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Abstract. Generating multi-contrasts/modal MRI of the same anatomy
enriches diagnostic information but is limited in practice due to excessive
data acquisition time. In this paper, we propose a novel deep-learning
model for joint reconstruction and synthesis of multi-modal MRI using
incomplete k-space data of several source modalities as inputs. The out-
put of our model includes reconstructed images of the source modali-
ties and high-quality image synthesized in the target modality. Our pro-
posed model is formulated as a variational problem that leverages several
learnable modality-specific feature extractors and a multimodal synthe-
sis module. We propose a learnable optimization algorithm to solve this
model, which induces a multi-phase network whose parameters can be
trained using multi-modal MRI data. Moreover, a bilevel-optimization
framework is employed for robust parameter training. We demonstrate
the effectiveness of our approach using extensive numerical experiments.

Keywords: MRI reconstruction - Multimodal MRI synthesis - Deep
neural network - Bilevel-optimization

1 Introduction

Magnetic resonance imaging (MRI) is a prominent leading-edge medical imaging
technology which provides diverse image contrasts under the same anatomy. Mul-
tiple different contrast images are generated by varying the acquisition parame-
ters, e.g. Tl-weighted (T1), T2-weighted (T2) and Fluid Attenuated Inverseion
Recovery (FLAIR). They have similar anatomical structure but highlight differ-
ent soft tissue which enriches the diagnostic information for clinical applications
and research studies comparing to single modality [10]. A major limitation of
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MRI is its relatively long data acquisition time during MRI scans. It does not
only cause patient discomfort, but also makes MR images prone to motion arti-
facts which degrade the diagnostic accessibility. A mainstream routine to reduce
the MRI acquisition time is to reconstruct partially undersampled k-space acqui-
sitions, another approach is to synthesize target modality MR image from fully-
sampled acquisitions of source modality images [7,24].

Compressed sensing MRI (CS-MRI) reconstruction is a predominant app-
roach for accelerating MR, acquisitions, which solves an inverse problem for-
mulated as a variational model. In recent decades, deep learning based models
have leveraged large datasets and further explored the potential improvement
of reconstruction performance. Most of the deep learning based reconstruction
methods employ end-to-end deep networks [11,19,23]. To overcome the weakness
of the end-to-end black-box networks, several learnable optimization algorithms
(LOASs) have been developed attracted much attention, which possess of a more
interpretable network architecture. LOA-based reconstruction methods unfold
the iterative optimization algorithm into a multi-phase network in which the
regularization and image transformation are learned to improve the network
performance [1,2,4,15], e.g. ADMM-Net [20], ISTA-Net™ [25] and PD-Net [5].

Multimodal MR image synthesis in recent years has emerged using various
deep learning frameworks, where a main stream is to start with source modali-
ties from the image domain and synthesize the images of the target modalities
[6,18,22]. For instance, GAN-based methods are mostly end-to-end from images
to images with encoder-decoder architectures in their generator networks. MM-
GAN [17] channel-wisely concatenates all the available modalities with a zero
image for missing modality and imputes the missing input incorporating curricu-
lum learning for GAN. Multimodal MR (MM) [12], MM GradAdv [3] and Hi-Net
[26] exploit the correlations between multimodal data and apply robust feature
fusion method to form a unified latent representation. A rarely explored approach
[7] starts from undersampled k-space data of the source modalities to generate
target modality images. This paper further explored this approach and the major
differences from [7] to ours are: (i) In [7] it requires that the target modality is
heavily undersampled and the source modality is lightly undersampled, while our
method does not require any of the k-space information of target modality nor
the source modality to be lightly undersampled which is much less limitations in
real-world applications; (ii) Instead of learning the mapping from image to image,
we learn the mapping from the features of source images to the target image since
features provide more direct information to synthesize images of a new modality
and (iii) We formulate the joint reconstruction and synthesis problem in a varia-
tional model and propose a convergent algorithm as the architecture of the deep
neural network so that the network is interpretable and convergent.

In order to synthesize target modality by using partially scanned k-space
data from source modalities in stead of fully scanned data that used in the
state-of-the-art multimodal synthesis, in this paper, we propose to jointly recon-
struct undersampled multiple source modality MR images and synthesize the
target modality image. Our contributions are summarized as follows: (1) We pro-
pose a novel LOA for joint multimodal MRI reconstruction and synthesis with
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theoretical analysis guarantee; (2) The parameters and hyper-parameters of the
network induced by our LOA are learned using a bilevel optimization algorithm
robust parameter training; (3) Extensive experimental results demonstrate the
efficiency of the proposed method and high quality of the reconstructed/synthe-
sized images.

