
 1 

 2 

 3 

 4 

Context-dependent persistency 5 

as a coding mechanism for robust and 6 

widely distributed value coding 7 

 8 

 9 

 10 

 11 

Ryoma Hattori1 and Takaki Komiyama1,2 12 

 13 

 14 

 15 

1Neurobiology Section, Center for Neural Circuits and Behavior, Department of 16 

Neurosciences, and Halıcıoğlu Data Science Institute, University of California San 17 

Diego, La Jolla, CA 90093, USA 18 

2Lead Contact 19 

*Correspondence: rhattori0204@gmail.com (R.H.), tkomiyama@ucsd.edu (T.K.) 20 



SUMMARY 21 

Task-related information is widely distributed across the brain with different coding properties, 22 

such as persistency. We found in mice that coding persistency of action history and value was 23 

variable across areas, learning phases, and task context, with the highest persistency in the 24 

retrosplenial cortex of expert mice performing value-based decisions where history needs to be 25 

maintained across trials. Persistent coding also emerged in artificial networks trained to perform 26 

mouse-like reinforcement learning. Persistency allows temporally untangled value 27 

representations in neuronal manifolds where population activity exhibits cyclic trajectories that 28 

transition along the value axis after action outcomes, collectively forming cylindrical dynamics. 29 

Simulations indicated that untangled persistency facilitates robust value retrieval by downstream 30 

networks. Even leakage of persistently maintained value through non-specific connectivity could 31 

contribute to the brain-wide distributed value coding with different levels of persistency. These 32 

results reveal that context-dependent untangled persistency facilitates reliable signal coding and 33 

its distribution across the brain. 34 

 35 

INTRODUCTION 36 

The parallel distributed processing (PDP) theory (McClelland et al., 1986; Rogers and 37 

McClelland, 2014; Rumelhart et al., 1986) highlights computational advantages of distributed 38 

information coding in neural networks and has had a profound impact on our understanding of 39 

cognition and deep learning. Growing evidence revealed that information coding in the brain is 40 

highly distributed across neurons and distinct brain areas (Allen et al., 2019; Hattori et al., 2019; 41 

Koay et al., 2020; Musall et al., 2019; Steinmetz et al., 2019; Stringer et al., 2019). Even 42 

neurons in the primary sensory cortex, which were classically thought to process only sensory 43 

information of a single modality, have been found to encode diverse information such as other 44 

sensory modalities (Hattori and Hensch, 2017; Hattori et al., 2017; Iurilli et al., 2012), 45 

spontaneous movements (Musall et al., 2019; Stringer et al., 2019), actions (Hattori et al., 2019; 46 

Koay et al., 2020; Steinmetz et al., 2019), reward (Hattori et al., 2019; Koay et al., 2020), event 47 

history (Hattori et al., 2019; Koay et al., 2020), and value (Hattori et al., 2019; Serences, 2008). 48 

Although these signals are widely distributed, activity perturbations of a brain area typically 49 

affect only a subset of behavioral outputs that are associated with the information encoded in 50 

the area. These results suggest that, although information coding is highly distributed, not all of 51 

the information represented in neural activity may be used in each area. 52 



 A clue to understand the utility of encoded information may lie in the temporal dynamics 53 

of the information coding. In working memory tasks where information is maintained for several 54 

seconds in a trial, information can be maintained as either persistent neural activity or 55 

sequential transient activity across a neural population that tiles the memory period (Cavanagh 56 

et al., 2018; Fuster and Alexander, 1971; Masse et al., 2019; Miller et al., 1996; Murray et al., 57 

2017; Orhan and Ma, 2019; Romo et al., 1999; Zhu et al., 2020). Recently, it was shown that 58 

certain brain areas in mice such as the retrosplenial cortex (RSC) (Hattori et al., 2019) and the 59 

medial prefrontal cortex (Bari et al., 2019) encode action values with exceptional persistency 60 

during history-dependent value-based decision making tasks where values need to be stably 61 

maintained across trials. Inactivation of either area impaired the ability to use the action value 62 

for their decision making. These results suggest that persistent value coding is critical for 63 

animals to exploit value for decision making when the value needs to be maintained for 64 

extended periods of time. Similar persistent coding is prevalent across the brain and species, 65 

ranging from coding of motor planning (Guo et al., 2017; Inagaki et al., 2019; Li et al., 2016), 66 

internal states (Allen et al., 2019; Marques et al., 2020) to emotions (Jung et al., 2020; Kennedy 67 

et al., 2020), yet the computational advantages of persistent coding has not been fully 68 

established quantitatively. 69 

 Here we investigated the neural dynamics of action history and value coding in 6 areas 70 

of the mouse cortex and artificial recurrent neural network (RNN) agents to understand the 71 

computational advantages of persistent coding and its impact on distributed coding. 72 

 73 

RESULTS 74 

Learning- and context-dependence of coding persistency across cortical areas 75 

We first used the neural activity data recorded in mice performing decision making based on 76 

history-dependent action value we reported previously (Hattori et al., 2019). Each trial consisted 77 

of a ready period, an answer period, and an inter-trial-interval (ITI). The duration of each period 78 

was variable from trial to trial, making the task more naturalistic than a fixed temporal sequence 79 

(Figure 1A). During the ready period (LED cue), mice needed to withhold licking to enter the 80 

answer period. This ensured that the neural activity during the ready period was free of licking-81 

related motor activity. Mice were allowed to freely choose either left or right lickport after a go 82 

cue tone. Different reward probabilities were assigned to the 2 lickports, and the reward 83 

probabilities changed every 60-80 trials without cue. Therefore, mice were encouraged to 84 

dynamically estimate the underlying reward probabilities of the 2 options on a trial-by-trial basis 85 



by forming subjective action values based on their recent choice outcome history using 86 

reinforcement learning (RL) (Sutton and Barto, 2018). The action values need to be stably 87 

maintained within each trial and updated after each trial based on the action and its outcome. 88 

Neural activity was collected with in vivo 2-photon calcium imaging from transgenic mice that 89 

express GCaMP6s (Chen et al., 2013) in excitatory neurons (Wekselblatt et al., 2016) (Figure 90 

1B), and the calcium signals were converted to estimated spike rates by non-negative 91 

deconvolution (Friedrich et al., 2017; Pachitariu et al., 2018). The recording data were from 6 92 

cortical areas including 2 association (RSC: retrosplenial; PPC: posterior parietal), 2 premotor 93 

(pM2: posterior secondary motor; ALM: anterior-lateral motor), and 2 primary sensory (S1: 94 

primary somatosensory; V1: primary visual) cortex. We estimated the 2 action values on each 95 

trial (QL and QR) by fitting a RL model to the choices of mice, and we focused our analyses on 96 

the neural coding of the policy value (ΔQ = QL - QR: the value difference between the 2 actions) 97 

on which animals rely their decision making. 98 

 Regression analysis of the activity of individual neurons at different time bins within the 99 

ready period identified significant fractions of neurons that encode ΔQ in all 6 areas, with the 100 

highest fraction in RSC (Figure 1C). ΔQ coding in these neurons was independent of upcoming 101 

choice directions (Figure S1), and reliably updated at single-trial resolution (Figure S2), 102 

indicating that these neurons faithfully encoded ΔQ on a trial-by-trial basis across all 6 areas. 103 

Despite the widespread ΔQ coding, the temporal stability of ΔQ coding within the ready period 104 

differed across areas. Only in RSC, the ΔQ-coding neurons identified at different time bins 105 

reliably encoded ΔQ throughout the trial and across trials, while the encoding was temporally 106 

unstable in the other 5 areas (Figure 1D and S1H). This was because the way individual 107 

neurons encoded ΔQ across time differed across areas (Figure 1E and S1I). We quantified the 108 

temporal stability of ΔQ coding by defining the persistency index which reflects the coding 109 

persistency relative to the chance level (Methods). The analysis revealed RSC as the area with 110 

the highest ΔQ coding persistency (Figure 1F). 111 

We next examined whether the coding persistency is a fixed property of individual areas 112 

or changes with learning. We analyzed the population activity from RSC, PPC, pM2 and ALM 113 

during early stages of training (< 1 week from training start, Figure 1G). We compared their 114 

value coding persistency between early and expert sessions. We found that the ΔQ coding 115 

persistency significantly increases in RSC, PPC and pM2 during training (Figure 1H-I), 116 

indicating that coding persistency can change during task learning. 117 



 The coding persistency may have increased during learning because the value-based 118 

decision task requires stable value maintenance for an extended period of time across trials. 119 

Therefore, we tested whether coding persistency differs in another task that does not require 120 

long maintenance of value. We trained 9 mice in the alternate choice task in which a reward 121 

was given when mice made a choice that was the opposite to the previous action (Figure 2A). 122 

Thus, the correct action depended only on the immediately preceding trial, in contrast to the 123 

value task in which history from multiple past trials was informative. All other task conditions 124 

were identical between the 2 tasks. camk2-tTA::tetO-GCaMP6s transgenic mice were trained in 125 

the alternate choice task for at least 2 weeks to achieve a plateau-level performance (~80% 126 

correct) (Figure 2B). We then performed 2-photon calcium imaging of 8,524 RSC cells, 3,186 127 

PPC cells, 7,915 pM2 cells and 4,911 ALM cells (RSC: 14 populations, 608.9 ± 18.1 cells, PPC: 128 

7 populations, 455.1 ± 25.1 cells, pM2: 14 populations, 565.4 ± 34.6 cells, ALM: 10 populations, 129 

491.1 ± 36.8 cells, mean ± s.e.m per population). The coding persistency of action history in the 130 

alternate choice task was significantly weaker than in value-based task for the 4 imaged areas 131 

(Figure 2C, D). These results indicate that the coding persistency in the cortex is context-132 

dependent. 133 

 134 

Persistent value coding in RSC forms cylindrical dynamics 135 

In the value-based task, ΔQ coding in RSC is temporally stable within each trial. However, this 136 

does not necessarily mean that RSC population activity is static during these periods. In fact, 137 

individual neurons in RSC showed heterogeneous and rather dynamic activity patterns (Figure 138 

1B). To investigate how the coding of different information temporally interacts, we sought to 139 

decompose population activity into the demixed neural subspaces where different task-related 140 

signals are separated into distinct dimensions. Specifically, we sought to define 3 demixed axes 141 

each encoding ΔQ, Qch (value of selected action, e.g. QL on left choice trial), or ΣQ (sum of 2 142 

values), and the remaining Q-free subspace that retains all the activity variance that is not 143 

explained by the 3 Q-related axes. A previous study reported demixed principal component 144 

analysis (dPCA) (Kobak et al., 2016) as a method to decompose population activity into 145 

demixed target-dependent and independent dimensions. However, dPCA is only designed to 146 

identify dimensions for discrete variables and cannot be applied for continuous variables such 147 

as Q-related signals. In addition, dPCA splits each targeted signal into multiple linear axes, 148 

which makes the signal interpretation difficult. To overcome these limitations, we developed a 149 

novel dimensionality reduction method that is more generally applicable, which we term 150 



demixed subspace principal component analysis (dsPCA) (Figure 3A). dsPCA identifies 151 

demixed dimensions for targeted signals and dimensions for target-independent activity, 152 

similarly to dPCA. However, unlike dPCA, it groups each of the target signals along a single 153 

linear coding dimension and can identify such dimensions for both discrete and continuous 154 

target variables. The first step of dsPCA identifies the best demixed linear axes for the target 155 

variables using a regression-based approach, similarly to (Mante et al., 2013). This step 156 

involves fitting a multiple linear regression model of the form 𝑥(𝑡𝑟𝑖𝑎𝑙) = 𝛽𝐴𝐴(𝑡𝑟𝑖𝑎𝑙) +157 

𝛽𝐵𝐵(𝑡𝑟𝑖𝑎𝑙) + 𝛽𝐶𝐶(𝑡𝑟𝑖𝑎𝑙) + 𝛽0 to the activity of individual neurons for the targeted variables, A, B 158 

and C. The regression coefficients, 𝛽𝐴, 𝛽𝐵 and 𝛽𝐶 are the partial derivatives of the neural activity 159 

by each target variable, and the vectors that consist of the coefficients from all neurons are the 160 

linearly demixed coding directions of the neural population for the 3 targeted variables. We 161 

defined the targeted coding axes as the unit vectors of these coding directions. By definition, 162 

these demixed coding vectors capture all linear information of targeted variables in a population. 163 

Next, dsPCA identifies the remaining target-free subspace that is orthogonal to these targeted 164 

axes and captures all the remaining activity variance. The target-free orthogonal subspace is 165 

identified by performing full QR decomposition of the matrix with the coding axis vectors. Then 166 

the axes of the target-free subspace are further realigned based on the principal components of 167 

the activity within the target-free subspace to define axes that contain large fractions of 168 

remaining variance. (Figure 3B). Therefore, dsPCA can be viewed as a general extension of 169 

PCA by combining the regression-based supervised target axis identifications and the PCA-170 

based unsupervised dimensionality reduction of the target-free population dynamics. 171 

 We evaluated the demixing performance of dsPCA using noisy simulated neural 172 

populations (200 neurons / population with Gaussian noise) where graded signals A, B and C 173 

are linearly encoded in 20% of the neurons. Each target signal was uniquely encoded only 174 

along the single, target axis (Figure 3C-D), and linear decoders failed to decode any A, B and C 175 

signals in the remaining target-free subspace (Figure 3E). We next applied dsPCA on the 176 

cortical population activity time-averaged over the ready period to identify demixed coding axes 177 

for ΔQ, Qch, and ΣQ, and the remaining, Q-free subspace (Figure 3F). For all 6 areas, most of 178 

the targeted information was confined to each of the coding axes, and the remaining subspace 179 

completely lacked any of the targeted information even though this subspace contained the 180 

highest activity variance (Figure 3G-I, and S3). Although we detected some Qch signal along the 181 

