1/ 22

2023:2 TheoretiCS

[ ] [ ] [ )

Received Jan 19, 2022
Conditional Dichotomy of ez

Accepted Dec 16, 2022

M Published Jan 24, 2023

Boolean Ordered Promise

Key words and phrases

constraint satisfaction problems,
C S P S Rich 2-to-1 conjecture, Shapley

value, polymorphisms

Joshua Brakensieka = @ a [_)epartment of Com_pute_r
Science, Stanford University,

Venkatesan Guruswami? == @ Stanford, CA, USA

. b b Electrical Engineering and
Sai Sandeep X< @ Computer Sciences Department,

University of California, Berkeley

ABSTRACT. Promise Constraint Satisfaction Problems (PCSPs) are a generalization of Con-
straint Satisfaction Problems (CSPs) where each predicate has a strong and a weak form and
given a CSP instance, the objective is to distinguish if the strong form can be satisfied vs. even
the weak form cannot be satisfied. Since their formal introduction by Austrin, Guruswami, and
Hastad [1], there has been a flurry of works on PCSPs, including recent breakthroughs in ap-
proximate graph coloring [4, 24, 36]. The key tool in studying PCSPs is the algebraic framework
developed in the context of CSPs where the closure properties of the satisfying solutions known
as polymorphisms are analyzed.

The polymorphisms of PCSPs are significantly richer than CSPs—this is illustrated by
the fact that even in the Boolean case, we still do not know if there exists a dichotomy result
for PCSPs analogous to Schaefer’s dichotomy result [33] for CSPs. In this paper, we study a
special case of Boolean PCSPs, namely Boolean Ordered PCSPs where the Boolean PCSPs have
the predicate x < y. In the algebraic framework, this is the special case of Boolean PCSPs
when the polymorphisms are monotone functions. We prove that Boolean Ordered PCSPs
exhibit a computational dichotomy assuming the Rich 2-to-1 Conjecture [8] which is a perfect
completeness surrogate of the Unique Games Conjecture.

In particular, assuming the Rich 2-to-1 Conjecture, we prove that a Boolean Ordered PCSP
can be solved in polynomial time if for every € > 0, it has polymorphisms where each coordinate
has Shapley value at most €, else it is NP-hard. The algorithmic part of our dichotomy result is
based on a result that if a monotone Boolean function has all Shapley values small, then it has a
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large threshold function as a minor. For the conditional hardness result, we show that Shapley
value behaves in a consistent manner under a uniformly random 2-to-1 minor. As a structural
result of independent interest, we construct an example to show that the Shapley value can

behave inconsistently with respect to an arbitrary 2-to-1 minor.

1. Introduction

Constraint satisfaction problems (CSP) have played a very influential role in the theory of
computation, providing an excellent testbed for the development of both algorithmic and
hardness techniques, which then extend to more general settings. A CSP over domain D is
specified by a finite collection A of predicates over D, and is denoted as CSP(A). Given an input
containing n variables with constraints on the variables using these predicates, the objective
is to identify if we can assign values from D to the variables that satisfies all the constraints.
Examples of CSPs include classical problems such as 3-SAT and 3-Coloring of graphs.

When the domain is Boolean, Schaefer [33] proved that every CSP is either in P or is NP-
Complete. Feder and Vardi [14] conjectured that the same should hold over arbitrary domains
as well. They also showed that the then known algorithmic results all follow by the algebraic
closure properties of the CSPs. This notion was formalized by Jeavons, Cohen, and Gyssens [18,
17] and other works [10] that crystallized the (universal) algebraic approach to CSPs. In the
algebraic approach, the higher-order closure properties obeyed by the predicates, namely their
polymorphisms, are studied. A polymorphism is a function that, when applied coordinate-wise
to arbitrary satisfying assignments to the predicate, is guaranteed to produce an output that
satisfies the predicate. For example, consider an arbitrary instance I of the 2-SAT problem
over n variables, and suppose that x,y,z € {0,1}" are three assignments that satisfy all the
constraints in I. Now, if we compute u € {0, 1}" that is obtained by setting u; = MAJ(x;, yi, Z;)
foralli € [n], the assignment u also satisfies all the constraints of I. Thus, the majority function
on 3 bits is a polymorphism of the 2-SAT CSP. On the other hand, for the 3-SAT problem, it
is not hard to prove that the only polymorphisms are the dictator functions. The algebraic
approach has been immensely successful and culminated in the recent resolution of Feder-Vardi
conjecture by Bulatov [9] and Zhuk [37]. Further, these proofs yield a precise understanding
of the mathematical structure underlying efficient algorithms: if the CSP has a “non-trivial”
polymorphisms, the CSP is polytime solvable, and otherwise, it is NP-complete.

In this paper, we study Promise Constraint Satisfaction Problems (PCSPs) that vastly
generalize the CSPs. In the PCSPs, each predicate has a weak and a strong form-given an
instance of PCSP containing n variables with the constraints, the goal is to distinguish between
the case that the stronger form can be satisfied vs. even the weaker one cannot be satisfied. A

classical example of a PCSP is the approximate graph coloring problem, where given a graph G,
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the goal is to distinguish between the cases that G can be colored with ¢ colors vs. it cannot be
colored with s colors for some ¢ < s. Another example is the (1-in-3 SAT, NAE-3-SAT), wherein
given a 1-in-3-SAT instance that is promised to be satisfiable, the objective is to assign 0, 1 values
to the variables such that each constraint is satisfied as in a NAE-3-SAT instance, i.e., both 0
and 1 occur in every constraint. While the individual CSPs, namely 1-in-3-SAT and NAE-3-SAT
are both NP-hard, the above PCSP is in P. The study of PCSPs was formally initiated by Austrin,
Guruswami, and Hastad [1], and since then, there has been a lot of recent interest in PCSPs,
including the development of a systematic theory in [6, 4] and leading to breakthroughs in
approximate graph coloring [4, 24, 36].

The central question in the study of PCSPs is whether there exists a complexity dichotomy
for PCSPs, i.e., if every PCSP is either in P or is NP-complete. As is the case with CSPs, the key
tool towards establishing a potential dichotomy result is the algebraic approach. The Galois
correspondence from the CSP world extends to PCSPs, i.e., the polymorphisms fully capture
the computational complexity of the underlying PCSP [30, 6]. This has been extended to show
that just the identities satisfied by the polymorphisms suffice to capture the computational
complexity of the underlying PCSP [4]. However, the polymorphisms of PCSPs are much richer,
and characterizing which polymorphisms lead to algorithms and which ones lead to hardness
has been a challenging problem. Conceptually, the principal difficulty is that the polymorphisms
for CSPs are closed under composition (hence referred to as clones), whereas for PCSPs, this is
no longer the case.