We demonstrate that our proposed joint synthesis-reconstruction network
can further improve image reconstruction quality over existing sole reconstruc-
tion networks using the same partial k-space measurements. This improvement
is due to the additional image feature information provided by the synthesis
functionality of our network, which is trained by comprehensive image data of
all relevant modalities together. Moreover, the synthesized images can serve as
additional references to radiologists when the corresponding k-space data cannot
be acquired in practice.

2 Proposed Method

2.1 Model

In this section, we provide the details of the proposed model for joint MRI recon-
struction and synthesis. Given the partial k-space data {fi,f>} of the source
modalities (e.g. T1 and T2), our goal is to reconstruct the corresponding images
{x1,%2} and synthesize the image x3 of the missing modality (e.g. FLAIR) with-
out its k-space data. To this end, we propose to learn three modality-specific fea-
ture extraction operators {h.,, }3_;, one for each of these three modalities. Then,
we design regularizers of these images by combining these learned operators and
a robust sparse feature selection operator (we use (2, 1)-norm in this work). To
synthesize the image x3 using x; and x5, we employ another feature-fusion oper-
ator gg which learns the mapping from the features h,, (x1) and A, (x2) to the
image x3. Our proposed model reads as

2 3
min Yo ,(X1,X2,X3) == 5 > [|PiFx; — i[53 4+ 5 2 [[hw, (%) [l21
=1

X1,X2,X3 i=1

+ 3 g ([P, (x1), hw, (x2)]) — %313,

(1)

where the first term in (1) is the data fidelity for the source modalities that
ensures consistency between the reconstructed images {x1,x2} and the sensed
partial k-space data {fi,fs}. Here, F' stands for the discrete Fourier trans-
form and P; is the binary matrix representing the k-space mask when acquir-
ing data for x;. In (1), h,, represents the modality-specific feature extraction
operator which maps the input x; € C™ to a high-dimensional feature ten-
sor hy,(x;) € C™*4 where m is the spatial dimension and d is the chan-
nel number of the feature tensor. The second term is the regularization of all
modalities {x1,X2,xX3} to enhance sparsity of the their feature tensors, where
1w: (xi)ll20 = 32521 1w, (i) Here each hy, ; € R? can be viewed as a fea-
ture vector at spatial location j. The last term in (1) is to synthesize x3 by
learning a mapping gg : C™*2¢ — C™ that maps the concatenated features of x;
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and x2 (i.e. [y, (X1), b, (X2)]) to x3, and [-, -] represents the concatenation of
the arguments. Here gy maps features of x; and z2 to the target image so that
more useful information can be used to generate the target image comparing to
the mappings from source images to the target image.

In our implementation, we parameterize the modality-specific feature extrac-
tion operator h,, and the synthesis mapping gy as vanilla CNNs with [ and I’
layers respectively, both of which use the smoothed rectified linear unit [4] as acti-
vation. For notation simplicity, we let © in (1) denote the collection of all param-
eters in the convolution operators of the function ¥, i.e. © = {wy, we, ws, 0}.

The weight v is a hyper-parameter which plays a critical role in balancing
the reconstruction part (first two terms in (1)) and the image synthesis part
(last term in (1)) of the model (1), and hence has significant impact to the final
image reconstruction and synthesis quality. To address this important issue,
we propose to use a bi-level hyper-parameter tuning framework to learn v by
minimizing the reconstruction loss on both validation and training data sets.
Details of this hyper-parameter tuning will be provided in Sect. 2.3.

2.2 Efficient Learnable Optimization Algorithm

In this section, we present a novel and efficient learnable optimization algorithm
(LOA) for solving the nonconvex nonsmooth minimization problem (1). (Com-
prehensive convergence analysis of this algorithm is provided in Supplementary
Material.) Then we design a DNN whose architecture exactly follows this algo-
rithm, and the parameters of the DNN can be learned from data. In this way,
the DNN inherits all the convergence properties of the LOA.