ΣQ axis (Figures 3H and S3B), this is expected because Qch is a component of ΣQ (ΣQ = Qch + 182 

unchosen Q). However, note that ΣQ signal is not detectable along the Qch axis, indicating that 183 



the demixing of activity variance worked correctly. Thus, dsPCA successfully identified demixed 184 

coding axes for Q-related variables and the remaining Q-free subspace.  185 

 With dsPCA, we examined how ΔQ coding temporally interacts with other dynamics. The 186 

activity dynamics around the choices (between ±4 sec from the choice) was visualized in the 187 

neuronal manifold consisting of the ΔQ coding axis and the other value-related axes (Figure 3J), 188 

or the manifold consisting of the ΔQ coding axis and 2 largest temporal activity variance axes 189 

within the Q-free subspace (Figures 3K). We found in both manifolds that activity trajectories in 190 

RSC from trials with different ΔQ values do not cross with each other across time. In the 191 

manifold with the largest temporal dynamics (Figures 3K, S4 and S5), RSC population remained 192 

in the initial positions linearly segregated along ΔQ axis according to ΔQ of the trial (‘Pre-choice’ 193 

in the figures). Around the go cue time, the RSC population diverged from these initial positions 194 

and drew rotational dynamics. After a choice, the population returned towards the initial 195 

positions following a circular geometry. The return geometry was warped along ΔQ axis, 196 

reflecting the reward prediction error (RPE) on each trial depending on the choice and its 197 

outcome, which updates the ΔQ representation in the population (Figure 3L-M). The RPE-198 

dependent, bidirectional transition of the activity state ensures that the neural population closely 199 

represents and updates the ΔQ coding online in each trial. In contrast, the dynamics in S1 and 200 

V1 were highly tangled over time, and similar ΔQ values could accompany different activity 201 

states at different time. Therefore, although ΔQ coding is widely distributed across the cortex, 202 

the different levels of persistency confer different levels of tangling in ΔQ coding (Figure 3N). 203 

The exceptionally high ΔQ coding persistency in RSC allows a temporally untangled value 204 

representation with the within-trial cyclic dynamics that transitions along the value axis to reflect 205 

value updates. These dynamics across trials collectively form cylindrical dynamics during task 206 

performance. 207 

 208 

Untangled, persistent value coding emerges in the RNN trained with the mouse RL 209 

strategy 210 

The persistent and untangled ΔQ coding in RSC, together with our previous observation that 211 

RSC inactivation impairs value-based decision (Hattori et al., 2019), raises the possibility that 212 

persistent value coding is advantageous in the task. We investigated this possibility by training 213 

artificial RNN agents to perform RL in the same task and subsequently examining the ΔQ 214 

coding scheme in the trained network. The training of RNNs was done without constraining the 215 



activity dynamics. We reasoned that, if persistent coding is advantageous, trained RNN agents 216 

may use persistent coding to perform the task. 217 

First, we trained RNNs to perform RL optimally by teaching them the ideal choices of 218 

each trial based on the reward assignment rule. In this task, once a reward is assigned to a 219 

choice, the reward remains assigned until the choice is selected. As a result, the actual reward 220 

probability of a choice cumulatively increases if the choice is not selected in the recent trials. 221 

Therefore, an optimal choice would depend on the current reward assignment probabilities, 222 

which are unknown to mice and RNN agents, and past choice history. By using the optimal 223 

choices as the teacher, we trained synaptic weights of RNNs such that the RNNs use only 224 

history of choice and reward to make near-optimal decisions (Figures 4A and 4B). The durations 225 

between decisions were made variable, similarly to the task structure in mice. The RNNs 226 

receive action outcome information only at the time step after choice and need to maintain the 227 

information through recurrent connectivity across time steps and trials. These optimally trained 228 

networks (“optimal RNN agents”) achieved higher reward rate than expert mice (Figure 4E). 229 

Furthermore, the choice patterns of optimal RNN agents diverged from the RL model that has 230 

been optimized to describe the behavior of expert mice (Figure 4E), indicating that the optimal 231 

RNN acquired a RL strategy that is distinct from mice. Accordingly, a regression analysis 232 

showed that the dependence of optimal RNN agents on choice and reward history differed from 233 

that of expert mice (Figure 4F). 234 

To obtain a network model that better mimics the mouse strategy, we trained RNNs to 235 

imitate expert mouse behaviors using behavioral cloning, a form of imitation learning (Osa et al., 236 

2018). We used 50,472 decision making trials of expert mice as the teaching labels to train the 237 

synaptic weights of the RNN. The goal of this training was for the RNN to make the same 238 

decisions as expert mice with its recurrent activity dynamics based on the same history of 239 

choice and outcome in the past trials (Figure 4C). The trained RNNs (“mouse-like RNN agents”) 240 

performed RL using their recurrent activity (Figure 4D), and the reward rate and the RL model 241 

accuracy were equivalent to those of expert mice (Figure 4E). Furthermore, the mouse-like RNN 242 

agents used history from previous trials for its decisions in a similar way as expert mice (Figure 243 

4F). Therefore, the RL strategy of expert mice was successfully transferred to the synaptic 244 

weights of the trained RNN agents, and the trained RNNs could implement mouse-like RL using 245 

its recurrent activity dynamics without updating synaptic weights from trial to trial. 246 

We then examined how the mouse-like RNN agents encoded ΔQ. We found that RSC-247 

like persistent ΔQ coding emerged in their recurrent activity (Figures 4G). This observation is 248 



significant as the training procedure did not impose a priori constraints on the coding scheme of 249 

the RNN. We also examined how the population activity dynamics evolved during training. We 250 

had RNN agents at 3 stages of training run the task (before training, intermediate (after 1 epoch 251 

of training), and fully trained) and analyzed their recurrent activity during the task performance. 252 

dsPCA revealed that untrained networks with random connectivity exhibit highly tangled ΔQ 253 

coding, while training gradually shaped the networks to form stacked circular dynamics (Figure 254 

5A). Unlike RSC that formed cylindrical dynamics (Figure 3K), the diameter of rotational 255 

trajectory varied across different ΔQ states in the trained networks, suggesting that additional 256 

biological constraints that were not considered for RNN training may have imposed a constant 257 

diameter in the mouse brain. In addition to the analysis of ΔQ estimates from a RL model fit to 258 

behaviors, we examined the coding persistency of the ground truth ΔQ which is available as the 259 

activity of the action output neuron in each RNN agent. We confirmed that the ground truth ΔQ 260 

was also persistently encoded in both optimal and mouse-like RNN agents (Figure S6). 261 

 262 

Persistency facilitates reliable and robust value retrieval by downstream neural networks 263 

The emergence of ΔQ coding persistency in RNN agents suggests that persistent coding is a 264 

preferred solution in the task. What would be the advantage of persistent coding? One 265 

possibility is that untangled persistency may allow a more reliable signal retrieval by the 266 

downstream network to guide the action selection. We tested this possibility by training artificial 267 

RNNs to retrieve the ΔQ signal from different temporal patterns of simulated population activity 268 

(Figure 6A). For this purpose, RNNs are biologically relevant as they receive time-varying inputs 269 

sequentially, as opposed to other decoder models (e.g. regression models).  270 

We created artificial population activity encoding ΔQ in 4 different patterns: persistent, 271 

and 3 types of non-persistent coding (Figure 6B). In persistent coding, 20% of cells encode ΔQ 272 

as rate coding persistently. The slope of ΔQ tuning curve for each neuron was taken from its 273 

distribution among RSC neurons (Figure S7). For the first 2 types of non-persistent coding, the 274 

cellular identity of the persistent coding pattern was shuffled independently at each time bin to 275 

alter the ΔQ persistency of each neuron without altering the population-level ΔQ signal in each 276 

time bin. Non-persistent 1 allowed each neuron to encode ΔQ in multiple time points, while non-277 

persistent 2 was constrained that each neuron encodes ΔQ in only one of the 5 time points. In 278 

the third non-persistent coding scheme, binary signals (active or inactive) at each time bin were 279 

used to encode ΔQ by activating distinct sequences of neurons across time for different values 280 

of ΔQ. We prepared 10 different sequences for 10 bins of ΔQ values. 281 



Using these activity patterns as inputs, we trained RNNs to retrieve ΔQ. Various levels of 282 

noise were added to the input activity to test a range of signal-to-noise ratio (SNR). The RNN 283 

trained with the persistent ΔQ codes was able to retrieve ΔQ better than those trained with non-284 

persistent codes, especially when the input activity noise was high (Figure 6C-D). This indicates 285 

that persistent coding facilitates reliable information retrieval by downstream circuits. 286 

Furthermore, the RNNs that were trained to retrieve ΔQ from persistent coding were more 287 

robust to changes in the synaptic weights, loss of synapses and cells (Figure 6E). 288 

To investigate the impact of persistency in the brain activity, we next examined how ΔQ 289 

could be retrieved from the neural activity with different levels of persistency recorded from the 6 290 

cortical areas (Figure 6F). In addition to the original recorded activity (‘Raw’), we artificially 291 

increased or decreased ΔQ coding persistency by temporally sorting (‘Sorted’) or shuffling 292 

(‘Shuffled’) the cell identity in each area. These persistency manipulations simply changed the 293 

neuron ID of activity and thus did not alter the total amount of ΔQ signal in each time bin. Using 294 

these sets of neural activity as inputs, we trained RNNs to retrieve ΔQ. There was a general 295 

trend that an increase in persistency (sorted activity) improved retrieval accuracy, while a 296 

decrease in persistency (shuffled activity) impaired retrieval accuracy (Figure 6G). However, the 297 

effect size differed across different cortical areas. We found that the increase in retrieval 298 

accuracy by sorting was larger when the original persistency in the population was lower, and 299 

the decrease in retrieval accuracy by shuffling was larger when the original persistency was 300 

higher (Figures 6H-I). These results further support the notion that coding persistency is a 301 

critical determinant that enhances the accuracy of information retrieval by the downstream 302 

network.  303 

 The results above indicate that persistent codes can be read out by the downstream 304 

more effectively than non-persistent codes when the artificial neural network is allowed to train 305 

its synaptic weights by minimizing the difference between its output and the target (ΔQ) as 306 

supervised learning. However, in the real brain, such an explicit supervised target label to guide 307 

the shaping of network connectivity is rarely available. Another approach to shape the 308 

connectivity to retrieve particular information is unsupervised learning where errors are 309 

computed using information readily available to the local network such as the input itself 310 

(Lillicrap et al., 2020). Therefore, we next considered the possibility that coding persistency may 311 

also affect signal retrieval processes that do not necessitate a supervised target label for each 312 

information. It has been suggested that the brain may implement unsupervised learning in a 313 

similar way to autoencoder networks in which the target is the input itself (Lillicrap et al., 2020). 314 



Autoencoders extract the most dominant signals from the input activity and represent them in 315 

the activity of a small number of neurons in the coding layer. The networks shape their 316 

connectivity by reconstructing the input activity from the coding layer and minimizing the 317 

reconstruction error between the input and the reconstructed activity. To examine what 318 

information in the input population activity can be extracted in an unsupervised manner by 319 

downstream recurrent networks, we used a recurrent denoising autoencoder (RDAE) (Maas et 320 

al., 2012; Vincent et al., 2010) that sequentially processes input activity and extracts the latent 321 

representations embedded in the input activity sequence, which are sufficient to reconstruct the 322 

original population activity sequence with noise robustness (Figure 7B; Methods). When the 323 

RDAE was trained on RSC population activity, ΔQ was extracted in the most dominant 324 

dimensions of neural activity in the coding layer (Figure 7A). The ΔQ representation in the 325 

coding layer was independent of upcoming choice directions, indicating that the dimensions 326 

reflect value and not motor plans. Other task-related signals were not represented as the 327 

dominant signals in the coding layer (Figure S8). Similar results were observed in the activity 328 

dynamics of the mouse-like RNN agent but not in S1. Systematic comparisons among 6 cortical 329 

areas revealed that extracted ΔQ in the coding layer was especially high from RSC, and the 330 

amount of extracted ΔQ showed a high correlation with the ΔQ coding persistency in the input 331 

population activity (Figures 7B-D). To directly test the effect of persistency, we artificially 332 

manipulated the persistency of ΔQ coding in RSC without changing the total amount of ΔQ 333 

signals in the population. We found that artificial increases in the persistency by sorting the cell 334 

identity improved the ΔQ extraction, while artificial decreases in the persistency by shuffling the 335 

cell identity worsened the ΔQ extraction (Figure 7E). These results indicate that high 336 

persistency in the input activity can allow ΔQ retrieval by the downstream network even without 337 

supervised learning. 338 

Taken together, these analyses indicate that the persistency of value coding facilitates a 339 

robust and accurate readout of value by downstream networks. 340 

 341 

Signal leakage can contribute to distributed value coding with varying levels of 342 

persistency 343 

The results so far indicate computational advantages of persistent coding. However, in the 344 

mouse brain, ΔQ coding was widely distributed across the 6 cortical areas with different levels 345 

of persistency (Figures 1C-F). We asked whether anatomical connectivity among cortical areas 346 

relates to the persistency levels of value coding. We analyzed the connectivity among imaged 347 



areas using the dataset from the Allen Mouse Brain Connectivity Atlas (Oh et al., 2014). 348 

Focusing on the projections from each of the 3 areas with high ΔQ persistency (RSC, PPC, 349 

pM2), we quantified their axon projection density in each of the other 5 imaged areas (Figure 350 

8A). We found that RSC, PPC, and pM2 predominantly project to each other, with smaller 351 

amounts of direct projections to ALM, S1, and V1 (Figures 8B-C and S9). Thus, 3 areas with 352 

persistent and strong ΔQ coding densely connect with each other, while they send less direct 353 

projections to the other 3 areas with weaker and less persistent ΔQ coding. Based on this 354 

observation, we hypothesized that the weak ΔQ persistency in ALM, S1 and V1 could result 355 

from a signal leakage from the areas that maintain ΔQ as persistent activity. To test this 356 

hypothesis, we built RNNs with multiple recurrent layers that receive RSC activity through non-357 

specific synaptic connectivity and examined how ΔQ coding changes along the downstream 358 

hierarchy of layers (Figure 8D). We found that the fractions of neurons with ΔQ coding gradually 359 

decreased as the signal leaked through layers of recurrent connectivity (Figures 8E-F). 360 

