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Third-order Analysis of Channel Coding in the
Moderate Deviations Regime

Recep Can Yavas, Victoria Kostina, and Michelle Effros

Abstract—The channel coding problem in the moderate de-
viations regime is studied; here, the error probability sub-
exponentially decays to zero, and the rate approaches the
capacity slower than O(1/y/n). The main result refines Altug
and Wagner’s moderate deviations result by deriving lower
and upper bounds on the third-order term in the asymptotic
expansion of the maximum achievable message set size. The third-
order term of the expansion employs a new quantity called the
channel skewness. For the binary symmetric channel and most
practically important (n,¢) pairs, including n € [100,500] and
€ € [107'Y,107"], an approximation up to the channel skewness
is the most accurate among several expansions in the literature.

I. INTRODUCTION

The fundamental limit of channel coding is the max-
imum achievable message size M™*(n,¢) given a channel
Py|x, a blocklength n, and an average error probability e.
Since determining M*(n,¢€) exactly is difficult for arbitrary
triples (Py|x,n,€), the literature investigating the behavior
of M*(n,e€) studies two asymptotic regimes: the central limit
theorem (CLT) and the large deviations (LD) regimes. Given
a sum of n independent and identically distributed (i.i.d.) ran-
dom variables, the probability that this sum deviates from the
mean by order-y/n is characterized by a Gaussian distribution
whose parameters are constant with respect to n. This classical
result is known as the CLT. The probability that the sum of n
i.i.d. random variables deviates from the mean by order-n is
characterized by Cramér’s theorem [1], which shows that the
probability decays exponentially with n if Cramér’s condition
is satisfied. This result is commonly known as the LD theorem.
Any deviation from the mean with order strictly greater than
v/n and strictly smaller than n is said to fall in the moderate
deviations (MD) regime. A bound on the probability that an
i.i.d. sum deviates from the mean by some amount in the MD
regime appears in [2, Ch. 8]. This work focuses on channel
coding in the MD regime.

Given a channel Py |x, error probability €, and blocklength
n, we define the non-Gaussianity of the channel as

C(n,€) £log M*(n,e) — (nC — /nV.Q7(e)), (1)

where C is the capacity, and V. > 0 is the e-dispersion of
the channel [3, Sec. IV]; ((n,¢) is the third-order term in a
second-order optimal characterization of log M*(n, ¢).
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Channel coding analyses in the CLT regime fix a target
error probability e € (0,1) and characterize M*(n,€) as
the blocklength n approaches infinity. Strassen’s results [4]
for discrete memoryless channels (DMCs) under the maxi-
mal error probability constraint fall in this domain, giving
((n,e) = O(logn). More recently, Polyanskiy et al. [3] and
Hayashi [5] revive Strassen’s result [4], showing that the same
asymptotic expansion holds for the average error probability
constraint, bounding the coefficient of the logn term from
below and above, and extending the result to the Gaussian
channel with maximal or average power constraint. CLT-style
analyses also exist for channels with feedback [6], lossy [7]
and lossless data compression [4], [8], network information
theory [9], random access channels [10], [11], and many other
scenarios.

For channel coding scenarios in the LD regime, which is
commonly known as the error exponent regime, we fix a rate
R = % strictly below the channel capacity and seek to
characterize the rate of exponential decay of the minimum
achievable error probability €*(n, R) as the blocklength n
approaches infinity. In this case, €*(n, R) decays exponentially
with n, and [12, Ch. 5] derives the optimal error exponent
limy, 00 —% log e*(n, R) for R above the critical rate.

In [13], Altug and Wagner seek to bridge the gap between
the CLT and LD regimes. In their results, the error proba-
bility €, decays sub-exponentially to zero, i.e., €, — 0 and
—% loge, — 0, and the rate approaches the capacity with
a gap of order strictly greater than %7 Altug and Wagner
argue that this formulation is more practically relevant since
it simultaneously considers low error probabilities and high
achievable rates. For DMCs with positive €,-dispersion V,

and a sequence of sub-exponentially decaying ¢,,, they show

C(n,en) = O(ﬁQ71(€71))- (2

In [14], Polyanskiy and Verdi give an alternative proof of (2)
and extend the result to the Gaussian channel with a maximal
power constraint. In [15], Chubb et al. extend the second-order
result in (2) to quantum channels.