Since the second sum in the minimization problem (1) is nonsmooth due to
the [ ;-norm, we first approximate these nonsmooth terms using their smooth
surrogates [ h, (xi)lle, = Y2701 (Vw5 (x:)[]2 + €2 — €), where € > 0 is the
parameter representing the smoothing level. Thus, for every fixed e, we obtain
a smooth surrogate function 75 of the nonsmooth objective ¥g ., and we can
apply a gradient descent step to update our approximation to the solution of
(1). In our algorithm, the smoothing level € is automatically reduced and tends
to 0, such that the surrogate approaches the original nonsmooth regularizers in
(1). More precisely, let X = {x1,%2,x3} for notation simplicity, then we solve
the problem minx W ~(X) with initial X using Algorithm 1 (the initial X (*
is obtained from a pre-trained initial network, which is illustrated in detail in
Sect. 3.1). At Line 3 of Algorithm 1, we compute a gradient descent update with
step size obtained by line search while the smoothing parameter ¢, > 0 is fixed.
In Line 4, the algorithm updates ; based on a reduction criterion. The reduction
of &; ensures that the specified subsequence (the subsequence who met the &,
reduction criterion) must have an accumulation point that is a Clarke stationary
point [4] of the optimization problem (1), as given in Theorem 1, whose proof is
provided in Supplementary Materials. We create a multi-phase network whose
architecture exactly follows Algorithm 1 with a prescribed phase number T,
where each phase of the network performs one iteration of the algorithm.
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Algorithm 1: Learnable Descent Algorithm

1: Input: X©, 0 < n < 1, and €9, a,0 > 0, t = 0. Max T, tolerance €y, > 0.

2: fort=0,1,2,...,7—1do

3 X0 =x® _ atV!Pgw (X(t))7 where the step size a; is obtained through
line search s.t. U5’ (XUH) —wg (XM) < — 1| X+ — X2 holds.

4 if |[VEg (XUHD)|| < oner, set g1 = nes; otherwise, set g1 = &4

5: if o < €to1, terminate and go to Line 6,

6: end for and output X®.

Theorem 1. Suppose that {X(t)} is the sequence generated by Algorithm 1 with
any initial X, €1 = 0 and T = oco. Let {XUH+DY be the subsequence that
satisfies the reduction criterion in step 4 of Algorithm 1. Then {X(“H)} has
at least one accumulation point, and every accumulation point of {X(“H)} is a
Clarke stationary point of minx ¥g ~(X).

2.3 Bilevel Optimization Algorithm for Network Training

Suppose that we randomly sample My, data pairs {Dfr}fif for training and
Myar data pairs {Df“l}g{af for validation, where each D}" (or DY) is composed
of data pair {(f}, £2), X**}, f}, £ denote the given partial k-space data, and X** =
{x7%, x5!, %31} denotes the corresponding reference images.

To find the optimal value of the important hyper-parameter - for the synthe-
sis term in (1), we employ a bilevel optimization framework which solves for ©
on training set for any given ~ in the lower-level problem and tunes the optimal
hyper-parameter « on validation set in the upper-level problem. More precisely,
our bilevel optimization framework reads as:

min S (O(7), 1 DY) st O(y) = argming 20O, 7; DI, (2)

where €6, D:) = Sl ga ([, (1), sy (57)]) = 513
+ 52020 (317 (0,7 D) — x5l + (1 - SSTM (T (8,7 D), x71)),
and the X§T)(~) denotes the output of the T—phase network for the jth modality.
The first term of the loss function ¢ in (3) presses gy to accurately synthesize
x3. The second term is to minimize the difference between the network output
and the ground truth in the least square sense. The third term is to promote
high structural similarity index [21] of the reconstructed /synthesized images. In
(2), the lower-level optimization learns the network parameters © with any fixed
coefficient v on the training set, and the upper-level tunes the hyper-parameter
~ on the validation set, which mitigates the challenging overfitting issue.

