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Abstract
We introduce the problem of finding a satisfying assignment to a CNF formula that
must further belong to a prescribed input subspace. Equivalent formulations of the
problem include finding a point outside a union of subspaces (the Union-of-Subspace
Avoidance (USA) problem), and finding a common zero of a system of polynomials
over F2 each of which is a product of affine forms. We focus on the case of k-CNF
formulas (the k−Sub−Sat problem). Clearly, k−Sub−Sat is no easier than k-SAT,
and might be harder. Indeed, via simple reductions we show that 2 − Sub − Sat is
NP-hard, andW[1]-hard when parameterized by the co-dimension of the subspace.We
also prove that the optimization versionMax-2−Sub−Sat is NP-hard to approximate
better than the trivial 3/4 ratio even on satisfiable instances. On the algorithmic front,
we investigate fast exponential algorithms which give non-trivial savings over brute-
force algorithms. We give a simple branching algorithm with running time O∗(1.5)r
for 2−Sub−Sat, where r is the subspace dimension, as well as an O∗(1.4312)n time
algorithm where n is the number of variables. Turning to k − Sub − Sat for k ≥ 3,
while known algorithms for solving a system of degree k polynomial equations already
imply a solution with running time ≈ 2r(1−1/2k), we explore a more combinatorial
approach. Based on an analysis of critical variables (a key notion underlying the
randomized k-SAT algorithm of Paturi, Pudlak, and Zane), we give an algorithm
with running time ≈ ( n

≤t

)
2n−n/k where n is the number of variables and t is the co-

dimension of the subspace. This improves upon the running time of the polynomial
equations approach for small co-dimension. Our combinatorial approach also achieves

A conference version of this work was presented at the 2021 International Symposium on Parameterized
and Exact Computation (IPEC). Portions of this work were done during visits to the Institute of
Mathematical Sciences, Chennai. Research supported in part by the US National Science Foundation
Grant CCF-1908125 and a Simons Investigator Award.

B V. Arvind
arvind@imsc.res.in

Venkatesan Guruswami
venkatg@cs.cmu.edu

1 The Institute of Mathematical Sciences (HBNI), Chennai, India

2 Computer Science Department, Carnegie Mellon University, Pittsburgh, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00958-4&domain=pdf
http://orcid.org/0000-0002-1988-7866


Algorithmica (2022) 84:3276–3299 3277

polynomial space in contrast to the algebraic approach that uses exponential space.
We also give a PPZ-style algorithm for k − Sub− Sat with running time ≈ 2n−n/2k .
This algorithm is in fact oblivious to the structure of the subspace, and extends when
the subspace-membership constraint is replaced by any constraint for which partial
satisfying assignments can be efficiently completed to a full satisfying assignment.
Finally, for systems of O(n) polynomial equations in n variables over F2, we give
a fast exponential algorithm when each polynomial has bounded degree irreducible
factors (but can otherwise have large degree) using a degree reduction trick.

Keywords Satisfiability problem · CNF formulas · Linear equations · Fast
exponential algorithms
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1 Introduction

Given an n-variate Boolean formula � along with an affine subspace A ⊆ F
n
2 (given

by a system of F2-linear equations) as input, we explore the complexity of testing
if � has a satisfying assignment in A. This is a natural twist on Boolean constraint
satisfaction problems that studies the effects of linear algebra on Boolean logic. Our
focus shall be on the case when � is presented in Conjunctive Normal Formal (CNF).
We refer to this problem as satisfiability in a subspace and denote it by Sub − Sat.
This framework can capture non-Boolean problems such as Graph K -Colorability
indicating the richness of combining the problem of Boolean CNF-satisfiability with
a linear-algebraic constraint. The combination of linear and boolean constraints in
satisfiability problems have been studied earlier. Chen and Santhanam [6] studied
the satisfiability problem for mixed instances which is a more general framework
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that includes the Sub − Sat problem. Also, Lokshtanov et al. [19] have studied the
algorithmic problem of solving polynomial equations over finite fields which is a more
general problem to which Sub − Sat is easily reducible. We also note that in the area
of practical SAT solvers there is interest in CNF satisfiability conjuncted with XOR
constraints [26, 27].

Further, Sub − Sat has two other equivalent interesting formulations. The first
of these is union of subspace avoidance, USA for short: Given affine subspaces
A1, A2, . . . , Am ⊆ F

n
2 is there an x ∈ F

n
2 that is not in the union

⋃m
i=1 Ai? A different

formulation is a special case of finding a solution to a bunch of polynomial equations
pi = 0 over Fn

2, namely when each pi is a product of affine forms. We refer to this
reformulation as PAF− Sat. We will describe these (easy) equivalences in Sect. 1.3.

For most of the paper, we restrict attention to the case when � is a k-CNF formula
(a CNF formula with clauses of width at most k) for a fixed k, referred to as the
k−Sub−Sat problem. Clearly, k−Sub−Sat is a generalization of the well-studied
k-Sat (k-CNF satisfiability). In terms of the two reformulations above, k−Sub−Sat
corresponds to the USA problem when the spaces Ai have co-dimension at most k,
and for the PAF − Sat problem, each polynomial pi is the product of up to k affine
forms.

We present both hardness results and algorithms for k − Sub − Sat, described in
Sects. 1.1 and 1.2 below respectively. Owing to the NP-hardness of the problems, the
algorithmic focus is on exponential time algorithms that give non-trivial improvements
over brute-force.

There are two possible angles from which to view the study of k − Sub − Sat.
The first is as a problem intermediate between satisfiability of k-CNF formula and a
system of degree k polynomial equations. The second is as a specific instance of a
constraint satisfaction problem (CSP) obtained by combining two fundamental types
of constraints. There have been a few works [6, 21] giving algorithms beating brute-
force for some natural problems with mixed constraints, but we are still far from a
general picture of how to obtain fast exponential algorithms for a combined template
of constraints when each constraint type does admit such non-trivial algorithms. In this
context, tackling the combination of k-CNF formulas and linear equations is a good
starting point, and one that could hopefully spur a more systematic study in the future.
There have been a few investigations [7, 15, 16, 18] into the fine-grained complexity
of CSPs via the algebraic approach based on (partial) polymorphisms. This theory has
developed the tools to compare the optimal exponents of different constraint types,
identifying for instance the “easiest" NP-hard CSPwithin some classes. However, with
the exception of [3], polymorphisms have not been leveraged to design fast exponential
algorithms with competitive exponents.

1.1 Hardness Results

Since k − Sub − Sat is a generalization of k-Sat, k − Sub − Sat inherits all the
intractability results of k-Sat for k ≥ 3. This leaves the interesting case of 2−Sub−
Sat. This turns out to be much harder than the polynomial time solvable 2−Sat. We
establish the following theorem, showing not just hardness (even for FPT algorithms)
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of the exact version, but also a tight inapproximability for the approximation version
(even on satisfiable instances). The proofs (given in Sects. 3.1, 3.2) are based on short,
simple reductions, once an appropriate problem to reduce from is chosen.1 TheW[1]-
hardness answers a question posed in [2] on the fixed-parameter complexity of 2−Sat
with a global modular constraint, parameterized by the modulus.

Theorem 1 1. 2−Sub−Sat isNP-hard. It is furtherW[1]-hardwhen parameterized
by the co-dimension of the affine space A in which we seek a satisfying assignment.

2. Given a satisfiable instance of 2− Sub− Sat, it is NP-hard to find an assignment
in the input space A that satisfies more than 3/4 + ε of the 2SAT clauses, for any
ε > 0.

1.2 Algorithmic Results

Analogous to seeking k-Sat algorithms faster than brute-force, we investigate fast
exponential time algorithms for k −Sub−Sat that beat the naive brute-force 2dim(A)

time algorithm, where A ⊆ F
n
2 is the subspace in which we seek a solution. Algo-

rithms for k-Sat have received much attention and are central to the burgeoning field
of fast exponential-time algorithms. The algorithmic theory is closely connected to
fixed parameter tractability and parameterized complexity [9, 11]. The accompanying
hardness theory [13, 14], based on the exponential-time hypothesis (ETH) and the
strong exponential-time hypothesis (SETH), is a sanity check to the quest for faster
algorithms for k-Sat and other NP-complete problems.