Concurrently, ΔQ coding became increasingly less persistent (Figure 8G), and the temporal 361 

tangling of ΔQ coding in neuronal manifolds gradually increased in the downstream (Figure 8H). 362 

Furthermore, artificial manipulations of ΔQ coding persistency in the input RSC activity revealed 363 

that persistency in ΔQ coding can affect the robust distribution of ΔQ coding with graded levels 364 

of persistency across the downstream layers (Figures 8F-G). We obtained similar results using 365 

PPC and pM2 as the input activity (Figure S10A-H), and the decreases in the ΔQ coding 366 

neurons and the ΔQ coding persistency in the downstream layers were more dramatic when the 367 

direct neural projections from layer to layer were sparse (Figure S10I-K). These results indicate 368 

that, even without specific connectivity to selectively route particular information, persistently 369 

encoded information can propagate thorough layers of non-specific connectivity to lead to a 370 

wide distribution of the information encoded with lower levels of persistency in downstream 371 

areas.  372 

 373 

DISCUSSION 374 

Brain-wide distribution of task-related information has emerged as a common principle in recent 375 

years. In many cases, such as what we observed for ΔQ coding (Figure S1), task-related 376 

signals are encoded by a heterogeneous population with some cells increasing but others 377 

decreasing their activity. Such information coding may not be identified with classical large-scale 378 

recording techniques such as fMRI, EEG and ECoG that quantify population average 379 

responses. Even though information coding is wide-spread, the way by which information is 380 



encoded differs across areas (Hattori et al., 2019). In the present study, the big data of >100k 381 

mouse decisions and the activity from >100k neurons in 2 behavioral tasks allowed us to 382 

investigate the potential origin of the distributed information coding and the computational 383 

advantages of persistent coding using data-driven machine learning approaches. Coding 384 

persistency was both learning- and context-dependent, and the persistent coding emerged 385 

during task learning in both mouse brain and artificial network agents performing the same task. 386 

Persistency facilitates an untangled maintenance of information as well as its reliable retrieval 387 

by downstream circuits. The observation that persistency is context-dependent suggests that 388 

certain cortical areas such as RSC can adjust coding persistency depending on behavioral 389 

demands. For example, persistency may be especially preferred when the task context requires 390 

extended maintenance of the information, or the maintained information is graded as in the case 391 

of value, so that information can be stably maintained and robustly retrieved by downstream 392 

areas. Furthermore, we showed that persistent coding in key areas such as RSC could also 393 

contribute to the wide distribution of ΔQ coding across the mouse brain even through non-394 

specific signal leakage. The same principle may also apply to other task-related signals in 395 

various task conditions, providing a possible explanation for the widespread phenomenon of 396 

distributed coding across the brain. In other words, a wide distribution of information is expected 397 

across the interconnected network of the brain, unless specific connectivity restricts the 398 

propagation of particular information. We note that non-specific leakage is one of potential 399 

mechanisms for signal distribution and it remains to be shown how much such a mechanism 400 

contributes to the phenomenon. Furthermore, this mechanism is agnostic to whether the 401 

propagated information has a function in the downstream areas — leaked information could 402 

contribute to various computations performed in downstream areas. 403 

We trained artificial RNNs to imitate the mouse behavioral strategy using behavioral 404 

cloning and investigated the activity dynamics that emerged in the RNNs that were trained 405 

without activity constraints. Previous studies trained task-performing artificial neural networks 406 

either by using the correct action labels which are defined in each task structure (e.g. action A 407 

must be taken after stimulus A) (Masse et al., 2019; Orhan and Ma, 2019) or by RL (Banino et 408 

al., 2018; Song et al., 2017; Tsuda et al., 2020; Wang et al., 2018). Both approaches train the 409 

networks to learn the optimal strategy in the respective task, independent of the actual 410 

behavioral strategy that animals learn in the environment. In our value-based decision task, 411 

animals learn to use behavioral history for decisions during training, but the RL strategy that 412 

animals develop was suboptimal (Figure 4E-F). The origins of the sub-optimality likely include 1) 413 

limited memory capacity, 2) low sample efficiency, 3) limited amount of training trials, and 4) 414 



inductive bias inherent to each species. Deep RL, an artificial network that learns to solve a task 415 

with RL, does not always have these constraints, and thus it learns a near-optimal strategy 416 

unlike animals. These artificial networks may not reflect the mechanisms used by the brain. In 417 

another common approach, simpler mathematical models (e.g. regression, classical RL models) 418 

directly fit to animal behaviors are useful to understand the behavioral strategies. However, they 419 

do not provide insights into potential neural activity dynamics that may mediate the behaviors. 420 

To overcome these issues, we trained artificial RNNs, using mice as the teachers, to acquire the 421 

sub-optimal RL strategy that mice develop during training. The big data of ~50k decisions 422 

collected from expert mice allowed us to successfully train RNNs to imitate mouse behavioral 423 

strategy. This data-driven approach to train RNNs to implement animal/human-like behaviors 424 

would be a useful approach to obtain the neural network models and analyze what kind of 425 

activity dynamics allows the animal strategy in a particular task. Similarly to our approach, 426 

convolutional neural networks has been trained in visual object recognition tasks. The training 427 

was done to perform the task optimally, as opposed to our approach using behavioral cloning. 428 

Nevertheless these networks have been shown to develop some neural activity characteristics 429 

that resemble the neural activity in the visual system of animals (Kriegeskorte, 2015; Yamins 430 

and DiCarlo, 2016). These deep learning approaches will be a powerful approach to understand 431 

what kind of neural activity may mediate given behaviors. 432 

 In this study, we developed dsPCA, a novel dimensionality reduction method which 433 

combines the strengths of supervised and unsupervised algorithms. The supervised aspect 434 

allows us to identify the best demixed linear coding dimensions for targeted task-related 435 

variables, and the unsupervised aspect allows us to identify non-targeted correlated signals in 436 

the remaining population activity. Therefore, dsPCA is a generally applicable method to 437 

understand both the signals of interest and other non-targeted correlational structures in high-438 

dimensional data. Using dsPCA, we found that both mouse brain and artificial RNN agents 439 

develop cylindrical dynamics, which consists of within-trial cyclic dynamics and its across-trial 440 

transition along ΔQ axis. Similar within-trial dynamics have been well-studied in monkey motor 441 

cortex during arm movement (Churchland et al., 2012; Russo et al., 2018, 2020). The studies 442 

showed that the population activity state draws untangled rotational dynamics during 443 

movements. They also showed that the activity state draws a simple cyclic trajectory in the 444 

primary motor cortex, while the supplementary motor area draws a helical trajectory that unfolds 445 

along a single direction by reflecting the ‘context’ of the movement (Russo et al., 2020). The 446 

activity trajectory that we observed had cylindrical geometry, and the activity state repeatedly 447 

transitioned along the ΔQ axis based on the RPE. These spatially confined geometries ensure 448 



the untangled representation of ΔQ, which contributes to a robust ΔQ representation in the 449 

brain. dsPCA and other RNN-based approaches in this study would facilitate the geometric 450 

understanding of population dynamics in both biological and artificial networks. 451 
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 467 

Figure Legends 468 

Figure 1. Persistency of action value coding across mouse cortex is area- and learning-469 

dependent. 470 

(A) Schematic of the value-based decision task and an example expert behavior. 471 

(B) Neural activity was recorded from 6 cortical areas. The heatmap is the trial-averaged z-472 

scored deconvolved activity of an example RSC population. The activity of each neuron was 473 

normalized to its peak. A half of the recorded trials were used to sort cells by the peak time, and 474 

the mean activity of the other half are shown.  475 

(C) Fractions of cells with significant ΔQ coding during ready period based on the mean activity 476 

within each of the non-overlapping 200 ms bins (Regression, P < 0.05, 2-sided t-test). The 477 



fractions with filled circles are significantly above the chance fraction of 5% (P < 0.05, one-sided 478 

t-test). ΔQ values were shuffled across trials for the right panel.  479 

(D) Activity of ΔQ coding neurons that were identified at different time windows (yellow 480 

shadings) for example RSC and S1 populations. Trials were binned according to the ΔQ of each 481 

trial, and the activity in each trial bin was averaged. 482 

(E) t-values for ΔQ coding at each time bin of ready period for example populations of RSC and 483 

S1 (Regression). Neurons were sorted based on the t-values at the last time bin. 484 

(F) ΔQ coding persistency of each population as quantified by the persistency index (0: chance 485 

persistency, 1: maximum-possible persistency, Methods, ***P < 0.001, ****P < 0.0001, one-way 486 

ANOVA with Tukey's HSD). 487 

(G) Fraction of trials when mice chose the side with higher reward assignment probability across 488 

training sessions (n = 9 mice, mean ± CI). The first 6 sessions were treated as early sessions. 489 

(H) Activity of ΔQ coding RSC neurons that were identified from the activity within the specified 490 

time bin (yellow shadings) in early and late sessions (same RSC population between the 2 491 

sessions) indicating an increase in persistency during learning. 492 

(I) ΔQ coding persistency of each population as quantified by the persistency index for early and 493 

expert sessions (**P < 0.01, ***P < 0.001, mixed effects model with population as the fixed 494 

intercept). 495 

All error bars are s.e.m. 496 

 497 

Figure 2. Persistency of history coding is task-dependent. 498 

(A) Schematic of the alternate choice task. The choice opposite to the choice in the previous 499 

trial was rewarded regardless of reward outcome in the previous trial.   500 

(B) Fraction of trials of correctly choosing the side with reward across training sessions (n = 9 501 

mice, mean ± 95% CI). 502 

(C) Activity of RSC neurons that significantly encoded the action history from previous trial in 503 

alternate choice task and value-based decision task. These neurons were identified using the 504 

activity within the specified time bin (yellow shadings). The activity of the identified action history 505 

coding neurons was separately averaged according to the choice on the previous trial. 506 

(D) Persistency of action history coding in each population as quantified by the persistency 507 

index for the alternate choice task (Alt) and the value-based decision task (Value) (*P < 0.05, 508 

**P < 0.01, ***P < 0.001, ****P < 0.0001, mixed effects model with population as the fixed 509 

intercept). 510 



 511 

Figure 3. dsPCA reveals cylindrical dynamics with untangled value representation in 512 

RSC. 513 

(A) dsPCA decomposes the activity of a population of individual neurons that exhibit mixed 514 

selectivity for multiple variables into demixed dimensions and the remaining subspace that is 515 

free of the targeted signals. 516 

(B) Matrix operations to identify the target-free axes. Full QR decomposition of a matrix with 517 

target axes (𝐓) identifies a set of basis vectors that spans the target-free subspace (𝐒𝐟𝐫𝐞𝐞). 518 

These target-free axes are realigned based on the principal component vectors (𝐖𝐩
𝐩𝐜𝐚

, matrix 519 

with top 𝑝 PCA loadings) of the activity in the target-free subspace. The target-free axes in the 520 

original 𝑛-dimensional space are the columns of 𝐖𝐩
𝐝𝐬𝐩𝐜𝐚

= 𝐒𝐟𝐫𝐞𝐞𝐖𝐩
𝐩𝐜𝐚

. 521 

(C) Fraction of activity variance along each target axis and the top 5 PC axes from the target-522 

free subspace. dsPCA was performed on noisy simulated data with target signals A, B, and C 523 

(10 repeated simulations). The amount of variance is similar between the 5 target-free axes 524 

because only Gaussian noise remained in the target-free subspace. 525 

(D) Signals A, B, and C along each dimension identified with dsPCA for the simulated data. 526 

Pearson correlations between the projected activity and each signal are shown. 527 

(E) Decoding accuracy of target signals from original population activity, activity in the target 528 

subspace (3 dimensions), and activity in the target-free subspace (𝑛-3 dimensions). 50,000 and 529 

10,000 trials for training and test sets. 530 

(F) We applied dsPCA to decompose the original population activity into the demixed Q 531 

subspace that consists of ΔQ, Qch, and ΣQ dimensions, and the Q-free subspace which is 532 

orthogonal to the Q subspace. 533 

(G) Fraction of activity variance along each Q-related axis and the top 5 PC axes from the Q-534 

free subspace for RSC populations. Unlike simulated data (C), the amount of variance between 535 

axes of the Q-free subspace differ, indicating that non-targeted correlated signals exist in the Q-536 

free subspace. 537 

(H) Q-related signals along each dsPCA dimension for RSC populations. Pearson correlations 538 

between the projected activity and each signal are shown.  539 

(I) Decoding accuracy of Q signals from the original RSC population activity, activity in the Q 540 

subspace (3 dimensions), and activity in the target-free subspace. 541 

(J-K) Example RSC, S1, and V1 population activity dynamics in neuronal manifolds where ΔQ 542 

axis is paired with Qch and ΣQ axes (J), or axes that reflect major within-trial temporal activity 543 



variance of Q-free subspace (K). dsPCA was applied on the activity between -2 and -1 sec from 544 

choice, and the activity between ±4 sec from choice was projected onto the identified axes. 545 

Circles indicate the choice time. Projected activity was temporally downsampled to non-546 

overlapping 200 ms bins. 547 

(L) Activity state transitions along ΔQ axis according to the updated action values in RSC, 548 

whereas S1 and V1 activity draw complex trajectories that lead to tangling in the geometry. 549 

Post-action selection trajectory was separately averaged according to the sign of ΔQ update. 550 

(M) Activity state transitions in (L) shown along the ΔQ axis. 551 

(N) Population activity in RSC forms cylindrical dynamics where within-trial cyclic dynamics can 552 

transition along ΔQ axis across trials according to the RPE, while in the other areas ΔQ 553 

representation is tangled. 554 

All error bars are 95% CI. 555 

 556 

Figure 4. Untangled persistency emerges in the artificial RNNs trained to perform 557 