The bi-level optimization problem (2) is very difficult to solve. In this work,
we employ the penalty method proposed in [13] to solve this problem. For nota-
tion simplicity, we denote L£(O,~;D) := Zgl £(0,v;D;) then rewrite (2) as
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min £(6(7),7; D) s.t. O(y) = argmin £L(O, ;D). (4)
2l e

Following [13], we relax the lower-level optimization problem to its first-order
necessary condition:

min £(O(y),v; DY) st. VeLl(O(y),y; D) =0. (5)
Y

Furthermore, we impose a quadratic penalty on the constraint and further relax
the above problem as

~ A
min {£(6,7; D", D) = L(0,7; D) + S [Ve L(©,: D")|*}. (6)
6,y
Due to the large volume of the datasets, it is not possible to solve (6) in full-

batch. Here we train the parameters using the mini-batch stochastic alternating
direction method summarized in Algorithm 2.

Algorithm 2: Mini-batch alternating direction penalty algorithm

1: Input D', D' 5, > 0, Initialize 6,7v,6,A>0and v5 € (0,1), vx>1.
2: while § > d;,; do

3:  Sample training and validation batch @" c D", B c pUe,

4:  while ||VeL(0,~; B, B*)||*> + ||V, L(©,~; B, B*")||?> > ¢ do
5 for k =1,2,..., K (inner loop) do

6: 0 — 60— pPVeL(O,7; B, B

7 end for
8.
9
10:

Y =7 = py VL6, B, B
end while and update § «— v55, A\ — vy
end while and output: O, ~.

3 Experiments

3.1 Initialization Networks

The initials {X§0)7Xgo)7xg0)} are obtained through the Initialization Networks
(INIT-Nets) shown in Fig. 1, where the k-space interpolation block interpo-
lates the missing components of the undersampled k-space data then fed into
the initial reconstruction block in the image domain after inverse Fourier
transform. All blocks are designed in residual structure [8]. To train the INIT-
Nets, we minimize the difference between its outputs and the ground truth with
loss Ll(xé-o),x;-) = ngo) —xj[l1, 7 =1,2,3. The INIT-Nets only produce initial
approximate images with limited accuracy, so we fed them into the Joint Recon-
struction and Synthesis Network (JRS-Net) illustrated in Sect. 2.2 to obtain the
final results. INIT-Nets are pre-trained whose parameters are fixed during train-
ing the JRS-Net.
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Fig. 1. The overall architecture of the proposed network for joint multimodal MRI
reconstruction and synthesis: INIT-Nets (up and middle), JRS-Net (bottom).

3.2 Experiment Setup

The datasets are from BRATS 2018 challenge [14] which were scanned from four
modalities T1, T2, Flair and T1-weighted contrast-enhanced (T1CE) and we
picked high-grade gliomas (HGG) set which consists 210 patients. We applied
Fourier transform to the images and undersampled the k-space using a radial
mask of sampling ratio 40% to obtain partial k-space data for training. We
randomly took the center 10 slices from 6 patients as test set with cropped size
160 x 180 and split the rest of HGG dataset into training and validation sets with
1020 images separately. We compared with four state-of-the-art multimodal MR,
synthesis methods: Multimodal MR (MM) [3], MM-GAN [17], MMGradAdv [12]
and Hi-Net [26]. The hyper-parameter selection for our algorithm is provided in
Supplementary Material. Three metrics are used for evaluation: peak signal-to-
noise ratio (PSNR) [9], structural similarity (SSIM) [21], and normalized mean
squared error (NMSE) [16].

3.3 Experimental Results and Evaluation

We take four synthesis directions T1 + T2 — FLAIR, T1 + FLAIR — T2, T2
+ FLAIR — T1 and T1 + T2 — T1CE. Table1 reports the quantitative result,
which indicates that the proposed method outperforms MM and GAN-based
methods (MM-GAN, MMGradAdv, Hi-Net). The average PSNR of our method
improves 0.67 dB comparing to the baseline Hi-Net, SSIM improves about 0.01,
and NMSE reduces about 0.01. We also conduct the pure-synthesis experiment
(T1 + T2 — FLAIR) by inputting fully-scanned source data, where the model
(1) minimizes w.r.t. x3 only and excludes the data-fidelity terms. This result is
in Table1 where the PSNR value is 1.16 dB higher than baseline method Hi-
Net. Table 2 shows that the joint reconstruction and synthesis improves PSNR
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Table 1. Quantitative comparison of the synthesis results.