There are several interesting k-Sat algorithmswith running timeO∗(2n(1−�(1/k))).2

We only mention two significant algorithms from among these: one by Paturi, Pudlak,
Zane [22] and another due to Schöning [24]. Both algorithms are simple to describe
with delightfully clever and elegant analyses. The PPZ algorithm considers variables
in a random order, and gives each a random value unless its value is forced by a clause
and previously set values. It achieves a running time of O∗(2n(1−1/k)). Schöning’s
algorithm starts with a random assignment and in each step fixes an unsatisfied clause
by flipping the value of a random one of its variables. It achieves a running time of
O∗((2 − 2/k)n).

Given that k − Sub − Sat generalizes k-Sat, it is natural to seek exponential
algorithmswith similar running times for k−Sub−Sat. ForSub−Satwith input space
A ⊆ F

n
2, the brute-force algorithm in fact runs in time O∗(2dim(A)). A natural question

iswhetherwe can get similar improvements in the exponent of theO∗(2dim(A)) running
time.

An algorithm [19] with running time about O∗(2r(1−1/5k)) is known for checking
satisfiability of a collection of arbitrary degree k polynomial equations in r variables:
Let Pi ∈ F2[x1, x2, . . . , xr ], 1 ≤ i ≤ m, be polynomials over the field F2. Following
[19], the Poly − Eqs problem is solving the system of polynomial equations Pi =
0, 1 ≤ i ≤ m over F2: to check if there exists a solution in F

r
2 and compute one

1 The NP-hardness would also follow from Schaefer’s dichotomy theorem for Boolean CSP [23], though
that is an overkill hammer for this result.
2 The notation O∗( f (n)) for running time bounds suppresses polynomial factors.
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if it exists. When Pi are all of degree bounded by k we denote this special case by
k−Poly−Eqs.The k−Poly−Eqsproblemgeneralizes k−Sub−Satby the following
easy transformation: Suppose the subspace A where we seek a satisfying assignment
is r dimensional. Then we can express the i th clause in the k −Sub−Sat instance as
a disjunction of k affine linear forms in r variables: Ci = (�i,1 ∨ �i,2 ∨ · · · ∨ �i,k). We
define the corresponding polynomial Pi = ∏k

j=1(�i, j + 1). Now, the k − Sub− Sat
instance is satisfiable iff the k−Poly−Eqs instance Pi = 0, 1 ≤ i ≤ m has a solution
in Fr2.

The algorithm [19] is a novel application of the Razborov-Smolensky “polynomial
method,” originally developed as a lower bound technique, used to define low-degree
probabilistic polynomials for approximating the OR gate. The same idea allows for
replacing a system of polynomial equations by a single probabilistic polynomial (with-
out significant increase in degree), followed by a partial table lookup search. The article
[19] presents more general results applicable to all finite fields Fq . Recently, in [8], the
running time for the case of F2 has been improved to O∗(2r(1−1/2k)) by a refinement
of the search method in [19].

Since k −Sub−Sat is a special case of solving a system of polynomial equations
over F2, it raises the natural question of improving the running time further to match
the O∗(2r(1−1/k)) running time of the PPZ randomized algorithm for k − Sat. We
are only able to achieve this speed-up in some special cases. However, on the positive
side, our algorithms turn out to be polynomial space bounded, unlike the polynomial
equations based method which requires exponential space [8, 19].

1.2.1 Algorithms for 2-Sub-Sat

For 2 − Sub − Sat a simple deterministic branch-and-bound algorithm achieves
a running time of O∗(3r/2) where r is the dimension of the subspace A. We can
improve on this with a randomized branching strategy to a running time of O∗(1.5r ).
This improves over the randomized O∗(1.6181r ) algorithm given by the polynomial
method [8] for solving a system of quadratic equations over F2. There is also a simple
deterministic branching algorithmwith O∗(((1+√

5)/2)r ) running time for 2−Sub−
Sat. This is based on the same branching strategy for k−Sat [20, Theorem, pp. 295]
with its running time governed by the generalized Fibonacci numbers.

When dim(A) = n − t , we can adapt the algorithm from [2, Algorithm 4.1] (for
solving 2-SAT with a single abelian group constraint) to obtain an O∗(

( n
≤t

)
) time

algorithm.3

The result of Theorem 1 shows that this problem is not in FPT parameterized by
the co-dimension t , answering a question posed in [2] on whether 2-SAT with a global
abelian group constraint might be fixed-parameter tractable, parameterized by the
group size. More generally, the work [2] systematically studied the effect of a global
modular constraint on the complexity of Boolean constraint satisfaction problems,
exposing many interesting phenomena and connections.

Balancing the two running times of O∗(1.5r ) and O∗(
( n
n−r

)
) algorithm when r ≥

n/2 (the exponents of the two bounds become equal at r = (1−η)n for η ≈ 0.115816)

3 For nonnegative integers n, t , the notation
( n
≤t

)
stands for

∑t
i=0

(n
i
)
.
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yields a O∗(1.4312n) time randomized algorithm for 2 − Sub − Sat on n variables.
The following records these results (proof is in Sect. 2.3).

Theorem 2 There is a randomized O∗(1.5r ) algorithm for 2 − Sub − Sat where r
is the dimension of the input space, as well a deterministic O∗(

( n
≤t

)
) time algorithm

where t is the co-dimension. Together, these imply a randomized O∗(1.4312n) time
algorithm as a function of the number n of variables.

1.2.2 Algorithms for k-Sub-Sat

We explore combinatorial algorithms for k − Sub − Sat based on the notion of
critical variables (which was introduced in [22] and plays an important role in their
satisfiability algorithm). Let � be a satisfiable CNF formula in n variables xi , i ∈ [n],
and let ā ∈ F

n
2 be a satisfying assignment.

Definition 3 [22] We say xi is a critical variable for ā with respect to � if the assign-
ment ā+ei falsifies�, where ei is the i th elementary vector with 1 in the i th coordinate
and zero elsewhere (so ā + ei is just ā with xi flipped). If the formula � is clear from
context, we simply say that xi is a critical variable for assignment ā.

The key idea in our combinatorial algorithms is plucking of non-critical variables
based on the following simple observation: if � is an n-variate CNF formula and ā is
a satisfying assignment such that variable xi is non-critical for it, then the formula �′
obtained by plucking xi (i.e., dropping all occurrences of xi and its complement from
�) remains satisfiable with ā′ ∈ F

n−1
2 as a satisfying assignment, where ā′ is obtained

from ā by dropping the i th coordinate.
The important property of �′ is that given any satisfying assignment for �′ we can

set xi to either 0 or 1 to recover a satisfying assignment for�. This facilitates searching
for a satisfying assignment in an affine space A: if the plucked variable xi occurs in
a linear constraint defining A then we can drop that linear constraint while seeking a
satisfying assignment for �′, because that linear constraint can always be satisfied by
choosing the right value of xi which still remains overall a satisfying assignment for
�. Based on this idea we obtain the following algorithms for k − Sub − Sat:

• The first result here is a randomized O∗(
(n
t

)
2n−n/k) time algorithm for k −Sub−

Sat where t = codim(A). This algorithm is essentially governed by the running
time of the PPZ satisfiability algorithm [22] combined with an iterative “search
and pluck” operation to remove t non-critical variables from the t linear equations
defining A. This running time is superior to the O∗(2r−r/2k) time randomized
algorithm based on solving polynomial equations for small values of t = o(n).
This result is presented in Sect. 2.1.