‘mouse-like’ RL. 558 

(A) Optimal RNN agent was trained by updating its synaptic weights to minimize the 559 

discrepancy in decisions (cross-entropy error) between the teacher (optimal choice generator) 560 

and the student (RNN).  561 

(B) Behaviors of the trained optimal RNN agent in an example session. The agent ran the task 562 

by itself using its recurrent activity dynamics to implement RL. The left choice probability of the 563 

RNN agent was taken from its output neuron activity. Left (QL) and right (QR) action values were 564 

estimated by fitting a RL model to the behaviors. 565 

(C) Mouse-like RNN agent was trained by updating its synaptic weights to minimize the 566 

discrepancy in decisions (cross-entropy error) between the teacher (expert mice) and the 567 

student (RNN). 568 

(D) Behaviors of the trained mouse-like RNN agent in an example session. 569 

(E) Frequency of rewarded trials (left) and choice predictability by a RL model optimized to 570 

describe expert mouse behaviors (right, 5-fold cross-validation). n = 82 sessions for mice, 500 571 

sessions (5 trained networks, each ran 100 sessions of 500 trials/session) each for the optimal 572 

and mouse-like RNN agents. 573 

(F) Decision dependence on history from past 10 trials, quantified by a regression model 574 

(Methods). RewC: rewarded choice, UnrC: unrewarded choice, C: outcome-independent choice 575 

history. n = 82 sessions for mice, 5 sessions (5 trained networks, each ran 10,000 trials) each 576 



for the optimal and mouse-like RNN agents. The regression weights were normalized by the 577 

model accuracy. Error bars are 95% CI. 578 

(G) Activity of ΔQ coding neurons that were identified using the activity at the highlighted time 579 

bin (yellow shading, -1 time step before choice) in the recurrent layer of a trained mouse-like 580 

RNN agent (left), and the t-values of ΔQ after choice for the activity in each time bin (right). 581 

Each trial had 10 time steps, and 0 corresponds to the choice time. t-values were sorted based 582 

on the last time step (+9). The t-values in RNNs are higher than in mice due to smaller amount 583 

of activity noise. Error bars are s.e.m. 584 

 585 

Figure 5. Cylindrical dynamics emerges in mouse-like RNN agents and mice during 586 

training. 587 

(A) Population activity dynamics of the recurrent layer of mouse-like RNN agents in neuronal 588 

manifolds where ΔQ axis is paired with axes that reflect major within-trial temporal activity 589 

variance in Q-free subspace. Agents at each training stage ran the task for 10,000 trials. dsPCA 590 

was applied on the activity averaged between -5 and -1 time steps from choice, and the 591 

population activity between ±5 time steps from choice was projected onto the identified axes. 4 592 

independently trained mouse-like RNN agents are shown. Circles indicate the choice time.  593 

(B) Population activity dynamics of example RSC, PPC, pM2, and ALM populations in early and 594 

expert sessions. The same population of neurons was longitudinally compared for each area. 595 

dsPCA was applied on the activity averaged between -2 and -1 sec from choice, and the 596 

population activity between ±4 sec is visualized. Circles indicate the choice time. 597 

 598 

Figure 6. Persistency in value coding facilitates reliable and robust value retrieval by 599 

downstream neural networks. 600 

(A) RNN (40 recurrent units) was trained to retrieve ΔQ from the input population activity 601 

sequence with either persistent or non-persistent ΔQ coding. 602 

(B) Artificial population activity with either persistent or non-persistent ΔQ coding in the 200-cell 603 

sequence. 3 types of non-persistent mode were considered (2 rate coding, 1 binary coding; 604 

Methods). In the rate coding populations, the color indicates the Pearson correlation between 605 

the activity and ΔQ (20 % of neurons at each bin encode ΔQ). Example populations were 606 

visualized by either clustering ΔQ-coding neurons at each time bin (top) or sorting neurons 607 

based on the correlation at the last time bin (bottom). In the binary coding population, ΔQ is 608 



encoded by a unique activity sequence across time for each bin of ΔQ values (ten evenly 609 

spaced bins between ±1). 20% of neurons at each time bin participate in each sequence. In the 610 

example, cells are sorted for either sequence 1 or 2. Time bins that are active in both 611 

sequences are colored black. 612 

(C) Mean ΔQ retrieval accuracy by the downstream RNNs from populations with different coding 613 

modes and varying SNR (10 simulations for each). 614 

(D) The ΔQ retrieval accuracy at the 5th time step with different SNR in the input activity. The 615 

purple dashed line indicates the median SNR of ΔQ coding in imaged RSC populations. 616 

(E) Robustness of trained RNNs. Simulations were performed using artificial population activity 617 

with SNR of 1. Noise to synaptic weights was given by Gaussian noise with the standard 618 

deviation relative to the standard deviation of the weight distribution of each connection type. 619 

Error bars in (D) and (E) are 95% CI.  620 

(F) Artificial manipulations of ΔQ coding persistency illustrated in an example PPC population 621 

during ready period. Error bars are s.e.m. 622 

(G) ΔQ retrieval accuracy before and after the persistency manipulations (subsampled 240 cells 623 

were used, **P < 0.01, ****P < 0.0001, one-way ANOVA with Tukey's HSD). 624 

(H) Gain in retrieval accuracy by sorting correlates with the original ΔQ coding persistency. 625 

(I) Loss in retrieval accuracy by shuffling correlates with the original ΔQ coding persistency. 626 

 627 

Figure 7. Persistency in value coding also facilitates unsupervised value retrieval by 628 

downstream neural networks. 629 

(A) Representation of input population activity in the coding layer of denoising recurrent 630 

autoencoder networks (RDAE). Each network was trained to extract major signals from example 631 

populations of RSC, S1, or a trained mouse-like RNN agent (5,000 trials). Population activity 632 

sequence during ready period was used as the input. Each data point corresponds to a trial, 633 

with the colors indicating the ΔQ of the trial. Trials were separated according to the choice 634 

directions in the upcoming answer period in the bottom 2 rows. The dominant signals extracted 635 

in the activity of coding neurons (10 neurons) were visualized in 2 dimensions by 636 

multidimensional scaling. 637 

(B) RDAEs extract major signals of the input population activity into the activity of N neurons in 638 

the coding layer by unsupervised learning. 639 

(C) Decoding accuracy of ΔQ from the activity of N neurons in the coding layer. A simple 640 

feedforward neural network (N neurons in the coding layer are connected to a single output 641 



neuron with tanh activation function) was used to decode from the coding layer. Input 642 

populations were subsampled 240 cells. 643 

(D) Decoding accuracy of ΔQ from the activity of neurons in the coding layer (N = 1 and 10) 644 

positively correlates with the ΔQ coding persistency of the input population activity. 645 

(E) Artificial manipulations of ΔQ coding persistency in the input RSC population bi-directionally 646 

alter the amount of extracted ΔQ signal in the coding layer. 647 

All error bars are s.e.m. 648 

 649 

Figure 8. Non-specific signal leakage can contribute to widely distributed value coding 650 

with graded persistency. 651 

(A) Injection coordinates for anterograde tracing virus. RSC (red, n = 60 experiments), PPC 652 

(blue, n = 9), and pM2 (yellow, n = 33). Experiments with left hemisphere injections were 653 

mirrored horizontally. Experiments with both WT mice and Cre-transgenic mice were included 654 

(See Figure S9 for WT only). White squares indicate the imaging FOVs used for our neural 655 

activity analyses. 656 

(B) Mean projection density of axons from each source area. Black dots indicate the injection 657 

coordinates. 658 

(C) Connectivity matrix with the mean projection density from each source area to the 6 target 659 

areas that we used for our neural activity analyses (500μm × 500μm white squares). 660 

(D) RSC population activity sequences were processed through 5 recurrent layers with non-661 

specific connectivity. Connection probability from layer to layer was set to 20% (Other 662 

probabilities in Figure S10). 663 

(E) Fractions of ΔQ coding neurons at each of the 200 ms time bins during ready period 664 

(Regression, P < 0.05, 2-sided t-test). Error bars are s.e.m. 665 

(F) Mean fractions of ΔQ coding neurons at each layer during ready period. Fractions of time 666 

bins within the ready period were averaged for each population. Artificial manipulations of ΔQ 667 

coding persistency in RSC does not affect the fractions of ΔQ coding neurons in RSC, but affect 668 

the fractions in the downstream. 669 

(G) ΔQ coding persistency at each layer. Persistency progressively decreases in the 670 

downstream. Artificial manipulations of ΔQ coding persistency affect the persistency in the 671 

downstream. Error bars in (F) and (G) are 95% CI. 672 

(H) Temporal dynamics of population activity states visualized with dsPCA applied at each 673 



layer. Cylindrical dynamics gradually collapses into highly tangled dynamics in downstream 674 

layers. 675 

 676 

 677 

STAR Methods 678 

Resource availability 679 

Lead Contact 680 

Further information and requests for resources should be directed to and will be fulfilled by the 681 

lead contact, Takaki Komiyama (tkomiyama@ucsd.edu). 682 

Materials Availability 683 

This study did not generate new unique reagents. 684 

Data and code availability 685 

• Data reported in this paper are available from the lead contact upon reasonable request.    686 

• dsPCA code has been deposited at Zenodo and is publicly available. The DOI and the link to 687 

the latest code in the GitHub repository are listed in the key resource table. 688 

• Any additional information required to reanalyze the data reported in this paper is available 689 

from the lead contact upon request. 690 

 691 

Experimental model and subject  692 

Animals 693 

The experimental data in the value-based decision task were first reported in ref. (Hattori et al., 694 

2019). The data in the alternate choice task were newly collected for the current study. Both 695 

male and female mice were included in both datasets because we did not observe obvious sex-696 

dependent differences in their neural activity patterns. Mice were originally obtained from the 697 

Jackson Laboratory (CaMKIIa-tTA: B6;CBA-Tg(Camk2a-tTA)1Mmay/J [JAX 003010]; tetO-698 

GCaMP6s: B6;DBA-Tg(tetO-GCaMP6s)2Niell/J [JAX 024742]). All mice (6 weeks or older) were 699 

implanted with glass windows above their dorsal cortex for in vivo two-photon calcium imaging. 700 

All mice were water-restricted at ~1ml/day during training.  701 

 702 

Method details 703 



Surgery 704 

Mice were continuously anesthetized with 1-2% isoflurane during surgery after subcutaneous 705 

injection of dexamethasone (2mg/kg). After exposing the dorsal skull and removing the 706 

connective tissue on the skull surface using a razor blade, we marked on the skull with black ink 707 

at the coordinates of [AP from bregma, ML from bregma] = [+3.0 mm, 0 mm], [+2.0 mm, 0 mm], 708 

[+1.0 mm, 0 mm], [0 mm, 0 mm], [-1.0 mm, 0 mm], [-2.0 mm, 0 mm], [-3.0 mm, 0 mm], [0 mm, 709 

±1.0 mm], [0 mm, ±2.0 mm], [0 mm, ±3.0 mm], [-2.0 mm, ±1.0 mm] , [-2.0 mm, ±2.0 mm], [-2.0 710 

mm, ±3.0 mm]. We then applied saline on the skull and waited for a few minutes until the skull 711 

became transparent enough to visualize vasculature patterns on the brain surface. We took a 712 

photo of the vasculature patterns along with marked coordinates and used it to find target 713 

cortical areas for two-photon microscopy. A large craniotomy was performed to expose 6 714 

cortical areas, and a hexagonal glass window was implanted on the brain. The glass window 715 

was secured on the edges of the remaining skull using 3M Vetbond (WPI), followed by 716 

cyanoacrylate glue and dental acrylic cement (Lang Dental). After implanting the glass window, 717 

a custom-built metal head-bar was secured on the skull above the cerebellum using 718 

cyanoacrylate glue and dental cement. Mice were subcutaneously injected with Buprenorphine 719 

(0.1 mg/kg) and Baytril (10 mg/kg) after surgery.  720 

 721 

Behavior task and training 722 

Mice were water-restricted at 1-2 ml/day after a minimum of 5 days of recovery after surgery. 723 

We began animal training in pre-training tasks after at least a week of water restriction. We used 724 

BControl (C Brody), a real-time system running on Linux communicating with MATLAB, to 725 

control behavioral apparatus. We placed 2 lickports in front of head-fixed mice to monitor their 726 

licking behaviors and give water rewards. Licking behaviors were monitored by IR beams 727 

running in front of each water tube. We used an amber LED (5mm diameter) as the ready cue 728 

and a speaker for auditory cues. Each trial begins with a ready period (2 or 2.5 sec with the 729 

amber LED light), followed by an answer period with an auditory go cue (10 kH tone). The 10 730 

kHz tone was terminated when animals made a choice (the first lick to a lickport) or when the 731 

answer period reached the maximum duration of 2 sec. Mice received a 50 ms feedback tone 732 

(left: 5 kHz, right: 15 kHz) after a choice. ~2.5 µl water was provided to mice on each rewarded 733 

trial from a lickport. 734 

 Before running in the alternate choice task or value-based decision task, mice were 735 

trained in 2 pre-training tasks. In the 1st pre-training task, mice were rewarded for either choice 736 

during the answer period. We gradually increased the mean ITI from 1 sec to 6 sec with ±1 sec 737 



jitter. Through training in this task (2-3 days), mice learn that they can obtain water rewards from 738 

the 2 lickports if they lick during the answer period. In the 2nd pre-training task, reward location 739 

alternated every trial irrespective of their choice directions. Furthermore, licking during ready 740 

period was punished by 500 ms white noise alarm sound and trial abort with an extra 2 sec ITI 741 

in addition to the regular 5-7 sec ITI. Through training in this 2nd pre-training task (2-3 days), 742 

mice learned to lick from both lickports and withhold licking during the ready period.  743 

Alternate choice task 744 

In the alternate choice task, mice need to change their choice from a previous trial to get a 745 

water reward. For example, if a mouse chose left on one trial, regardless of whether the mouse 746 

received a reward or not, a water reward is available only from the right choice on the next trial. 747 

The mouse will not get any rewards by repeating left choices for many trials because a reward 748 

will not be assigned to the left until the mouse collects the assigned reward on the right side. 749 

