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SUMMARY

Task-related information is widely distributed across the brain with different coding properties,
such as persistency. We found in mice that coding persistency of action history and value was
variable across areas, learning phases, and task context, with the highest persistency in the
retrosplenial cortex of expert mice performing value-based decisions where history needs to be
maintained across trials. Persistent coding also emerged in artificial networks trained to perform
mouse-like reinforcement learning. Persistency allows temporally untangled value
representations in neuronal manifolds where population activity exhibits cyclic trajectories that
transition along the value axis after action outcomes, collectively forming cylindrical dynamics.
Simulations indicated that untangled persistency facilitates robust value retrieval by downstream
networks. Even leakage of persistently maintained value through non-specific connectivity could
contribute to the brain-wide distributed value coding with different levels of persistency. These
results reveal that context-dependent untangled persistency facilitates reliable signal coding and

its distribution across the brain.

INTRODUCTION

The parallel distributed processing (PDP) theory (McClelland et al., 1986; Rogers and
McClelland, 2014; Rumelhart et al., 1986) highlights computational advantages of distributed
information coding in neural networks and has had a profound impact on our understanding of
cognition and deep learning. Growing evidence revealed that information coding in the brain is
highly distributed across neurons and distinct brain areas (Allen et al., 2019; Hattori et al., 2019;
Koay et al., 2020; Musall et al., 2019; Steinmetz et al., 2019; Stringer et al., 2019). Even
neurons in the primary sensory cortex, which were classically thought to process only sensory
information of a single modality, have been found to encode diverse information such as other
sensory modalities (Hattori and Hensch, 2017; Hattori et al., 2017; lurilli et al., 2012),
spontaneous movements (Musall et al., 2019; Stringer et al., 2019), actions (Hattori et al., 2019;
Koay et al., 2020; Steinmetz et al., 2019), reward (Hattori et al., 2019; Koay et al., 2020), event
history (Hattori et al., 2019; Koay et al., 2020), and value (Hattori et al., 2019; Serences, 2008).
Although these signals are widely distributed, activity perturbations of a brain area typically
affect only a subset of behavioral outputs that are associated with the information encoded in
the area. These results suggest that, although information coding is highly distributed, not all of

the information represented in neural activity may be used in each area.
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A clue to understand the utility of encoded information may lie in the temporal dynamics
of the information coding. In working memory tasks where information is maintained for several
seconds in a trial, information can be maintained as either persistent neural activity or
sequential transient activity across a neural population that tiles the memory period (Cavanagh
et al., 2018; Fuster and Alexander, 1971; Masse et al., 2019; Miller et al., 1996; Murray et al.,
2017; Orhan and Ma, 2019; Romo et al., 1999; Zhu et al., 2020). Recently, it was shown that
certain brain areas in mice such as the retrosplenial cortex (RSC) (Hattori et al., 2019) and the
medial prefrontal cortex (Bari et al., 2019) encode action values with exceptional persistency
during history-dependent value-based decision making tasks where values need to be stably
maintained across trials. Inactivation of either area impaired the ability to use the action value
for their decision making. These results suggest that persistent value coding is critical for
animals to exploit value for decision making when the value needs to be maintained for
extended periods of time. Similar persistent coding is prevalent across the brain and species,
ranging from coding of motor planning (Guo et al., 2017; Inagaki et al., 2019; Li et al., 2016),
internal states (Allen et al., 2019; Marques et al., 2020) to emotions (Jung et al., 2020; Kennedy
et al., 2020), yet the computational advantages of persistent coding has not been fully

established quantitatively.

Here we investigated the neural dynamics of action history and value coding in 6 areas
of the mouse cortex and artificial recurrent neural network (RNN) agents to understand the

computational advantages of persistent coding and its impact on distributed coding.

RESULTS

Learning- and context-dependence of coding persistency across cortical areas

We first used the neural activity data recorded in mice performing decision making based on
history-dependent action value we reported previously (Hattori et al., 2019). Each trial consisted
of a ready period, an answer period, and an inter-trial-interval (ITI). The duration of each period
was variable from trial to trial, making the task more naturalistic than a fixed temporal sequence
(Figure 1A). During the ready period (LED cue), mice needed to withhold licking to enter the
answer period. This ensured that the neural activity during the ready period was free of licking-
related motor activity. Mice were allowed to freely choose either left or right lickport after a go
cue tone. Different reward probabilities were assigned to the 2 lickports, and the reward
probabilities changed every 60-80 trials without cue. Therefore, mice were encouraged to

dynamically estimate the underlying reward probabilities of the 2 options on a trial-by-trial basis
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by forming subjective action values based on their recent choice outcome history using
reinforcement learning (RL) (Sutton and Barto, 2018). The action values need to be stably
maintained within each trial and updated after each trial based on the action and its outcome.
Neural activity was collected with in vivo 2-photon calcium imaging from transgenic mice that
express GCaMPG6s (Chen et al., 2013) in excitatory neurons (Wekselblatt et al., 2016) (Figure
1B), and the calcium signals were converted to estimated spike rates by non-negative
deconvolution (Friedrich et al., 2017; Pachitariu et al., 2018). The recording data were from 6
cortical areas including 2 association (RSC: retrosplenial; PPC: posterior parietal), 2 premotor
(pM2: posterior secondary motor; ALM: anterior-lateral motor), and 2 primary sensory (S1:
primary somatosensory; V1: primary visual) cortex. We estimated the 2 action values on each
trial (QL and Qr) by fitting a RL model to the choices of mice, and we focused our analyses on
the neural coding of the policy value (AQ = Q.- Qr: the value difference between the 2 actions)

on which animals rely their decision making.

Regression analysis of the activity of individual neurons at different time bins within the
ready period identified significant fractions of neurons that encode AQ in all 6 areas, with the
highest fraction in RSC (Figure 1C). AQ coding in these neurons was independent of upcoming
choice directions (Figure S1), and reliably updated at single-trial resolution (Figure S2),
indicating that these neurons faithfully encoded AQ on a trial-by-trial basis across all 6 areas.
Despite the widespread AQ coding, the temporal stability of AQ coding within the ready period
differed across areas. Only in RSC, the AQ-coding neurons identified at different time bins
reliably encoded AQ throughout the trial and across trials, while the encoding was temporally
unstable in the other 5 areas (Figure 1D and S1H). This was because the way individual
neurons encoded AQ across time differed across areas (Figure 1E and S1l1). We quantified the
temporal stability of AQ coding by defining the persistency index which reflects the coding
persistency relative to the chance level (Methods). The analysis revealed RSC as the area with

the highest AQ coding persistency (Figure 1F).

We next examined whether the coding persistency is a fixed property of individual areas
or changes with learning. We analyzed the population activity from RSC, PPC, pM2 and ALM
during early stages of training (< 1 week from training start, Figure 1G). We compared their
value coding persistency between early and expert sessions. We found that the AQ coding
persistency significantly increases in RSC, PPC and pM2 during training (Figure 1H-I),

indicating that coding persistency can change during task learning.
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The coding persistency may have increased during learning because the value-based
decision task requires stable value maintenance for an extended period of time across trials.
Therefore, we tested whether coding persistency differs in another task that does not require
long maintenance of value. We trained 9 mice in the alternate choice task in which a reward
was given when mice made a choice that was the opposite to the previous action (Figure 2A).
Thus, the correct action depended only on the immediately preceding trial, in contrast to the
value task in which history from multiple past trials was informative. All other task conditions
were identical between the 2 tasks. camk2-tTA::tetO-GCaMP6s transgenic mice were trained in
the alternate choice task for at least 2 weeks to achieve a plateau-level performance (~80%
correct) (Figure 2B). We then performed 2-photon calcium imaging of 8,524 RSC cells, 3,186
PPC cells, 7,915 pM2 cells and 4,911 ALM cells (RSC: 14 populations, 608.9 + 18.1 cells, PPC:
7 populations, 455.1 + 25.1 cells, pM2: 14 populations, 565.4 + 34.6 cells, ALM: 10 populations,
491.1 + 36.8 cells, mean + s.e.m per population). The coding persistency of action history in the
alternate choice task was significantly weaker than in value-based task for the 4 imaged areas
(Figure 2C, D). These results indicate that the coding persistency in the cortex is context-

dependent.

Persistent value coding in RSC forms cylindrical dynamics

In the value-based task, AQ coding in RSC is temporally stable within each trial. However, this
does not necessarily mean that RSC population activity is static during these periods. In fact,
individual neurons in RSC showed heterogeneous and rather dynamic activity patterns (Figure
1B). To investigate how the coding of different information temporally interacts, we sought to
decompose population activity into the demixed neural subspaces where different task-related
signals are separated into distinct dimensions. Specifically, we sought to define 3 demixed axes
each encoding AQ, Qcn (value of selected action, e.g. Q. on left choice trial), or ZQ (sum of 2
values), and the remaining Q-free subspace that retains all the activity variance that is not
explained by the 3 Q-related axes. A previous study reported demixed principal component
analysis (dPCA) (Kobak et al., 2016) as a method to decompose population activity into
demixed target-dependent and independent dimensions. However, dPCA is only designed to
identify dimensions for discrete variables and cannot be applied for continuous variables such
as Q-related signals. In addition, dPCA splits each targeted signal into multiple linear axes,
which makes the signal interpretation difficult. To overcome these limitations, we developed a

novel dimensionality reduction method that is more generally applicable, which we term
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demixed subspace principal component analysis (dsPCA) (Figure 3A). dsPCA identifies
demixed dimensions for targeted signals and dimensions for target-independent activity,
similarly to dPCA. However, unlike dPCA, it groups each of the target signals along a single
linear coding dimension and can identify such dimensions for both discrete and continuous
target variables. The first step of dsPCA identifies the best demixed linear axes for the target
variables using a regression-based approach, similarly to (Mante et al., 2013). This step
involves fitting a multiple linear regression model of the form x(trial) = B,A(trial) +

BeB(trial) + B.C(trial) + B, to the activity of individual neurons for the targeted variables, A, B
and C. The regression coefficients, 4, S5 and S, are the partial derivatives of the neural activity
by each target variable, and the vectors that consist of the coefficients from all neurons are the
linearly demixed coding directions of the neural population for the 3 targeted variables. We
defined the targeted coding axes as the unit vectors of these coding directions. By definition,
these demixed coding vectors capture all linear information of targeted variables in a population.
Next, dsPCA identifies the remaining target-free subspace that is orthogonal to these targeted
axes and captures all the remaining activity variance. The target-free orthogonal subspace is
identified by performing full QR decomposition of the matrix with the coding axis vectors. Then
the axes of the target-free subspace are further realigned based on the principal components of
the activity within the target-free subspace to define axes that contain large fractions of
remaining variance. (Figure 3B). Therefore, dsPCA can be viewed as a general extension of
PCA by combining the regression-based supervised target axis identifications and the PCA-

based unsupervised dimensionality reduction of the target-free population dynamics.