As a result, even in the Boolean case, we do not have a dichotomy theorem for PCSPs.
Towards establishing a potential Boolean PCSP dichotomy, progress has been made by Ficak,
Kozik, Olsak and Stankiewicz [15], who obtained a dichotomy result when each predicate is
symmetric. In this paper, we study Boolean PCSPs that contain the simplest non-symmetric
predicate, x — y. We call such Boolean PCSPs Ordered as we can also view the implication
constraint as an ordering requirement x < y'.

Ordered Boolean PCSPs have come under recent study. The work of Petr [29] (inspired
by work of Barto [3, 2]) considered a special class of Ordered Boolean PCSPs which have an
additional predicate x # y (this corresponds to allowing negations in the constraints) as well as
the requirement that the majority on three bits is not a polymorphism. In this setting Petr was
able to show that such Ordered Boolean PCSPs are NP-hard. However, the approach considered
does not seem immediately extendable to analyzing general Ordered Boolean PCSPs [2].

The main motivation for studying these PCSPs comes from the fact that adding the ad-
ditional x < y predicate is equivalent to restricting the polymorphisms of the PCSPs to be
monotone functions. Monotonicity is an influential theme in the study of Boolean functions

and complexity theory, and understanding the structure of polymorphisms in the monotone

1 As PCSPs have pairs of predicates, the ordering predicate pair has both the strong and weak forms as x < y, i.e,
{(0,0),(0,1),(1,1)}
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case is an important (and certainly necessary) subcase towards a general characterization of
polymorphisms vs. tractability for arbitrary Boolean PCSPs. For the special case of Boolean
Ordered PCSPs which include negation constraints, it was conjectured in [2] that polynomial
time tractability is characterized by the existence of majority polymorphisms of arbitrarily
large arity.

Our main result is that Boolean Ordered PCSPs exhibit a dichotomy, under the recently

introduced Rich 2-to-1 Conjecture of Braverman, Khot, and Minzer [8].

THEOREM 1.1. Assuming the Rich 2-to-1 Conjecture, every Ordered Boolean PCSP is either in P or
is NP-Complete. In particular, an Ordered PCSPT is in P if for every € > 0, there are polymorphisms
of T with every coordinate having Shapley value at most e, else it is NP-Complete. Equivalently, T
is in P if it has threshold? polymorphisms of arbitrarily large arity, else it is NP-Complete.

As a concrete example, recall the earlier mentioned example of (1-in-3-SAT, NAE-3-SAT). As
it has threshold polymorphisms of arbitrarily large arity, it remains polynomial time solvable
even after adding the predicate x — y. However, if we also add another two-variable predicate
x # y, the PCSP no longer has threshold polymorphisms, and by our above result, it becomes
NP-Complete.

We obtain the conditional dichotomy result by analyzing the polymorphisms of the Ordered
PCSPs. The key idea in the algebraic approach to PCSPs is that the PCSP is tractable if the
polymorphisms are close to symmetric, and the PCSP is hard if all the polymorphisms have
a small number of “important” coordinates. More concretely, on the algorithmic front, it has
been proved that symmetric polymorphisms of arbitrarily large arities lead to polynomial time
algorithms for PCSPs [7]. On the hardness side, if all the polymorphisms depend on a bounded
number of coordinates, then the underlying PCSP is NP-hard [1]. This has been extended to
various other notions, including combinatorial ones such as C-fixing [5], and topological ones
such as having a bounded number of coordinates with non-zero winding number [24]. In this
paper, we study the monotone polymorphisms using analytical techniques.

In particular, we use Shapley value to analyze the monotone polymorphisms. For a
monotone function f : {0,1}" — {0, 1}, the Shapley value of a coordinate i is the probability
that on a random path from {0,0,...,0}to{1,1,..., 1}, the function value turns from 0 to 1 when
we switch the ith coordinate to 1. Initially studied to understand the power of an individual in
voting systems [34], Shapley value has now found applications in various settings, especially
in game theory [26, 27]. In our setting, there are two advantages of using Shapley value to
study the polymorphisms. First, it is a relative measure of the importance of a coordinate, as
opposed to other notions of Influence which are absolute. This helps in bounding the number of

coordinates with Shapley value above a certain threshold. Second, it is a versatile measure with

2 We call a Boolean function f: {0,1}" — {0, 1} a threshold function if there is an integer t such that for every x € {0,1}",
f(x)=1ifand only if |{i € [n] : x; =1}| > t.
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combinatorial and analytical interpretations [11] which helps in proving that Shapley value
stays consistent under function minors3, a key property necessary in both the algorithm and

the hardness.

Algorithm Overview. We obtain our algorithmic result by using the Basic Linear Programming
with Affine relaxation (BLP+Affine relaxation), combined with a structural result regarding
the monotone functions with bounded Shapley value. As mentioned earlier, PCSPs with sym-
metric polymorphisms of arbitrarily large arities can be solved in polynomial time using the
BLP+Affine relaxation algorithm [7]. Our main structural result is that Boolean functions with
bounded Shapley value have arbitrarily large threshold functions as minors. Since the set
of polymorphisms of a PCSP are closed under taking minors, this proves that the underlying
PCSP T has arbitrarily large threshold functions as polymorphisms, which then implies that T is
in P. The key tool underlying our structural result is a result of Kalai [19] that states that under
certain conditions, monotone Boolean functions with arbitrarily small Shapley value have a
sharp threshold.

Hardness Overview. We obtain our hardness result assuming the Rich 2-to-1 Conjecture.
Braverman, Khot, and Minzer [8] introduced the conjecture as a perfect completeness surrogate
of the well known Unique Games Conjecture [21]. They also proved that the conjecture is
equivalent to Unique Games Conjecture when we relax the perfect completeness requirement.
The reduction from the Rich 2-to-1 Conjecture to PCSPs follows using the standard Label Cover-
Long Code paradigm. The key ingredient in this reduction is a decoding of the Long Codes to
a bounded number of coordinates that is consistent under function minors. We decode each
Long Code function to the coordinates with Q(1) Shapley value—as the sum of Shapley values
of all the coordinates of any monotone function is equal to 1, there is a bounded number of
such coordinates. We argue about the consistency of this decoding using a structural result that

states that under a uniformly random minor, Shapley value is roughly preserved.

On the necessity of “richness” in 2-to-1 Conjecture. A natural question is whether our
hardness result can be obtained using a weaker assumption such as the 2-to-1 conjecture (whose
imperfect completeness version was recently established [22, 12, 13, 23]). We shed some light on
this question by showing that there are monotone Boolean functions f : {0,1}?" — {0,1} and
g :{0,1}"" — {0,1} such that g is a minor of f with respect to the 2-to-1 function 77, both the
functions f and g have exactly one coordinate iy, i, respectively, with (1) Shapley value, and
yet 11(i1) # i. Such an adversarial example is interesting from two angles: first, it shows that
even using the 2-to-1 conjecture, the Shapley value based decoding is not consistent. Second, it

3 A minor(formally defined in Section 2) of a function f:{0,1}™ — {0,1} is a function g : {0,1}" — {0, 1} of smaller arity
n < m obtained from f by identifying sets of variables together.
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gives an example of agents pairing up maliciously to completely alter the Shapley value. The
underlying phenomenon is that the rich 2-to-1 games have “subcode-covering” property, which
is absent in the standard 2-to-1 games, helping in preserving the consistency of any biased

influence measure such as the Shapley value.

