of execution time and
bandwidth, the proposed solution improves the energy of U by
61% and delay by 45% when compared to the All-U solution.
When compared to the All-C solution, the proposed approach
improves the energy and delay by 57% and 56%, respectively.

Figure 3 (b) shows the partitioning result for the reduced
bandwidth case. When the bandwidth was 6 MBps, the nodes
obj and post1 were also scheduled on U since the overhead of
sending the output of pre1 was higher than running the obj and
post1 on U . However, the remainder of the parallel nodes were
scheduled on C since the input size of these parallel models
was smaller for parallel branches. In this case, the proposed

solution improves the energy of U by 34% and delay by 32%
when compared with the All-U solution. In comparison with
the All-C solution, the proposed approach improves the energy
and delay by 62% and 72%, respectively.

Figure 3 (c) shows the results when the bandwidth is 2
MBps. In this case, the first three nodes were mapped on U .
Moreover, the nodes pre2, lpr, and post2 were also scheduled
on U . This is due to the fact that the execution time of running
lpr on U is lower, compared with the overhead of data transfer.
It is, however, beneficial to send the data and offload the
computation of the other two parallel branches to the cloudlet
(C) since it takes more time to finish the computation on U .

Figure 4 shows the result of partitioning when the band-
width was 12 MBps and there were concurrent requests for
running the models on C. The difference in the partitioning
solution is in the nodes lpr and post2 where these nodes were
scheduled on U when the delay of running lpr on C increased.
However, the inference nodes car and car-l were still scheduled
on C since the execution time of running these nodes on U is
significantly higher compared with running them on C. In this
case, the proposed solution improves the energy consumption
of U by 49% and delay by 25% in comparison with the All-U
solution. Compared with the All-C solution, our solution leads
to 51% and 50% improvement in terms of energy consumption
and processing delay.
Comparison with Line Graph Approach: Figure 5 shows
the comparison of our solution with the previous work on the
collaborative execution of DNNs between the user-end device
and the cloudlet. A partitioning algorithm in the granularity
of a single layer inside a DNN (line flow graph) has been
presented in [6] and therefore this approach would not be a
solution for flow graphs with parallel branches. However, for
the fair comparison, the general flow graph was converted to
a line graph and the previous methodology was applied on the
obtained line graph. In fact, the parallel nodes in each level
of the flow graph are combined and considered as a single

29

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:04:31 UTC from IEEE Xplore. Restrictions apply.

2.315

4.58 4.689

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

En
er

gy
 C

on
su

m
pt

io
n

of
 U

 (J
)

0.42
0.558

0.84

0
0.2
0.4
0.6
0.8

1

D
el

ay
 (s

)

post1objpre1 final

post2lprpre2

post4car-lpre4

post3carpre3
� �� � �

� � �

��

� � �

Fig. 4: Partitioning result in the case of running concurrent
models on C and bandwidth of 12 MBps.

3.713
4.58

0

1

2

3

4

5

Our
Solution

Ref. [9]En
er

gy
 C

on
su

m
pt

io
n

(J
)

0.485

0.558

0.44
0.46
0.48

0.5
0.52
0.54
0.56
0.58

Our
Solution

Ref. [9]

D
el

ay
 (s

)

Fig. 5: Comparison of our solution with [6] in terms of energy
consumption and delay in the case of bandwidth B = 2MBps
and concurrent requests on the cloudlet.

node forming a line graph. Using this approach, the nodes
on the parallel branches need to be scheduled on one device.
However, as the result of our proposed solution, the nodes in
the first branch (lpr) were scheduled to be executed on U (due
to higher cost of execution on C) where car and car-l were
executed on C. Therefore, our solution leads to 19% and 13%
improvement in terms of energy consumption and delay.
The Effect of Parallel Execution: The effect of parallel
execution can be observed in the All-U schedule. In this
schedule, the prediction of naive graph partitioning for energy
consumption based on solo profiles was 3.702 J. However,
the actual energy consumption of All-U schedule was 4.58 J.
Therefore, there was about 19% difference between the actual
energy consumption of running all nodes on U and that of
naive partitioning based on solo profiles. This result shows
the importance of considering the parallel execution in the
partitioning solution.
Overhead of Decision Making: The overhead of computing
the partition for every frame was measured on U . For the
graph with 13 nodes, it took 4.7 ms to find the assignment of
nodes to devices at run-time. The average power consumption
to compute the optimal partition was 0.93 w. Therefore, each
decision making at the beginning of each frame consumed
4.37 mJ. The energy overhead of decision making is negligible
(less than 1%) compared with the energy consumption of
frame processing in the optimal setting. The decision making
algorithm was implemented in Python based on finding the
min-cut in the input flow graph using networkx package [13].