We evaluated the demixing performance of dsPCA using noisy simulated neural
populations (200 neurons / population with Gaussian noise) where graded signals A, B and C
are linearly encoded in 20% of the neurons. Each target signal was uniquely encoded only
along the single, target axis (Figure 3C-D), and linear decoders failed to decode any A, B and C
signals in the remaining target-free subspace (Figure 3E). We next applied dsPCA on the
cortical population activity time-averaged over the ready period to identify demixed coding axes
for AQ, Qch, and ZQ, and the remaining, Q-free subspace (Figure 3F). For all 6 areas, most of
the targeted information was confined to each of the coding axes, and the remaining subspace
completely lacked any of the targeted information even though this subspace contained the
highest activity variance (Figure 3G-I, and S3). Although we detected some Q¢ signal along the
>Q axis (Figures 3H and S3B), this is expected because Q¢ is a component of £Q (£Q = Qen +

unchosen Q). However, note that Q signal is not detectable along the Q¢ axis, indicating that
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the demixing of activity variance worked correctly. Thus, dsPCA successfully identified demixed

coding axes for Q-related variables and the remaining Q-free subspace.

With dsPCA, we examined how AQ coding temporally interacts with other dynamics. The
activity dynamics around the choices (between 4 sec from the choice) was visualized in the
neuronal manifold consisting of the AQ coding axis and the other value-related axes (Figure 3J),
or the manifold consisting of the AQ coding axis and 2 largest temporal activity variance axes
within the Q-free subspace (Figures 3K). We found in both manifolds that activity trajectories in
RSC from trials with different AQ values do not cross with each other across time. In the
manifold with the largest temporal dynamics (Figures 3K, S4 and S5), RSC population remained
in the initial positions linearly segregated along AQ axis according to AQ of the trial (‘Pre-choice’
in the figures). Around the go cue time, the RSC population diverged from these initial positions
and drew rotational dynamics. After a choice, the population returned towards the initial
positions following a circular geometry. The return geometry was warped along AQ axis,
reflecting the reward prediction error (RPE) on each trial depending on the choice and its
outcome, which updates the AQ representation in the population (Figure 3L-M). The RPE-
dependent, bidirectional transition of the activity state ensures that the neural population closely
represents and updates the AQ coding online in each trial. In contrast, the dynamics in S1 and
V1 were highly tangled over time, and similar AQ values could accompany different activity
states at different time. Therefore, although AQ coding is widely distributed across the cortex,
the different levels of persistency confer different levels of tangling in AQ coding (Figure 3N).
The exceptionally high AQ coding persistency in RSC allows a temporally untangled value
representation with the within-trial cyclic dynamics that transitions along the value axis to reflect
value updates. These dynamics across trials collectively form cylindrical dynamics during task

performance.

Untangled, persistent value coding emerges in the RNN trained with the mouse RL
strategy

The persistent and untangled AQ coding in RSC, together with our previous observation that
RSC inactivation impairs value-based decision (Hattori et al., 2019), raises the possibility that
persistent value coding is advantageous in the task. We investigated this possibility by training
artificial RNN agents to perform RL in the same task and subsequently examining the AQ

coding scheme in the trained network. The training of RNNs was done without constraining the
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activity dynamics. We reasoned that, if persistent coding is advantageous, trained RNN agents

may use persistent coding to perform the task.

First, we trained RNNs to perform RL optimally by teaching them the ideal choices of
each trial based on the reward assignment rule. In this task, once a reward is assigned to a
choice, the reward remains assigned until the choice is selected. As a result, the actual reward
probability of a choice cumulatively increases if the choice is not selected in the recent trials.
Therefore, an optimal choice would depend on the current reward assignment probabilities,
which are unknown to mice and RNN agents, and past choice history. By using the optimal
choices as the teacher, we trained synaptic weights of RNNs such that the RNNs use only
history of choice and reward to make near-optimal decisions (Figures 4A and 4B). The durations
between decisions were made variable, similarly to the task structure in mice. The RNNs
receive action outcome information only at the time step after choice and need to maintain the
information through recurrent connectivity across time steps and trials. These optimally trained
networks (“optimal RNN agents”) achieved higher reward rate than expert mice (Figure 4E).
Furthermore, the choice patterns of optimal RNN agents diverged from the RL model that has
been optimized to describe the behavior of expert mice (Figure 4E), indicating that the optimal
RNN acquired a RL strategy that is distinct from mice. Accordingly, a regression analysis
showed that the dependence of optimal RNN agents on choice and reward history differed from

that of expert mice (Figure 4F).

To obtain a network model that better mimics the mouse strategy, we trained RNNs to
imitate expert mouse behaviors using behavioral cloning, a form of imitation learning (Osa et al.,
2018). We used 50,472 decision making trials of expert mice as the teaching labels to train the
synaptic weights of the RNN. The goal of this training was for the RNN to make the same
decisions as expert mice with its recurrent activity dynamics based on the same history of
choice and outcome in the past trials (Figure 4C). The trained RNNs (“mouse-like RNN agents”)
performed RL using their recurrent activity (Figure 4D), and the reward rate and the RL model
accuracy were equivalent to those of expert mice (Figure 4E). Furthermore, the mouse-like RNN
agents used history from previous trials for its decisions in a similar way as expert mice (Figure
4F). Therefore, the RL strategy of expert mice was successfully transferred to the synaptic
weights of the trained RNN agents, and the trained RNNs could implement mouse-like RL using

its recurrent activity dynamics without updating synaptic weights from trial to trial.

We then examined how the mouse-like RNN agents encoded AQ. We found that RSC-

like persistent AQ coding emerged in their recurrent activity (Figures 4G). This observation is
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significant as the training procedure did not impose a priori constraints on the coding scheme of
the RNN. We also examined how the population activity dynamics evolved during training. We
had RNN agents at 3 stages of training run the task (before training, intermediate (after 1 epoch
of training), and fully trained) and analyzed their recurrent activity during the task performance.
dsPCA revealed that untrained networks with random connectivity exhibit highly tangled AQ
coding, while training gradually shaped the networks to form stacked circular dynamics (Figure
5A). Unlike RSC that formed cylindrical dynamics (Figure 3K), the diameter of rotational
trajectory varied across different AQ states in the trained networks, suggesting that additional
biological constraints that were not considered for RNN training may have imposed a constant
diameter in the mouse brain. In addition to the analysis of AQ estimates from a RL model fit to
behaviors, we examined the coding persistency of the ground truth AQ which is available as the
activity of the action output neuron in each RNN agent. We confirmed that the ground truth AQ

was also persistently encoded in both optimal and mouse-like RNN agents (Figure S6).

Persistency facilitates reliable and robust value retrieval by downstream neural networks
The emergence of AQ coding persistency in RNN agents suggests that persistent coding is a
preferred solution in the task. What would be the advantage of persistent coding? One
possibility is that untangled persistency may allow a more reliable signal retrieval by the
downstream network to guide the action selection. We tested this possibility by training artificial
RNNSs to retrieve the AQ signal from different temporal patterns of simulated population activity
(Figure 6A). For this purpose, RNNs are biologically relevant as they receive time-varying inputs

sequentially, as opposed to other decoder models (e.g. regression models).

We created artificial population activity encoding AQ in 4 different patterns: persistent,
and 3 types of non-persistent coding (Figure 6B). In persistent coding, 20% of cells encode AQ
as rate coding persistently. The slope of AQ tuning curve for each neuron was taken from its
distribution among RSC neurons (Figure S7). For the first 2 types of non-persistent coding, the
cellular identity of the persistent coding pattern was shuffled independently at each time bin to
alter the AQ persistency of each neuron without altering the population-level AQ signal in each
time bin. Non-persistent 1 allowed each neuron to encode AQ in multiple time points, while non-
persistent 2 was constrained that each neuron encodes AQ in only one of the 5 time points. In
the third non-persistent coding scheme, binary signals (active or inactive) at each time bin were
used to encode AQ by activating distinct sequences of neurons across time for different values

of AQ. We prepared 10 different sequences for 10 bins of AQ values.
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Using these activity patterns as inputs, we trained RNNs to retrieve AQ. Various levels of
noise were added to the input activity to test a range of signal-to-noise ratio (SNR). The RNN
trained with the persistent AQ codes was able to retrieve AQ better than those trained with non-
persistent codes, especially when the input activity noise was high (Figure 6C-D). This indicates
that persistent coding facilitates reliable information retrieval by downstream circuits.
Furthermore, the RNNs that were trained to retrieve AQ from persistent coding were more

robust to changes in the synaptic weights, loss of synapses and cells (Figure 6E).

To investigate the impact of persistency in the brain activity, we next examined how AQ
could be retrieved from the neural activity with different levels of persistency recorded from the 6
cortical areas (Figure 6F). In addition to the original recorded activity (‘Raw’), we artificially
increased or decreased AQ coding persistency by temporally sorting (‘Sorted’) or shuffling
(‘Shuffled’) the cell identity in each area. These persistency manipulations simply changed the
neuron ID of activity and thus did not alter the total amount of AQ signal in each time bin. Using
these sets of neural activity as inputs, we trained RNNs to retrieve AQ. There was a general
trend that an increase in persistency (sorted activity) improved retrieval accuracy, while a
decrease in persistency (shuffled activity) impaired retrieval accuracy (Figure 6G). However, the
effect size differed across different cortical areas. We found that the increase in retrieval
accuracy by sorting was larger when the original persistency in the population was lower, and
the decrease in retrieval accuracy by shuffling was larger when the original persistency was
higher (Figures 6H-1). These results further support the notion that coding persistency is a
critical determinant that enhances the accuracy of information retrieval by the downstream

network.

The results above indicate that persistent codes can be read out by the downstream
more effectively than non-persistent codes when the artificial neural network is allowed to train
its synaptic weights by minimizing the difference between its output and the target (AQ) as
supervised learning. However, in the real brain, such an explicit supervised target label to guide
the shaping of network connectivity is rarely available. Another approach to shape the
connectivity to retrieve particular information is unsupervised learning where errors are
computed using information readily available to the local network such as the input itself
(Lillicrap et al., 2020). Therefore, we next considered the possibility that coding persistency may
also affect signal retrieval processes that do not necessitate a supervised target label for each
information. It has been suggested that the brain may implement unsupervised learning in a

similar way to autoencoder networks in which the target is the input itself (Lillicrap et al., 2020).
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Autoencoders extract the most dominant signals from the input activity and represent them in
the activity of a small number of neurons in the coding layer. The networks shape their
connectivity by reconstructing the input activity from the coding layer and minimizing the
reconstruction error between the input and the reconstructed activity. To examine what
information in the input population activity can be extracted in an unsupervised manner by
downstream recurrent networks, we used a recurrent denoising autoencoder (RDAE) (Maas et
al., 2012; Vincent et al., 2010) that sequentially processes input activity and extracts the latent
representations embedded in the input activity sequence, which are sufficient to reconstruct the
original population activity sequence with noise robustness (Figure 7B; Methods). When the
RDAE was trained on RSC population activity, AQ was extracted in the most dominant
dimensions of neural activity in the coding layer (Figure 7A). The AQ representation in the
coding layer was independent of upcoming choice directions, indicating that the dimensions
reflect value and not motor plans. Other task-related signals were not represented as the
dominant signals in the coding layer (Figure S8). Similar results were observed in the activity
dynamics of the mouse-like RNN agent but not in S1. Systematic comparisons among 6 cortical
areas revealed that extracted AQ in the coding layer was especially high from RSC, and the
amount of extracted AQ showed a high correlation with the AQ coding persistency in the input
population activity (Figures 7B-D). To directly test the effect of persistency, we artificially
manipulated the persistency of AQ coding in RSC without changing the total amount of AQ
signals in the population. We found that artificial increases in the persistency by sorting the cell
identity improved the AQ extraction, while artificial decreases in the persistency by shuffling the
cell identity worsened the AQ extraction (Figure 7E). These results indicate that high
persistency in the input activity can allow AQ retrieval by the downstream network even without

supervised learning.