Emerging applications with tight delay constraints motivate
increasing interest in refining the asymptotic expansions of
maximum achievable channel coding rate. For small block-
length n, the non-Gaussianity ((n,€) in (1) can be quite
large when compared to the second-order term O(y/n). For
example, in the CLT regime, given a DMC with finite input
alphabet X and output alphabet ), [3] bounds the non-
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Gaussianity as

0 < ¢(n 0 < (- 3 )logn+ 0. @
A variety of refinements follow. For nonsingular channels,
the random coding union bound improves the lower bound
to +logn + O(1) [16, Cor. 54]. For DMCs with positive e-
dispersion, Tomamichel and Tan [17] improve the upper bound
to %logn + O(1). For nonsingular channels with positive e-
dispersion, where the information density random variable has

a non-lattice distribution, Moulin [18] shows
1
((n,€) > Slogn +8SQ7 ) + B+o(l) 4
1 — _
((n,€) < Slogn+SQ7 ) + B+o(l), (5

where S, S. B, and B are constants depending on the chan-
nel parameters. For Gallager-symmetric [12, p. 94], singular
channels, [19] shows ((n,e) = O(1). Bounds on the sub-
exponential factors in the LD regime appear in [19]-[22].
Similar to the CLT regime results reviewed above, these results
depend on whether the channel is singular or nonsingular.

A sequence of error probabilities {e,}5°; is said to be an
MD sequence if for every ¢ > 0, there exists an ng(c) such
that for all n > ng(c),

exp{—cn} < e, <1—exp{—en}, (6)

or, equivalently Q~!(e,,) = o(y/n). This definition extends the
MD error probability region in [13] to include the sequences
that sub-exponentially approach 1 and the constant values. We
study channel coding for nonsingular channels and average
error probability satisfying (6), refining the lower and upper
bounds in (2). Our result generalizes (4)—(5) to non-constant
error probability €, at the expense of not bounding the constant
term. We show that for nonsingular channels with positive
minimum dispersion and e,, satisfying (6), {(n,€,) in (2) is
bounded below and above as

~1/, 13
%logn +8Q Yen)* +0 (Q\/(;:)) + O(1) <({(n,e,)
@)
“1/. )3
< %logn +5Q ()2 +0 <QJ(;L")) +0(1),  ®

where the constants S and S are the same ones as in (4) and
(5). We show that the non-Gaussianity gets arbitrarily close
to O(y/n) as €, approaches an exponential decay, rivaling the
dispersion term in (1). Thus, refining the third-order term as
we do in (7)—(8) is especially significant in the MD regime.
Our achievability bound applies the standard random coding
bound used both in the CLT [3], [18] and LD [20] regimes, and
our converse bound combines the result in [17, Prop. 6], which
is a relaxation of the meta-converse bound [3, Th. 27], and a
saddlepoint result of a maximin problem in [18, Lemma 14].
For the €, behavior studied in the MD regime, neither the
Berry-Esseen theorem used in [3] nor the refined Edgeworth
expansion used in [18] to treat the constant € case is sharp

enough for the O(1) precision in (7)—(8). We replace these
tools with the moderate deviations bounds found in [2, Ch. 8].
We define the channel skewness operationally as

C(n,e) — %logn
Q' (e)?

For the maximum achievable rate, the channel skewness serves
as the third-order fundamental channel characterization after
channel capacity and dispersion [3, Sec. IV]. The skewness
of the information density random variable (see (10), below)
plays a critical role in characterizing the channel skewness.

For Cover-Thomas symmetric channels [23], our result gives
the channel skewness S exactly. For the binary symmetric
channel (BSC), in Fig. 1 in Section III below, we compare
our asymptotic approximation for the maximum achievable
rate using terms up to the channel skewness, i.e., ((n,€) =~
%logn + S Q7 '(e)? with Moulin’s bounds in (4)—(5), the
normal approximation, which takes ((n,€) ~ %log n, and the
saddlepoint approximations in [21], [22].