Organization. In Section 2, we formally define PCSPs, polymorphisms, and Shapley value. We
present the algorithmic and hardness parts of our dichotomy result in Section 3 and Section 4
respectively. We present the adversarial example of a 2-to-1 minor that alters the Shapley value

in Section 5.

2. Preliminaries

Notations. We use [n] to denote the set {1,2, ..., n}. For a k-ary relation A C [q]¥, we abuse the
notation and use A both as a subset of [g]¥, and also as a predicate A : [q]* — {0, 1}. Similarly,
for a function f : {0,1}" — D and a set S C [n], we sometimes use f(S) to denote f(v) where
v; = 1ifi € S, and 0 otherwise. For a vector X = (X1, X2,...,Xn) € {0,1}", we use hw(x) to denote

i, X;. For two vectors X,y € {0,1}", we say that x < yif x; < y; foralli € [n]. A Boolean
function f : {0,1}" — {0, 1} is called monotone if f(x) < f(y) forallx <.

PCSPs and Polymorphisms. We first define Constraint Satisfaction Problems(CSP).

DEFINITION 2.1. (CSP) Given a k-ary relation A : DX — {0,1} over a domain D, the Con-
straint Satisfaction Problem(CSP) associated with the predicate A takes a set of variables
V ={v1,Vvy,...,vy} as input which are to be assigned values from D. There are m constraints
(e1,€,...,em) each consisting of e; = ((e;)1, (€)2, ..., (e;)x) C VX that indicate that the corre-
sponding assignment should belong to A. The objective is to identify if there is an assignment

V — D that satisfies all the constraints.

In general, we can have multiple relations A4, Ay, ..., A;, and different constraints can use
different relations. We denote such a CSP by CSP(A4, Ay, ..., A}).

We formally define Promise Constraint Satisfaction Problems (PCSP).

DEFINITION 2.2. (PCSP) In a Promise Constraint Satisfaction Problem PCSP(T) over a pair
of domains D4, D,, we have a set of pairs of relations I' = {(A4, B1), (A2, B2), ..., (A, B;)} such
that for every i € [l], A; is a subset of le and B; is a subset of D'Z‘i. Furthermore, there is a
homomorphism h : D; — D, such that for alli € [l] and x € le", x € A; implies h(x) € B;.
Given a CSP(A4, Ay, ..., A)) instance, the objective is to distinguish between the two cases:
1. There is an assignment to the variables from D; that satisfies every constraint when
viewed as CSP(A4, Ay, ..., A)).
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2. There is no assignment to the variables from D, that satisfies every constraint when
viewed as CSP(Bq, By, ..., B)).

We now define Boolean Ordered PCSPs.

DEFINITION 2.3. (Boolean Ordered PCSP) A PCSP over a pair of domains Dq, D, with the set
of pairs of relations I' = {(A4, B1), (Ag, B2),..., (A, B;)} is said to be Boolean Ordered if the
following hold.

1. The domains are both Boolean i.e., D; = D, = {0, 1}.

2. There exists i € [I] such that A; = B; = {(0,0),(0,1),(1,1)}.

Associated with every PCSP, there are polymorphisms that capture the closure properties
of the satisfying solutions to the PCSP. More formally, we can define polymorphisms of a PCSP
as follows.

DEFINITION 2.4. (Polymorphisms) For PCSP(T') with I = {((A1, B1), (A2, B3),...,(A;, By))}
where for everyi € [1], A; : [q1]% — {0,1}, B; : [q2]% — {0,1}, a polymorphism of arity n is a
function f : [q1]" — [q2] that satisfies the below property for all i € [I]. For all (vq,vy,..., Vk,)
such that for all j € [n], ((v1);, (V2)j,...,(Vk);) € A;, we have

(f(v1), f(v2),..., f(Vi,)) € B

We use Pol(T') to denote the family of all the polymorphisms of PCSP(T).

A crucial property satisfied by Pol(TI') is that the family of functions is closed under taking
minors. We first define the minor of a function formally.

DEFINITION 2.5. (Minor of a function) For a Boolean function f : [g]" — [q'] and an
integer m, the function g : [q]™ — [q’] is said to be a minor of f with respect to the function
m: [n] —» [m]if

g(X1, X2, .+, Xm) = [ (Xn(1)s Xn(2)s -+ +» Xn(n)) VX1, X2, ..., Xm € [q].

We say that a function g is a minor of f if there exists some 57 such that g is a minor of f with

respect to 7.

We are often interested in 2-to-1 minors. A function g is said to be a 2-to-1 minor of f
if there exists a 2-to-1 function 7 such that g is a minor of f with respect to i, where 2-to-1

function is defined below.

DEFINITION 2.6. (2-to-1 function) A function 77 : [2n] — [n] is said to be a 2-to-1 function if

I71(i)| = 2 Vi € [n]
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By the definition of the polymorphisms, we can infer that if f € Pol(T') for a PCSP T, then for
all functions g such that g is a minor of f, we have g € Pol(T'). Such a family of functions that is
closed under taking minors is called as a minion. We often refer to the family of polymorphisms
of a PCSP as the polymorphism minion.

We refer the reader to [4] for an extensive introduction to PCSPs and polymorphisms.

Shapley value. Let f : {0,1}" — {0,1} be a monotone Boolean function. We can view the
monotone Boolean function f as a voting scheme between two parties, and n agents: the winner
of the voting scheme when the ith agent votes for x; € {0, 1} is f(x). The relative power of an
agent in a voting scheme is typically measured using the Shapley-Shubix Index, also known as
Shapley Value.

Informally speaking, the Shapley Value of a coordinate i is the probability that the ith
agent is the altering vote when we start with all zeroes and flip the votes in a uniformly random

order. More formally,

DEFINITION 2.7. (Shapley value) Let f : {0,1}" — {0,1} be a monotone Boolean function.
Let o € S, be a uniformly random permutation of [n]. For an integer j € [n], let P; denote the
the set of first j elements of o i.e,, Pj := {0(1),0(2),...,0(j)}. The Shapley value ®((i) of the
coordinate i € [n] is defined as

®f(i) == Pro {3j € [n] : 6(j) =i, f(Pj_1) = 0, f(P)) = 1}

We also give an alternate definition of Shapley value using the notion of boundary of a
coordinate. For a monotone Boolean function f : {0,1}" — {0,1} and coordinate i € [n], let
By (i) denote the boundary of the coordinate i i.e.,

Br(i) ={S < [n]\{i}: F{i}US) =1, f(S) = 0}

By the monotonicity of f, we can infer that B7(i) satisfies the following sandwich property that

will be useful later.