Taken together, these analyses indicate that the persistency of value coding facilitates a

robust and accurate readout of value by downstream networks.

Signal leakage can contribute to distributed value coding with varying levels of
persistency

The results so far indicate computational advantages of persistent coding. However, in the
mouse brain, AQ coding was widely distributed across the 6 cortical areas with different levels
of persistency (Figures 1C-F). We asked whether anatomical connectivity among cortical areas

relates to the persistency levels of value coding. We analyzed the connectivity among imaged



348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

373

374
375
376
377
378
379
380

areas using the dataset from the Allen Mouse Brain Connectivity Atlas (Oh et al., 2014).
Focusing on the projections from each of the 3 areas with high AQ persistency (RSC, PPC,
pM2), we quantified their axon projection density in each of the other 5 imaged areas (Figure
8A). We found that RSC, PPC, and pM2 predominantly project to each other, with smaller
amounts of direct projections to ALM, S1, and V1 (Figures 8B-C and S9). Thus, 3 areas with
persistent and strong AQ coding densely connect with each other, while they send less direct
projections to the other 3 areas with weaker and less persistent AQ coding. Based on this
observation, we hypothesized that the weak AQ persistency in ALM, S1 and V1 could result
from a signal leakage from the areas that maintain AQ as persistent activity. To test this
hypothesis, we built RNNs with multiple recurrent layers that receive RSC activity through non-
specific synaptic connectivity and examined how AQ coding changes along the downstream
hierarchy of layers (Figure 8D). We found that the fractions of neurons with AQ coding gradually
decreased as the signal leaked through layers of recurrent connectivity (Figures 8E-F).
Concurrently, AQ coding became increasingly less persistent (Figure 8G), and the temporal
tangling of AQ coding in neuronal manifolds gradually increased in the downstream (Figure 8H).
Furthermore, artificial manipulations of AQ coding persistency in the input RSC activity revealed
that persistency in AQ coding can affect the robust distribution of AQ coding with graded levels
of persistency across the downstream layers (Figures 8F-G). We obtained similar results using
PPC and pM2 as the input activity (Figure S10A-H), and the decreases in the AQ coding
neurons and the AQ coding persistency in the downstream layers were more dramatic when the
direct neural projections from layer to layer were sparse (Figure S10I-K). These results indicate
that, even without specific connectivity to selectively route particular information, persistently
encoded information can propagate thorough layers of non-specific connectivity to lead to a
wide distribution of the information encoded with lower levels of persistency in downstream

areas.

DISCUSSION

Brain-wide distribution of task-related information has emerged as a common principle in recent
years. In many cases, such as what we observed for AQ coding (Figure S1), task-related
signals are encoded by a heterogeneous population with some cells increasing but others
decreasing their activity. Such information coding may not be identified with classical large-scale
recording techniques such as fMRI, EEG and ECoG that quantify population average

responses. Even though information coding is wide-spread, the way by which information is
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encoded differs across areas (Hattori et al., 2019). In the present study, the big data of >100k
mouse decisions and the activity from >100k neurons in 2 behavioral tasks allowed us to
investigate the potential origin of the distributed information coding and the computational
advantages of persistent coding using data-driven machine learning approaches. Coding
persistency was both learning- and context-dependent, and the persistent coding emerged
during task learning in both mouse brain and artificial network agents performing the same task.
Persistency facilitates an untangled maintenance of information as well as its reliable retrieval
by downstream circuits. The observation that persistency is context-dependent suggests that
certain cortical areas such as RSC can adjust coding persistency depending on behavioral
demands. For example, persistency may be especially preferred when the task context requires
extended maintenance of the information, or the maintained information is graded as in the case
of value, so that information can be stably maintained and robustly retrieved by downstream
areas. Furthermore, we showed that persistent coding in key areas such as RSC could also
contribute to the wide distribution of AQ coding across the mouse brain even through non-
specific signal leakage. The same principle may also apply to other task-related signals in
various task conditions, providing a possible explanation for the widespread phenomenon of
distributed coding across the brain. In other words, a wide distribution of information is expected
across the interconnected network of the brain, unless specific connectivity restricts the
propagation of particular information. We note that non-specific leakage is one of potential
mechanisms for signal distribution and it remains to be shown how much such a mechanism
contributes to the phenomenon. Furthermore, this mechanism is agnostic to whether the
propagated information has a function in the downstream areas — leaked information could

contribute to various computations performed in downstream areas.

We trained artificial RNNs to imitate the mouse behavioral strategy using behavioral
cloning and investigated the activity dynamics that emerged in the RNNs that were trained
without activity constraints. Previous studies trained task-performing artificial neural networks
either by using the correct action labels which are defined in each task structure (e.g. action A
must be taken after stimulus A) (Masse et al., 2019; Orhan and Ma, 2019) or by RL (Banino et
al., 2018; Song et al., 2017; Tsuda et al., 2020; Wang et al., 2018). Both approaches train the
networks to learn the optimal strategy in the respective task, independent of the actual
behavioral strategy that animals learn in the environment. In our value-based decision task,
animals learn to use behavioral history for decisions during training, but the RL strategy that
animals develop was suboptimal (Figure 4E-F). The origins of the sub-optimality likely include 1)

limited memory capacity, 2) low sample efficiency, 3) limited amount of training trials, and 4)
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inductive bias inherent to each species. Deep RL, an artificial network that learns to solve a task
with RL, does not always have these constraints, and thus it learns a near-optimal strategy
unlike animals. These artificial networks may not reflect the mechanisms used by the brain. In
another common approach, simpler mathematical models (e.g. regression, classical RL models)
directly fit to animal behaviors are useful to understand the behavioral strategies. However, they
do not provide insights into potential neural activity dynamics that may mediate the behaviors.
To overcome these issues, we trained artificial RNNs, using mice as the teachers, to acquire the
sub-optimal RL strategy that mice develop during training. The big data of ~50k decisions
collected from expert mice allowed us to successfully train RNNs to imitate mouse behavioral
strategy. This data-driven approach to train RNNs to implement animal/human-like behaviors
would be a useful approach to obtain the neural network models and analyze what kind of
activity dynamics allows the animal strategy in a particular task. Similarly to our approach,
convolutional neural networks has been trained in visual object recognition tasks. The training
was done to perform the task optimally, as opposed to our approach using behavioral cloning.
Nevertheless these networks have been shown to develop some neural activity characteristics
that resemble the neural activity in the visual system of animals (Kriegeskorte, 2015; Yamins
and DiCarlo, 2016). These deep learning approaches will be a powerful approach to understand

what kind of neural activity may mediate given behaviors.

In this study, we developed dsPCA, a novel dimensionality reduction method which
combines the strengths of supervised and unsupervised algorithms. The supervised aspect
allows us to identify the best demixed linear coding dimensions for targeted task-related
variables, and the unsupervised aspect allows us to identify non-targeted correlated signals in
the remaining population activity. Therefore, dsPCA is a generally applicable method to
understand both the signals of interest and other non-targeted correlational structures in high-
dimensional data. Using dsPCA, we found that both mouse brain and artificial RNN agents
develop cylindrical dynamics, which consists of within-trial cyclic dynamics and its across-trial
transition along AQ axis. Similar within-trial dynamics have been well-studied in monkey motor
cortex during arm movement (Churchland et al., 2012; Russo et al., 2018, 2020). The studies
showed that the population activity state draws untangled rotational dynamics during
movements. They also showed that the activity state draws a simple cyclic trajectory in the
primary motor cortex, while the supplementary motor area draws a helical trajectory that unfolds
along a single direction by reflecting the ‘context’ of the movement (Russo et al., 2020). The
activity trajectory that we observed had cylindrical geometry, and the activity state repeatedly

transitioned along the AQ axis based on the RPE. These spatially confined geometries ensure
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the untangled representation of AQ, which contributes to a robust AQ representation in the
brain. dsPCA and other RNN-based approaches in this study would facilitate the geometric

understanding of population dynamics in both biological and artificial networks.
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Figure Legends

Figure 1. Persistency of action value coding across mouse cortex is area- and learning-
dependent.

(A) Schematic of the value-based decision task and an example expert behavior.

(B) Neural activity was recorded from 6 cortical areas. The heatmap is the trial-averaged z-
scored deconvolved activity of an example RSC population. The activity of each neuron was
normalized to its peak. A half of the recorded trials were used to sort cells by the peak time, and
the mean activity of the other half are shown.

(C) Fractions of cells with significant AQ coding during ready period based on the mean activity

within each of the non-overlapping 200 ms bins (Regression, P < 0.05, 2-sided t-test). The
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fractions with filled circles are significantly above the chance fraction of 5% (P < 0.05, one-sided
t-test). AQ values were shuffled across trials for the right panel.

(D) Activity of AQ coding neurons that were identified at different time windows (yellow
shadings) for example RSC and S1 populations. Trials were binned according to the AQ of each
trial, and the activity in each trial bin was averaged.

(E) t-values for AQ coding at each time bin of ready period for example populations of RSC and
S1 (Regression). Neurons were sorted based on the t-values at the last time bin.

(F) AQ coding persistency of each population as quantified by the persistency index (0: chance
persistency, 1: maximum-possible persistency, Methods, ***P < 0.001, ****P < 0.0001, one-way
ANOVA with Tukey's HSD).

(G) Fraction of trials when mice chose the side with higher reward assignment probability across
training sessions (n = 9 mice, mean x Cl). The first 6 sessions were treated as early sessions.
(H) Activity of AQ coding RSC neurons that were identified from the activity within the specified
time bin (yellow shadings) in early and late sessions (same RSC population between the 2
sessions) indicating an increase in persistency during learning.

(I) AQ coding persistency of each population as quantified by the persistency index for early and
expert sessions (**P < 0.01, ***P < 0.001, mixed effects model with population as the fixed
intercept).

All error bars are s.e.m.

Figure 2. Persistency of history coding is task-dependent.

(A) Schematic of the alternate choice task. The choice opposite to the choice in the previous
trial was rewarded regardless of reward outcome in the previous trial.

(B) Fraction of trials of correctly choosing the side with reward across training sessions (n =9
mice, mean = 95% CI).