• The second result is a general randomized O∗(2n−n/2k+n/2k2) time algorithm for
k − Sub − Sat, nearly matching the ≈ 2r−r/2k running time of the polynomial
equations algorithm [8, 19] for r close to n. It again uses the PPZ satisfiability
algorithm as a subroutine combined with simple applications of the plucking step:
if the number of critical variables is fewer than n/2, it randomly guesses and
plucks non-critical variables. This algorithm does not need to look at the linear
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equations defining A. In fact, it works for anyBoolean constraintC(x1, x2, . . . , xn)
(replacing membership in the affine space A) with a polynomial-time algorithm
that takes a partial assignment and extends it to an assignment that satisfies C . For
example, C can be a Horn or dual Horn formula.

• It is pleasing to note that we can apply the idea of plucking non-critical variables
to 2− Sub− Sat and obtain an O∗(

( n
≤t

)
) deterministic algorithm (cf. [2]), where

t = codim(A). Exploiting the structure of 2-CNF formulas, we can find the non-
critical variables efficiently.

The proof of the following result is presented in Sect. 2.2.

Theorem 4 The k − Sub − Sat problem admits two randomized algorithms, one
running in time O∗(2n−n/2k+n/2k2), and another running in O∗(

(n
t

)
2n−n/k) when the

input subspace has co-dimension t ≤ n/2.4 Both algorithms use space bounded by a
polynomial in n.

Remark 5 Satisfiability algorithms based on the switching lemma (which converts k-
CNF to decision trees of moderate term size and number of terms) are known in the
literature (e.g., see [12]). We can easily adapt this algorithm to solve k − Sub− Sat,
because once we have a decision tree for the underlying k-CNF formula, for the
k − Sub − Sat instance each path of the decision tree will give rise to a system of
linear equations over F2. For each path, therefore, we can even count the number of
satisfying assignments. Counting over all the paths of the decision tree gives the total
number of satisfying assignments for the k − Sub−Sat instance in randomized time
O∗(2n(1−1/c·k)) for some suitable large constant c > 0. Furthermore, the algorithm is
also polynomial space-bounded. In terms of running time, however, it is amuchweaker
bound in comparison to [19] or even the algorithms of Theorem 4. In this context, we
note that for #k − Sat there is a deterministic O∗(2n(1−1/c·k)) time algorithm based
on the polynomial method (albeit using exponential space) [5]. We do not know of any
such deterministic algorithm for counting satisfying assignments to k − Sub − Sat.

Finally, motivated by the (unbounded CNF) Sub − Sat problem, we revisit the
general problem solving a system of polynomial equations pi = 0, 1 ≤ i ≤ m over
F2, where m = O(n), where each pi is given by an arithmetic circuit of poly(n)

degree. In the case when each pi has small degree irreducible factors, we get a 2r(1−α)

time randomized algorithm, where α depends on the number of equations m and the
degree bound on the irreducible factors (Theorem 28).

1.3 Equivalent and Related Problems to Sub-Sat

Recall theUSA problem:Given a collection of affine subspaces A1, A2, . . . , Am ⊆ F
n
2

(where each Ai is given by a bunch of affine linear equations over F2) the problem is
to determine if there is a point x ∈ F

n
2 \ ⋃m

i=1 Ai .
Clearly, the complement Fn

2 \ ⋃m
i=1 Ai is expressible as an AND of ORs of affine

linear forms ⊕i∈Sxi +b, b ∈ {0, 1}. Thus,USA is clearly reducible to Sub−Sat. The

4 Of course, there is also a trivial O∗(2n−t ) time brute force algorithm.
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converse reduction is also easy: given aCNF formula� and an affine subspace A ⊆ F
n
2

we first convert it to an AND of ORs of affine linear forms. An assignment x ∈ A
satisfies� if and only if it satisfies C1 ∧C2 ∧· · ·∧Cm , where each clause Ci is an OR
of affine linear forms. The set Ai of satisfying assignments of the complementCi is an
affine subspace of Fn

2, and � is satisfiable by x ∈ A if and only if x ∈ F
n
2 \ ⋃m

i=1 Ai .
For the equivalence to PAF− Sat, suppose � = C1 ∧C2 ∧ · · · ∧Cm , where each

clause Ci is an OR of affine linear forms Ci = ∨t
j=1Li j . As already discussed in

Sect. 1.2, the assignment x ∈ F
n
2 satisfies Ci if and only if it satisfies the polynomial

equation
∏m

j=1(Li j + 1) = 0. Thus, the satisfiability of � is reducible to a system
of m polynomial equations pi = 0, where each pi is a product of affine linear forms.
The converse reduction is also easy which we omit.
Organization of the paper We present the results in a different order than in the
introduction. In Sect. 2 we first present the algorithms for k −Sub−Sat and then for
2−Sub−Sat. In Sect. 3 we present our hardness results for 2−Sub−Sat. Finally,
in Sect. 4 we present the algorithm for Poly−Eqs for O(n) equations pi = 0, where
each pi has unrestricted degree but constant-degree irrreducible factors.

2 Algorithmic Results for k-Sub-Sat

As mentioned in the introduction, the k − Sub− Sat problem seems intermediate in
difficulty, between k − Sat and the problem k − Poly − Eqs of solving a system of
degree-k polynomial equations overF2. The latter problem has an O∗(2r(1−1/2k)) time
algorithm [1, 8, 19], which yields an O∗(2r(1−1/2k)) time algorithm for k−Sub−Sat,
where r = dim(A).

Ideally, we would like an algorithm for k − Sub − Sat with running time
O∗(2r(1−1/k)), with savings in the exponent similar to that of the PPZ algorithm
[22] for k-Sat.

We present some algorithms in this direction: For 2− Sub− Sat there is a simple
O∗(1.5r ) time randomized algorithm which improves on the O∗(2r(1−1/2k)) bound
for k = 2. For a special case of k − Sub − Sat, when r = dim(A) is close to the
number of variables n, we are able to adapt the PPZ algorithm to essentially get an
O∗(2r(1−1/2k)) time algorithm.Writing t = n−r = codim(A), we can even obtain an
O∗(

( n
≤t

)·2n(1−1/k)) time algorithm for the problem, also based on the PPZ satisfiability
algorithm, which yields the desired 1/k savings in the exponent for small t .

2.1 AnO∗(
(n
t
) · 2n(1−1/k)) Time Randomized Algorithm: Co-dimension t Case

As outlined in Sect. 1.2, the algorithm will use the PPZ satisfiability algorithm [22] as
a subroutine, combinedwith variable plucking steps to solve k−Sub−Sat in random-
ized time O∗(

(n
t

) ·2n(1−1/k)), when codim(A) = t . In particular, for codim(A) = o(n)

the algorithm has running time O∗(2n(1−1/k+o(1))).
The variable plucking is based on analyzing the critical variables for a solution

ā ∈ F
n
2 of a given k − Sub − Sat instance (�, A), depending on whether or not they

occur in the linear equations defining A.
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For an instance (�, A) we partition the variables into two sets

{xi | i ∈ [n]} = Vin 
 Vout,

where Vin is the subset of variables that have nonzero coefficient in at least one of the
t linear equations defining A, and Vout is the remaining set of variables. By abuse of
notation, we will also treat Vin 
 Vout as a partition of the index set [n]. We consider
the following two cases.
Case 1 Suppose (�, A) has the property that for every solution ā ∈ F

n
2 each variable

in Vin is critical for ā w.r.t�. There is no variable plucking required in this case. It only
involves the application of the PPZ satisfiability algorithm on � and checking that the
assignment found belongs to A. We need the following lemma which is analogous to
[22, Lemma 4]. The proof of the lemma is by an induction argument like in [22].

Lemma 6 Let S be a nonempty subset of Fn
2 . For each ā ∈ S, let Iout(ā) = {i ∈ Vout |

ā + ei /∈ S}, where ei is the i th elementary vector. Then we have

∑

ā∈S
2|Iout(ā)|−|Vout| ≥ 1. (1)

Proof If |Vout| = 0, then Iout(ā) = ∅ for every ā ∈ S, and the left hand side of (1)
equals |S| which is at least 1.