The paper is organized as follows. Section II includes no-
tation definitions and other preliminaries. Section III presents
and discusses the main result. The complete proof is relegated
to the extended version [24].

A 1. .
S = lim lim sup
€=U nooo

©))

II. NOTATION AND PRELIMINARIES

A. Notation

For any k € N, we denote [k] £ {1,...,k}. We denote
random variables by capital letters (e.g., X) and individual
realizations of random variables by lowercase letters (e.g., x).
We use boldface letters (e.g., x) to denote length-n vectors,
calligraphic letters (e.g., X’) to denote sets, and sans serif font
(e.g., A) to denote matrices. The i-th entry of a vector x is
denoted by z;, and (4,7)-th entry of a matrix A is denoted
by Ai, 'E

The sets of all distributions on the channel input alphabet
X and the channel output alphabet ) are denoted by P and
Q, respectively. We write X ~ Px to indicate that X is
distributed according to Px € P. Given a distribution Px € P
and a conditional distribution Py| x on ) given X, we write
Px x Py|x to indicate the joint distribution of (X,Y’), and
Py to indicate the marginal distribution of Y. The skewness
of a random variable X, denoted by Sk(X), is defined as

E [X?]

Sk(X) & Ve X

(10)

We measure information in nats, and logarithms and exponents
have base e.

We use notation O(-) and o(-) as f(n) = O(g(n)) if
limsup,,_, |f(n)/g(n)] < oo, and f(n) = o(g(n)) if
lim, o0 | f(n)/g(n)| = 0. We use Q(-) to represent the com-
plementary Gaussian cumulative distribution function Q(z) =
\/% [ exp {7%} dt and Q~1(-) to represent its functional
inverse.
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B. Definitions related to information density

The relative entropy and divergence variance between

two distributions P,QQ € P are denoted by D(P|Q) =
E [bg ggg] and V(P|Q) 2 Var [1og gg;} where X ~ P.
The conditional relative entropy and conditional divergence

variance are denoted by

D(Pyx|Qy|Px) £ Z Px(z)D(Pyx—.[|Qy) (1)
reX

V(Pyx||Qy|Px) & Z Px(2)V(Py|x=|Qy). (12)
reX

Let (X,Y) ~ Px
as

X Py|x. The information density is defined

Py x (ylr)
Py(y)
following moments of the random variable

>

1(z;y) = log VeeX,ye). (13)

We define the
uX;Y):
o the mutual information

I(PX,PY‘X) £ E[(X;Y)] = D(Py‘Xpr|Px), (14)

o the unconditional information variance

Vu(Px, Py|x) 2 V(Px x Py x||Px x Py), (15)
« the conditional information variance
V(Px,Py|x) £ V(Pyx||Py|Px), (16)
« the reverse dispersion [16, Sec. 3.4.5]
V*(Px, Py|x) 2 E[Var i(X;Y)|Y]], W)
« the unconditional information skewness
Sku(Px, Py|x) = Sk(1(X;Y)). (18)

C. Discrete memoryless channel
A discrete memoryless channel (DMC) is characterized by

a finite input alphabet X', a finite output alphabet ), and a
probability transition matrix Py |x. A DMC satisfies

PY?L‘X'H. (y|X) = H PY\X(yz|1'z)
i=1
Below, we define the channel code.
Definition 1: An (n, M, €)-code for a DMC Py |x comprises
an encoding function

19)

f: [M] — &x", (20)
and a decoding function
g: V" — [M], 21
that satisfy an average error probability constraint
M
L= o2 D Px(g  m)lf(m) < e (22)
m=1

The maximum achievable message size M*(n,¢) under the
average error probability criterion is defined as

M*(n,e) = max{M: Jan (n, M, ¢)-code}. (23)

D. Definitions related to the optimal input distribution
The capacity of a DMC Py |x is

C(Pyx) & g%%g](Pvaﬂx)' (24)

We denote the set of capacity-achieving input distributions by
PT & {Px € P: I(Px,Py|x) = C(Pyx)}. (25

The capacity-achieving output distribution is unique [12,
Cor. 1 to Th. 4.5.2] and here denoted by Py € Q. For any
P € Pt it holds that V(PL, Py|x) = Vu(PL, Pyx) [3,
Lemma 62].