(C) Activity of RSC neurons that significantly encoded the action history from previous trial in
alternate choice task and value-based decision task. These neurons were identified using the
activity within the specified time bin (yellow shadings). The activity of the identified action history
coding neurons was separately averaged according to the choice on the previous trial.

(D) Persistency of action history coding in each population as quantified by the persistency
index for the alternate choice task (Alt) and the value-based decision task (Value) (*P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001, mixed effects model with population as the fixed

intercept).
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Figure 3. dsPCA reveals cylindrical dynamics with untangled value representation in
RSC.

(A) dsPCA decomposes the activity of a population of individual neurons that exhibit mixed
selectivity for multiple variables into demixed dimensions and the remaining subspace that is
free of the targeted signals.

(B) Matrix operations to identify the target-free axes. Full QR decomposition of a matrix with
target axes (T) identifies a set of basis vectors that spans the target-free subspace (S¢ree)-
These target-free axes are realigned based on the principal component vectors (Wl',’ca, matrix
with top p PCA loadings) of the activity in the target-free subspace. The target-free axes in the

original n-dimensional space are the columns of Wgs"ca = StreeWp -

(C) Fraction of activity variance along each target axis and the top 5 PC axes from the target-
free subspace. dsPCA was performed on noisy simulated data with target signals A, B, and C
(10 repeated simulations). The amount of variance is similar between the 5 target-free axes
because only Gaussian noise remained in the target-free subspace.

(D) Signals A, B, and C along each dimension identified with dsPCA for the simulated data.
Pearson correlations between the projected activity and each signal are shown.

(E) Decoding accuracy of target signals from original population activity, activity in the target
subspace (3 dimensions), and activity in the target-free subspace (n-3 dimensions). 50,000 and
10,000 trials for training and test sets.

(F) We applied dsPCA to decompose the original population activity into the demixed Q
subspace that consists of AQ, Qch, and ZQ dimensions, and the Q-free subspace which is
orthogonal to the Q subspace.

(G) Fraction of activity variance along each Q-related axis and the top 5 PC axes from the Q-
free subspace for RSC populations. Unlike simulated data (C), the amount of variance between
axes of the Q-free subspace differ, indicating that non-targeted correlated signals exist in the Q-
free subspace.

(H) Q-related signals along each dsPCA dimension for RSC populations. Pearson correlations
between the projected activity and each signal are shown.

(I) Decoding accuracy of Q signals from the original RSC population activity, activity in the Q
subspace (3 dimensions), and activity in the target-free subspace.

(J-K) Example RSC, S1, and V1 population activity dynamics in neuronal manifolds where AQ

axis is paired with Qch and 2Q axes (J), or axes that reflect major within-trial temporal activity
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variance of Q-free subspace (K). dsPCA was applied on the activity between -2 and -1 sec from
choice, and the activity between 4 sec from choice was projected onto the identified axes.
Circles indicate the choice time. Projected activity was temporally downsampled to non-
overlapping 200 ms bins.

(L) Activity state transitions along AQ axis according to the updated action values in RSC,
whereas S1 and V1 activity draw complex trajectories that lead to tangling in the geometry.
Post-action selection trajectory was separately averaged according to the sign of AQ update.
(M) Activity state transitions in (L) shown along the AQ axis.

(N) Population activity in RSC forms cylindrical dynamics where within-trial cyclic dynamics can
transition along AQ axis across trials according to the RPE, while in the other areas AQ
representation is tangled.

All error bars are 95% CI.

Figure 4. Untangled persistency emerges in the artificial RNNs trained to perform
‘mouse-like’ RL.

(A) Optimal RNN agent was trained by updating its synaptic weights to minimize the
discrepancy in decisions (cross-entropy error) between the teacher (optimal choice generator)
and the student (RNN).

(B) Behaviors of the trained optimal RNN agent in an example session. The agent ran the task
by itself using its recurrent activity dynamics to implement RL. The left choice probability of the
RNN agent was taken from its output neuron activity. Left (Q.) and right (Qr) action values were
estimated by fitting a RL model to the behaviors.

(C) Mouse-like RNN agent was trained by updating its synaptic weights to minimize the
discrepancy in decisions (cross-entropy error) between the teacher (expert mice) and the
student (RNN).

(D) Behaviors of the trained mouse-like RNN agent in an example session.

(E) Frequency of rewarded trials (left) and choice predictability by a RL model optimized to
describe expert mouse behaviors (right, 5-fold cross-validation). n = 82 sessions for mice, 500
sessions (5 trained networks, each ran 100 sessions of 500 trials/session) each for the optimal
and mouse-like RNN agents.

(F) Decision dependence on history from past 10 trials, quantified by a regression model
(Methods). RewC: rewarded choice, UnrC: unrewarded choice, C: outcome-independent choice

history. n = 82 sessions for mice, 5 sessions (5 trained networks, each ran 10,000 trials) each
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for the optimal and mouse-like RNN agents. The regression weights were normalized by the
model accuracy. Error bars are 95% CI.

(G) Activity of AQ coding neurons that were identified using the activity at the highlighted time
bin (yellow shading, -1 time step before choice) in the recurrent layer of a trained mouse-like
RNN agent (left), and the t-values of AQ after choice for the activity in each time bin (right).
Each trial had 10 time steps, and 0 corresponds to the choice time. t-values were sorted based
on the last time step (+9). The t-values in RNNs are higher than in mice due to smaller amount

of activity noise. Error bars are s.e.m.

Figure 5. Cylindrical dynamics emerges in mouse-like RNN agents and mice during
training.

(A) Population activity dynamics of the recurrent layer of mouse-like RNN agents in neuronal
manifolds where AQ axis is paired with axes that reflect major within-trial temporal activity
variance in Q-free subspace. Agents at each training stage ran the task for 10,000 trials. dsPCA
was applied on the activity averaged between -5 and -1 time steps from choice, and the
population activity between +5 time steps from choice was projected onto the identified axes. 4
independently trained mouse-like RNN agents are shown. Circles indicate the choice time.

(B) Population activity dynamics of example RSC, PPC, pM2, and ALM populations in early and
expert sessions. The same population of neurons was longitudinally compared for each area.
dsPCA was applied on the activity averaged between -2 and -1 sec from choice, and the

population activity between t4 sec is visualized. Circles indicate the choice time.

Figure 6. Persistency in value coding facilitates reliable and robust value retrieval by
downstream neural networks.

(A) RNN (40 recurrent units) was trained to retrieve AQ from the input population activity
sequence with either persistent or non-persistent AQ coding.

(B) Artificial population activity with either persistent or non-persistent AQ coding in the 200-cell
sequence. 3 types of non-persistent mode were considered (2 rate coding, 1 binary coding;
Methods). In the rate coding populations, the color indicates the Pearson correlation between
the activity and AQ (20 % of neurons at each bin encode AQ). Example populations were
visualized by either clustering AQ-coding neurons at each time bin (fop) or sorting neurons

based on the correlation at the last time bin (bottom). In the binary coding population, AQ is
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encoded by a unique activity sequence across time for each bin of AQ values (ten evenly
spaced bins between +1). 20% of neurons at each time bin participate in each sequence. In the
example, cells are sorted for either sequence 1 or 2. Time bins that are active in both
sequences are colored black.

(C) Mean AQ retrieval accuracy by the downstream RNNs from populations with different coding
modes and varying SNR (10 simulations for each).

(D) The AQ retrieval accuracy at the 5™ time step with different SNR in the input activity. The
purple dashed line indicates the median SNR of AQ coding in imaged RSC populations.

(E) Robustness of trained RNNs. Simulations were performed using artificial population activity
with SNR of 1. Noise to synaptic weights was given by Gaussian noise with the standard
deviation relative to the standard deviation of the weight distribution of each connection type.
Error bars in (D) and (E) are 95% CI.

(F) Artificial manipulations of AQ coding persistency illustrated in an example PPC population
during ready period. Error bars are s.e.m.

(G) AQ retrieval accuracy before and after the persistency manipulations (subsampled 240 cells
were used, **P < 0.01, ****P < 0.0001, one-way ANOVA with Tukey's HSD).

(H) Gain in retrieval accuracy by sorting correlates with the original AQ coding persistency.

(I) Loss in retrieval accuracy by shuffling correlates with the original AQ coding persistency.

Figure 7. Persistency in value coding also facilitates unsupervised value retrieval by
downstream neural networks.

(A) Representation of input population activity in the coding layer of denoising recurrent
autoencoder networks (RDAE). Each network was trained to extract major signals from example
populations of RSC, S1, or a trained mouse-like RNN agent (5,000 trials). Population activity
sequence during ready period was used as the input. Each data point corresponds to a trial,
with the colors indicating the AQ of the trial. Trials were separated according to the choice
directions in the upcoming answer period in the bottom 2 rows. The dominant signals extracted
in the activity of coding neurons (10 neurons) were visualized in 2 dimensions by
multidimensional scaling.

(B) RDAEs extract major signals of the input population activity into the activity of N neurons in
the coding layer by unsupervised learning.

(C) Decoding accuracy of AQ from the activity of N neurons in the coding layer. A simple

feedforward neural network (N neurons in the coding layer are connected to a single output
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neuron with tanh activation function) was used to decode from the coding layer. Input
populations were subsampled 240 cells.

(D) Decoding accuracy of AQ from the activity of neurons in the coding layer (N = 1 and 10)
positively correlates with the AQ coding persistency of the input population activity.

(E) Artificial manipulations of AQ coding persistency in the input RSC population bi-directionally
alter the amount of extracted AQ signal in the coding layer.

All error bars are s.e.m.

Figure 8. Non-specific signal leakage can contribute to widely distributed value coding
with graded persistency.

(A) Injection coordinates for anterograde tracing virus. RSC (red, n = 60 experiments), PPC
(blue, n = 9), and pM2 (yellow, n = 33). Experiments with left hemisphere injections were
mirrored horizontally. Experiments with both WT mice and Cre-transgenic mice were included
(See Figure S9 for WT only). White squares indicate the imaging FOVs used for our neural
activity analyses.

(B) Mean projection density of axons from each source area. Black dots indicate the injection
coordinates.

(C) Connectivity matrix with the mean projection density from each source area to the 6 target
areas that we used for our neural activity analyses (500um x 500um white squares).

(D) RSC population activity sequences were processed through 5 recurrent layers with non-
specific connectivity. Connection probability from layer to layer was set to 20% (Other
probabilities in Figure S10).

(E) Fractions of AQ coding neurons at each of the 200 ms time bins during ready period
(Regression, P < 0.05, 2-sided t-test). Error bars are s.e.m.

(F) Mean fractions of AQ coding neurons at each layer during ready period. Fractions of time
bins within the ready period were averaged for each population. Artificial manipulations of AQ
coding persistency in RSC does not affect the fractions of AQ coding neurons in RSC, but affect
the fractions in the downstream.

(G) AQ coding persistency at each layer. Persistency progressively decreases in the
downstream. Artificial manipulations of AQ coding persistency affect the persistency in the
downstream. Error bars in (F) and (G) are 95% CI.