Methods PSNR SSIM NMSE
T1 + T2 — FLAIR MM (3] 22.89 £ 1.48 |0.6671 £ 0.0586 |0.0693 + 0.0494
MM-GAN [17] 23.35 £ 1.03 |0.7084 £+ 0.0370 |0.0620 £ 0.0426
MMGradAdv [12](24.03 + 1.40 |0.7586 + 0.0326 |0.0583 % 0.0380
Hi-Net [26] 25.03 £ 1.38 |0.8499 £+ 0.0300 |0.0254 £ 0.0097
Proposed 26.19 + 1.34/0.8677 £ 0.0307|0.0205 £+ 0.0087
fr1 + fro — FLAIR |Proposed 25.74 + 1.25/0.8597 £ 0.0315|0.0215 + 0.0085
T1 + FLAIR — T2 MM (3] 23.89 £ 1.61 |0.6895 £ 0.0511 |0.0494 + 0.0185
MM-GAN [17] 24.15 £ 0.90 |0.7217 4+ 0.0432 |0.0431 + 0.0114
MMGradAdv [12](25.06 + 1.49 |0.7597 £ 0.0486 |0.0406 + 0.0165
Hi-Net [26] 25.95 £ 1.50 |0.8552 + 0.0410 |0.0229 £ 0.0070
fr1 +frrarr — T2|Proposed 26.52 + 1.57|/0.8610 + 0.0438/0.0207 £ 0.0072
T2 + FLAIR — T1 |[MM [3] 23.53 £ 2.18 |0.7825 £+ 0.0470 |0.0301 £ 0.0149
MM-GAN [17] 23.63 £ 2.31 |0.7908 + 0.0421 |0.0293 + 0.0119
MMGradAdv [12]|24.73 + 2.23 |0.8065 £ 0.0423 |0.0252 + 0.0118
Hi-Net [26] 25.64 £ 1.59 |0.8729 4+ 0.0349 |0.0130 £ 0.0097
fro +frrarr — T1|Proposed 26.31 + 1.80/0.9085 + 0.0311|0.0112 + 0.0113
T1 + T2 — TICE |MM |[3] 23.37 £ 1.56 |0.7272 £ 0.0574 |0.0312 £ 0.0138
MM-GAN [17] 23.68 £ 0.97 |0.7577 £ 0.0637 |0.0302 £ 0.0133
MMGradAdv [12]|24.23 + 1.90 |0.7887 £ 0.0519 |0.0273 + 0.0136
Hi-Net [26] 25.21 £1.20 |0.8650 + 0.0328 |0.0180 + 0.0134
fri1 4+ fr2 — T1CE |Proposed 25.91 + 1.21/0.8726 + 0.0340|0.0167 + 0.0133

Table 2. Quantitative comparison of the reconstructed T1 and T2 images without and
with joint synthesis of FLAIR images.

Modality | FLAIR involved? | PSNR SSIM NMSE

T1 No 37.00 & 0.74 1 0.9605 £ 0.0047 | 0.0008 £ 0.0002
Yes 37.49 £ 0.83]0.9628 £ 0.0074 | 0.0007 £ 0.0002

T2 No 37.24 £ 1.22/0.9678 £ 0.0028 | 0.0027 £+ 0.0010
Yes 37.67 £ 1.34|0.9663 £ 0.0043 | 0.0024 £ 0.0009

by 0.46 dB comparing to purely reconstructing T1 and T2 without synthesizing
FLAIR. We think this is because that the synthesis operator gy also leverages
data x3 to assist shaping the feature maps of x; and xo, which improves the
reconstruction quality of the latter images.

Figure2 displays the synthetic MRI results on different source and target
modality images. The proposed synthetic images preserve more details and dis-
tinct edges of the tissue boundary (indicated by the magnified red windows and
green arrows) and the synthetic images are more alike the ground truth images
comparing to other referenced methods.
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Ground Truth

TICE

Fig. 2. Qualitative comparison between the state-of-the-art multimodal synthesis
methods and proposed method. From first row to last row: T1 + T2 — FLAIR, T1 +
FLAIR — T2, T2 + FLAIR — T1 and T1 + T2 — T1CE.

4 Conclusion

We propose a novel deep model that simultaneously reconstructs the source
modality images from the partially scanned k-space MR data and synthesizes
the target modality image without any k-space information by iterating an LOA
with convergence guaranteed. The network is trained by a bilevel-optimization
training algorithm that uses training and validation sets to further improve the
performance. Extensive experiments on brain MR data with different modalities
validate the magnificent performance of the proposed model.
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