Define Viyin £ minpg V(PL,Pyx) and Vipax 2

max pi cpt V(P)T(,Pyp(). The e-dispersion [3] of a DMC is

defined as
V é Vmin
‘ Vmax

The set of dispersion-achieving input distributions is defined as

e a {PLePt: V(P Py x) =V} ife#
P if ¢ =

if e <

26
if € > (26)

N|— D[~

27

N[ D=

Any Pl € P satisfies D(Py|x—,||Py) = C for any z € X
with PL(z) > 0, and D(Py|x—,|Py) < C forall z € X
[12, Th. 4.5.1]. Hence, the support of any capacity-achieving

input distribution is a subset of
X' = {2 € X: D(Pyx_,||Py) = C}. (28)

The support of any dispersion-achieving input distribution is
a subset of

x* & | supp(Px) C AT,
PyeP

(29)

The quantities that follow appear in the third-order term
evaluated with the skewness-achieving input distribution per-
turbed away from Py € P* (see (39), below). Define

52 ~V2I(PY, Py|x)ow if maleXt,
' 0 otherwise.
~ 1
At~ (DT 1
e A AT ECAEIC A €2
v(Px), = VV(Px, Py|x)z (32)

- s o | OV (Pyx—x1Py) ~
v(Px), = E Py (2) , € X, and X ~ Px
(33)
1 -
Ao(Px) & o v(Px) " Jv(Px) (34)
a1 e
Ai(Px) £ 9 (Px) I (Px), (35)

where V and V? denote the gradient and Hessian operators
with respect to Px, J* denotes the Moore-Penrose pseudo-
inverse of J, and 1 denotes the all-one vector. See the extended
version of this paper [24] and [18, Lemma 2] for properties
of these quantities.
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E. Singularity of a DMC

The following definition divides DMCs into two groups, for
which M*(n, €, ) behaves differently in the non-Gaussianity
term (even in the CLT regime). An input distribution-channel
pair (Px, Py|x) is singular [20, Def. 1] if for all (z,7,y)
such that Px x Py |x(z,y) >0 and Px x Py|x(T,y) > 0, it
holds that

Pyix (ylz) = Pyix (y[T). (36)
We define the singularity parameter [18, eq. (2.25)]
V' (Px, Py|x)
Py,Pyix)&1— —— == 37
77( X Y|X) Vu(PX7PY|X>’ (37)

which is a constant in [0, 1]. The pair (Px, Py |x) is singular
if and only if n(Px, Py|x) = 1 [25, Remark 1]. A channel
Py |x is called singular if n(Px, Py|x) = 1 for all P €
P*, and nonsingular otherwise. The binary erasure channel
is an example singular channel. Our focus in this paper is
on nonsingular channels. For brevity, we drop Py |x in the
notations for capacity, dispersion, skewness, and singularity
parameter of the channel.

III. MAIN RESULT

Theorems 1 and 2 are our achievability and converse results,
respectively.

Theorem 1: Suppose that €, satisfies (6) and that Py |x is
a nonsingular channel with V. > 0 for all n and XT = X'*.
It holds that

1 Sk (P%)+/ V&
> 2 —1/, 2 ulFx cn
C(n,en) > 5 logn+ Q™ (en) Pglg%(* ( 5
1 —n(PX)

Q_l(Gn)S
72(1+77(P)*()) ) + O(1).(38)