Mice need to rely on which side they chose in the previous trial to make the correct choice. ITI 750 

was 5-7 sec, and the trials with licking during ready period were classified as alarm trials (500 751 

ms white noise alarm sound and extra 2 sec ITI). Mice were trained for at least 2 weeks before 752 

starting 2-photon calcium imaging.  753 

Value-based decision task 754 

In the value-based decision task, a reward is probabilistically assigned to each choice. On each 755 

trial, a reward may be assigned to each choice according to the reward assignment probabilities 756 

that are different between two choices. Once a reward was assigned to a lickport, the reward 757 

remained assigned until it was chosen. As a result, the probability that a reward is assigned to a 758 

choice gradually increases if the choice has not been selected in the recent past trials. The 759 

combinations of reward assignment probabilities were either [60 %, 10 %] or [52.5 %, 17.5 %] in 760 

a trial, and reward assignment probabilities switched randomly every 60-80 trials in the order of 761 

[Left, Right] = …, [60 %, 10 %], [10 %, 60 %], [52.5 %, 17.5 %], [17.5 %, 52.5 %], [60 %, 10 %], 762 

…. The probability switch was postponed if the fraction of choosing the lickport with higher 763 

reward assignment probability was below 50 % in recent 60 trials until the fraction reached at 764 

least 50 %. ITI was 5-7 sec, and the trials with licking during ready period were classified as 765 

alarm trials (500 ms white noise alarm sound and extra 2 sec ITI). Trials in which mice licked 766 

during ready period (‘alarm trials’, 5.15 %) and the trials in which mice failed to lick during the 767 

answer period (‘miss trials’, 4.68 %) were not rewarded. We did not include alarm and miss 768 

trials in neural activity analyses to ensure that the ready periods we analyzed were free of 769 

licking behaviors and that mice were engaged in the task in the trials. 770 

 771 



Two-photon calcium imaging 772 

We used a two-photon microscope (B-SCOPE, Thorlabs) with a 16× objective (0.8 NA, Nikon) 773 

and 925 nm excitation wavelength (Ti-Sapphire laser, Newport) for in vivo calcium imaging. 774 

Images were acquired using ScanImage (Vidrio Technologies) running on MATLAB. All calcium 775 

imaging was performed using camk2-tTA::tetO-GCaMP6s double transgenic mice that express 776 

GCaMP6s in camk2-positive excitatory neurons. Each field-of-view (FOV) (512 × 512 pixels 777 

covering 524 × 524 µm) was scanned at ~29 Hz. Areas within the FOV that were not 778 

consistently imaged across frames were discarded from analyses (Typically 10 pixels from each 779 

edge of the FOV). We imaged and analyzed layer 2/3 neurons of 6 cortical areas in this study: 780 

retrosplenial (RSC, 0.4 mm lateral and 2 mm posterior to bregma), posterior parietal (PPC, 1.7 781 

mm lateral and 2 mm posterior to bregma), posterior premotor (pM2, 0.4 mm lateral and 0.5 mm 782 

anterior to bregma), anterior lateral motor (ALM, 1.7 mm lateral and 2.25 mm anterior to 783 

bregma), primary somatosensory (S1, 1.8 mm lateral and 0.75 mm posterior to bregma), and 784 

primary visual (V1, 2.5 mm lateral and 3.25 mm posterior to bregma) cortex. Images from these 785 

areas were collected from both hemispheres. We collected only 1 population from each 786 

hemisphere for each cortical area of a single mouse. We imaged both hemispheres in two 787 

different behavioral sessions if the FOVs on both hemispheres were clear at the time of 788 

imaging. 789 

 790 

Image processing  791 

Images from 2-photon calcium imaging were processed using a custom-written pipeline (Hattori, 792 

2021). The pipeline corrects motion artifacts using pyramid registration (Mitani and Komiyama, 793 

2018), and slow image distortions were further corrected by affine transformations based on 794 

enhanced correlation coefficients between frames (Evangelidis and Psarakis, 2008). We used 795 

Suite2P (Pachitariu et al., 2016) to define regions of interests (ROIs) corresponding to individual 796 

neurons and extract their GCaMP fluorescence. We selected only cellular ROIs using a user-797 

trained classifier in Suite2P and by manual inspections. At the step of signal extraction from 798 

each cellular ROI, we excluded pixels that overlap with the other ROIs.  799 

 800 

Neural activity 801 

The neural activity data for the value-based decision task were first reported in ref. (Hattori et 802 

al., 2019). We also additionally collected new neural activity data from mice running the 803 

alternate choice task. The activity was continuously recorded with in vivo two-photon calcium 804 

imaging at ~29 Hz from mice during the task performance. GCaMP fluorescence time series 805 



were deconvolved to obtain signals that better reflect the kinetics of neural spiking activity using 806 

a non-negative deconvolution algorithm (Friedrich et al., 2017; Pachitariu et al., 2018). The 807 

deconvolved signal of each neuron was z-score normalized using the activity time series during 808 

the entire imaging session before performing all the activity analyses in this study.  809 

 For the alternate choice task, we collected and analyzed the activity of 8,524 RSC 810 

neurons (14 populations), 3,186 PPC neurons (7 populations), 7,915 pM2 neurons (14 811 

populations) and 4,911 ALM neurons (10 populations) from 9 expert mice while they were 812 

running the alternate choice task. For the value-based decision task, we analyzed the activity of 813 

9,254 RSC neurons (15 populations), 6,210 PPC neurons (13 populations), 7,232 pM2 neurons 814 

(13 populations) and 5,498 ALM neurons (10 populations) from early sessions (≤ 6th session), 815 

and 9,992 RSC neurons ( populations), 7,703 PPC neurons ( populations), 9,759 pM2 neurons ( 816 

populations), 6,721 ALM neurons ( populations), 7,576 S1 neurons (14 populations) and 2,767 817 

V1 neurons (6 populations) from expert sessions of the data used in ref. (Hattori et al., 2019). 818 

 819 

Reinforcement learning model for mouse behaviors 820 

The reinforcement learning model that we used to estimate the action values in each trial was 821 

taken from ref. (Hattori et al., 2019). This model was optimized specifically for mouse behaviors 822 

and not necessarily ideal for describing the RL action policy of artificial neural network agents 823 

(e.g. Optimal RNN agents). Action values of chosen (𝑄𝑐ℎ) and unchosen (𝑄𝑢𝑛𝑐ℎ) options in each 824 

trial were updated as follows: 825 

𝑄𝑐ℎ(𝑡 + 1) = {
𝑄𝑐ℎ(𝑡) + 𝛼𝑟𝑒𝑤 ∗ (𝑅(𝑡) − 𝑄𝑐ℎ(𝑡)) 𝑖𝑓 𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑 (𝑅(𝑡) = 1)     

𝑄𝑐ℎ(𝑡) + 𝛼𝑢𝑛𝑟 ∗ (𝑅(𝑡) − 𝑄𝑐ℎ(𝑡)) 𝑖𝑓 𝑢𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑 (𝑅(𝑡) = 0)
       [𝐞𝐪. 𝟏] 826 

𝑄𝑢𝑛𝑐ℎ(𝑡 + 1) = (1 − 𝛿) ∗ 𝑄𝑢𝑛𝑐ℎ(𝑡)       [𝐞𝐪. 𝟐] 827 

where 𝛼𝑟𝑒𝑤 and 𝛼𝑢𝑛𝑟 are the learning rates for rewarded and unrewarded trials respectively, 𝛿 is 828 

the forgetting rate for the unchosen option, and 𝑅(𝑡) is reward outcome in trial 𝑡 (1 for rewarded, 829 

0 for unrewarded trials). The learning rates and the forgetting rate were constrained between 0 830 

and 1. In alarm and miss trials, values of both options were discounted by 𝛿. The probability of 831 

choosing left (𝑃𝐿) on trial 𝑡 is estimated using left (𝑄𝐿) and right (𝑄𝑅) action values as follows: 832 

𝑃𝐿(𝑡) =
1

1 + 𝑒−𝛽∆𝑄(𝛽0+𝑄𝐿(𝑡)−𝑄𝑅(𝑡))
       [𝐞𝐪. 𝟑] 833 



where 𝛽0 is the value bias which is constant within each session, and 𝛽∆𝑄 reflects the behavioral 834 

sensitivity to ΔQ. The RL model was fit to the behavioral choice patterns with maximum 835 

likelihood estimation. 836 

 837 

ΔQ-coding neurons 838 

ΔQ-coding neurons in the value-based decision task were identified with the following multiple 839 

linear regression model. 840 

𝑎𝑖(𝑡) = 𝛽𝐶𝐶(𝑡) + 𝛽∆𝑄∆𝑄(𝑡) + 𝛽𝑄𝑐ℎ𝑄𝑐ℎ(𝑡) + 𝛽ΣQΣQ(𝑡) + 𝛽0          [𝐞𝐪. 𝟒] 841 

where 𝑎𝑖(𝑡) is the mean activity of ith neuron within each 200 ms time bin on trial 𝑡 (except for 842 

some analyses (Figures S1 and S2) where the mean activity within the first 2 sec of ready 843 

period was used instead), 𝐶(𝑡) is the choice on trial 𝑡 (1 if contralateral choice, -1 if ipsilateral 844 

choice), ∆𝑄(𝑡) is the value difference between contralateral and ipsilateral options on trial 𝑡, 845 

𝑄𝑐ℎ(𝑡) is the value of the chosen option on trial 𝑡, and ∑𝑄 (𝑡) is the sum of values of both 846 

options on trial 𝑡. The regression weights were estimated by the ordinary least squares method. 847 

ΔQ-coding neurons were identified with two-tailed t-test for the 𝛽∆𝑄 regression weight (statistical 848 

threshold of either P < 0.05 or P < 0.01 as indicated in the figure legend of each analysis). The 849 

t-value for 𝛽∆𝑄(𝑡) is 𝑇𝛽∆𝑄(𝑡) =
𝛽∆𝑄

𝑠𝑒(𝛽∆𝑄)
 where 𝑠𝑒(𝛽∆𝑄) is an estimate of the standard error of 𝛽∆𝑄.  850 

 851 

Action history coding neurons 852 

Neurons that encode action history from an immediately preceding trial in the alternate choice 853 

task and the value-based decision task were identified with the following multiple linear 854 

regression model. 855 

𝑎𝑖(𝑡) = 𝛽𝐶𝑡𝐶(𝑡) + 𝛽𝐶(𝑡−1)𝐶(𝑡 − 1) + 𝛽0          [𝐞𝐪. 𝟓] 863 

where 𝑎𝑖(𝑡) is the mean activity of ith neuron within each 200 ms time bin on trial 𝑡, 𝐶(𝑡) is the 856 

choice on trial 𝑡 (1 if contralateral choice, -1 if ipsilateral choice), 𝐶(𝑡 − 1) is the choice on trial 857 

(𝑡 − 1) (1 if contralateral choice, -1 if ipsilateral choice, 0 otherwise). The regression weights 858 

were estimated by the ordinary least squares method. Action history coding neurons were 859 

identified with two-tailed t-test for the 𝛽𝐶(𝑡−1) regression weight (statistical threshold of P < 0.05). 860 

The t-value for 𝛽𝐶(𝑡−1) is 𝑇𝛽𝐶(𝑡−1)
=

𝛽𝐶(𝑡−1)

𝑠𝑒(𝛽𝐶(𝑡−1))
 where 𝑠𝑒(𝛽𝐶(𝑡−1)) is an estimate of the standard error 861 

of 𝛽𝐶(𝑡−1).  862 

 864 



Persistency index 865 

Persistency index to quantify the mean persistency of ΔQ coding or action history coding in a 866 

population of neurons was defined as follow; 867 

𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑖𝑛𝑑𝑒𝑥 =

1
𝑚
∑ ∑ 𝑠𝑡𝑑(𝑇𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑

𝑖,𝑗
 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)𝑛

𝑖=1
𝑚
𝑗=1 − ∑ 𝑠𝑡𝑑(𝑇𝑟𝑎𝑤

𝑖  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)𝑛
𝑖=1

1
𝑚
∑ ∑ 𝑠𝑡𝑑 (𝑇𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑

𝑖,𝑗
 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)𝑛

𝑖=1
𝑚
𝑗=1 − ∑ 𝑠𝑡𝑑(𝑇𝑠𝑜𝑟𝑡𝑒𝑑

𝑖  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)𝑛
𝑖=1

     [𝐞𝐪. 𝟔] 868 

where 𝑇𝑟𝑎𝑤
𝑖  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 is the time series of t-values for 𝛽∆𝑄 or 𝛽𝐶(𝑡−1) that was obtained by fitting 869 

the [𝐞𝐪. 𝟒] or [𝐞𝐪. 𝟓] to the activity of each of the non-overlapping 200 ms time bins between 5 870 

sec before the ready cue and 2 sec after the ready cue. The across-time standard deviation of 871 

the 𝑇𝑟𝑎𝑤
𝑖  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 was summed across all n neurons in the population (including neurons with 872 

non-significant t-values), and this summed standard deviation was normalized by min-max 873 

normalization such that the persistency index ranges between 0 (chance level persistency of a 874 

target population) and 1 (maximum persistency of a target population). The maximum 875 

persistency of a target population, ∑ 𝑠𝑡𝑑(𝑇𝑠𝑜𝑟𝑡𝑒𝑑
𝑖  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)𝑛

𝑖=1 , was obtained by independently 876 

sorting the cell identity at each time bin according to the 𝛽∆𝑄 t-values of each cell in the time bin. 877 