So assume |Vout| ≥ 1 and without loss of generality that 1 ∈ Vout. Let S0 = {ā ∈
S | a1 = 0} and S1 = {ā ∈ S | a1 = 1}, and also denote V ′

out = Vout \ {1}.
First consider the case when both S0 and S1 are nonempty. For ā ∈ S0, define

I (0)
out (ā) = {i ∈ V ′

out | ā + e j /∈ S0} and likewise for ā ∈ S1, define I (1)
out (ā) = {i ∈

V ′
out | ā + ei /∈ S1}. By induction hypothesis, applied w.r.t V ′

out, and pairs S0 and

I (0)
out (ā), as well as S1 and I (1)

out (ā), we know that

∑

ā∈S0
2|I (0)

out (ā)|−|V ′
out| ≥ 1 and

∑

ā∈S1
2|I (1)

out (ā)|−|V ′
out| ≥ 1 . (2)

Now if index j ∈ I (0)
out (ā) for some ā ∈ S0 ⊂ S, then ā + e j /∈ S0 and as the

first coordinate of ā + e j is also 0, we have ā + e j /∈ S, and thus j ∈ Iout(ā). Thus

|Iout(ā)| ≥ |I (0)
out (ā)| for all ā ∈ S0. Likewise, |Iout(ā)| ≥ |I (1)

out (ā)| for all ā ∈ S1.
Since |V ′

out| = |Vout| − 1, using these in (2), we conclude (1) in this case, as desired.
Next, suppose S = S0 and S1 = ∅ (the case when S0 = ∅ is handled the same

way). In this case, for every ā ∈ S, 1 ∈ Iout(ā), as S1 = ∅ and thus flipping the first
bit will always lead to a vector outside S. Thus |Iout(ā)| = |I (0)

out (ā)| + 1. Using this
together with |V ′

out| = |Vout| − 1 in the first inequality of (2), we conclude (1) in this
case as well. �


Now, let ā ∈ F
n
2 be some solution of the k − Sub− Sat instance (�, A). Then, by

the assumption of Case 1 and the preceding discussion ā has |Vin| + |Iout(ā)| critical
variables w.r.t �.
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Following the analysis in [22], if we now run one iteration of the PPZ algorithm on
the instance �, the probability that ā is output is at least

1

n2
· 2−n+(|Vin|+|Iout(ā)|)/k .

Let S ⊂ F
n
2 denote the subset of solutions to the instance (�, A). Summing up over

all ā ∈ S, the probability that some solution ā is output is given by

∑

ā∈S

1

n2
· 2−n+(|Vin|/k+|Iout(ā)|/k) = 1

n2
2−n+n/k ·

∑

ā∈S
2(−|Vout|/k+|Iout(ā)|)/k

≥ 1

n2
2−n+n/k ·

∑

ā∈S
2(−|Vout|+|Iout(ā)|) ≥ 1

n2
2−n+n/k ,

where the last step uses Lemma 6. This finishes the analysis of Case 1.

Remark 7 Notice in the probability analysis that S is the set of solutions to (�, A)

and not all solutions to �. The crucial property that for every ā ∈ S, each variable in
Vin is critical w.r.t � yields that there are |Vin| + |Iout(ā)| critical variables for ā w.r.t
�. Intuitively, as the variables in Vout do not occur in the linear equations, the PPZ
algorithm when run on � will be able to deterministically set, on average, |Iout(ā)|/k
many of the critical variables in Vout without any interaction with the linear equations
defining A.

Case 2 We now consider the case when not all variables in Vin are critical to all
solutions to (�, A). We will show that there is a subset of at most t variables in Vin
that can be plucked from � and reduce the transformed instance to Case 1. We will
argue that the algorithm can do an exhaustive search for this subset of Vin of size at
most t .

Lemma 8 In the k − Sub− Sat instance (�, A), let Bx = b be the system of t linear
equations defining A. Suppose variable x1 occurs in the first equation

∑n
j=1 B1 j x j =

b1 (i.e., B11 �= 0). Further, suppose x1 is not critical for some solution to (�, A).
Let �′ be the formula obtained by plucking x1 from �. Let A′ be the affine space of
co-dimension t − 1 defined by dropping the first linear equation

∑n
j=1 B1 j x j = b1

after eliminating x1 from the other linear equations by row operations. Then (�′, A′)
is satisfiable and any solution ā′ to (�′, A′) can be extended to a solution ā of (�, A).

Proof By assumption, there is a solution â to (�, A) for which x1 is non-critical.
Let â′ ∈ F

n−1
2 be the assignment to x2, x3, . . . , xn obtained from â by dropping

the x1-coordinate. Clearly, â′ is a solution to (�′, A′). Hence, (�′, A′) is satisfiable.
Furthermore, suppose ā′ is some solution to (�′, A′). Then the assignment ā′ to
the n − 1 variables x2, x3, . . . , xn can be extended by choosing x1 such that the
constraint

∑n
j=1 B1 j x j = b1 is satisfied. The resulting assignment ā satisfies � and

all t constraints defining A. �
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Lemma 8 describes a pluck/eliminate step applied to the non-critical variable x1:
namely, pluck x1 from � and eliminate it from the equations describing A.

Clearly, for some sequence of s ≤ t pluck/eliminate steps applied successively
transforms (�, A) to (�s, As) for which Case 1 holds. Since we do not have an
efficient test for checking non-criticality, the algorithm has to do an exhaustive search
for the sequence of s variables to pluck/eliminate. The number of variable sequences to
consider is boundedbynt .However, aswe argue in the next claim, it suffices to consider
each unordered subsetU of size s ≤ t variables and apply pluck/eliminate steps to its
variables in the natural order x1, . . . , xn . Thus, we can bound the exhaustive search to( n
≤t

)
subsets of variables. Let (�U , AU ) be the resulting instance after pluck/eliminate

applied to variables in U in the natural order.

Lemma 9 Let (�, A) be a satisfiable instance of k − Sub− Sat with codim(A) = t .
There is a subset U of variables of size at most t , such that (�U , AU ) is a satisfiable
Case 1 instance of k − Sub − Sat.

Proof Suppose xi1 , xi2 , . . . , xis is a sequence of s ≤ t variables to which the
pluck/eliminate steps applied results in a satisfiable Case 1 instance (�s, As). Let
the t equations Bx = b define the affine space A. The row operations applied with
the pluck/eliminate steps transforms this system into the following equations (also
defining A):

� j = xi j , 1 ≤ j ≤ s and � j = 0, s + 1 ≤ j ≤ t, (3)

for affine linear forms � j , j ∈ [t] in which none of the variables xi1 , xi2 , . . . , xis occur.
Moreover, the t−s equations � j , j > s define As , and for every solution ā to (�s, As)

all variables occurring in these t − s equations are critical for ā w.r.t �s .
Now, suppose we apply the pluck/eliminate steps in the natural order to the vari-

able subset U = {xi1 , xi2 , . . . , xis } resulting in (�U , AU ). Formulas �U and �s are
identical (as both are obtained by plucking variables fromU ). The accompanying row
operations for the eliminate steps could result in a different set of equations (defining
A): �′

j = xi j , 1 ≤ j ≤ s and �′
j = 0, s + 1 ≤ j ≤ t . The variables in U do not occur

in �′
j , j ∈ [t], and the affine space AU is defined by the t − s equations �′

j = 0, j > s.
Since any solution to these equations uniquely determines the values to the variables
in U , and all equations together define A, we can conclude that AU = As . �


The O∗(
( n
≤t

) · 2n−n/k) time Algorithm.
On input (�, A), the algorithm proceeds as follows:
For each subset U ⊂ Vin of size at most t do the following:

1. Pluck the variables in U from � to obtain �U .
2. For each variable xi ∈ U (in any order): pick some equation in which xi occurs;

remove xi from other equations by adding the picked equation to it; drop the picked
equation from the system.