(H) Temporal dynamics of population activity states visualized with dsPCA applied at each
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layer. Cylindrical dynamics gradually collapses into highly tangled dynamics in downstream

layers.

STAR Methods
Resource availability

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the

lead contact, Takaki Komiyama (tkomiyama@ucsd.edu).

Materials Availability

This study did not generate new unique reagents.

Data and code availability

+ Data reported in this paper are available from the lead contact upon reasonable request.

» dsPCA code has been deposited at Zenodo and is publicly available. The DOI and the link to
the latest code in the GitHub repository are listed in the key resource table.

» Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

Experimental model and subject

Animals

The experimental data in the value-based decision task were first reported in ref. (Hattori et al.,
2019). The data in the alternate choice task were newly collected for the current study. Both
male and female mice were included in both datasets because we did not observe obvious sex-
dependent differences in their neural activity patterns. Mice were originally obtained from the
Jackson Laboratory (CaMKlla-tTA: B6;CBA-Tg(Camk2a-tTA)1Mmay/J [JAX 003010]; tetO-
GCaMP6s: B6;DBA-Tg(tetO-GCaMP6s)2Niell/d [JAX 024742]). All mice (6 weeks or older) were
implanted with glass windows above their dorsal cortex for in vivo two-photon calcium imaging.

All mice were water-restricted at ~1ml/day during training.

Method details
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Surgery

Mice were continuously anesthetized with 1-2% isoflurane during surgery after subcutaneous
injection of dexamethasone (2mg/kg). After exposing the dorsal skull and removing the
connective tissue on the skull surface using a razor blade, we marked on the skull with black ink
at the coordinates of [AP from bregma, ML from bregma] = [+3.0 mm, 0 mm], [+2.0 mm, 0 mm],
[+1.0 mm, 0 mm], [0 mm, O mm], [-1.0 mm, 0 mm], [-2.0 mm, 0 mm], [-3.0 mm, 0 mm], [0 mm,
1.0 mm], [0 mm, £2.0 mm], [0 mm, £3.0 mm], [-2.0 mm, £1.0 mm], [-2.0 mm, £2.0 mm], [-2.0
mm, £3.0 mm]. We then applied saline on the skull and waited for a few minutes until the skull
became transparent enough to visualize vasculature patterns on the brain surface. We took a
photo of the vasculature patterns along with marked coordinates and used it to find target
cortical areas for two-photon microscopy. A large craniotomy was performed to expose 6
cortical areas, and a hexagonal glass window was implanted on the brain. The glass window
was secured on the edges of the remaining skull using 3M Vetbond (WPI), followed by
cyanoacrylate glue and dental acrylic cement (Lang Dental). After implanting the glass window,
a custom-built metal head-bar was secured on the skull above the cerebellum using
cyanoacrylate glue and dental cement. Mice were subcutaneously injected with Buprenorphine

(0.1 mg/kg) and Baytril (10 mg/kg) after surgery.

Behavior task and training
Mice were water-restricted at 1-2 ml/day after a minimum of 5 days of recovery after surgery.
We began animal training in pre-training tasks after at least a week of water restriction. We used
BControl (C Brody), a real-time system running on Linux communicating with MATLAB, to
control behavioral apparatus. We placed 2 lickports in front of head-fixed mice to monitor their
licking behaviors and give water rewards. Licking behaviors were monitored by IR beams
running in front of each water tube. We used an amber LED (5mm diameter) as the ready cue
and a speaker for auditory cues. Each trial begins with a ready period (2 or 2.5 sec with the
amber LED light), followed by an answer period with an auditory go cue (10 kH tone). The 10
kHz tone was terminated when animals made a choice (the first lick to a lickport) or when the
answer period reached the maximum duration of 2 sec. Mice received a 50 ms feedback tone
(left: 5 kHz, right: 15 kHz) after a choice. ~2.5 yl water was provided to mice on each rewarded
trial from a lickport.

Before running in the alternate choice task or value-based decision task, mice were
trained in 2 pre-training tasks. In the 15 pre-training task, mice were rewarded for either choice

during the answer period. We gradually increased the mean ITI from 1 sec to 6 sec with £1 sec



738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771

jitter. Through training in this task (2-3 days), mice learn that they can obtain water rewards from
the 2 lickports if they lick during the answer period. In the 2" pre-training task, reward location
alternated every trial irrespective of their choice directions. Furthermore, licking during ready
period was punished by 500 ms white noise alarm sound and trial abort with an extra 2 sec ITlI
in addition to the regular 5-7 sec ITI. Through training in this 2" pre-training task (2-3 days),
mice learned to lick from both lickports and withhold licking during the ready period.

Alternate choice task

In the alternate choice task, mice need to change their choice from a previous trial to get a
water reward. For example, if a mouse chose left on one trial, regardless of whether the mouse
received a reward or not, a water reward is available only from the right choice on the next trial.
The mouse will not get any rewards by repeating left choices for many trials because a reward
will not be assigned to the left until the mouse collects the assigned reward on the right side.
Mice need to rely on which side they chose in the previous trial to make the correct choice. ITI
was 5-7 sec, and the trials with licking during ready period were classified as alarm trials (500
ms white noise alarm sound and extra 2 sec ITI). Mice were trained for at least 2 weeks before
starting 2-photon calcium imaging.

Value-based decision task

In the value-based decision task, a reward is probabilistically assigned to each choice. On each
trial, a reward may be assigned to each choice according to the reward assignment probabilities
that are different between two choices. Once a reward was assigned to a lickport, the reward
remained assigned until it was chosen. As a result, the probability that a reward is assigned to a
choice gradually increases if the choice has not been selected in the recent past trials. The
combinations of reward assignment probabilities were either [60 %, 10 %] or [52.5 %, 17.5 %] in
a trial, and reward assignment probabilities switched randomly every 60-80 trials in the order of
[Left, Right] = ..., [60 %, 10 %], [10 %, 60 %], [52.5 %, 17.5 %], [17.5 %, 52.5 %], [60 %, 10 %],
.... The probability switch was postponed if the fraction of choosing the lickport with higher
reward assignment probability was below 50 % in recent 60 trials until the fraction reached at
least 50 %. ITl was 5-7 sec, and the trials with licking during ready period were classified as
alarm trials (500 ms white noise alarm sound and extra 2 sec ITI). Trials in which mice licked
during ready period (‘alarm trials’, 5.15 %) and the trials in which mice failed to lick during the
answer period (‘miss trials’, 4.68 %) were not rewarded. We did not include alarm and miss
trials in neural activity analyses to ensure that the ready periods we analyzed were free of

licking behaviors and that mice were engaged in the task in the trials.



772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

Two-photon calcium imaging

We used a two-photon microscope (B-SCOPE, Thorlabs) with a 16x objective (0.8 NA, Nikon)
and 925 nm excitation wavelength (Ti-Sapphire laser, Newport) for in vivo calcium imaging.
Images were acquired using Scanlmage (Vidrio Technologies) running on MATLAB. All calcium
imaging was performed using camk2-tTA::tetO-GCaMP6s double transgenic mice that express
GCaMP6s in camk2-positive excitatory neurons. Each field-of-view (FOV) (512 x 512 pixels
covering 524 x 524 ym) was scanned at ~29 Hz. Areas within the FOV that were not
consistently imaged across frames were discarded from analyses (Typically 10 pixels from each
edge of the FOV). We imaged and analyzed layer 2/3 neurons of 6 cortical areas in this study:
retrosplenial (RSC, 0.4 mm lateral and 2 mm posterior to bregma), posterior parietal (PPC, 1.7
mm lateral and 2 mm posterior to bregma), posterior premotor (pM2, 0.4 mm lateral and 0.5 mm
anterior to bregma), anterior lateral motor (ALM, 1.7 mm lateral and 2.25 mm anterior to
bregma), primary somatosensory (S1, 1.8 mm lateral and 0.75 mm posterior to bregma), and
primary visual (V1, 2.5 mm lateral and 3.25 mm posterior to bregma) cortex. Images from these
areas were collected from both hemispheres. We collected only 1 population from each
hemisphere for each cortical area of a single mouse. We imaged both hemispheres in two
different behavioral sessions if the FOVs on both hemispheres were clear at the time of

imaging.

Image processing

Images from 2-photon calcium imaging were processed using a custom-written pipeline (Hattori,
2021). The pipeline corrects motion artifacts using pyramid registration (Mitani and Komiyama,
2018), and slow image distortions were further corrected by affine transformations based on
enhanced correlation coefficients between frames (Evangelidis and Psarakis, 2008). We used
Suite2P (Pachitariu et al., 2016) to define regions of interests (ROIs) corresponding to individual
neurons and extract their GCaMP fluorescence. We selected only cellular ROls using a user-
trained classifier in Suite2P and by manual inspections. At the step of signal extraction from

each cellular ROI, we excluded pixels that overlap with the other ROls.

Neural activity

The neural activity data for the value-based decision task were first reported in ref. (Hattori et
al., 2019). We also additionally collected new neural activity data from mice running the
alternate choice task. The activity was continuously recorded with in vivo two-photon calcium

imaging at ~29 Hz from mice during the task performance. GCaMP fluorescence time series
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were deconvolved to obtain signals that better reflect the kinetics of neural spiking activity using
a non-negative deconvolution algorithm (Friedrich et al., 2017; Pachitariu et al., 2018). The
deconvolved signal of each neuron was z-score normalized using the activity time series during
the entire imaging session before performing all the activity analyses in this study.

For the alternate choice task, we collected and analyzed the activity of 8,524 RSC
neurons (14 populations), 3,186 PPC neurons (7 populations), 7,915 pM2 neurons (14
populations) and 4,911 ALM neurons (10 populations) from 9 expert mice while they were
running the alternate choice task. For the value-based decision task, we analyzed the activity of
9,254 RSC neurons (15 populations), 6,210 PPC neurons (13 populations), 7,232 pM2 neurons
(13 populations) and 5,498 ALM neurons (10 populations) from early sessions (< 6" session),
and 9,992 RSC neurons ( populations), 7,703 PPC neurons ( populations), 9,759 pM2 neurons (
populations), 6,721 ALM neurons ( populations), 7,576 S1 neurons (14 populations) and 2,767

V1 neurons (6 populations) from expert sessions of the data used in ref. (Hattori et al., 2019).

Reinforcement learning model for mouse behaviors

The reinforcement learning model that we used to estimate the action values in each trial was
taken from ref. (Hattori et al., 2019). This model was optimized specifically for mouse behaviors
and not necessarily ideal for describing the RL action policy of artificial neural network agents
(e.g. Optimal RNN agents). Action values of chosen (Q.) and unchosen (Q,..r) options in each
trial were updated as follows:

Qcn(t) + trew * (R(t) = Qen (1)) if rewarded (R(t) = 1)
Qcn (8) + aynr * (R(®) — Qe (1)) if unrewarded (R(t) = 0)
Quncn(t +1) = (1 = 6) * Quncn(t)  [eq.2]

Qen(t + 1= {

where a,.,, and a,,, are the learning rates for rewarded and unrewarded trials respectively, & is
the forgetting rate for the unchosen option, and R(t) is reward outcome in trial t (1 for rewarded,
0 for unrewarded trials). The learning rates and the forgetting rate were constrained between 0
and 1. In alarm and miss trials, values of both options were discounted by §. The probability of
choosing left (P,) on trial t is estimated using left (Q,) and right (Q) action values as follows:

1
P = T mterao-arey 16931
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where f, is the value bias which is constant within each session, and 3, reflects the behavioral

sensitivity to AQ. The RL model was fit to the behavioral choice patterns with maximum

likelihood estimation.