VIII. CONCLUSION

This paper presented a novel approach to execute a network
of DNN models on commercial-off-the-shelf devices. The goal
is to partition the network of DNNs between the user-end
device and the cloudlet to minimize the energy consumption
of the user-end device. The proposed partitioning algorithm
considers the computation cost on devices, communication
cost, and the overhead of executing DNNs in parallel. Exper-
iments on commodity platforms demonstrate 42% and 64%
improvement in terms of energy consumption compared with
running the entire workload on U or C, respectively.

ACKNOWLEDGEMENT

This research was supported in part by NSF Grant
#2008244, and by the Center for Embedded Systems, NSF
Grant #1361926.

REFERENCES

[1] Car recognition. https://github.com/foamliu/Car-Recognition, 2021.
[2] F. Adelstein et al. Fundamentals of Mobile and Pervasive Computing,

volume 1. McGraw-Hill New York, 2005.
[3] K. Apicharttrisorn et al. Frugal following: Power thrifty object detection

and tracking for mobile augmented reality. In SenSys, 2019.
[4] E. Bank-Tavakoli et al. Polar: A pipelined/overlapped FPGA-Based

LSTM accelerator. TVLSI, 2019.
[5] R. Dedinsky et al. A dependable detection mechanism for intersection

management of connected autonomous vehicles. In ASD, 2019.
[6] A. E. Eshratifar et al. JointDNN: an efficient training and inference

engine for intelligent mobile cloud computing services. TMC, 2019.
[7] M. Farhadi et al. Enabling incremental knowledge transfer for object

detection at the edge. In CVPRW, pages 396–397, 2020.
[8] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for

improving network partitions. In DAC, 1982.
[9] C. Gao et al. A study of mobile device utilization. In ISPASS, 2015.

[10] W. Gao et al. On exploiting dynamic execution patterns for workload
offloading in mobile cloud applications. In ICNP. IEEE, 2014.

[11] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[12] U. Gupta et al. The architectural implications of Facebook’s dnn-based
personalized recommendation. In HPCA, 2020.

[13] A. Hagberg et al. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab., 2008.

[14] Y. Kang et al. Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. In ASPLOS, pages 615–629. ACM, 2017.

[15] M. o. Kaya. An adaptive mobile cloud computing framework using a
call graph based model. Network and Computer Applications, 65, 2016.

[16] Y. G. Kim and C.-J. Wu. Autoscale: Energy efficiency optimization
for stochastic edge inference using reinforcement learning. In MICRO,
2020.

[17] E. Li et al. Edge intelligence: On-demand deep learning model co-
inference with device-edge synergy. In MECOMM, pages 31–36, 2018.

[18] J. Mao et al. Modnn: Local distributed mobile computing system for
deep neural network. In DATE, pages 1396–1401. IEEE, 2017.

[19] B. M. Moret and H. D. Shapiro. Algorithms from p to np. Technical
report, Benjamin-Cummings Publishing Co, 1991.

[20] M. Radovic, O. Adarkwa, and Q. Wang. Object recognition in aerial
images using convolutional neural networks. Journal of Imaging, 2017.

[21] D. Rakhmatov. Modeling and Optimization of Energy Supply and
Demand for Portable Reconfigurable Electronic Systems. PhD thesis,
University of Arizona, 2002.

[22] D. N. Rakhmatov and S. B. Vrudhula. Hardware-software bipartitioning
for dynamically reconfigurable systems. In CODES+ISSS, 2002.

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In CVPR, pages 779–788, 2016.

[24] A. Uçar et al. Moving towards in object recognition with deep learning
for autonomous driving applications. In INISTA, 2016.

[25] C.-J. Wu et al. Machine learning at Facebook: Understanding inference
at the edge. In HPCA, 2019.

[26] Z. Zhao et al. Deepthings: Distributed adaptive deep learning inference
on resource-constrained IoT edge clusters. TCAD, 2018.

[27] S. Zherzdev and A. Gruzdev. Lprnet: License plate recognition via deep
neural networks. arXiv preprint arXiv:1806.10447, 2018.

30

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on February 07,2023 at 01:04:31 UTC from IEEE Xplore. Restrictions apply.