3. Run the PPZ algorithm on the resulting instance (�U , AU ) as if Case 1 were
applicable. More precisely, run PPZ on�U for O∗(2n−n/k) steps; for each solution
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obtained, if it satisfies AU then output an extension of it to a solution to (�, A) and
exit,5 else continue the for-loop for the next choice of subset U .

To see the correctness, suppose (�, A) is satisfiable. By Lemma 9, for some choice
of U with |U | ≤ t , (�U , AU ) is a Case 1 instance. Hence, the PPZ satisfiability
algorithm will output a solution to (�U , AU ) in time O∗(2n−n/k) with high proba-
bility. This solution can be uniquely extended to a solution to (�, A) using the linear
equations.

We have thus shown the following.

Theorem 10 There is a randomized O∗(
(n
t

)·2n−n/k) time algorithm for k−Sub−Sat
for subspaces of co-dimension t. In particular, for t = o(n) we have a randomized
O∗(2n(1−1/k+o(1))) time algorithm.

2.2 AnO∗(2n−n/2k+n/2k2) Time PPZ-Based Algorithm for k-Sub-Sat

Let (�, A) be a k −Sub−Sat instance. Our algorithmic strategy is essentially based
on the PPZ algorithm for k-Sat, and our objective is a randomized algorithm with
running time 2n−(1−ν)n/k for as small a ν as possible (ideally, ν = 0 which would
match the running time of the PPZ algorithm for k − Sat).

To this end, we can first apply Valiant-Vazirani Lemma [28] to increase the number
of constraints (thereby reducing the rank of A) and getting an instance (�, A′) such
that � has a unique solution in A′ with high probability (i.e., inverse polynomial
probability as guaranteed by Valiant-Vazirani).

If dim(A′) ≤ n − (1− ν)n/k we can brute force search in A′ in deterministic time
2dim(A′) ≤ 2n−(1−ν)n/k . Thus, we can assume that dim(A′) = n − t and A′ is the
solution space of t < (1 − ν)n/k independent affine linear equations.

Let now ā ∈ F
n
2 be the unique solution to the k − Sub− Sat instance (�, A′). We

partition the variable set into Vin 
 Vout as before.

Claim 11 Every variable in Vout is critical for the satisfying assignment ā of �.

Proof of Claim Suppose xi ∈ Vout is not critical for ā. Then ā + ei is also a satisfying
assignment for �. Moreover, since xi does not occur in Vin, ā + ei satisfies the linear
equations defining A′. Hence ā+ei is a solution to (�, A′) contradicting the uniqueness
of ā.
The variable plucking algorithm If ā has more than (1−ν)n many critical variables
(ν to be fixed in the analysis) then by running the PPZ satisfiability algorithm [22] for
O∗(2n−(1−ν)n/k) iterations we will find it with high probability.

Otherwise, there are more than νn many variables in Vin that are not critical for �

at ā.

1. Repeat the following two steps at most t times.
2. (The plucking step) Randomly pluck a variable xi from Vin and drop it from the

formula � to obtain its shrinking �1. Take a linear equation � = b in which xi

5 From a solution to (�U , AU ) we can reconstruct the solution to (�, A) as the values to variables in U
are uniquely determined via the linear equations from the values to the other variables.
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occurs. By row operations eliminate xi from all other linear equations in which
xi occurs and then drop the equation � = b. Let the affine space described by the
new set of at most t − 1 linear equations be A1. We claim that (�1, A1) also has a
unique solution ā1 (obtained from ā by dropping the i th coordinate).

3. Let n1 = n − 1. Run the PPZ algorithm for 2n1−(1−ν)n1/k time on �1. If we do not
find the unique solution ā1 then repeat the plucking step.

At the end of t successful plucking steps we are left with a k−Sat instance�t with
a unique solution (the subspace At is Fn

2) and PPZ will find that solution from which
we can compute ā by recovering the unique values of the plucked variables using the
linear equations.
AnalysisAt the j th iteration of the plucking step, the probability that all j steps pluck
off non-critical variables is at least ν j . Thus, the running time of the search for unique
solutions for the (� j , A j ) over all t steps is bounded by

∑t
j=0 O

∗( 1
ν j ·2n j−(1−ν)n j /k).

Letting α = 21−(1−ν)/k and noting that n j = n − j we can rewrite and bound the
above sum as

O∗(2n−(1−ν)n/k) ·
t∑

j=0

1

ν j · α j
≤ O∗(2n−(1−ν)n/k) · t · 1

νt · αt

≤ O∗(2n−(1−ν)n/k) · t ·
(

1

2ν

)(1−ν)n/k

· 2(1−ν)n/k2 ,

as the sum
∑t

j=0
1

ν j ·α j is bounded by t 1
νt ·αt for να < 1 and t ≤ (1 − ν)n/k.

The overall running time of the algorithm is, therefore, O∗(2n−n/k) · 2νn/k ·
( 1
2ν

)(1−ν)n/k · 2(1−ν)n/k2 , which is minimized at ν = 1/2 as we argue below, and

is given by O∗(2n−n/2k+n/2k2).

Ignoring the last factor, we need to minimize 2νn/k · ( 1
2ν

)(1−ν)n/k
. In other words,

we need to minimize

2ν ·
(

1

2ν

)1−ν

,

Or, equivalently, minimize

ν log(4ν) − log(2ν) over ν ∈ [0, 0.5].

This is minimized at ν = 0.5 and the minimum value is also 0.5.

Remark 12 (Extension beyond linear-algebraic constraints) We note some aspects
about the algorithm and explain its adaptation to the more general setting of k-CNF
satisfiability in the presence of a global boolean constraint C(x1, x2, . . . , xn) with the
property that given a partial assignment to the variables xi we can extend the assign-
ment to the remaining variables that satisfies the constraint C , if such an extension
exists. We set ν = 1/2 and t = n/2k. Note that the algorithm need not partition the
variables into Vin and Vout. If there are over n/2 non-critical variables, the algorithm
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can "obliviously" pluck onewith probability 1/2. Oblivious in the sense that it does not
need to see the constraintC . After t = n/2k plucking steps, there are at most n−n/2k
remaining variables. We add a final step to the algorithm which is a brute-force search
over all 2n−n/2k assignments to the remaining variables. For each assignment to these
that satisfies �t we can check, in polynomial time, if there is an extension to it that
satisfies C . This search will succeed for the unique solution ā. An interesting example
for constraint C would be Horn formulas. As clause size is unrestricted in Horn for-
mulas, notice that neither a direct application of the PPZ satisfiability algorithm, nor
an application of the polynomial equations algorithms would give constant savings in
the exponent for the running time bound.

More generally, call a Boolean constraint C(x1, x2, . . . , xn) T (n)-easy if there is a
T (n) time-bounded algorithm that searches for a satisfying extension of a given partial
assignment to the variables xi .

Theorem 13 There is a randomized O∗(2n−n/2k+n/2k2 · T (n)) time algorithm that
takes any k-CNF formula and a T (n)-easy boolean constraint C(x1, x2, . . . , xn) as
input and computes a satisfying assignment for the formula and C.

Corollary 14 There is a randomized O∗(2n−n/2k+n/2k2) time algorithm for k −Sub−
Sat.

2.3 AnO∗(1.5r) time algorithm for 2-Sub-Sat

Theorem 15 Given a 2 − Sub − Sat instance (�, A), where � is a 2-CNF formula
and A ⊂ F

n
2 is an r-dimensional affine subspace given by linear equations, there is a

randomized O∗(1.5r ) time algorithm to check if � has a satisfying assignment in A
and if so to compute it.

Proof Let X = {x1, x2, . . . , xr , . . . , xn} be the variable set.Without loss of generality,
we can assume that x1, x2, . . . , xr are independent variables and for j > r we have
x j = � j , where � j is a linear form in x1, x2, . . . , xr . The literal x̄ j is the affine linear
form � j + 1.