AQ-coding neurons
AQ-coding neurons in the value-based decision task were identified with the following multiple
linear regression model.

a;(t) = BcC(t) + PagAQ(E) + Bo,, Qcn(t) + BsZQ(E) + Bo leq. 4]
where q;(t) is the mean activity of /" neuron within each 200 ms time bin on trial t (except for
some analyses (Figures S1 and S2) where the mean activity within the first 2 sec of ready
period was used instead), C(t) is the choice on trial t (1 if contralateral choice, -1 if ipsilateral
choice), AQ(t) is the value difference between contralateral and ipsilateral options on trial ¢,
Q. (t) is the value of the chosen option on trial t, and Y Q (t) is the sum of values of both
options on trial t. The regression weights were estimated by the ordinary least squares method.
AQ-coding neurons were identified with two-tailed t-test for the 5, regression weight (statistical

threshold of either P < 0.05 or P < 0.01 as indicated in the figure legend of each analysis). The

t-value for Baq () is Terowy = Sefg‘jQ) where se(faq) is an estimate of the standard error of 5.

Action history coding neurons
Neurons that encode action history from an immediately preceding trial in the alternate choice
task and the value-based decision task were identified with the following multiple linear
regression model.

a;(t) = Bc,C(t) + Be,_, C(t=1) + B [eq.5]
where q;(t) is the mean activity of / neuron within each 200 ms time bin on trial ¢, C(¢t) is the
choice on trial t (1 if contralateral choice, -1 if ipsilateral choice), C(t — 1) is the choice on trial
(t — 1) (1 if contralateral choice, -1 if ipsilateral choice, 0 otherwise). The regression weights
were estimated by the ordinary least squares method. Action history coding neurons were

identified with two-tailed t-test for the Bc,._., regression weight (statistical threshold of P < 0.05).

Bc,_
The t-value for BC(H) is Tﬁc(t_l) By

B m where se(B¢,,_,,) is an estimate of the standard error

of 56@_1)-
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Persistency index
Persistency index to quantify the mean persistency of AQ coding or action history coding in a
population of neurons was defined as follow;

1 i j .
= Xje1 Xi=1 std(T;;l]uffled sequence) — Y, std(Taw sequence)

1 i,j i
7 Xjm1 Di=q Std (Tshufﬂed sequence) — ¥, std(TLy eq Sequence)

Persistency index = [eq. 6]

where T},,, sequence is the time series of t-values for Bag Or ﬁc(t_ " that was obtained by fitting

the [eq. 4] or [eq. 5] to the activity of each of the non-overlapping 200 ms time bins between 5
sec before the ready cue and 2 sec after the ready cue. The across-time standard deviation of
the T)',,, sequence was summed across all n neurons in the population (including neurons with
non-significant t-values), and this summed standard deviation was normalized by min-max
normalization such that the persistency index ranges between 0 (chance level persistency of a
target population) and 1 (maximum persistency of a target population). The maximum
persistency of a target population, Y-, std (Tsiorted sequence), was obtained by independently

sorting the cell identity at each time bin according to the f5,, t-values of each cell in the time bin.
The chance level persistency of a target population, % T Xi=1 std(T;,’l’;lfﬂed sequence), was

obtained by independently shuffling the cell identity at each time bin. To minimize the effect of
randomness in the shuffling procedure, we iterated the shuffling m times (m = 10) and took the
mean of the 10 iterations. This persistency index describes how persistent the target signal
coding is above chance and how far the persistency is from the maximum persistency that the

target population activity could achieve.

Demixed subspace principal component analysis (dsPCA)
Supervised dimensionality reduction algorithms can identify dimensions that encode targeted
signals in high-dimensional data. However, they do not provide any information about signals
that are not targeted by the users. As a result, these supervised analyses may miss important
signals that exist in the original high-dimensional data. On the other hand, unsupervised
dimensionality reduction algorithms can find dimensions for the major signals in the high-
dimensional data, but they do not automatically reveal what kind of signals are reflected along
each dimension. Furthermore, unsupervised methods may miss the signals of interest if the
target signals are much weaker than the other dominant signals in the data.

We developed a novel dimensionality reduction algorithm that combines the strengths of

both supervised and unsupervised methods. The demixed subspace principal component



896  analysis (dsPCA) identifies demixed coding axes for targeted variables in a supervised manner,
897 and then identify axes that capture the remaining variance in the data using an unsupervised
898  method. Although previously reported demixed principal component analysis (dPCA) has similar
899  objectives (Kobak et al., 2016), dPCA can only identify targeted coding axes for discrete

900 variables. In contrast, dsPCA can identify demixed axes for both discrete and continuous

901 variables. Furthermore, although dPCA splits each targeted signal into multiple linear axes,

902 dsPCA identifies a single linear coding dimension for each of the target signals, and all the

903 linear information for the target signals are contained within the dimensions identified by these

904  single coding axes.

905 The input to the algorithm is a 3"-order tensor of population activity with dimensions of
906  Trial (m) x Time () x Neuron (n).
907 Xtrialxtimexneuron = metxn [eq- 7]

908 The tensor X,,x:xn IS first averaged over time axis elements within a specified time range, and

909  we get a 2"%-order tensor of X}«

X111 X21 " Xna
X1,2 X22 ° Xpp2

910 Xonxn = : : . : [eq.8]
Xim X2m 0 Xnm

911  To identify the demixed linear coding axes that encode AQ, Qch, or ZQ in the population
912  activity, we fit the following multiple linear regression model to the mean activity of individual

913  neurons during the ready period;

Xi1 /1 AQ; Qen, z3Q1\ Bio £

914 ;A Qo 20 pe |y =

.2 [eq.9]

x.- : : : : / ﬁi,Qch g-

Lm 1 AQm Qchm 2:Qm ﬁi,gQ m
915  where f;xg, Big.,» @Nd Bizq are the regression coefficients of the " neuron. For a population of
916  n neurons, we obtain n regression coefficients for each type of Q-related signal. These

917  regression coefficients are used to define the coding axes as follows;

Aqy — T
— [Agy\ _ Bag _ (Biag Bano t Bnao)

918 Ag=|"12 | =222 -
T\ 5 T Bl S
Aq, ™ 1|Bisol

[eq.10]



925

926

919
920
921
922
923
924

927
928
929
930

931

932

933

934
935
936
937
938
939
940

941

thl

ﬂ _ chy _ ﬁQch _ (BLQch BZ'Qch ﬁn;Qch)T [eq.11]
C - H - —_ - .
Bo. 2
deny, 8¢ hllz YialBioenl
2qq N
— 2q, Bxo (Bizo PBaszo  Pnzo)T
2q = = = - : [eq.12]

x4, [Bzell \/ % 1lBizel”

Note that these coding axes are ‘demixed’ coding axes where the activity variance for partially
correlated variables are demixed into one of the axes for the partially correlated variables
thanks to the linear demixing in the regression model ([eq. 9]). Although some previous studies
further orthogonalized these demixed coding axes (Mante et al., 2013), we did not orthogonalize
between the coding axes because further orthogonalization would remix these best demixed

coding axes.

Next, our goal is to identify a neural subspace that does not encode any of the targeted
Q-related signals. To identify the neural subspace that is free of the 3 targeted Q-related
signals, we solve the following full QR decomposition of an n x 3 matrix with the 3 coding axis

vectors using Householder reflections;

Ay Geny 2qa

A 2
?2 qc:hz ?2 =(SQ' Sfree)R

Aqn Achy SQn

(ﬁ' E); ﬁ! ﬁ' E: f(n_g))R

911 921 931 fir fa1 f(n—3),1
_ CI1E,2 CI23,2 CI3S,2 f1z fzz f(n—:3),2 R [eq. 13]
9in d2n 43n fl,n fZ,n f(n—3),n

where R is an upper triangular matrix, S, is a neural subspace that captures all Q-related
signals, and Sy, is the Q-free subspace that is orthogonal to the §,. S is formed by 3
orthonormal basis vectors (q;, g2 q3), and these basis vectors and the 3 coding axis vectors
(Kc—i, qenr Z_ci) span the identical neural subspace. On the other hand, S¢... is formed by (n — 3)
target-free orthonormal vectors (ﬁ, f; M) and capture all the remaining population
activity variance that were not captured by the subspace §,. The representation of the

!

population activity X;,«, in Stree IS given by

pTOijreeX' = X'Stree [eq. 14]
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Lastly, we further realign the dimensions of the Q-free subspace S¢.ee such that
minimum numbers of dimensions are necessary to explain the remained activity variance as
much as possible. This realignment is done using the principal component vectors from PCA on

projs,... X - The top p principal component vectors (p < n - 3) can be used as the major Q-free

subspace dimensions for dimensionality reduction purpose as follows;
Fp’ =X (Sfreewppca) — Xlwpdspca [eq. 15]

where the m-by-p matrix Fp’ is the top p principal components of the activity within the Q-free

subspace, the (n-3)-by-p matrix W,,P““ is the loadings matrix of the PCA, and the n-by-p matrix

Wpds"“‘ is the loadings matrix of the dsPCA. The columns of Wpds”“‘ are the Q-free axis

vectors in the raw n-dimensional population activity space. More generally, the neural subspace

that is free of k targeted variables can be obtained by the same [eq. 15] with p < n — k.

Through these steps ([eq. 7] ~ [eq.15]), dsPCA identified the 3 linearly demixed coding

axes for the targeted Q-related signals (E, dcn ﬁi), and (n - 3) target-free axes (column

vectors of W,,_3%P¢%)

. We confirmed that none of the targeted signals could be linearly
decodable from the population activity within the obtained target-free subspace (Figures 3E, 3l

and S3C).

In this manuscript, we decomposed neural population activity into demixed Q subspace
and Q-free subspace using dsPCA. The Q subspace consists of demixed linear coding axes for
AQ, Qch and zQ, and all activity variance that linearly relates to these Q-related signals are
included in this subspace. On the other hand, all the other activity variance that did not remain
in the Q subspace is included in the Q-free subspace. The activity state of the neural population
changes across trials within the Q subspace depending on how each of the Q-related signals is
updated by choice and its outcome. We also identified the axes that capture the major within-
trial temporal activity variance in the Q-free subspace by performing PCA on the 2"-order

tensors that are obtained by averaging projs, X over trial axis elements.