(P ) +0 (4

Proof: The proof consists of two parts and extends the
argument in [18]" to include ¢,, that decreases to O or increases
to 1 as permitted by (6). The first part is a standard random
coding bound. It is used in the CLT regime for a third-
order analysis in [16] and a fourth-order analysis in [18]; it
also comes up in the LD regime [20]. We set an arbitrary
distribution Px € P for the i.i.d. random codebook and em-
ploy a maximum likelihood decoder. To bound the probability
P[«(X;Y) < 7,], we replace the Edgeworth expansion in [18,
eq. (5.30)], which gives the refined asymptotics of the Berry-
Esseen theorem, with its moderate deviations version from
[2, Ch. 8§, Th. 2]. Note that the Edgeworth expansion yields
an additive remainder term O(1/n) to the normality; this
term becomes too large for the entire range of probabilities
in (6). Therefore, a moderate deviation result that yields a
multiplicative remainder term (1 + o(1)) is desired. In the
proof, we also derive the inverse of the moderate deviations

IThere is a sign error in [18, eq. (3.1)-(3.2)], which is carried out throughout
the paper. The sign of the terms with S(Px) should be positive instead of
negative in both equations. The error in the achievability result originates in
[18, eq. (7.15) and (7.19)], where it is missed that Sk(—X) = —Sk(X) for
any random variable X . The error in the converse result stems from the same
sign error in [18, eq. (6.8)].

theorem [2, Ch. 8, Th. 2] that gives the quantile value 7,
given that P [+(X;Y) < 7,] equals a target MD sequence. We
apply the large deviations result in [26, Th. 3.4] to bound
the probability P [+(X;Y) > «(X;Y) > 7,], where X and X
denote a transmitted codeword and an independent codeword
drawn from the same distribution, respectively. This bound
replaces the bounds in [18, eq. (7.25)-(7.27)] and refines the
large deviations bound [3, Lemma 47] used in [16, Th. 53].
We show an achievability result as a function of I(Px, Py|x),
Vu(PX;PY\X), and Sku(PX7Py|X). If Py = P)*( € P*, the
resulting bound is (38) with Ag(P%) replaced by zero. We
then optimize the bound over Px using the second-, first-
and zeroth-order Taylor series expansions around Py ¢ IT*
of I(Px, Py|x), Vu(Px, Py|x), and Sk, (Px, Py|x), respec-
tively. Interestingly, the right-hand side of (38) is achieved
using i.i.d. random codewords drawn from

Cgil(en)~ *
ST T Jv(Px)eP

instead of a dispersion-achieving input distribution Py € P*.

In the second-order MD result in [13], Altug and Wagner apply

the non-asymptotic bound in [12, Cor. 2 on p. 140], which

turns out to be insufficiently sharp for the derivation of the

third-order term. [ ]
Theorem 2: Under the conditions of Theorem 1,

(Sku(P;()\/Wn 1

Py =Py — (39)

_’_7

1
<2 —1 2
C(ni E’n) —_ 2 1Ogn + Q (En) max 6 2

Py eP*
Q—l (En)?)
Jn

Proof: The proof of Theorem 2 combines the converse
bound from [17, Prop. 6], which is derived from the meta-
converse bound [3, Th. 27], and a saddlepoint result in [18,
Lemma 14], which involves a maximization over an input
distribution Py € P and a minimization over an auxiliary
output distribution @)y € Q. Combining these results and not
deriving the O(1) term in (40) yield a much simpler proof
than that in [18]. While [18, proof of Th. 4] relies on the
asymptotic expansion of the Neyman-Pearson Lemma, i.e., the
B1—(P, Q) function defined in [3, eq. (100)], the use of [17,
Prop. 6] allows us to bypass this part. After carefully choosing
the parameter § in [17, Prop. 6], the problem reduces to a max-
imin problem involving the quantities D(Py|x ||Qy|Px) and
V(Py|x||Qy|Px), where the maximization is over Px € P
and the minimization is over @y € Q. Then, similar to the
steps in [18, eq. (8.22)], for the maximization over Px, we
separate the cases where ||[Px — P%|l2 = ¢o Qilgf") or not,
where Py € P* and ¢y > 0. Applying [18, Lemmas 14 and
9-iii] completes the proof. [ ]

The constant terms B and B in [18] differ depending
on whether the information density random variable +(X;Y")
is a lattice or non-lattice random variable because both the
Edgeworth expansion and the large deviation result used in
[18] take distinct forms for lattice and non-lattice random
variables. The BSC is analyzed separately in [18, Th. 7] since