Thus, we can treat the instance (�, A) as a conjunction 	 of disjunctions (� ∨ �′),
where � and �′ are affine linear forms in x1, x2, . . . , xr .Wecan thinkof this satisfiability
problem as picking one affine form from each such 2-disjunction (� ∨ �′) and setting
it to true such that the resulting equations are all consistent (i.e. the equations have a
solution in Fr2).

We describe below a randomized algorithm that builds a system of independent
linear equations over x1, x2, . . . , xr such that any satisfying assignment ā is a solution
to this system of linear equations with probability at least (2/3)r , and, moreover, any
solution to this system satisfies 	. Clearly repeating this algorithm O∗(1.5r ) times
will find a satisfying assignment to the 2 − Sub − Sat instance 	 if one exists.

Here is a description of the algorithm to convert 	 to a system of linear equations:

1. The algorithm runs in stages i = 0, 1, . . . where in the i th Stage, it has a system of
linear equations �′

j = 1, 1 ≤ j ≤ i for a collection of linearly independent affine
forms �′

j . We start off with the empty system at stage 0.
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2. (Stage i + 1): Take a clause (� ∨ �′). If either � = 1 or �′ = 1 is implied by the
equations from stage i (which can be checked by solving linear equations) then
we can discard that clause as satisfied and examine the next clause. If both � = 0
and �′ = 0 are implied by the equations then this is a rejecting computation and
algorithm outputs “fail”. If � = 0 is implied by the equations and �′ is independent
of the �′

j then we include the equation �′ = 1 and go to Stage i +2 (if there are any
clauses left). Finally, if both � and �′ are independent of the �′

j then we randomly
pick one of three linear forms �, �′ and � + �′, include the equation setting it to 1
and go to Stage i + 2 (if there are any clauses left).

3. Let the final stage be r ′. Note that r ′ ≤ r since the equations �′
j = 1 are all

independent. At this stage we have no clauses left and any solution to the linear
equations �′

j = 1, 1 ≤ j ≤ r ′ satisfies 	. Output an arbitrary such solution.

Wenowanalyze the success probability of the algorithm.Suppose ā ∈ F
r
2 is a satisfying

assignment for 	. We claim that the probability that ā satisfies the final system of
equations �′

j = 1, 1 ≤ j ≤ r ′ is at least (2/3)r . We will prove this by an induction on
the stage number i : the induction hypothesis is that ā satisfies the set of equations at
stage i with probability at least (2/3)i . Clearly, it holds at i = 0.

For the induction step, suppose after Stage i , the assignment ā satisfies �′
j = 1, 1 ≤

j ≤ i . Then notice that in Stage i + 1 we either deterministically add the equation
�′ = 1 which ā must satisfy since it does not satisfy � = 1 (indeed � must evaluate to
0 at ā), or we randomly pick one of �, �′ and �+�′. Clearly, ā must satisfy exactly two
of these three linear forms. Hence at the end of Stage i + 1 the assignment ā satisfies
the system �′

j = 1, 1 ≤ j ≤ i + 1 with probability at least (2/3)i+1. It follows that at
the end of stage r ′ ≤ r , ā satisfies the equations with probability at least (2/3)r . �

Remark 16 The running time of O∗(1.5r ) that we obtain improves on the polynomial
equations based algorithms, where for k = 2 the best run time so far is O∗(1.618r ) [8].
For k = 3 a similar randomized branching strategy gives an algorithm with running
time O∗((7/4)r ). For larger k the running time degrades to O∗((2 − 1/2k−1)r ). This
running time bound is obtained similarly as for Theorem15: fix a satisfying assignment
ā of the k−Sub−Sat instance. For a clause (�1∨�2∨· · ·∨�k) of k linearly independent
linear forms a random (nonzero) linear combination

∑k
i=1 αi�i evaluates to 1 at ā with

probability exactly 2k−1

2k−1
.

2.4 2-Sub-Sat in a Co-dimension t Subspace

In this section we consider 2−Sub−Satwhere we are seeking a solution in an affine
space A such that codim(A) = t .

Given a formula�wewill identify a canonical satisfying assignment ā for� based
on which we will define critical variables. Since 2 − Sat is in polynomial-time, we
can detect non-critical variables in � w.r.t. ā in polynomial time. Now the plucking
step will try all the possible

(n
t

)
choices of plucking non-critical variables, recalling

that a non-critical variable plucked from a linear constraint defining A allows us to
drop that constraint.
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Theorem 17 There is an O∗(
(n
t

)
) time deterministic algorithm for checking if a 2 −

Sub − Sat instance (�, A) is satisfiable where the affine space A has co-dimension
t.

Proof Let � be a 2-CNF formula in variables xi , i ∈ [n].
We first do a standard preprocessing of � by considering its implication graph on

the 2n literals xi , xi , i ∈ [n], where for each clause u ∨ u′, for literals u and u′, we
have two directed edges (u, u′) and u′, u). The literals that form strongly connected
components must all take the same value in any satisfying assignment and, therefore,
can be replaced by a single variable. This shrinks the implication graph to a DAG and
also reduces the number of variables. Thus, without loss of generality, we can assume
the implication graph of � is a DAG, and we refer to � as a reduced 2−Sat formula.
Computing a canonical satisfying assignment A standard linear-time 2 − Sat algo-
rithm computes a canonical satisfying assignment ā for � (if satisfiable) by the
following algorithm:

(a) All literals of outdegree 0 in the implication DAG are assigned true.
(b) The formula � is simplified after this substitution and the new implication DAG

computed. If the DAG is non-empty we repeat Step(a).

The following claim uses the above algorithm to identify non-critical variables for
some satisfying assignment for �.

Claim 18 Let � be a 2−Sat formula with implication DAG G. Let u ∈ {xi , xi } be an
outdegree 0 literal in G. If � is not satisfiable with u = 0 then xi is critical for every
satisfying assignment of �, and if � is satisfiable with u = 0 then xi is non-critical
for every satisfying assignment for � that sets u = 0.

Proof of Claim. If there is no satisfying assignment for � with u = 0 then clearly
xi is critical for every satisfying assignment. Conversely, suppose ā is a satisfying
assignment with u = 0. Then we note that xi is not critical for ā because ā + ei
is also a satisfying assignment for �. More precisely, because u has outdegree 0 in
the implication graph we can set u = 1, while retaining the other values in ā, and it
remains a satisfying assignment.

More generally, given � we can partition the literals occurring in its implication
DAG G as S0 
 S1 
 · · · 
 Sw, where S0 is the set of outdegree 0 literals in G, S1 is
the set of outdegree 0 literals in DAG G1 = G \ S0, and in general Si is the set of
outdegree 0 literals in the DAG Gi+1 = Gi \ Si . For a variable xi let depth(xi ) be the
least index j such that xi or its complement is in S j .

We observe the following claim which is an easy consequence of the previous one.

Claim 19 Let�′ be the 2−Sat formula obtained by setting all literals in S0 
 Si · · · 

Si−1 to true. For u ∈ Si , if �′ has no satisfying assignment with u = 0 then u is
critical for every satisfying assignment for � that sets all literals in S0 
 Si · · · 
 Si−1
to true. If �′ has a satisfying assignment with u = 0 then u is non-critical for every
satisfying assignment of � that sets all literals in S0 
 Si · · · 
 Si−1 to true.

We can immediately conclude the following.
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Claim 20 If there is a satisfying assignment for � in which all variables are critical
that has to be the canonical satisfying assignment.

We describe the basic search procedure used by the algorithm.

1. Let �0 = � and A0 = A.
2. Repeat the following for steps s = 0 to t − 1.
3. Find the canonical satisfying assignment for �s .
4. If it satisfies the linear equations �i = 0, i ∈ [t − s] defining As then output and

stop (we can extend it uniquely to the s plucked non-critical variables using the
linear equations).