Quantification of Q-related signals in subspaces from dsPCA
dsPCA decomposed population activity into Q subspace and Q-free subspaces. We examined
the amount of Q-related signals in each subspace. The strength of Q-related signals in a full

population activity with n neurons was quantified using linear decoders given by
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200 = Y B + 5% leq.16]
i=1

n

Qen(® = ) p"a®) + " [eq.17]

=1
20 = ) Fa(®) + 5% leq. 18]
i=1

where a;(t) is the activity of the " neuron on trial t, B is the regression weight for a;(t), and 5
is the constant term. The decoder was trained with an L2 penalty by selecting the regularization
parameter by 5-fold cross-validation. The decoding accuracy was obtained with 5-fold cross-
validation by separating trials into training and test sets. Similarly, the strength of Q-related
signals in the 3-dimensional Q subspace and the (n - 3)-dimensional Q-free subspaces were
quantified using linear decoders on the projected population activity in each subspace as

follows;

40 = Y B0+ leq.19]
i=1

X

Qen(®) = Y BLMsi(®) + B3 [eq.20]

i=1
20 = ) B0+ 52 leq.21]
i=1

where s;(t) is the population activity along the " dimension of the subspace on trial t, g7 is the
regression weight for s;(t), and B§ is the constant term. x = 3 for Q subspace while x =n —3
for Q-free subspace. These analyses revealed that all Q-related signals were captured by the
Q-subspace, while Q-related signals were completely absent in the Q-free subspace (Figures
3E, 3l and S3C).

RNN agents with optimal or mouse-like RL strategy
The RNN agents trained to perform RL in this study consisted of 2 neurons in the input layer,
100 neurons in the recurrent layer, and 1 neuron in the output layer. The agents were trained to

perform RL in the same behavior task environment with 10 time steps per trial. The 2 input
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neurons receive choice and reward outcome information only at the time step immediately after
choice, and the history of the choice outcome information was maintained through the recurrent
connectivity in the downstream recurrent layer. The sequence of activity fed into the input
neurons was given as vectors with either choice or reward history labels in their elements. The
elements that correspond to the time steps immediately after choice took 1 for left choice and -1
for right choice in the choice history vector, and the elements took 1 for reward outcome and -1
for no-reward outcome in the reward history vector. These elements took 0 in miss trials. The
other elements of the vectors were all zeros. We sequentially fed 100 time steps of sequences
into these input neurons, and the network training was done with unroll length of 100 time steps
for backpropagation through time. The choice input neuron and reward input neuron connect
with neurons in the recurrent layer. The neurons in the recurrent layer are connected with each
other through recurrent connections, which allows each recurrent neuron to receive outputs of

the previous time steps. The output of the recurrent layer is given by

Y@ = tanh(Wyx) + Wyy_1) + b) [eq.22]

where tanh(-) is a hyperbolic tangent activation function of the form tanh(z) = % , Xp isa2

x 1 vector containing the choice and reward information from a previous time step, y;_1) is a
100 x 1 vector containing the layer’s outputs at time step t, W, is a 100 x 2 matrix containing
the connection weights for the inputs of the current time step, W, is a 100 x 100 matrix
containing the connection weights for the outputs of the previous time step, and b is a 100 x 1
vector containing each neuron’s bias term. The recurrent neurons send their outputs to the

output neuron. The output neuron calculates the probability of selecting left action in the trial

1
1+e~Z°

with a sigmoid activation function of the form o(z) = The agent then selects an action for

the trial probabilistically by following the choice probability from the output neuron. This 3-layer
RNN agent was trained to perform either an optimal RL strategy or the RL strategy that mice

develop after training using its recurrent activity dynamics.

To train the RNNs to perform optimal RL in the task environment, we directly utilized the
reward assignment rule of the task. In the value-based decision task, a reward is assigned to
each choice according to the reward assignment probabilities of each choice on each trial. Once
a reward was assigned to a lickport, the reward was maintained on the choice until it was
chosen by the animal. As a result, the probability that a reward is assigned to a choice gradually
increases if the choice has not been selected in the recent trials. The actual cumulative reward

probabilities of left and right choices are given by
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pO=1- [] 0-40) leq23]
x=t—Ng(t)
t

P)=1- || (1-4)  leq.24]

x=t—N(t)
where A.(x) is the reward assignment probability of choice ¢ on trial x, N.(t) is the number of
successive ¢ choices before trial t (e.g. Nz (t) = 3 when the choice on (t-4) was left and the
choices on (t-3), (t-2), (t-1) were right). Therefore, an optimal choice generator would select a
choice with higher cumulative reward probability on each trial as follows;

Optimal choice = argmax{P,(t)} [eq.25]
Cc

We used this optimal choice generator as the teacher to train RNNs to learn a near-optimal RL
strategy. Unlike the optimal choice generator that knows the exact reward assignment
probabilities (A.(x)) and the reward assignment rule, the RNNs are agnostic to these hidden
variables. Therefore, our goal is to train the RNNs to use only the past choice and reward
history to make choices that are similar to the choices made by the optimal choice generator. To
train the RNNs to imitate the behaviors of the optimal choice generator, we calculated binary

cross-entropy as the loss function to be minimized. The cross-entropy is given by

M
1 . .
Hp — _Mz(a?mmlallog(p{mN) + (1 _ al?ptlmal)log(l _ leNN)) [eq_ 26]

i=1

optimal
i

where M is the total number of training trials, a is 1 or 0 when the optimal choice generator

selected left or right action on the i trial respectively, and p*V" is the left choice probability of the

RNN agent from its output neuron.

To train RNNSs to perform mouse-like RL that is suboptimal in the task environment, we
used 50,472 decision making trials of expert mice in the task environment. We fed the choice
and reward history that expert mice experienced into the RNNs, and trained the RNNSs to imitate
the choice patterns of expert mice. To do this, we calculated the binary cross-entropy as the

loss function to be minimized. The cross-entropy is given by

M
1
Hy = =22 > @ <log(pf™") + (1 - a"**)log (1~ p*™))  [eq.27]
i=1
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where M is the total number of training trials, aj*°**® is 1 or 0 when the expert mouse selected
the left or right action in the /" trial respectively, and pf"" is the left choice probability of the RNN

agent from its output neuron.

For the training of both the optimal RNN agents and mouse-like RNN agents, the cross-
entropy loss was calculated at variable time steps for each trial to reflect the temporal variability
of the timing of decision making in this task (variable ITI, variable ready-period, variable reaction
time), and all the synaptic weights of the RNN agent were trained with backpropagation through
time. The training was optimized using mini-batch gradient descent with Nesterov momentum
optimization (learning rate of 0.001 and momentum of 0.9, batch size of 128), and the training
was terminated when the loss for a validation set (1/5 of trials) stopped decreasing for the
consecutive 50 epochs as a form of regularization (Early stopping). The trained RNN agents ran
the task in a simulated environment with the length of 500 trials/session, and the RL behavioral
strategy in the simulated environment was quantified by a RL model optimized to describe expert

mouse behaviors [eq.1 — 3] and a logistic regression model [eq. 28].

Quantification of history-dependent behavioral strategy

The quantification of behavioral strategy for mice and RNN agents was performed with either a
RL model [eq.1 — 3] or a logistic regression model [eq. 36]. The logistic regression model
predicts an action in each trial based on 3 types of history from the past 10 trials. The model is

given by

10 10
logit(PL (t)) = Z Brewc(t—i) * RewC(t — i) + z Bunrc(e—iy * UnrC(t — i)
i=1 i=1

10
£ B CE=D+fy  [eq.28]
i=1

where P, (t) is the probability of choosing left on trial t, RewC(t — i) is the rewarded choice
history on trial t — i (1 if rewarded left choice, -1 if rewarded right choice, 0 otherwise),

UnrC(t — i) is the unrewarded choice history on trial t — i (1 if unrewarded left choice, -1 if
unrewarded right choice, 0 otherwise), C(t — i) is the outcome-independent choice history on
trial t — i (1 if left choice, -1 if right choice, 0 otherwise). Brewc(t-i) » Bunrc(e—i)» @nd Bee—q) are
the raw regression weights of each history predictor, and g, is the history-independent constant

bias term. The sizes of these raw weights reflect the relative contribution of each history variable
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to decision making in a behavior session. However, the weight size does not reflect the absolute
strength of the contribution to decision making because the strength of each history effect on
decision making is determined by not only the regression weight but also the choice prediction
accuracy of the regression model. Therefore, we normalized the regression weights by the

choice predictability of the regression model as follows;

Bx
2%21(|BReWC(t—i)| + |.3Unrc(t—i)| + |ﬁc(t—i)|) + 1Bol

correct
Normalized 3, = <¢mmw —05)* [eq.29]

Nall

choice

where N4,  is the number of choice trials in the session, and N521Tet is the number of choice

trials that were correctly predicted by the [eq. 36]. Each regression weight is divided by the sum
of absolute values of all the regression weights before being multiplied by the choice prediction
accuracy. This normalization turns raw regression weights to reflect the fraction of choice
predictability by each of the history variable. These normalized weights are comparable across
different behavior sessions or mice because they reflect the absolute strength of each history
event on decision making. We used these normalized weights to compare the history

dependence of expert mice and trained RNN agents for their decision making.

Artificial population activity sequence

Artificial population activity sequences with either persistent or non-persistent rate coding of AQ
were created based on the distributions of the tuning curves of AQ coding among RSC neurons.
Each population consisted of 200 neurons with 5 time bins, and we assigned 20% of neurons at
each time bin to encode AQ. The tuning curve slope of AQ coding of each RSC neuron (£,()
was measured by fitting [eq. 4] to the activity during ready period. We defined across-trial
standard deviation of ,,AQ(t) from [eq. 4] as the signal standard deviation of AQ coding. To
derive the noise standard deviation, we first subtracted f,,AQ(t) from the ready period activity
sequence of each trial. The residual ready period activity sequences were then concatenated
across trials. The standard deviation of the concatenated activity sequence was defined as the
noise standard deviation. The SNR of AQ coding was defined as the ratio of the signal standard
deviation to the noise standard deviation. The tuning curve slope for each activity time bin was
randomly sampled without replacement from the distributions of AQ-coding neurons. The AQ
signal was linearly encoded at each time bin according to the sampled tuning curve slope, and
additional Gaussian noise was added to the neural activity. The other non-AQ coding activity

time bins simply exhibited Gaussian noise. We created populations with 3 different types of rate



1111
1112
1113
1114
1115
1116

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128

1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

coding modes (Persistent, Non-persistent 1, Non-persistent 2). In the populations with
Persistent mode, the identical 20% of neurons encoded AQ at all 5 time bins. In the populations
with Non-persistent 1 mode, we randomly selected 20% of neurons at each time bin as the AQ-
coding neurons and allowed each neuron to encode AQ with different tuning curve slopes at
different time bins. Non-persistent 2 mode is similar to Non-persistent 1, except that each

neuron in the population encoded AQ at only one of the time bins.