PROPOSITION 2.8. Let f: {0,1}" — {0, 1} be a monotone Boolean function and let i € [n].
Then, for every pair of sets S1,S € Bf(i) with Sy C Sy, we have S € By (i) for all S such that
S1 CSCS,.

PROOF. By the monotonicity of f, we have f(SU{i}) > f(S;U{i}) =1, and thus, f(SU{i}) = 1.
Similarly, we have f(S) < f(S2) = 0, and thus, f(S) = 0. |

For anindex j € {0,1,...,n— 1}, let uf(j)(i) denote the fraction of subsets of [n] of size j that

().

are in Br(i) i.e.,

ur(H = |8 0 ()
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We can rewrite the definition of Shapley value of the ith coordinate as the following [35]:

i ur(H®
n .

Dr(i) = (1)

3. Algorithm when Shapley values are small

In this section, we show that monotone Boolean functions where each coordinate has bounded
Shapley value has arbitrarily large threshold functions as minors, thereby proving the algorith-
mic part of our dichotomy result.

Let L be a positive integer and 0 < 7 < L + 1 be a non-negative integer. We let THR, ; :
{0,1}* — {0, 1} be the threshold function on L variables with threshold 7. More formally,

l1ifhw(x) > 7
THRy (%) ==

0 otherwise.

For a monotone Boolean function f : {0,1}" — {0,1} and real number p € [0, 1], let
P,(f) denote the expected value of f(x) where each element x;,i € [n] is independently set
to be 1 with probability p and 0 with probability 1 — p. For every monotone function f, the
function P,(f) is a strictly monotone continuous function in p on the interval [0, 1]. The value
Dc = pc(f) at which Py, (f) = % is called the critical probability of f.

Using the Russo-Margulis Lemma [32, 25] and Poincaré Inequality, we can show the

following lemma that we need later.

LEMMA 3.1 (Exercise 8.29(e) in [28]). Let f be a non-constant monotone Boolean function with

1 1

critical probability p. < 5. Let p; := ﬁpcforv >0.Ifp1 < 5, then Py (f) 21—V,

We now define the threshold interval of f.

DEFINITION 3.2. For a monotone function f and 0 < € < %, we define T(f) := p2 — p1,
where p; and p; are such that Py, (f) = €,Pp,(f) =1-e.

Kalai [19] proved the following result regarding monotone Boolean functions.

THEOREM 3.3. Foreverya,e,y > 0, there exists § := §(a, €,y) > 0such that for every monotone
Boolean function f : {0,1}" — {0,1} with ®;(i) < §for alli € [n] and a < p.(f) <1 - a, then
Te(f) < .

We will use this result to show that for every monotone function where each coordinate

has bounded Shapley value has arbitrarily large threshold functions as minor.
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LEMMA 3.4. Forevery L > 2, there exists a § := §(L) > 0 such that the following holds. For any

monotone Boolean function f : {0,1}" — {0,1} with
®r(i) < S8 Vi€ [n]

there exists a positive integer L' € {L, L + 1} and a non-negative integer t such that THRy ; is a
minor of f.

PROOF. We prove the lemma by taking a uniformly random minor of f.

We first obtain § := §(L) > 0 from Theorem 3.3 by setting € = 577,y = a = 5. Our goal is
to show that for this parameter &, for every monotone Boolean function f with each coordinate
having Shapley value at most &, there exists L’ € {L, L + 1} and 7 such that THR;/ ; is a minor
of f.

We assume that f is a non-constant function, else we have a trivial minor by setting 7 = 0

or 7 = L’. Let p. be the critical probability of f.

Case1l:p. < a=-=%. Letp; = L?p. < 1 . Using Lemma 3.1, we can conclude that P, (f) > 1-

As Py(f)is monotone, we get that P%(f) > 1 - ﬂ. Welet g : {0,1}F — {0,1} bea unlformly
random minor of f i.e., we choose the function 77 : [n] — [L] by choosing each value 7(i)
uniformly and independently at random from [L], and we let g to be the minor of f with respect
to 7.

Note that for every i € [L], the distribution of g({i}) over the random minor g is the same
as sampling a random input to f where we set each bit to 1 with probablhty 7. As P1 (f) =1- ZL’
we get that for each i € [L], g({i}) = 1 with probability at least 1 — 5+. By union bound with
probability at least 5 ,g({l}) =1foralli € [L]. As f(0,0,...,0) =0, g(qb) = 0 as well. Thus, with

probability at least 1 8= THRy 1. Hence, THRy 1 is a minor off

Case 2: p. > 1—-a=1--=%. Let f7 be the Boolean dual of f defined as f7(x) = 1 — f(x). Note
that P,(f") =1 - P1_p(f) for all p € [0,1]. Thus, p.(f7) =1 - p. < a. Using the previous case,
we can infer that THR ; is a minor of f' with respect to a funtion 77 : [n] — [L]. The same

function st proves that THR; ;= THRy is a minor of f.

Case 3:a < p. < 1-a. Using Theorem 3.3, we obtain p; such that P, (f) < €,and Pp 4y > 1—¢,
where € = 2L+1, y=-=5.Asy < L(L+1), there exists L’ € {L,L+1} and 7 € [L'] suchthat p1+y <
and p; > TL—l Thus, we get that Pp(f) > 1-e€eand PTL;; <e Letg:{0,1}Y — {0,1} bea
uniformly random minor of f i.e., we choose 77 : [n] — [L’] by setting each value uniformly
and independently at random from [L’] and set g to be the minor of f with respect to 7. For a
vector x € {0, 1}%" with hw(x) = 7, with probability greater than 1 — %, g(x) = 1. Similarly,
for x € {0, 1} with hw(x) = 7 — 1, with probability greater than 1 — ﬁ, g(x) = 0. Thus, with

non-zero probability, g(x) = 1 forall x € {0, 1}% with hw(x) = rand g(x) = 0forallx € {0,1}%
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Figure 1. An illustration of the two step minor approach: Here f: {0,1}® — {0,1} is a Boolean function,
f:{0,1}°> — {0,1} is a minor of f with respect to the function my : [6] — [5] with (i) = max(i — 1, 1),
and g is a minor of f” with respect to the function m : [5] — [3] with 5 (i) = [Z1].

with hw(x) = 7 — 1. In other words, with non-zero probability, g is equal to THRy/ ;. Thus,
THRy  is a minor of f. |

Using the existence of arbitrarily large arity threshold minors, the algorithmic part of our

Dichotomy result follows immediately.