5. Else a variable occurring in some �i is non-critical for�s in the solution assignment.
6. Pick a non-critical variable x j with minimum depth(x j ) and pluck it from �s to

get �s+1. We take a linear equation �i = 0 where x j occurs in �i , eliminate x j
from all other equations by row operations using �i , and finally drop the constraint
�i = 0 to obtain a new affine space As+1 . Continue with the repeat step.

Clearly, as long as the canonical satisfying assignment for �s does not satisfy the
system of equations �i = 0 we can remove a non-critical variable occurring in one of
the �i from �s .

Correctness of the algorithm follows from noting that (�s, As) is satisfiable if and
only if (�s+1, As+1) is satisfiable, and if t non-critical variables are plucked then the
problem reduces to a 2 − Sat instances (without any linear constraints).

To complete the overall algorithm, in the basic iteration procedure we need to cycle
through all possible choices of non-critical x j at minimum depth depth(x j ). Since we
are going to pluck at most t non-critical variables, this can be done by a brute-force
search over all

(n
t

)
subsets of the variables. The running time bound also follows. �


3 Hardness Results

In this section we prove our hardness results for subspace satisfiability. Since k −Sat
itself is NP-hard for k ≥ 3, so is k − Sub − Sat for k ≥ 3. So we focus on the case
k = 2.

3.1 NP-Hardness of 2-Sub-Sat

While 2 − Sat is polynomial time solvable, the following theorem shows that 2 −
Sub− Sat is NP-hard. Note that this follows from Schaefer’s dichotomy theorem for
Boolean CSP as the combination of 2 − Sat constraints and linear equations (even
with 3 variables per equation) is not one of the six tractable cases, and thus NP-hard.
Below we give a direct proof based on a simple reduction.

Theorem 21 2 − Sub − Sat is NP-hard.

Proof We show that we can express the NP-hard problem Graph 4-Colorability as an
instance of 2 − Sub − Sat, or equivalently 2 − PAF − Sat. Indeed, given a graph
G = (V , E), the instance of 2−PAF−Sat consists of twoBoolean variables xu,1, xu,2
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for each u ∈ V , which will encode the 2-bit representation of the 4 possible colors we
can assign to u. For each edge e = (u, v) ∈ E , we include the polynomial equation

(xu,1 + xv,1 + 1) · (xu,2 + xv,2 + 1) = 0 . (4)

Note that this equation is satisfied iff xu,1 �= xv,1 or xu,2 �= xv,2, i.e., when
(xu,1, xu,2) �= (xv,1, xv,2), which captures the fact the vertices u and v get differ-
ent colors. The simultaneous satisfiability of the equations (4) for all e ∈ E is thus
equivalent to G being 4-colorable. �


3.2 W[1]-Hardness of 2-Sub-Sat Parameterized by Co-dimension

We now strengthen the hardness result of Theorem 21 and show that 2−Sub−Sat is
unlikely to even be fixed-parameter tractable when parameterized by the co-dimension
t of the subspace in which we seek a satisfying assignment to the 2CNF formula. On
the other hand, recall that (as shown in [2] and also Sect. 2.4), for fixed co-dimension
t , 2 − Sub − Sat can be solved in polynomial time. Our W[1]-hardness answers
(in the negative) a question posed in [2] on whether 2 − Sat with a single modular
constraint modulo M is fixed-parameter tractable when parameterized by M (they
gave an algorithm with complexity nO(M)).

Theorem 22 Consider the 2−Sub−Sat where the input subspace within which one
has to satisfy the2−Sat formulahas co-dimension t. Parameterizedby t,2−Sub−Sat
isW[1]-hard.

Proof We give a reduction from the problem Multicolored- Clique. The input
to Multicolored- Clique consists of a graph G, an integer t , and a partition
(V1, V2, . . . , Vt ) of the vertices of G, and the task is to decide if there is a t-clique in
G containing exactly one vertex from each part Vi . The parameter associated with the
problem is t . The problem Multicolored- Clique parameterized by t is known to
be W[1]-hard [10, Lemma 1].

The variables in the 2−Sub−Sat instance correspond to the vertices of the graph.
Let us denote these variables by xv for v ∈ V := V1 ∪ V2 ∪ · · · ∪ Vk . The 2CNF
clauses in the instance will be the following:

• For all i ∈ {1, 2, . . . , t} and v �= v′ ∈ Vi , the clause (¬xv ∨ ¬xv′). These clauses
ensure that at most one xv can be set to 1 in each part.

• If (u, v) is not an edge in the graph with G, the clause (¬xu ∨¬xv). These clauses
ensure that the set {u | xu = 1} must induce a clique in G.

Note that this instance of 2− Sat is trivial to satisfy by setting all variables to 0. The
affine space A we will use to make this an instance of 2 − Sub − Sat is defined by
the following equations:

∑

u∈Vi
xu = 1 for i = 1, 2, . . . , t . (5)
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We stress that the above equations are over F2, and thus stipulate that there are an
odd number of variables set to 1 in each part. But together with the 2CNF clauses
which ensure that at most one variable in each part can be set to 1, it follows that
satisfying assignments of this 2− Sub−Sat instance are in one-one correspondence
with t-cliques of G that include exactly one vertex from each Vi . The proof is now
complete by noting that the co-dimension of the affine space A defined by (5) equals
t . Parameterizing Multicolored- Clique by the clique size is thus equivalent to
parameterizing the constructed 2 − Sub − Sat instance by the co-dimension. �


3.3 Approximability of Max-2-Sub-Sat

Given the hardness of deciding exact satisfiability of 2 − Sub − Sat instance, we
now turn to approximate satisfiability. In the Max − 2 − Sub − Sat problem, the
goal is to satisfy the maximum number of 2SAT clauses with an assignment that
belongs to the input affine space A. Thus, the affine constraints are treated as hard
constraints. We allow clauses of width 1. If unary clauses are disallowed in the 2CNF
formula, and each clause involves exactly two distinct variables, we call the problem
Max − E2 − Sub − Sat.

3.3.1 Easy Approximation Algorithms

We can assume that no variable is forced to 0 or 1 by the affine space A, since if that
happens we can just set and remove that variable and work on the reduced instance.
If we pick a random assignment from A, it will satisfy at least 1/2 of the clauses
of the 2CNF formula in expectation, and in fact at least an expected fraction 3/4
of the clauses when each clause involves two distinct variables. The algorithms are
easily derandomized. For satisfiable instances of Max-2-Sub-Sat, one can find a
3/4 approximate solution, as one can eliminate all the unary clauses, and add those
conditions to the subspace inside which we want to find an assignment to the 2CNF
formula. So we get the following trivial algorithmic guarantees.

Observation 23 In polynomial time, one can get a factor 1/2 approximate solution
to instances of Max-2-Sub-Sat, a factor 3/4 approximate solution to instances of
Max-E2-Sub-Sat, and a factor 3/4 approximate solution to satisfiable instances of
Max-2-Sub-Sat.

We will now show that all the above guarantees are best possible, with matching
NP-hardness results.

3.3.2 Tight Inapproximability via Simple Reductions

For the hardness results and rest of the section, it is convenient to work with the
PAF − Sat formulation of Sub − Sat. The Max-LIN2 problem, of maximizing the
number of satisfied equations in a system of affine equationsmod 2, trivially reduces to
Max-2-PAF-Sat (with each equation being degree 1 instead of degree 2). ByHåstad’s
seminal tight inapproximability for Max-LIN2, we have the following.

123



Algorithmica (2022) 84:3276–3299 3295

Observation 24 For any ε > 0,Max-2-PAF-Sat (and thusMax-2-Sub-Sat) is NP-
hard to approximate within a factor of (1/2+ ε), and this holds for almost satisfiable
instances that admit an assignment satisfying a fraction (1 − ε) of equations.

We also get a tight hardness (matching Observation 23) for the Max-E2-Sub-Sat
or equivalently when each polynomial equation is the product of exactly two (linearly
independent) affine forms.