In addition to the 3 rate coding schemes, we also considered a coding mode that
encodes AQ as specific sequential activity patterns across cells in a population. In this 3™ non-
persistent coding mode (Non-persistent 3), neural activity at each time bin can take only binary
states (0: inactive, 1: active). Therefore, this population encodes AQ using only the identity of
active cells. We encoded 10 different sequences in a population such that each sequence
uniquely corresponds to one of the 10 binned AQ (-1 to 1 with binning of 0.2 width). For each
sequence, we randomly assigned 20% of neurons at each time bin as active neurons with a
constraint that each neuron can be active only at a single time step in a sequence. After
encoding the 10 different sequences in a population, we added Gaussian noise to the activity of
each neuron. We defined the SNR of this coding scheme as the ratio of the across-time
standard deviation of the activity of a neuron to the standard deviation of its added Gaussian

noise.

AQ retrieval by RNN

RNNs were trained to retrieve AQ information from the input population activity sequence. The
RNN had 40 recurrent neurons with tanh activation functions and an output neuron with linear
activation function. The network weights were updated by backpropagation through time with
RMSprop to minimize mean-squared-error (MSE) between the network outputs and AQ values
of the trials in a training set. The network training was terminated when the MSE of a validation
set stopped decreasing for the consecutive 20 epochs as a form of regularization (Early
stopping). For each training iteration, we used 20% of available trials as a test set to calculate
the AQ retrieval accuracy by the trained network, and the remaining 80% of the trials were
further split into validation set (10%) and training set (70%). We repeated the network training 5
times by using different sets of trials as the test set such that we can obtain AQ predictions by
the trained networks for all available trials in a cross-validated way. The AQ retrieval accuracy
was calculated by comparing the AQ predictions to the true AQ from the RL model. For the AQ
retrieval from cortical activity, we used only 240 cells as the inputs to match the number of cells

across different cortical areas. For each neural population, we subsampled 240 cells in each
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iteration allowing repetitions with the smallest number of iterations to include every cell at least

once for decoding, and the AQ retrieval accuracy from the iterations were averaged.

Denoising recurrent autoencoder

Autoencoder is an artificial neural network that learns to extract efficient coding of its input
without supervision. It consists of an encoder network and a decoder network, and they are
sequentially connected through a coding layer with small number of neurons. In a trained
autoencoder, the encoder extracts essential signals in the input into the coding layer, while the
decoder tries to reconstruct the original input from activity in the coding layer. When the number
of neurons in the coding layer is smaller than the dimensions of the input, only signals that are
dominant in the input remains in the coding layer of a trained autoencoder network. Among
various types of autoencoders, we used denoising recurrent autoencoders (Maas et al., 2012;
Vincent et al., 2010) to extract dominant signals embedded in each population activity
sequence. Although autoencoders with only feedforward connections or convolutional neural
networks can also extract latent signals in a population activity sequence, we used recurrent
neural networks that sequentially process the input activity because the neural networks in a
brain also process input activity sequentially. Our goal is to understand whether such
biologically relevant recurrent networks can extract signals from input activity without explicit
teaching labels (i.e. unsupervised learning). The latent signals extracted by a recurrent
autoencoder represent the latent signals from the perspective of a recurrent network that

processes input activity sequentially through its recurrent connectiviy.

The autoencoders that we used to visualize extracted dynamics from example
populations (Figure 7A) consisted of 3 hidden layers with recurrent connectivity (15 50 neurons,
2": 10 neurons, 3": 50 neurons), and the activity of all neurons in a population was used as the
input to the autoencoder. On the other hand, the autoencoders that we used for quantitative
across-area comparisons (Figure 7B-E) consisted of 3 hidden layers with recurrent connectivity
(1% 20 neurons, 2"%: N neurons, 3: 20 neurons) and processed input activity of subsampled
240 cells. Note that 3 layers are the minimum number of layers that are required for an
autoencoder network. All recurrent neurons in the hidden layers had tanh activation functions.
All neurons except for the neurons in the middle hidden layer (coding layer) sent activity
sequentially to the neurons in the next layer. However, the neurons in the coding layer sent only
the activity at the last time step to the next hidden layer. The last-time-step activity is the result

of the temporal integration of the original population activity sequence through recurrent
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connectivity, and the activity reflects the latent representations in the original population activity
sequence. The hidden layers after the coding layer reconstructed the original population activity
sequence from the latent representations in the coding layer. The network weights were
updated by backpropagation through time with RMSprop to minimize mean-squared-error
(MSE) between the original population activity sequence and the reconstructed population
activity sequence. To ensure stable training of network weights, we clipped the gradients of
network weights if their L2 norms were greater than 1 (Gradient clipping (Pascanu et al., 2012)).
To add noise robustness to the autoencoders, we applied dropout (Hinton et al., 2012;
Srivastava et al., 2014) to the connections between the input neurons and the neurons in the 15t
hidden layer such that 50% of randomly selected connections are ablated at each training step.
The network training was terminated when the MSE of a validation set (20% of trials for Figure
7A, 10% of trials for Figure 7B-E) stopped decreasing for the consecutive 20 epochs as another
form of regularization (Early stopping). The activity of the 10 coding neurons for Figure 7A were
further reduced to 2 dimensions with multidimensional scaling to visualize the dominant
population activity states. To quantify the strength of AQ signal in the activity of N coding
neurons for Figures 5B-E, we performed decoding of AQ from the activity of N coding neurons
using a simple feedforward neural network where all the N coding neurons are connected to an
output neuron with tanh activation function. For each training iteration, we used 20% of available
trials as a test set to calculate the AQ decoding accuracy by the trained network, and the
remaining 80% of the trials were further split into validation set (10%) and training set (70%).
We repeated the network training 5 times by using different sets of trials as the test set such
that we can obtain AQ predictions by the trained networks for all available trials in a cross-
validated way. For these AQ decoding analyses, we also matched the number of cells included
in the inputs to the autoencoders across different decoding by subsampling 240 cells from the
original population. For each neural population, we subsampled 240 cells in each iteration
allowing repetitions with the smallest number of iterations to include every cell at least once for

decoding, and the AQ decoding accuracy from the iterations were averaged.

Deep RNN with non-specific connectivity

Neural networks with 5 recurrent layers were used to simulate how the input population activity
transforms in the downstream recurrent layers when the synaptic weights are non-specific
throughout the networks. Each recurrent layer had 1,000 neurons with tanh activation functions,

and the 5 recurrent layers were sequentially connected through feedforward connections. All
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neurons of a recorded cortical population were directly connected to the 15 recurrent layer.

Each neuron in a recurrent layer was connected with all the other neurons in the same layer, but
we made the connections between successive layers sparse by setting the connection
probability of a neuron to the neurons in the next layer to 1%, 5%, 10%, 20%, or 50%. The non-

specific synaptic weights were randomly drawn from a uniform distribution on [-1, 1).

Anatomical connectivity analyses

We analyzed neural projections from the areas with high AQ coding persistency (RSC, PPC,
pM2) using the neural tracing data available in the Allen Mouse Brain Connectivity Atlas (Oh et
al., 2014). These projection data were originally acquired by injecting adeno-associated virus
(AAV) encoding EGFP into various target brain areas and scanning EGFP-labelled axons
throughout the brain with high-throughput serial 2-photon tomography. We used their software
development kit (SDK), allensdk, to access and process their data in Python.

Dorsal view of the Allen Reference Atlas

Allen Reference Atlas is a high-resolution anatomical 3D reference atlas for the adult mouse
brain. Different brain structures are colored differently in this atlas. All projection data in the
Connectivity Atlas are registered to this reference atlas. We created a dorsal view of the Allen
Reference Atlas to indicate the virus injection coordinates and cortical projection density in the
dorsal cortex. First, we downloaded the 3D RGB-colored atlas at the resolution of 25 um/pix. At
each anterior-posterior (AP) and medial-lateral (ML) coordinate of the 3D atlas, we picked up
the RGB value of the most dorsal brain surface. We obtained a dorsal view of the atlas by
projecting these dorsal RGB values onto a single 2D plane.

Selection of injection data

In the Allen Mouse Brain Connectivity Atlas, each injection experiment is labelled with the name
of the injected structure. First, we narrowed injection experiments using these annotations. We
selected experiments with virus injections into retrosplenial area (RSP), anterior area (VISa) of
posterior parietal association area (PTLp), and secondary motor area (MOs). Then, we further
narrowed down injection experiments based on the exact injection coordinates. As we indicated
in Figure S9, we isolated medial RSP injections, anterior VISa injections, and posterior MOs
injections for RSC, PPC, and pM2, respectively. The database contains experiments that were
performed on wild-type mice and Cre transgenic mice for cell-type specific tracing. We used
experiments from only WT mice or combined data (WT + Cre). The projection patterns were

similar in both cases (Figure S9).
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Axon projection density in dorsal cortex

We analyzed the axon projection density from RSC, PPC, and pM2 in the dorsal cortex. For
each injection experiment, we calculated the projection density at each AP-ML coordinate as [#
of positive pixels] / [# of all pixels] in the volume of 25um (AP axis) x 25um (ML axis) x 1000um
(DV axis, from dorsal surface at each AP-ML coordinate). To create a mean projection density
map, experiments with left hemisphere injections were mirrored relative to midline before
averaging. We also quantified mean projection density within each imaging FOV that we used
for in vivo 2-photon calcium imaging. Although our imaging FOVs were based on stereotactic
coordinates from the bregma in the Paxinos’ atlas (Paxinos and Franklin, 2004), the Allen
Reference Atlas does not include coordinates from the bregma. To register our imaging FOVs to
the Allen Reference Atlas Coordinate, we calculated the scaling factors for the AP and ML
dimensions of the mouse brain to match the brain in the Paxino’s atlas to the brain in the Allen
Reference Atlas. Using the scaling factors, we estimated the coordinates of each imaging FOV
on the Allen Reference Atlas. We calculated the mean signal density within each imaging FOV
of the size 500 um x 500 pm. The mean signal density of each FOV was used to construct the

connectivity matrix in Figure 8C.

Data analysis and statistics

All data analyses and network simulations were performed in Python3.7 with libraries of
TensorFlow (Abadi et al., 2016), scikit-learn (Pedregosa et al., 2011), NumPy (Harris et al.,
2020), SciPy (Virtanen et al., 2020), and Statsmodels (Seabold and Perktold, 2010). Statistical
tests were performed either in Python with SciPy and Statsmodels or in R with its statistics
libraries. All accuracy measures reported in this study were obtained with cross-validation.
Unless otherwise noted, we split trials into training set (70%), validation set (10%), and test set
(20%) for each iteration of decoding, and repeated the network training 5 times by using
different sets of trials as the test set. When we compared AQ retrieval/decoding accuracy
across different cortical populations, we matched the number of cells in the input population
activity by subsampling 240 cells in each iteration allowing repetitions with the smallest number
of iterations to include every cell at least once for decoding, and the accuracies from the
iterations were averaged. For all the simulations with artificial population activity, we created 10
distinct populations for each of the 3 types of coding modes by independently sampling tuning
curve slopes from RSC neurons. These repetitions allowed us to tell the variability that

originates from the randomness of AQ signal assignments and randomness of network
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trainings. All figure plots were created using Matplotlib (Hunter, 2007) and seaborn (Waskom,
2021) in Python.
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