The chance level persistency of a target population, 
1

𝑚
∑ ∑ 𝑠𝑡𝑑(𝑇𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑

𝑖,𝑗
 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)𝑛

𝑖=1
𝑚
𝑗=1 , was 878 

obtained by independently shuffling the cell identity at each time bin. To minimize the effect of 879 

randomness in the shuffling procedure, we iterated the shuffling 𝑚 times (𝑚 = 10) and took the 880 

mean of the 10 iterations. This persistency index describes how persistent the target signal 881 

coding is above chance and how far the persistency is from the maximum persistency that the 882 

target population activity could achieve. 883 

 884 

Demixed subspace principal component analysis (dsPCA) 885 

Supervised dimensionality reduction algorithms can identify dimensions that encode targeted 886 

signals in high-dimensional data. However, they do not provide any information about signals 887 

that are not targeted by the users. As a result, these supervised analyses may miss important 888 

signals that exist in the original high-dimensional data. On the other hand, unsupervised 889 

dimensionality reduction algorithms can find dimensions for the major signals in the high-890 

dimensional data, but they do not automatically reveal what kind of signals are reflected along 891 

each dimension. Furthermore, unsupervised methods may miss the signals of interest if the 892 

target signals are much weaker than the other dominant signals in the data. 893 

 We developed a novel dimensionality reduction algorithm that combines the strengths of 894 

both supervised and unsupervised methods. The demixed subspace principal component 895 



analysis (dsPCA) identifies demixed coding axes for targeted variables in a supervised manner, 896 

and then identify axes that capture the remaining variance in the data using an unsupervised 897 

method. Although previously reported demixed principal component analysis (dPCA) has similar 898 

objectives (Kobak et al., 2016), dPCA can only identify targeted coding axes for discrete 899 

variables. In contrast, dsPCA can identify demixed axes for both discrete and continuous 900 

variables. Furthermore, although dPCA splits each targeted signal into multiple linear axes, 901 

dsPCA identifies a single linear coding dimension for each of the target signals, and all the 902 

linear information for the target signals are contained within the dimensions identified by these 903 

single coding axes.  904 

The input to the algorithm is a 3rd-order tensor of population activity with dimensions of 905 

Trial (m) × Time (t) × Neuron (n). 906 

𝑿𝒕𝒓𝒊𝒂𝒍×𝒕𝒊𝒎𝒆×𝒏𝒆𝒖𝒓𝒐𝒏 = 𝑿𝒎×𝒕×𝒏          [𝐞𝐪. 𝟕] 907 

The tensor 𝑿𝒎×𝒕×𝒏 is first averaged over time axis elements within a specified time range, and 908 

we get a 2nd-order tensor of 𝑿𝒎×𝒏
′ . 909 

𝑿𝒎×𝒏
′ = (

𝑥1,1
𝑥1,2

𝑥2,1 ⋯ 𝑥n,1
𝑥2,2 ⋯ 𝑥n,2

⋮
𝑥1,𝑚

⋮ ⋱ ⋮
𝑥2,𝑚 ⋯ 𝑥𝑛,𝑚

)         [𝐞𝐪. 𝟖] 910 

To identify the demixed linear coding axes that encode ΔQ, Qch, or ΣQ in the population 911 

activity, we fit the following multiple linear regression model to the mean activity of individual 912 

neurons during the ready period;  913 

(

𝑥i,1
𝑥i,2
⋮
𝑥i,𝑚

) =

(

 

1 ∆Q1
1 ∆Q2

Qch1 ΣQ1
Qch2 ΣQ2

⋮ ⋮
1 ∆Qm

⋮ ⋮
Qchm ΣQm)

 

(

 
 

𝛽𝑖,0
𝛽𝑖,∆𝑄
𝛽𝑖,𝑄𝑐ℎ
𝛽𝑖,𝛴𝑄)

 
 
+ (

𝜀1
𝜀2
⋮
𝜀𝑚

)         [𝐞𝐪. 𝟗] 914 

where 𝛽𝑖,∆𝑄, 𝛽𝑖,𝑄𝑐ℎ, and 𝛽𝑖,ΣQ are the regression coefficients of the ith neuron. For a population of 915 

n neurons, we obtain n regression coefficients for each type of Q-related signal. These 916 

regression coefficients are used to define the coding axes as follows; 917 

∆𝒒⃗⃗⃗⃗  ⃗ = (

∆𝑞1
∆𝑞2
⋮
∆𝑞𝑛

) =
𝜷∆𝑸⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝜷∆𝑸⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
𝟐

=
(𝛽1,∆𝑄 𝛽2,∆𝑄 ⋯ 𝛽𝑛,∆𝑄)𝑻

√∑ |𝛽𝑖,∆𝑄|
2𝒏

𝒊=𝟏

       [𝐞𝐪. 𝟏𝟎] 918 



𝒒𝒄𝒉⃗⃗ ⃗⃗ ⃗⃗ = (

𝑞𝑐ℎ1
𝑞𝑐ℎ2
⋮

𝑞𝑐ℎ𝑛

) =
𝜷𝑸𝒄𝒉
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝜷𝑸𝒄𝒉
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

𝟐

=
(𝛽1,𝑄𝑐ℎ 𝛽2,𝑄𝑐ℎ ⋯ 𝛽𝑛,𝑄𝑐ℎ)

𝑻

√∑ |𝛽𝑖,𝑄𝑐ℎ|
2𝒏

𝒊=𝟏

           [𝐞𝐪. 𝟏𝟏] 925 

𝜮𝒒⃗⃗⃗⃗  ⃗ = (

𝛴𝑞1
𝛴𝑞2
⋮
𝛴𝑞𝑛

) =
𝜷𝜮𝑸⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝜷𝜮𝑸⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
𝟐

=
(𝛽1,𝛴𝑄 𝛽2,𝛴𝑄 ⋯ 𝛽𝑛,𝛴𝑄)𝑻

√∑ |𝛽𝑖,𝛴𝑄|
2𝒏

𝒊=𝟏

          [𝐞𝐪. 𝟏𝟐] 926 

Note that these coding axes are ‘demixed’ coding axes where the activity variance for partially 919 

correlated variables are demixed into one of the axes for the partially correlated variables 920 

thanks to the linear demixing in the regression model ([𝐞𝐪. 𝟗]). Although some previous studies 921 

further orthogonalized these demixed coding axes (Mante et al., 2013), we did not orthogonalize 922 

between the coding axes because further orthogonalization would remix these best demixed 923 

coding axes.  924 

Next, our goal is to identify a neural subspace that does not encode any of the targeted 927 

Q-related signals. To identify the neural subspace that is free of the 3 targeted Q-related 928 

signals, we solve the following full QR decomposition of an n × 3 matrix with the 3 coding axis 929 

vectors using Householder reflections; 930 

   

(

 

∆𝑞1 𝑞𝑐ℎ1 𝛴𝑞1
∆𝑞2 𝑞𝑐ℎ2 𝛴𝑞2
⋮
∆𝑞𝑛

⋮
𝑞𝑐ℎ𝑛

⋮
𝛴𝑞𝑛)

 = (𝑺𝑸 ,   𝑺𝐟𝐫𝐞𝐞)𝑹  931 

     = (𝒒𝟏⃗⃗ ⃗⃗  ,   𝒒𝟐⃗⃗ ⃗⃗ ,   𝒒𝟑⃗⃗ ⃗⃗ ,   𝒇𝟏⃗⃗⃗⃗  ,   𝒇𝟐⃗⃗⃗⃗ ,   ⋯  𝒇(𝒏−𝟑)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )𝑹                932 

     =

(

 

𝑞1,1 𝑞2,1 𝑞3,1
𝑞1,2 𝑞2,2 𝑞3,2
⋮
𝑞1,𝑛

⋮
𝑞2,𝑛

⋮
𝑞3,𝑛

𝑓1,1 𝑓2,1
𝑓1,2 𝑓2,2

⋯ 𝑓(𝑛−3),1
⋯ 𝑓(𝑛−3),2

⋮ ⋮
𝑓1,𝑛 𝑓2,𝑛

⋱ ⋮
⋯ 𝑓(𝑛−3),𝑛)

 𝑹        [𝐞𝐪. 𝟏𝟑] 933 

where R is an upper triangular matrix, 𝑺𝑸 is a neural subspace that captures all Q-related 934 

signals, and 𝑺𝐟𝐫𝐞𝐞 is the Q-free subspace that is orthogonal to the 𝑺𝑸. 𝑺𝑸 is formed by 3 935 

orthonormal basis vectors (𝒒𝟏⃗⃗ ⃗⃗  ,   𝒒𝟐⃗⃗ ⃗⃗ ,   𝒒𝟑⃗⃗ ⃗⃗ ), and these basis vectors and the 3 coding axis vectors 936 

(∆𝒒⃗⃗⃗⃗  ⃗ , 𝒒𝒄𝒉⃗⃗ ⃗⃗ ⃗⃗ ,   𝜮𝒒⃗⃗⃗⃗  ⃗) span the identical neural subspace. On the other hand, 𝑺𝐟𝐫𝐞𝐞 is formed by (n – 3) 937 

target-free orthonormal vectors (𝒇𝟏⃗⃗⃗⃗  ,   𝒇𝟐⃗⃗⃗⃗ ,   ⋯  𝒇(𝒏−𝟑)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) and capture all the remaining population 938 

activity variance that were not captured by the subspace 𝑺𝑸. The representation of the 939 

population activity 𝑿𝒎×𝒏
′  in 𝑺𝐟𝐫𝐞𝐞 is given by 940 

𝑝𝑟𝑜𝑗𝑺𝐟𝐫𝐞𝐞𝑿
′ = 𝑿′𝑺𝐟𝐫𝐞𝐞            [𝐞𝐪. 𝟏𝟒] 941 



Lastly, we further realign the dimensions of the Q-free subspace 𝑺𝐟𝐫𝐞𝐞 such that 942 

minimum numbers of dimensions are necessary to explain the remained activity variance as 943 

much as possible. This realignment is done using the principal component vectors from PCA on 944 

𝑝𝑟𝑜𝑗𝑺𝐟𝐫𝐞𝐞𝑿
′. The top p principal component vectors (p ≤ n - 3) can be used as the major Q-free 945 

subspace dimensions for dimensionality reduction purpose as follows;  946 

𝑭𝒑
′ = 𝑿′(𝑺𝐟𝐫𝐞𝐞𝑾𝒑

𝒑𝒄𝒂) = 𝑿′𝑾𝒑
𝒅𝒔𝒑𝒄𝒂           [𝐞𝐪. 𝟏𝟓] 947 

where the m-by-p matrix 𝑭𝒑
′ is the top p principal components of the activity within the Q-free 948 

subspace, the (n-3)-by-p matrix 𝑾𝒑
𝒑𝒄𝒂 is the loadings matrix of the PCA, and the n-by-p matrix 949 

𝑾𝒑
𝒅𝒔𝒑𝒄𝒂 is the loadings matrix of the dsPCA. The columns of 𝑾𝒑

𝒅𝒔𝒑𝒄𝒂 are the Q-free axis 950 

vectors in the raw n-dimensional population activity space. More generally, the neural subspace 951 

that is free of k targeted variables can be obtained by the same [eq. 15] with p ≤ n – k. 952 

Through these steps ([eq. 7] ~ [eq.15]), dsPCA identified the 3 linearly demixed coding 953 

axes for the targeted Q-related signals (∆𝒒⃗⃗⃗⃗  ⃗ , 𝒒𝒄𝒉⃗⃗ ⃗⃗ ⃗⃗ ,   𝜮𝒒⃗⃗⃗⃗  ⃗), and (n - 3) target-free axes (column 954 

vectors of 𝑾𝒏−𝟑
𝒅𝒔𝒑𝒄𝒂). We confirmed that none of the targeted signals could be linearly 955 

decodable from the population activity within the obtained target-free subspace (Figures 3E, 3I 956 

and S3C). 957 

In this manuscript, we decomposed neural population activity into demixed Q subspace 958 

and Q-free subspace using dsPCA. The Q subspace consists of demixed linear coding axes for 959 

ΔQ, Qch and ΣQ, and all activity variance that linearly relates to these Q-related signals are 960 

included in this subspace. On the other hand, all the other activity variance that did not remain 961 

in the Q subspace is included in the Q-free subspace. The activity state of the neural population 962 

changes across trials within the Q subspace depending on how each of the Q-related signals is 963 

updated by choice and its outcome. We also identified the axes that capture the major within-964 

trial temporal activity variance in the Q-free subspace by performing PCA on the 2nd-order 965 

tensors that are obtained by averaging 𝑝𝑟𝑜𝑗𝑺𝐟𝐫𝐞𝐞𝑿 over trial axis elements. 966 

 967 

Quantification of Q-related signals in subspaces from dsPCA 968 

dsPCA decomposed population activity into Q subspace and Q-free subspaces. We examined 969 

the amount of Q-related signals in each subspace. The strength of Q-related signals in a full 970 

population activity with n neurons was quantified using linear decoders given by 971 



𝛥𝑄(𝑡) =  ∑𝛽𝑖
𝛥𝑄𝑎𝑖(𝑡) + 𝛽0

𝛥𝑄

𝑛

𝑖=1

       [𝐞𝐪. 𝟏𝟔] 972 

𝑄𝑐ℎ(𝑡) =  ∑𝛽𝑖
𝑄𝑐ℎ𝑎𝑖(𝑡) + 𝛽0

𝑄𝑐ℎ

𝑛

𝑖=1

       [𝐞𝐪. 𝟏𝟕] 973 

𝛴𝑄(𝑡) =  ∑𝛽𝑖
𝛴𝑄
𝑎𝑖(𝑡) + 𝛽0

𝛴𝑄

𝑛

𝑖=1

       [𝐞𝐪. 𝟏𝟖] 974 

where 𝑎𝑖(𝑡) is the activity of the ith neuron on trial 𝑡, 𝛽𝑖
𝑥 is the regression weight for 𝑎𝑖(𝑡), and 𝛽0