+ Ag(P%) — Al(P;})> +0 < ) +O(1).  (40)
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Fig. 1. The expansion from Theorems 1 and 2, excluding the O(-) terms, is shown for the BSC(0.11) with ¢ € [10719,10~1] and n = {100, 250, 500}.
The error bars correspond to the non-asymptotic achievability and converse bounds from [3, Th. 33 and 35]; the normal approximation, which achieves
C(n,€) = % logn, is from [16, Th. 53]; Moulin’s results are from [18, Th. 7]; the saddlepoint approximation for the achievability bound is from [21], [22].

the information density for the BSC is lattice. A single proof
holds for lattice and non-lattice cases if we do not attempt to
bound the O(1) term as in this paper.

A. The tightness of Theorem 1 and Theorem 2

If the channel satisfies |P*| = 1, Ao(P%) = A1(P%) =0,
and n(P%) = 0, then achievability (38) and converse (40)
bounds yield the channel skewness term

Sku(P%)vVVmin 1

6 2
Cover-Thomas symmetric channels [23, p. 190] satisfy these
conditions;?> the BSC is an example. Further, if ¢, satisfies
Q(en) = O(n'/%), then the O (ijﬁ)) in (38) and (40)
is dominated by the O(1) term, giving that for Cover-Thomas
symmetric channels, ((n, €,) = 3 logn+SQ~*(e,)?+O(1).
For the BSC with crossover probability 0.11, Fig. 1 com-
pares asymptotic expansions for the maximum achievable rate,
W, dropping o(-) and O(-) terms except where
noted otherwise. The curves plotted in Fig. 1 include The-
orems | andd 2 both with and without the leading term of
0 Q™ (en)’

S = (41)

) computed,’ various other asymptotic expan-
sions in the CLT and LD regimes, and the non-asymptotic
bounds from [3, Th. 33 and 35]. Unlike the normal approx-
imation from [16, Th. 53] and Theorems 1 and 2 with the

leading term of O (%), Theorems 1 and 2 without the

2Channels that (i) are Cover-Thomas weakly symmetric, (ii) have |X| =
|V|, and (iii) have a positive definite J satisfy the same conditions [18,
Prop. 6].
1 (571, )3
n

B -1 i+2
3In general, O (Q QT (en)™

) is in the form of 372, ¢; 75

— n
leading term refers to the first term in that infinite series. See [24, Sec. VI]
for its derivation.

c

O(-) terms lie in between the non-asymptotic bounds from
[3] for all (n,e€) pairs shown, which highlights the accuracy
of the channel skewness in explaining the fundamental limit
of channel coding.

In [19], Altug and Wagner show that in the LD regime, for
Gallager-symmetric channels, the prefactors in the lower and
upper bounds on the error probability have the same order;
that order depends on whether the channel is singular or non-
singular. Extending the analysis in [18, Sec. III-C-2)] to any
Gallager-symmetric channel shows that Gallager-symmetric
channels satisfy Ag(P%) = A1(P%) = 0; n(P%) is not
necessarily zero (see [18, Sec. III-C-2)] for a counterexample),
which means that (38) and (40) are not tight up to the O(1)
term for some Gallager-symmetric channels. The findings in
[19] suggest that Theorem 1 or Theorem 2 or both could be
improved for some channels. The main difference between the
achievability bounds in [19], [20] and ours is that [20] bounds
the error probability by

PD]+ (M —-1)P[D°N{u(X;Y) >(X;Y)}], (42
where
D= {lo 7@;](‘{_) < Tp (43)

1+p
Qv(y) = ¢ (Z Px(z) Py x (ylz)"/ ”P) LYy EY. (44)
TEX

Here Qy is the tilted output distribution, p € [0,1] and c are
some constants, and 7, is a sequence. Our achievability bound
uses a special case of (44) with p = 0, giving Qy = Py.
Whether the more general bound in (44) yields an improved
bound in the MD regime is a question for future work.
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