THEOREM 3.5. LetT be a Promise CSP template. Suppose that for every € > 0, there exists a
function f € Pol(T), f : {0,1}" — {0, 1} such that ®;(f) < e for alli € [n]. Then, PCSP(T') € P.

PROOF. Using Lemma 3.4, we can conclude that there are infinitely many positive integers L
such that there exists 7 € {0,1,...,L} with THRy ; € Pol(T'). As the threshold functions are
symmetric, Pol(T') has symmetric polymorphisms of infinitely many arities. Thus, using the
BLP+Affine algorithm of [7], PCSP(T') can be solved in polynomial time. |

We remark that the above result is inspired by a special case shown by Barto [3] that a Boolean
Ordered PCSP is polytime tractable if it has cyclic polymorphisms of arbitrarily large arities.

4. Hardness Assuming Rich 2-to-1 Conjecture

In this section, we prove the hardness part of our dichotomy result. First, we prove that Shapley
value is preserved under uniformly random 2-to-1 minors, and then we use this to show the

hardness assuming the Rich 2-to-1 Conjecture.

41 Shapley value under random 2-to-1 minor

Let f : {0,1}*" — {0,1} be a monotone Boolean function with ® 7(1) > A for some absolute
constant A > 0. Let g : {0,1}" — {0, 1} be a minor of f with respect to the uniformly random
2-to-1 function 77 : [2n] — [n]. Our goal in this subsection is to show that E,;[®,(7(1))] > y for
some function y := y(A) > 0. We prove this in two steps. (See Figure 1)
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1. First, we consider the minor of f, f” : {0, 1321 — {0,1} obtained with respect to m :
[2n] — [2n — 1] where 11(1) = m11(2) = 1,m1(i) =i — 1Vi € {3,4,...,2n}. We show that
Dp(1) > 4.

2. Next, we consider a minor g of f’ obtained with respect to the function 7, : [2n—-1] — [n]
which has 715(1) = 1 while the remaining 2n — 2 values are chosen using a uniformly
random partition of [2n — 2] into n — 1 pairs. We show that E, [®;(1)] > y for some
function y := y(A) > 0.

The two steps together prove that when g is a minor of f with respect to the function 7 : [2n] —
[n] that is a uniformly random 2-to-1 function conditioned on the fact that 7(1) = (2), we
have E;[®.(7(1))] > y for some function y := y(A) > 0. Taking average over all i such that
(1) = (i), we get the same claim when g is a uniformly random 2-to-1 minor.

The first step is captured by the following lemma.

LEMMA 4.1. Let f : {0,1}** — {0,1} and f’ : {0,1}**1 — {0,1} be monotone Boolean
functions such that f’ is a minor of f with respect to the function ir1 : [2n] — [2n — 1] defined as
m1(i) = max(i — 1,1). If (1) > A, then &p/(1) > 4.

PROOF. We recall a bit of notation: let 87(1) denote the boundary of the coordinate 1 in the
function f i.e., the family of all the sets S C [2n] \ {1} such that f(S) =0, f(SU {1}) = 1. For
an integer j € {0,1,...,2n -1}, let uf(j)(1) denote the fraction of subsets of [2n] \ {1} of size j
that are in B¢(1). For ease of notation, we let u(j) = s (j)V, and ' (j) = up(j)V. Consider a
setS C [2n] \ {1} such that S € B¢(1). Note that

S ={i-1:i>2i€8}

satisfies S’ € By/(1). Suppose that S1,S; € B¢(1) such that [S1| = [Sy| = j,S1 # S;and 2 € S; U Ss.
Then, the above definition satisfies S; # S, §1, S, € By/(1) and |S]| = |S}| = j. This implies that

2271
[2n—1]\ {1})

‘{S:SEBf(l), S| :j,2¢8}‘ < Bf,(1)m( ]

Similarly,

|{s :Se€eBr(1),[S]=j,2¢ 3}| < |8,(1) N ([Zn—'l] \ {1})

Jj-1

Summing the two, we obtain that

‘{s 1S e 8;(1),IS| = j}‘ <|8p(1) N +|8p(1) N

[2n— 1]\ {1}
j-1

([Zn—l]\{l})|
J

We can rewrite it as
(Zn -1

, 2n-2\ , . 2n—2\ , . )
S < (e (7 e -1vi e a2
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2n-1 2n-2 2n-2 .
As ( " ) = ( " ) + (;"_1 ) for every j € [2n — 2], we get that
u() <@ (GH+u'(G-1

for all j € [2n — 2]. Also note that u(0) = u’(0), and u(2n - 1) = u’(2n — 2). Summing over all
these inequalities, we get that

> wG) =

je{0,1,....2n-2} je{0,1,....2n—1}

>z

N =

Thus, L
2 jefo1,..2n-23 ' (J)
2n—1

Before proving the second step, we prove the following key lemma regarding the distribu-

CDf/(l) = > % . [ |

tion of the boundary subsets.

LEMMA 4.2, Let f': {0,1}*"1 — {0, 1} be a monotone Boolean function such that Dp(1)=A
with A > % For aninteger j € {0,1,...,2n-2}, let u’(j) = uy (j)(V). Then, there exists an absolute

constant y := y(A) > 0 such that
S w'(2))
— a7

2

2-, such that for all j with
cin < j < can, we have y’(j) > ¢c,and ¢z —¢1 > %2. This directly implies the lemma with
y = Q(A%).

For a pair of integers 0 < i < j < 2n — 2, we define the following parameter u’(i, j) as the
fraction of the pair of subsets (S,T) where S,T C {2,3,...,2n—-1},|S| =1, |T| = j,S C T that
satisfy S € B5(1),T € By (1).

PROOF. We prove that there exist real numbers ¢; < ¢z, ¢ >

ST ISl =0T = j,S € T,S € By(1), T € By (1)}
h 2n-2\ (2n—2—i
(i [y

We first claim that there exist constants (depending on A) ¢; < c¢3,¢ > 0 such that

w (i, j)

' (cin,cen) > ¢c,and ¢ — €1 > %2 Consider a uniformly random permutation of [2n — 1] \ {1}
denoted by o = (d(1),0(2),...,0(2n — 2)). For an integer j € {0,1,...,2n — 2}, let S; be the
random variable that is the union of the prefix of o containing the first j elements.

Sj:={0(1),0(2),...,0(j)}, Vj €{0,1,...,2n - 2}.

For each j € {0,1,...,2n — 2}, the subset S; is uniformly distributed in ([2""}]\{1}). For j €
{0,1,...,2n - 2}, let X; be the indicator random variable for the event that S; € 8(1). By the
definition of u’(j), we get

E[X;] = &'(j) ¥j € {0,1,...,2n - 2}.
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Let X = Xo + X7 + ...+ Xy be the number of subsets in the set family (¢ =Sy € S;1 C S;... C
Son-2 = [2n = 1] \ {1}) that are in B¢.(1). Using Equation (1), we get

E[X] = A(2n-1).