𝑥 975 

is the constant term. The decoder was trained with an L2 penalty by selecting the regularization 976 

parameter by 5-fold cross-validation. The decoding accuracy was obtained with 5-fold cross-977 

validation by separating trials into training and test sets. Similarly, the strength of Q-related 978 

signals in the 3-dimensional Q subspace and the (n - 3)-dimensional Q-free subspaces were 979 

quantified using linear decoders on the projected population activity in each subspace as 980 

follows; 981 

𝛥𝑄(𝑡) =  ∑𝛽𝑖
𝛥𝑄𝑠𝑖(𝑡) + 𝛽0

𝛥𝑄

𝑥

𝑖=1

       [𝐞𝐪. 𝟏𝟗] 982 

𝑄𝑐ℎ(𝑡) =  ∑𝛽𝑖
𝑄𝑐ℎ𝑠𝑖(𝑡) + 𝛽0

𝑄𝑐ℎ

𝑥

𝑖=1

       [𝐞𝐪. 𝟐𝟎] 983 

𝛴𝑄(𝑡) =  ∑𝛽𝑖
𝛴𝑄
𝑠𝑖(𝑡) + 𝛽0

𝛴𝑄

𝑥

𝑖=1

       [𝐞𝐪. 𝟐𝟏] 984 

where 𝑠𝑖(𝑡) is the population activity along the ith dimension of the subspace on trial 𝑡, 𝛽𝑖
𝑥 is the 985 

regression weight for 𝑠𝑖(𝑡), and 𝛽0
𝑥 is the constant term. 𝑥 = 3 for Q subspace while 𝑥 = 𝑛 − 3 986 

for Q-free subspace. These analyses revealed that all Q-related signals were captured by the 987 

Q-subspace, while Q-related signals were completely absent in the Q-free subspace (Figures 988 

3E, 3I and S3C).  989 

 990 

RNN agents with optimal or mouse-like RL strategy 991 

The RNN agents trained to perform RL in this study consisted of 2 neurons in the input layer, 992 

100 neurons in the recurrent layer, and 1 neuron in the output layer. The agents were trained to 993 

perform RL in the same behavior task environment with 10 time steps per trial. The 2 input 994 



neurons receive choice and reward outcome information only at the time step immediately after 995 

choice, and the history of the choice outcome information was maintained through the recurrent 996 

connectivity in the downstream recurrent layer. The sequence of activity fed into the input 997 

neurons was given as vectors with either choice or reward history labels in their elements. The 998 

elements that correspond to the time steps immediately after choice took 1 for left choice and -1 999 

for right choice in the choice history vector, and the elements took 1 for reward outcome and -1 1000 

for no-reward outcome in the reward history vector. These elements took 0 in miss trials. The 1001 

other elements of the vectors  were all zeros. We sequentially fed 100 time steps of sequences 1002 

into these input neurons, and the network training was done with unroll length of 100 time steps 1003 

for backpropagation through time. The choice input neuron and reward input neuron connect 1004 

with neurons in the recurrent layer. The neurons in the recurrent layer are connected with each 1005 

other through recurrent connections, which allows each recurrent neuron to receive outputs of 1006 

the previous time steps. The output of the recurrent layer is given by 1007 

𝒚(𝒕) = 𝑡𝑎𝑛ℎ(𝑾𝒙𝒙(𝒕) +𝑾𝒚𝒚(𝒕−𝟏) + 𝒃)         [𝐞𝐪. 𝟐𝟐] 1008 

where 𝑡𝑎𝑛ℎ(∙) is a hyperbolic tangent activation function of the form 𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
 , 𝒙(𝒕) is a 2 1009 

× 1 vector containing the choice and reward information from a previous time step, 𝒚(𝒕−𝟏) is a 1010 

100 × 1 vector containing the layer’s outputs at time step t, 𝑾𝒙 is a 100 × 2 matrix containing 1011 

the connection weights for the inputs of the current time step, 𝑾𝒚 is a 100 × 100 matrix 1012 

containing the connection weights for the outputs of the previous time step, and 𝒃 is a 100 × 1 1013 

vector containing each neuron’s bias term. The recurrent neurons send their outputs to the 1014 

output neuron. The output neuron calculates the probability of selecting left action in the trial 1015 

with a sigmoid activation function of the form σ(𝑧) =
1

1+𝑒−𝑧
 . The agent then selects an action for 1016 

the trial probabilistically by following the choice probability from the output neuron. This 3-layer 1017 

RNN agent was trained to perform either an optimal RL strategy or the RL strategy that mice 1018 

develop after training using its recurrent activity dynamics.  1019 

 To train the RNNs to perform optimal RL in the task environment, we directly utilized the 1020 

reward assignment rule of the task. In the value-based decision task, a reward is assigned to 1021 

each choice according to the reward assignment probabilities of each choice on each trial. Once 1022 

a reward was assigned to a lickport, the reward was maintained on the choice until it was 1023 

chosen by the animal. As a result, the probability that a reward is assigned to a choice gradually 1024 

increases if the choice has not been selected in the recent trials. The actual cumulative reward 1025 

probabilities of left and right choices are given by 1026 



𝑃𝐿(𝑡) = 1 − ∏ {1 − 𝐴𝐿(𝑥)}

𝑡

𝑥=𝑡−𝑁𝑅(𝑡)

         [𝐞𝐪. 𝟐𝟑] 1038 

𝑃𝑅(𝑡) = 1 − ∏ {1− 𝐴𝑅(𝑥)}

𝑡

𝑥=𝑡−𝑁𝐿(𝑡)

         [𝐞𝐪. 𝟐𝟒] 1039 

where 𝐴𝑐(𝑥) is the reward assignment probability of choice c on trial x, 𝑁𝑐(𝑡) is the number of 1027 

successive c choices before trial t (e.g. 𝑁𝑅(𝑡) = 3 when the choice on (t-4) was left and the 1028 

choices on (t-3), (t-2), (t-1) were right). Therefore, an optimal choice generator would select a 1029 

choice with higher cumulative reward probability on each trial as follows; 1030 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑐ℎ𝑜𝑖𝑐𝑒 = argmax
𝑐

{𝑃𝑐(𝑡)}         [𝐞𝐪. 𝟐𝟓] 1040 

We used this optimal choice generator as the teacher to train RNNs to learn a near-optimal RL 1031 

strategy. Unlike the optimal choice generator that knows the exact reward assignment 1032 

probabilities (𝐴𝑐(𝑥)) and the reward assignment rule, the RNNs are agnostic to these hidden 1033 

variables. Therefore, our goal is to train the RNNs to use only the past choice and reward 1034 

history to make choices that are similar to the choices made by the optimal choice generator. To 1035 

train the RNNs to imitate the behaviors of the optimal choice generator, we calculated binary 1036 

cross-entropy as the loss function to be minimized. The cross-entropy is given by 1037 

𝐻𝑝 = −
1

𝑀
∑(𝑎𝑖

𝑜𝑝𝑡𝑖𝑚𝑎𝑙
𝑙𝑜𝑔(𝑝𝑖

𝑅𝑁𝑁) + (1 − 𝑎𝑖
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

)𝑙𝑜𝑔(1 − 𝑝𝑖
𝑅𝑁𝑁))

𝑀

𝑖=1

        [𝐞𝐪. 𝟐𝟔] 1041 

where 𝑀 is the total number of training trials, 𝑎𝑖
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

 is 1 or 0 when the optimal choice generator 1042 

selected left or right action on the ith trial respectively, and 𝑝𝑖
𝑅𝑁𝑁 is the left choice probability of the 1043 

RNN agent from its output neuron.  1044 

To train RNNs to perform mouse-like RL that is suboptimal in the task environment, we 1045 

used 50,472 decision making trials of expert mice in the task environment. We fed the choice 1046 

and reward history that expert mice experienced into the RNNs, and trained the RNNs to imitate 1047 

the choice patterns of expert mice. To do this, we calculated the binary cross-entropy as the 1048 

loss function to be minimized. The cross-entropy is given by 1049 

𝐻𝑝 = −
1

𝑀
∑(𝑎𝑖

𝑚𝑜𝑢𝑠𝑒𝑙𝑜𝑔(𝑝𝑖
𝑅𝑁𝑁) + (1 − 𝑎𝑖

𝑚𝑜𝑢𝑠𝑒)𝑙𝑜𝑔(1 − 𝑝𝑖
𝑅𝑁𝑁))

𝑀

𝑖=1

        [𝐞𝐪. 𝟐𝟕] 1050 



where 𝑀 is the total number of training trials, 𝑎𝑖
𝑚𝑜𝑢𝑠𝑒 is 1 or 0 when the expert mouse selected 1051 

the left or right action in the ith trial respectively, and 𝑝𝑖
𝑅𝑁𝑁 is the left choice probability of the RNN 1052 

agent from its output neuron.  1053 

For the training of both the optimal RNN agents and mouse-like RNN agents, the cross-1054 

entropy loss was calculated at variable time steps for each trial to reflect the temporal variability 1055 

of the timing of decision making in this task (variable ITI, variable ready-period, variable reaction 1056 

time), and all the synaptic weights of the RNN agent were trained with backpropagation through 1057 

time. The training was optimized using mini-batch gradient descent with Nesterov momentum 1058 

optimization (learning rate of 0.001 and momentum of 0.9, batch size of 128), and the training 1059 

was terminated when the loss for a validation set (1/5 of trials) stopped decreasing for the 1060 

consecutive 50 epochs as a form of regularization (Early stopping). The trained RNN agents ran 1061 

the task in a simulated environment with the length of 500 trials/session, and the RL behavioral 1062 

strategy in the simulated environment was quantified by a RL model optimized to describe expert 1063 

mouse behaviors [𝐞𝐪. 𝟏 − 𝟑] and a logistic regression model [𝐞𝐪. 𝟐𝟖]. 1064 

 1065 

Quantification of history-dependent behavioral strategy 1066 

The quantification of behavioral strategy for mice and RNN agents was performed with either a 1067 

RL model [𝐞𝐪. 𝟏 − 𝟑] or a logistic regression model [𝐞𝐪. 𝟑𝟔]. The logistic regression model 1068 

predicts an action in each trial based on 3 types of history from the past 10 trials. The model is 1069 

given by 1070 

𝑙𝑜𝑔𝑖𝑡(𝑃𝐿(𝑡)) =∑𝛽𝑅𝑒𝑤𝐶(𝑡−𝑖) ∗ 𝑅𝑒𝑤𝐶(𝑡 − 𝑖)

10

𝑖=1

+∑𝛽𝑈𝑛𝑟𝐶(𝑡−𝑖) ∗ 𝑈𝑛𝑟𝐶(𝑡 − 𝑖)

10

𝑖=1

 1071 

+∑𝛽𝐶(𝑡−𝑖) ∗ 𝐶(𝑡 − 𝑖)

10

𝑖=1

+ 𝛽0          [𝐞𝐪. 𝟐𝟖] 1072 

where 𝑃𝐿(𝑡) is the probability of choosing left on trial 𝑡,  𝑅𝑒𝑤𝐶(𝑡 − 𝑖) is the rewarded choice 1073 

history on trial 𝑡 − 𝑖 (1 if rewarded left choice, -1 if rewarded right choice, 0 otherwise), 1074 

𝑈𝑛𝑟𝐶(𝑡 − 𝑖) is the unrewarded choice history on trial 𝑡 − 𝑖 (1 if unrewarded left choice, -1 if 1075 

unrewarded right choice, 0 otherwise), 𝐶(𝑡 − 𝑖) is the outcome-independent choice history on 1076 

trial 𝑡 − 𝑖 (1 if left choice, -1 if right choice, 0 otherwise). 𝛽𝑅𝑒𝑤𝐶(𝑡−𝑖) , 𝛽𝑈𝑛𝑟𝐶(𝑡−𝑖), and 𝛽𝐶(𝑡−𝑖) are 1077 

the raw regression weights of each history predictor, and 𝛽0 is the history-independent constant 1078 

bias term. The sizes of these raw weights reflect the relative contribution of each history variable 1079 



to decision making in a behavior session. However, the weight size does not reflect the absolute 1080 

strength of the contribution to decision making because the strength of each history effect on 1081 

decision making is determined by not only the regression weight but also the choice prediction 1082 

accuracy of the regression model. Therefore, we normalized the regression weights by the 1083 

choice predictability of the regression model as follows; 1084 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝛽𝑥 =  (
𝑁𝑐ℎ𝑜𝑖𝑐𝑒
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑐ℎ𝑜𝑖𝑐𝑒
𝑎𝑙𝑙 − 0.5) ∗

𝛽𝑥

∑ (|𝛽𝑅𝑒𝑤𝐶(𝑡−𝑖)| + |𝛽𝑈𝑛𝑟𝐶(𝑡−𝑖)| + |𝛽𝐶(𝑡−𝑖)|)
10
𝑖=1 + |𝛽0|

      [𝐞𝐪. 𝟐𝟗] 1085 

where 𝑁𝑐ℎ𝑜𝑖𝑐𝑒
𝑎𝑙𝑙  is the number of choice trials in the session, and 𝑁𝑐ℎ𝑜𝑖𝑐𝑒

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the number of choice 1086 

trials that were correctly predicted by the [𝐞𝐪. 𝟑𝟔]. Each regression weight is divided by the sum 1087 

of absolute values of all the regression weights before being multiplied by the choice prediction 1088 

accuracy. This normalization turns raw regression weights to reflect the fraction of choice 1089 

predictability by each of the history variable. These normalized weights are comparable across 1090 

different behavior sessions or mice because they reflect the absolute strength of each history 1091 

event on decision making. We used these normalized weights to compare the history 1092 

dependence of expert mice and trained RNN agents for their decision making. 1093 

 1094 

Artificial population activity sequence 1095 

Artificial population activity sequences with either persistent or non-persistent rate coding of ΔQ 1096 

were created based on the distributions of the tuning curves of ΔQ coding among RSC neurons. 1097 

Each population consisted of 200 neurons with 5 time bins, and we assigned 20% of neurons at 1098 

each time bin to encode ΔQ. The tuning curve slope of ΔQ coding of each RSC neuron (𝛽∆𝑄) 1099 

was measured by fitting [𝐞𝐪. 𝟒] to the activity during ready period. We defined across-trial 1100 

standard deviation of 𝛽∆𝑄∆𝑄(𝑡) from [𝐞𝐪. 𝟒] as the signal standard deviation of ΔQ coding. To 1101 

derive the noise standard deviation, we first subtracted 𝛽∆𝑄∆𝑄(𝑡) from the ready period activity 1102 

sequence of each trial. The residual ready period activity sequences were then concatenated 1103 

across trials. The standard deviation of the concatenated activity sequence was defined as the 1104 

noise standard deviation. The SNR of ΔQ coding was defined as the ratio of the signal standard 1105 

deviation to the noise standard deviation. The tuning curve slope for each activity time bin was 1106 

randomly sampled without replacement from the distributions of ΔQ-coding neurons. The ΔQ 1107 

signal was linearly encoded at each time bin according to the sampled tuning curve slope, and 1108 

additional Gaussian noise was added to the neural activity. The other non-ΔQ coding activity 1109 

time bins simply exhibited Gaussian noise. We created populations with 3 different types of rate 1110 



coding modes (Persistent, Non-persistent 1, Non-persistent 2). In the populations with 1111 