Lemma 25 For any ε > 0, Max-E2-PAF-Sat is NP-hard to approximate within a
factor of (3/4 + ε), and this holds for almost satisfiable instances that admit an
assignment satisfying a fraction (1 − ε) of equations.

Proof This follows from a simple reduction from Max-LIN2. Suppose we are given
a system of affine equations A1 = 0, A2 = 0, · · · , Am = 0, where the Ai ’s are
distinct affine forms in Boolean variables x1, x2, . . . , xn . We produce a system of(m
2

)
quadratic equations Ai · A j = 0 for 1 ≤ i < j ≤ m in the same variables

x1, x2, . . . , xn . If an assignment to the xi ’s violates r affine constraints A j = 0, then
the same assignment violates

(r
2

)
of the quadratic constraints. When r = εm, the

fraction of violated quadratic constraints is ≈ ε2, and when r = 1/2− ε, the fraction
of violated quadratic constraints is ≈ 3/4− O(ε). The claimed hardness now follows
from Håstad’s inapproximability result for Max-LIN2. �


3.3.3 Inapproximability for Satisfiable Instances

The above inpproximability results do not apply to satisfiable instances of 2− Sub−
Sat. They are obtained by reductions from linear equations whose exact satisfiability
can be easily checked. We now prove that approximating Max-2-Sub-Sat doesn’t
get easier on satisfiable instances.

Theorem 26 For every ε > 0, it is NP-hard to approximately solve satisfiable instance
of Max-E2-Sub-Sat within a factor of 3/4+ε. That is, it is NP-hard to find, given as
input a satisfiable instance of 2-Sub-Sat, an assignment satisfying a fraction 3/4+ ε

of the 2SAT constraints.

Proof Consider the arity 3 Boolean CSP which is defined by the predicate OXR :
{0, 1}3 → {0, 1}, defined by

OXR(x1, x2, x3) = x1 ∨ (x2 ⊕ x3)

applied to literals. En route his celebrated tight inapproximability for satisfiable Max-
3SAT, Håstad proved that the CSP defined by OXR (and with negations allowed on
variables) is NP-hard to approximate within a factor of (3/4 + ε) even on satisfiable
instances, for arbitrary ε > 0. (Note that independent random choices of the bits
x1, x2, x3 makes OXR(x1, x2, x3) = 1 with probability 3/4, so the hardness factor of
3/4 is tight.) Now the constraint OXR(x1, x2, x3) = 1 is equivalent to the equation

(x1 + 1)(x2 + x3 + 1) = 0
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stipulating that a product of two affine forms vanishes. Thus the CSP defined by
OXR can be equivalently expressed as a 2 − Sub − Sat instance, and the claimed
inapproximability of Max − E2 − Sub − Sat on satisfiable instances follows. �


4 System of Polynomial Equations Over Binary Field: Effect of
Reducibility

We now examine a special case of the problem of solving a system of polynomial
equations overF2 studied in [1, 8, 19]. Formotivating background, we recall according
to the strong exponential time hypothesis (SETH) that Sat, that is n-variable CNF
satisfiability of unrestricted clause width, cannot be essentially solved faster than 2n

time. However, Schuler [25] and Calabro et al [4] have shown the special case that
sparse instances of Sat (with c · n clauses) can be solved in O∗(2n(1−α)) time, where
α is a constant depending on the clause density c. It is natural to ask if there is an
analogous result forSub−Sat (satisfiability of conjunctions of unbounded disjunctions
of affine linear forms). In this section we show a more general algorithmic result in
the setting of systems of polynomial equations over F2.

Let Pi ∈ F2[x1, x2, . . . , xn], 1 ≤ i ≤ m be polynomials over the field F2 as input
instance to the Poly − Eqs problem. The problem is denoted k − Poly − Eqs when
the degrees are bounded by k which generalizes k − Sub− Sat as already explained
in the introduction.

The unrestricted degree case is significantly different, because we can easily com-
bine the m equations into a single equation as follows. Define

P = 1 +
m∏

i=1

(1 + Pi ).

Clearly, the system Pi = 0, 1 ≤ i ≤ m has a solution iff P = 0 has a solution.
Thus, assuming SETH, there is no algorithm essentially faster than 2n for solving

P = 0.

Remark 27 There is also the question of how the polynomials Pi are given as part of
the input. If deg Pi ≤ k for all Pi then we can in polynomial-time compute their sparse
representation as a linear combination of the nk many monomials of degree at most
k. However, in the above reduction of combining the Pi into a single polynomial, P
is a small arithmetic formula. In fact, for the case of Poly− Eqs we consider, where
the instance is a system of equations Pi = 0, 1 ≤ i ≤ m such that m = O(n) and
each Pi has constant degree irreducible factors, we can assume that the Pi are given
as arithmetic circuits.

We now show that Poly − Eqs instances Pi = 0, 1 ≤ i ≤ m can be solved faster
than 2n ifm is linear in n and the irreducible factors of each Pi are of constant degree.
This can be seen as a “polynomial equations” analogue of Schuler’s Sat algorithm
for sparse instances with unrestricted clause width [4, 25]. We note that a different
degree reduction method, based on a rank argument, is used in [19, Section 4] to solve
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systems of polynomial equations pi = 0, where each pi is given by a sum of product
of affine linear forms.

Theorem 28 Let Pi = 0, 1 ≤ i ≤ c · n, for a constant c > 0, be an instance of
Poly − Eqs, such that the degree of each irreducible factor of each Pi is bounded
by a constant b. There is a randomized algorithm for Poly − Eqs that runs in time
2n(1−α) for such instances, where α > 0 is a constant that depends on c and b.

Proof We can factorize each polynomial Pi into its irreducible factors in randomized
polynomial time using Kaltofen’s algorithm [17]. Let

Pi =
ri∏

j=1

Qi j

be this factorization for each i . Define polynomials Ri j = 1 + Qi j for each i and
j , and note that deg Ri j ≤ b. For ai js ∈ F2 picked independently and uniformly at
random define polynomials

R̃is =
ri∑

j=1

ai js Ri j , 1 ≤ s ≤ logm + 2.

Finally, we define the polynomials

R̃i =
(β+1) log c∏

s=1

(1 + R̃is), 1 ≤ i ≤ m,

where β > 0 is a constant to be fixed later in the analysis.
Notice that deg R̃i ≤ b · (β + 1) log c for each i .

Claim 29 If Pi = 0, 1 ≤ i ≤ m is unsatisfiable then R̃i = 0, 1 ≤ i ≤ m is also
unsatisfiable.

To see this, suppose Pi (ā) = 1 at assignment ā ∈ F
r
2. Then Qi j (ā) = 1 for each j

which implies each Ri j (ā) = 0 for each j . It follows that R̃is = 0 for all s and hence
R̃i = 1.

On the other hand, we have:

Claim 30 If ā ∈ F
n
2 is a solution to the systemof equations Pi = 0, 1 ≤ i ≤ m thenwith

probability at least e−n/cβ
ā is a solution to the systemof equations R̃i = 0, 1 ≤ i ≤ m.

The probability that ā is a solution to the single equation R̃i = 0 is given by
1 − 1

cβ+1 . Since the events are independent, the probability that ā is a solution to the

system R̃i , 1 ≤ i ≤ m is given by

(
1 − 1

cβ+1

)m

=
(
1 − 1

cβ+1

)cn
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≈ e−n/cβ

.

Now the system of equations R̃i , 1 ≤ i ≤ m is an instance of k − Poly − Eqs,
where k = b(β + 1) log c is a constant. Applying one of the algorithms [1, 8, 19]
yields an O∗(2n(1−1/2k)) algorithm with success probability e−n/cβ

. We can boost the
success probability to a constant with an overall run time of O∗(2n(1−1/2k) · en/cβ

),
which can be optimized by choosing β appropriately. �
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