Using Jensen’s inequality, we get that

(X)] > (A(zn_l)) = 1-)t(2n—1) (&(Zn—2)+n)t —1) > A—z(zn_l)
2 2 2 2 2\ 2

E

wherein the final inequality, we used the fact that An > 1. Note that for everyi < j, the marginal
distribution of (S;,S;) is the uniform distribution over all the pairs of subsets (S,T) where
ST C{2,3,...,2n-1},|S| = i,|T| = j,S C T. Thus, by the definition of u’(i, j), we get that
u'(i, j) = E[XiXj], for 0 <i < j < 2n - 2. Therefore we have

E [()2()] =E Z Xin = Z E[Xin] = Z ul(i, ])

0<i<j<2n-2 0<i<j<2n-2 0<i<j<2n-2
Thus, )
A (2n-1
, . .
0<i<j<2n-2

This implies that the expected value (over i, j) of u’(i, j) is at least %2 Let p denote the probability
(over i, j) that u’(i, j) < %2. As the expected value of y'(i, j) is at least 2 we have

22 22
| — 1-p)-1>—
p (4)+( D) 2 =

which implies that p < 1 — %2. Thus, with probability (over i, j) at least A—Z, we have p'(i, j) > %Z.
2 2
Hence, there exist integers p, g such thatq — p > %n and u’'(p,q) > %. For ease of notation, let

. . 2
p = ¢1n, q = c;n where c1, ¢y are reals satisfying ¢, — ¢ > A,

8

Next, we claim that y’(j) > %2 for all j such that cin < j < cpn. Fix an integer j with
c1n < j < con. Consider a uniformly random sequence of subsets S{ C S, C S3 C [2n—1] \ {1}
such that [S1| = ¢1n,|S2| = J,|S3] = con. The probability that S; € B7/(1),S3 € Bp(1) is
equal to u’(cqyn, con) which is at least %2. Thus, using Proposition 2.8, with probability at least
%2, S, € By/(1). Note that the distribution of S, is uniform in ([2"_?\{1}), and thus, we have
wij > 4.

The fact that y’(j) > 7‘?2 for all j such that cyn < j < c¢yn together with ¢, — ¢ > %2
completes a proof of the lemma. u

We now prove the second step in the proof.

LEMMA 4.3. Suppose that f’ : {0,1}*"! is a monotone Boolean function such that ®¢(1) > A
with A > % Let g be a random minor of f’ with respect to m; : [2n — 1] — [n] which is obtained

by setting (1) = 1, and for every i > 1, we randomly choose ji, jo € [2n — 1] \ {1} (without
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replacements) and set 1y(j1) = my(jo) = 1. In other words, we choose a uniformly random
partition of [2n — 1] \ {1} into n — 1 pairs P,, Ps,..., P, and set m;(j) = iVj € P;. Then, there
exists y := y(A) > 0 such that

Er, [@g(1)] 2y .

PROOF. For ease of notation, welet ¢'(j) = s (j)™M and pg () = pg(j)™V. ForasetS C [n]\ {1}
and a function 71, : [2n — 1] — [n] with 75(1) = 1, and |7T271(i)| =2foralli € {2,3,...,n},let
JT£1(S) be the 2|S| sized subset of {2, 3,...,2n — 1} defined as follows:

1 (S) == {j €{2,3,...,2n - 1} : my(j) € S}

For every setS C {2,3,...,n}, when m, : [2n — 1] — [n] is a uniformly random 2-to-1 minor
with 715(1) = 1, and the rest 2n — 2 elements are partitioned into n — 1 pairs uniformly at random,
the set 77, (S) is distributed uniformly in ([2n—2|1g|\{1}). Also note that S € B,(1) if and only if
n(S) € Bs(1). Thus, for every set S C {2, 3,...,n}, the probability that S € B,(1) (over the
choice of 71p) is equal to u’(2|S|). Summing over all such sets of size j, we get that for every

j €{0,1,...,n -1}, the expected value of u.(j) is equal to u’(2j).

B, [ ()] = £(2)) V) € 0,1,...,n ~ 1}

By using Lemma 4.2, we can infer that there exists y = y(4) > 0 such that Z;‘:—g Er, (g ()] =
Z;‘:—g @’ (2j) > yn. Using Equation (1), we get

> ug(n} 2750 Enlug ()]

En, [@g(1)] = Ep, > ). u

n

Lemma 4.1 and Lemma 4.3 together prove that Shapley value behaves well under uniformly
random 2-to-1 minors for monotone Boolean functions.

LEMMA 4.4. Suppose that f : {0,1}*" — {0,1} is a monotone Boolean function such that
®¢(1) > A for some absolute constant A > 0 with A > % Then, there exists y := y(A) > 0 such
that

Er[®g(m(1))] 2y
where g is a minor of f with respect to the uniformly random 2-to-1 function .

PROOF. Combining Lemma 4.1 and Lemma 4.3, we can conclude that for everyi € [2n],i > 1,
when 7 : [2n] — [n] is a uniformly random 2-to-1 minor conditioned on the fact that 77(1) = (i),
we have E;[®.(71(1))] > y. Taking average over all the i € [2n],i > 1, we get a proof that the
same inequality holds when 77 is a uniformly random 2-to-1 minor. u

4.2 Reduction

We first formally define the Label Cover problem and state the Rich 2-to-1 Conjecture.
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DEFINITION 4.5. (Label Cover) In the Label Cover problem G = (G, £, g, II), the input is a
bipartite graph G = (L U R, E) with projection constraint I, : £; — Lz on every edge e € E. A
labeling o which assigns values from X to L and from X to R satisfies the constraint II, on the
edge e = (u,v) if IIo(o(u)) = a(v). The objective is to identify if there is a labeling that satisfies
all the constraints.

For every constant € > 0, itis NP-hard [31] to distinguish between the case that a given Label
Cover instance has a labeling that satisfies all the constraints vs. no labeling can satisfy more
than e fraction of the constraints. This hardness result for Label Cover has been instrumental
in showing numerous strong, and sometimes optimal, inapproximability results for various
computational problems. However, the standard Label Cover seems insufficient as a starting
point towards proving hardness results for approximate graph coloring and other 2-variable
PCSPs. To circumvent this, the hardness of Label Cover on structured instances such as Unique
Games, smooth Label Cover, etc. has been studied.

In his celebrated work proposing the Unique Games Conjecture [20], Khot also proposed
the “2-to-1 conjecture” that the strong hardness of Label Cover holds when all the constraints
of the Label Cover are 2-to-1 functions. The imperfect completeness version of this conjecture
was recently established in a striking sequence of works [22, 12, 13, 23]. Braverman, Khot, and
Minzer [8] put forth a stronger conjecture that states that the hardness of Label Cover holds
when the distribution of 2-to-1 functions on edges incident on every vertex u € L is the uniform
distribution. For ease of notation, for an integer n, we use %,_,1(n) to denote the set of all the
2-to-1 functions from [2n] to [n].