Persistent mode, the identical 20% of neurons encoded ΔQ at all 5 time bins. In the populations 1112 

with Non-persistent 1 mode, we randomly selected 20% of neurons at each time bin as the ΔQ-1113 

coding neurons and allowed each neuron to encode ΔQ with different tuning curve slopes at 1114 

different time bins. Non-persistent 2 mode is similar to Non-persistent 1, except that each 1115 

neuron in the population encoded ΔQ at only one of the time bins.  1116 

 In addition to the 3 rate coding schemes, we also considered a coding mode that 1117 

encodes ΔQ as specific sequential activity patterns across cells in a population. In this 3rd non-1118 

persistent coding mode (Non-persistent 3), neural activity at each time bin can take only binary 1119 

states (0: inactive, 1: active). Therefore, this population encodes ΔQ using only the identity of 1120 

active cells. We encoded 10 different sequences in a population such that each sequence 1121 

uniquely corresponds to one of the 10 binned ΔQ (-1 to 1 with binning of 0.2 width). For each 1122 

sequence, we randomly assigned 20% of neurons at each time bin as active neurons with a 1123 

constraint that each neuron can be active only at a single time step in a sequence. After 1124 

encoding the 10 different sequences in a population, we added Gaussian noise to the activity of 1125 

each neuron. We defined the SNR of this coding scheme as the ratio of the across-time 1126 

standard deviation of the activity of a neuron to the standard deviation of its added Gaussian 1127 

noise.  1128 

ΔQ retrieval by RNN 1129 

RNNs were trained to retrieve ΔQ information from the input population activity sequence. The 1130 

RNN had 40 recurrent neurons with tanh activation functions and an output neuron with linear 1131 

activation function. The network weights were updated by backpropagation through time with 1132 

RMSprop to minimize mean-squared-error (MSE) between the network outputs and ΔQ values 1133 

of the trials in a training set. The network training was terminated when the MSE of a validation 1134 

set stopped decreasing for the consecutive 20 epochs as a form of regularization (Early 1135 

stopping). For each training iteration, we used 20% of available trials as a test set to calculate 1136 

the ΔQ retrieval accuracy by the trained network, and the remaining 80% of the trials were 1137 

further split into validation set (10%) and training set (70%). We repeated the network training 5 1138 

times by using different sets of trials as the test set such that we can obtain ΔQ predictions by 1139 

the trained networks for all available trials in a cross-validated way. The ΔQ retrieval accuracy 1140 

was calculated by comparing the ΔQ predictions to the true ΔQ from the RL model. For the ΔQ 1141 

retrieval from cortical activity, we used only 240 cells as the inputs to match the number of cells 1142 

across different cortical areas. For each neural population, we subsampled 240 cells in each 1143 



iteration allowing repetitions with the smallest number of iterations to include every cell at least 1144 

once for decoding, and the ΔQ retrieval accuracy from the iterations were averaged. 1145 

 1146 

Denoising recurrent autoencoder 1147 

Autoencoder is an artificial neural network that learns to extract efficient coding of its input 1148 

without supervision. It consists of an encoder network and a decoder network, and they are 1149 

sequentially connected through a coding layer with small number of neurons. In a trained 1150 

autoencoder, the encoder extracts essential signals in the input into the coding layer, while the 1151 

decoder tries to reconstruct the original input from activity in the coding layer. When the number 1152 

of neurons in the coding layer is smaller than the dimensions of the input, only signals that are 1153 

dominant in the input remains in the coding layer of a trained autoencoder network. Among 1154 

various types of autoencoders, we used denoising recurrent autoencoders (Maas et al., 2012; 1155 

Vincent et al., 2010) to extract dominant signals embedded in each population activity 1156 

sequence. Although autoencoders with only feedforward connections or convolutional neural 1157 

networks can also extract latent signals in a population activity sequence, we used recurrent 1158 

neural networks that sequentially process the input activity because the neural networks in a 1159 

brain also process input activity sequentially. Our goal is to understand whether such 1160 

biologically relevant recurrent networks can extract signals from input activity without explicit 1161 

teaching labels (i.e. unsupervised learning). The latent signals extracted by a recurrent 1162 

autoencoder represent the latent signals from the perspective of a recurrent network that 1163 

processes input activity sequentially through its recurrent connectiviy.  1164 

The autoencoders that we used to visualize extracted dynamics from example 1165 

populations (Figure 7A) consisted of 3 hidden layers with recurrent connectivity (1st: 50 neurons, 1166 

2nd: 10 neurons, 3rd: 50 neurons), and the activity of all neurons in a population was used as the 1167 

input to the autoencoder. On the other hand, the autoencoders that we used for quantitative 1168 

across-area comparisons (Figure 7B-E) consisted of 3 hidden layers with recurrent connectivity 1169 

(1st: 20 neurons, 2nd: N neurons, 3rd: 20 neurons) and processed input activity of subsampled 1170 

240 cells. Note that 3 layers are the minimum number of layers that are required for an 1171 

autoencoder network. All recurrent neurons in the hidden layers had tanh activation functions. 1172 

All neurons except for the neurons in the middle hidden layer (coding layer) sent activity 1173 

sequentially to the neurons in the next layer. However, the neurons in the coding layer sent only 1174 

the activity at the last time step to the next hidden layer. The last-time-step activity is the result 1175 

of the temporal integration of the original population activity sequence through recurrent 1176 



connectivity, and the activity reflects the latent representations in the original population activity 1177 

sequence. The hidden layers after the coding layer reconstructed the original population activity 1178 

sequence from the latent representations in the coding layer. The network weights were 1179 

updated by backpropagation through time with RMSprop to minimize mean-squared-error 1180 

(MSE) between the original population activity sequence and the reconstructed population 1181 

activity sequence. To ensure stable training of network weights, we clipped the gradients of 1182 

network weights if their L2 norms were greater than 1 (Gradient clipping (Pascanu et al., 2012)). 1183 

To add noise robustness to the autoencoders, we applied dropout (Hinton et al., 2012; 1184 

Srivastava et al., 2014) to the connections between the input neurons and the neurons in the 1st 1185 

hidden layer such that 50% of randomly selected connections are ablated at each training step. 1186 

The network training was terminated when the MSE of a validation set (20% of trials for Figure 1187 

7A, 10% of trials for Figure 7B-E) stopped decreasing for the consecutive 20 epochs as another 1188 

form of regularization (Early stopping). The activity of the 10 coding neurons for Figure 7A were 1189 

further reduced to 2 dimensions with multidimensional scaling to visualize the dominant 1190 

population activity states. To quantify the strength of ΔQ signal in the activity of N coding 1191 

neurons for Figures 5B-E, we performed decoding of ΔQ from the activity of N coding neurons 1192 

using a simple feedforward neural network where all the N coding neurons are connected to an 1193 

output neuron with tanh activation function. For each training iteration, we used 20% of available 1194 

trials as a test set to calculate the ΔQ decoding accuracy by the trained network, and the 1195 

remaining 80% of the trials were further split into validation set (10%) and training set (70%). 1196 

We repeated the network training 5 times by using different sets of trials as the test set such 1197 

that we can obtain ΔQ predictions by the trained networks for all available trials in a cross-1198 

validated way. For these ΔQ decoding analyses, we also matched the number of cells included 1199 

in the inputs to the autoencoders across different decoding by subsampling 240 cells from the 1200 

original population. For each neural population, we subsampled 240 cells in each iteration 1201 

allowing repetitions with the smallest number of iterations to include every cell at least once for 1202 

decoding, and the ΔQ decoding accuracy from the iterations were averaged. 1203 

 1204 

Deep RNN with non-specific connectivity 1205 

Neural networks with 5 recurrent layers were used to simulate how the input population activity 1206 

transforms in the downstream recurrent layers when the synaptic weights are non-specific 1207 

throughout the networks. Each recurrent layer had 1,000 neurons with tanh activation functions, 1208 

and the 5 recurrent layers were sequentially connected through feedforward connections. All 1209 



neurons of a recorded cortical population were directly connected to the 1st recurrent layer. 1210 

Each neuron in a recurrent layer was connected with all the other neurons in the same layer, but 1211 

we made the connections between successive layers sparse by setting the connection 1212 

probability of a neuron to the neurons in the next layer to 1%, 5%, 10%, 20%, or 50%. The non-1213 

specific synaptic weights were randomly drawn from a uniform distribution on [-1, 1). 1214 

 1215 

Anatomical connectivity analyses 1216 

We analyzed neural projections from the areas with high ΔQ coding persistency (RSC, PPC, 1217 

pM2) using the neural tracing data available in the Allen Mouse Brain Connectivity Atlas (Oh et 1218 

al., 2014). These projection data were originally acquired by injecting adeno-associated virus 1219 

(AAV) encoding EGFP into various target brain areas and scanning EGFP-labelled axons 1220 

throughout the brain with high-throughput serial 2-photon tomography. We used their software 1221 

development kit (SDK), allensdk, to access and process their data in Python.  1222 

Dorsal view of the Allen Reference Atlas 1223 

Allen Reference Atlas is a high-resolution anatomical 3D reference atlas for the adult mouse 1224 

brain. Different brain structures are colored differently in this atlas. All projection data in the 1225 

Connectivity Atlas are registered to this reference atlas. We created a dorsal view of the Allen 1226 

Reference Atlas to indicate the virus injection coordinates and cortical projection density in the 1227 

dorsal cortex. First, we downloaded the 3D RGB-colored atlas at the resolution of 25 µm/pix. At 1228 

each anterior-posterior (AP) and medial-lateral (ML) coordinate of the 3D atlas, we picked up 1229 

the RGB value of the most dorsal brain surface. We obtained a dorsal view of the atlas by 1230 

projecting these dorsal RGB values onto a single 2D plane.   1231 

Selection of injection data 1232 

In the Allen Mouse Brain Connectivity Atlas, each injection experiment is labelled with the name 1233 

of the injected structure. First, we narrowed injection experiments using these annotations. We 1234 

selected experiments with virus injections into retrosplenial area (RSP), anterior area (VISa) of 1235 

posterior parietal association area (PTLp), and secondary motor area (MOs). Then, we further 1236 

narrowed down injection experiments based on the exact injection coordinates. As we indicated 1237 

in Figure S9, we isolated medial RSP injections, anterior VISa injections, and posterior MOs 1238 

injections for RSC, PPC, and pM2, respectively. The database contains experiments that were 1239 

performed on wild-type mice and Cre transgenic mice for cell-type specific tracing. We used 1240 

experiments from only WT mice or combined data (WT + Cre). The projection patterns were 1241 

similar in both cases (Figure S9). 1242 



Axon projection density in dorsal cortex 1243 

We analyzed the axon projection density from RSC, PPC, and pM2 in the dorsal cortex. For 1244 

each injection experiment, we calculated the projection density at each AP-ML coordinate as [# 1245 

of positive pixels] / [# of all pixels] in the volume of 25μm (AP axis) × 25μm (ML axis) × 1000μm 1246 

(DV axis, from dorsal surface at each AP-ML coordinate). To create a mean projection density 1247 

map, experiments with left hemisphere injections were mirrored relative to midline before 1248 

averaging. We also quantified mean projection density within each imaging FOV that we used 1249 

for in vivo 2-photon calcium imaging. Although our imaging FOVs were based on stereotactic 1250 

coordinates from the bregma in the Paxinos’ atlas (Paxinos and Franklin, 2004), the Allen 1251 

Reference Atlas does not include coordinates from the bregma. To register our imaging FOVs to 1252 

the Allen Reference Atlas Coordinate, we calculated the scaling factors for the AP and ML 1253 

dimensions of the mouse brain to match the brain in the Paxino’s atlas to the brain in the Allen 1254 

Reference Atlas. Using the scaling factors, we estimated the coordinates of each imaging FOV 1255 

on the Allen Reference Atlas. We calculated the mean signal density within each imaging FOV 1256 

of the size 500 µm × 500 µm. The mean signal density of each FOV was used to construct the 1257 

connectivity matrix in Figure 8C. 1258 

 1259 

Data analysis and statistics 1260 

All data analyses and network simulations were performed in Python3.7 with libraries of 1261 

TensorFlow (Abadi et al., 2016), scikit-learn (Pedregosa et al., 2011), NumPy (Harris et al., 1262 

2020), SciPy (Virtanen et al., 2020), and Statsmodels (Seabold and Perktold, 2010). Statistical 1263 

tests were performed either in Python with SciPy and Statsmodels or in R with its statistics 1264 

libraries. All accuracy measures reported in this study were obtained with cross-validation. 1265 

Unless otherwise noted, we split trials into training set (70%), validation set (10%), and test set 1266 

(20%) for each iteration of decoding, and repeated the network training 5 times by using 1267 

different sets of trials as the test set. When we compared ΔQ retrieval/decoding accuracy 1268 

across different cortical populations, we matched the number of cells in the input population 1269 

activity by subsampling 240 cells in each iteration allowing repetitions with the smallest number 1270 

of iterations to include every cell at least once for decoding, and the accuracies from the 1271 

iterations were averaged. For all the simulations with artificial population activity, we created 10 1272 

distinct populations for each of the 3 types of coding modes by independently sampling tuning 1273 

curve slopes from RSC neurons. These repetitions allowed us to tell the variability that 1274 

originates from the randomness of ΔQ signal assignments and randomness of network 1275 



trainings. All figure plots were created using Matplotlib (Hunter, 2007) and seaborn (Waskom, 1276 

2021) in Python. 1277 

 1278 

 1279 
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