DEFINITION 4.6. (Rich 2-to-1 Label Cover instances) We call a Label Cover instance G =
(G,X,Zg, II) with G = (L U R, E) arich 2-to-1 instance if the following hold.
1. There exists an integer L such that £; = [2X], £z = [Z], and every projection constraint IT,,
e € E is a 2-to-1 function.
2. For every vertex u € L, the distribution of 2-to-1 functions #, obtained by first sampling
a uniformly random neighbor v of u, and then picking Il,,e = (u,Vv), is uniform over
Fa—1(L).

CONJECTURE 4.7. (Rich 2-to-1 Conjecture) [8] For every € > 0, there exists an integer L = L(¢€)
such that given a rich 2-to-1 Label Cover instance G = (G, X, Ly, IT) with £; = [2X], it is NP-Hard
to distinguish between the following.

1. Thereis a labeling that satisfies all the constraints of G.

2. No labeling can satisfy more than € fraction of the constraints of G.

We are now ready to state the hardness part of our dichotomy. It is proved using the Label
Cover-Long Code framework. This reduction is standard in the PCSP literature, see e.g., [4].
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THEOREM 4.8. Assume the Rich 2-to-1 Conjecture. Let PCSP(T') be a Boolean Ordered PCSP
such that there exists an absolute constant A > 0 with maX;c(, (i) > A for all functions
f:{0,1}* — {0,1}, f € Pol(T'). Then PCSP(T) is NP-Hard.

PROOF. Let I' = {(A1,B1),(A2,B>),...,(A;, B;)} be the PCSP under consideration, where
each A; is a subset of {0,1}% for all i € [I], and similarly, each B; is a subset of {0, 1}*i for all
i € [l]. We start from a rich 2-to-1 Label Cover instance G = (G, [2Z], [£],II) with G = (LUR, E).
For ease of notation, we use L,, to denote 2X if w € L, and X if w € R. For every vertex w € L UR,
we have a set of 2" nodes denoted by L,, = {w} x {0, 1}*» referred to as the long code corre-
sponding to w. The elements of our output PCSP instance V is the union of all the long code

V:ULW

WeLUR

nodes.

We add two types of constraints.
1. Polymorphism Constraints. For every i € [l], we add the following constraints using the

2 k;
e, XN €

pair of predicates (A;, B;). For every w € L U R, and multiset of vectors x1 x
{0, 1}* satisfying

k; :
(X},X?,...,X}.) € A;Vj € [Zu],

we add the constraint on the k; nodes {w, x'}, {w, x?}, ..., {w, xN}.

2. Equality Constraints. For every edge e = (u,v) of the Label Cover instance with the
constraint I, : [2Z] — [Z], we add the following set of equality constraints. For every
x € {0,1}** and y € {0,1}* such that for all j € [2Z], X; = yp,(;» We add an equality
constraint between {u, x} and {v, y} ensuring that the two nodes are assigned the same
value. The fact that we can add the equality constraints follows either by identifying the
variables together, or by observing that the polymorphism minion of any PCSP remains
the same when we add the equality predicate (see e.g., [4, 16]).

Completeness. Suppose that there exists a labeling o that satisfies all the constraints of the
Label Cover instance. For every node {w, X} € V, we assign the dictator function X4, € {0, 1}.
By the way we have added the polymorphism constraints, any dictator assignment satisfies
them. The equality constraints are also satisfied as the labeling satisfies all the constraints of G.

Soundness. Suppose that there exists an assignment f : V — {0, 1} that satisfies all the
polymorphism constraints and the equality constraints. Then, we claim that there exists a
labeling o that satisfies € := €(A) > 0 fraction of the constraints of the Label Cover instance G.

For a vertex w € L UR, let f,, : {0,1}*» — {0,1} denote the function f restricted to L,
Note that f, is a polymorphism of the PCSP T for all w € L U R. As every polymorphism of T
has a coordinate with Shapley value at least A, for every u € L, we define the set S(u) that is
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non-empty as follows:
S(u) ={i € [2Z] : Df (i) > A}

As Y icrn) @y (i) = 1 for all functions f : {0,1}" — {0, 1}, we have |S(u)| < % forallu € L.

As a corollary of Lemma 4.4, we can conclude that there exists y = y(A) > 0 such that
for every monotone Boolean function f : {0,1}** — {0, 1} with ®¢(i) > A, when g is a minor
of f with respect to a uniformly random 2-to-1 function 7 : [2E] — [Z], $4(71(1)) > % with
probability at least % Note that applying Lemma 4.4 requires that A > % However, even when
A< %, by picking the coordinate with the largest Shapley value, we can still assume that in
every long code function, there is a coordinate with Shapley value at least % = 0(A), and then
apply Lemma 4.4. Using this y, for every v € R, we define the set S(v) as

S(v) = {i e [Z]: @ (i) > g}

By definition, we have |S(v)| < % for all v € R. As the Label Cover instance is rich 2-to-1, for
every u € L, when we pick a uniformly random edge e = (u, v) adjacent to u with constraint
IL, : [2Z] — [Z], with probability at least %, there exist iy € [2Z],i, € [Z] such that @, (i1) > A,
Dy (iz) > %, and I (iy) = iy

We now pick a labeling o of G by picking uniformly random label from S(w) for all
w € LUR. By the above argument, for every u € L, the expected number of constraints of G that
are adjacent to u that the labeling o satisfies is at least % . A%. Summing over all u € L, o satisfies
at least Q(Ay?) fraction of the constraints of G in expectation. Thus, there exists a labeling to G
that satisfies € = Q(Ay?) > 0 fraction of the constraints, which completes the proof. u

5. Adversarial 2-to-1 minor

We construct an example of a 2-to-1 minor where the Shapley value alters completely after
taking the minor.

THEOREM 5.1. Let n > 2 be a positive integer. There exist two monotone Boolean functions
f:{0,1}?" — {0,1} and g : {0,1}"* — {0, 1} such that g is a 2-to-1 minor of f with respect to the
2-to-1 function 1t : [2n] — [n] defined as 7(i) = [%]. Furthermore,

1. ®,(1) =Q(1), and 4 (j) = 0o(1) forall j > 1.

2. @p(3) =Q(1), and @7 (i) = 0o(1) foralli € [2n],i # 3.

PROOF. Similar to the proof of Theorem 4.8, we construct the minor function pair in two steps.

1. First, we construct Boolean monotone functions f’ : {0,1}>"! — {0,1}and g : {0,1}" —

{0, 1} such that g is a minor of f with respect to the function 77 : [2n—1] — [n] defined as

(i) = [”71] for all i. Furthermore, ®,(1) = Q(1), and ®.(j) = o(1) for all j > 1. We also
have ®(2) = Q(1), and &,/ (i) = o(1) for alli € [2n - 1],i # 2.
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2. We define the function f : {0,1}*" — {0,1} as

f(yl’yz’ < :yZn) = f/(yl’ V3, ... ,y2n)

Note that g is a minor of f with respect to the 2-to-1 function 7 : [2n] — [n] defined as
(i) = (%1. Furthermore, by definition, we have ®((3) = Q(1), and ®¢(i) = o(1) for all
i €[2n],i # 3.

Henceforth, our goal is to construct a pair of functions as in the first step above.
We define a partial Boolean function to be a function from {0, 1}" to {0, 1, ?}. A partial
Boolean function f on n variables is monotone if for all p € {0,1}" and q € {0, 1}" such that

p < q,if f(p) =1, then f(q) =1,and if f(q) = 0, then f(p) = 0.
Now, consider g : {0,1}"* — {0,1} to be

Lif 37, x; > 538

100
= < i n . 49n
8(x) 0if 2jpXj < 100
s 49n n . 51n
x1 if 755 < 25 Xj < oo

By definition, g is a monotone function, and using Equation (1), we can infer that ®¢(1) =
and @g(j) < L forall j > 1.

1
50

We now construct f’ in three steps. Start with f” ="?".
1. (Preserving the minor) First, set the value of entries of f’ that are of the form

(X1, X2, X2, * ** » Xn, Xp) @S

(X1, X2, X0, .« .y Xn, Xn) = &(X1, X2, ..., Xp) VX € {0,1}"

We then extend it both upwards and downwards i.e., if f'(p) is setto 1 and p < q, then set
f'(q) =1 as well, and similarly, if f’(q) is set to 0, and p < q, then we set f’(p) = 0. This
ensures that g is a minor of f" and that the partial function f’ is monotone.

2. (Destroying the influence of 1) Next, we ensure that the Shapley value of the coordinate 1
is low by the following operation: consider all y such that f/(y) has not been set in the
first step, y; = 0 and f’(1, y,,-- -, Y2n—1) is already set to 1 in the first step. Then set f'(y)
to be 1. Similarly, if y satisfies y; = 1 and f’(0, yo,-- -, Y2n—1) is already set to 0 in the first
step, set f’(y) to be 0 if it has not been set in the first step.

We claim that the updated partial function f” is still a monotone partial function. Consider
p,q € {0,1}?"! such that p < q. Suppose that f’(p) is set to be 1. If it is set in the first
step, as we extended the partial function upwards in the first step, f'(q) = 1 as well. If
f’(p) is set to be 1 in the second step, it implies that f’(p’) has been set to 1 in the first step,
where p’ is obtained from p by setting p; to be 1. Let ' € {0, 1}*"! be obtained from q by
setting g1 = 1. Asp’ < (¢, f’(q’) has been set to 1 in the first step as well. Thus, f’(q) is set
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to be 1 in the second step. The same argument can be used to show that if f’(q) = 0, then
f'(p) =0 as well.

3. (Adding influence to 2) For all y for which f”(y) ='?" set f'(y) = y2. The fact that the final
function f” is monotone follows from observing that any completion of a partial monotone

function using a monotone function results in a monotone function.

Finally, our goal is to argue about the Shapley value of the coordinates of the function f”.
First, we show that the Shapley value of the coordinate 1 in f” is 0(1). Suppose there exists
P =(0,y2,¥3 -, yn-1) and g = (1, y, 3, -+, Yan-1) such that f’(p) = 0 and f'(q) = 1. We
claim that both the values f’(p) and f’(q) are set in the first step of the above procedure.
Suppose for contradiction that this is not the case. If neither of them is set in the first step, then
they will not be set in the second step either, and in the third step, both of them will be assigned
the same value, a contradiction. If exactly one of them is set in the first step, then in the second
step, the other value would be set to be equal to it, a contradiction as well. Thus, both the values
f’(p) and f’(q) are set in the first step.

Let B = B,(1) € {0,1}"! be the boundary of the coordinate 1 in g. As f’(q) is set to
be 1 in the first step, there exists x € {0,1}" such that g(x) = 1 and (x1, X2, X2, - - * , Xp, Xpn) <
q. As (x1,X2,X2,---,Xn, Xn) 1S not less than or equal to p, we can conclude that x; = 1 and
g(0,x2,Xx3, - ,Xn) = 0. In other words, (x2, X3, - ,Xn) € B. Similarly, there exists X’ such that
g(x’) = 0 and (x{,x},X},- -+ ,Xp, X) > p. By the same argument as above, we can conclude
that (xé,xé, -++,Xy) € B. Combining the both, we can conclude that there exist X, X’ € B such
that (X2, X2, X3, X3, .+ -, Xn, Xn) < (Y2, Y3, 5 Yan-2) < (X5, X5, X3, X3, ..., Xp, Xp). Note that if the
above inequality is true for a (yy, ys3, - -, Y2n-2), we directly get that (y,, y3,- -+, Yon—2) isin the
boundary of the coordinate 1 in f”.

Observe that the boundary of coordinate 1 in g is the set of vectors (X, X3, - - - , X,,) such that
100" < 3" jmaXj < 1501011 By the previous argument, we can deduce that the boundary B’ = 8¢(1)
of the coordinate 1 in f” is the set of vectorsy = (y, y3,- -+, Y2n—1) that satisfy the following

property: The number of i € [n — 1] such that both yy; = yi41 = 11is at least 100" Similarly, the

49
t 100

require that £n < 317"7" y; < ¥n. However, for every integer I such that 3n <1 < 5n, when

number of i € [n — 1] such that yy; = yyi+1 = 0 is at least —=n. Observe that this implies that we
we sample a umformly random vector y = (Y, ¥3,..., Yan—1) With Z?”zl y; = L, the probability
that the number of i € [n — 1] such that both y;; = yzi.1 = 1 is at least 100" is 0(1). Thus,
using Equation (1), we can infer that the Shapley value of the coordinate 1 in f” is o(1).

We now show that the coordinate 2 has Q(1) Shapley value in f’. Consider y = (y1, V2,...,
Yon-1) such that £ < hw(y) < 2. If the number of i such that both yy; = yi1 = 1is less than
1%9011 we have (yl,yg, ey Yon-1) € Bf(Z). However, for every integer [ such that 49n <1< %n,
when we sample a uniformly random y with hW(y) = [, with probability 1 — o(1), the number

of i such that both yy; = yji;1 = 11is less than 22n. Thus, using Equation (1), we can infer

100
that the Shapley value of the coordinate 2 is Q(1) in the function f’. Finally, by symmetry, we
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can observe that @/ (i) = ®7(3) for alli > 3, and thus, as };; &/ (i) = 1, @ (i) = o(1) for all
1> 3.
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