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Abstract

Molecular modeling of large biomolecular assemblies exem-
plifies a disruptive area holding both promises and contentions.
Propelled by peta and exascale computing, several simulation
methodologies have now matured into user-friendly tools that
are successfully employed for modeling viruses, membranous
nano-constructs, and key pieces of the genetic machinery. We
present three unifying biophysical themes that emanate

from some of the most recent multi-million atom simulation
endeavors. Despite connecting molecular changes with
phenotypic outcomes, the quality measures of these simula-
tions remain questionable. We discuss the existing and up-
coming strategies for constructing representative ensembles of
large systems, how new computing technologies will boost this
area, and make a point that integrative modeling guided by
experimental data is the future of biomolecular computations.
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Living cells are brimming with activity of numerous
macromolecular complexes. Bolstered by ground-
breaking advances in high-resolution imaging and

cryo-electron microscopy, and most recently in deep
learning [1,2], the atomic structures of many com-
plexes are now accessible. However, structures alone
provide limited information about the function of these
complexes, in particular how they interact within large-
scale networks. Supported by a parallel revolution in
multiscale algorithms and computing hardware, mo-
lecular simulations of nanometer to sub-micron sized
systems are now conceivable. By leveraging all-atom
(AA), coarse-grained (CG), and multi-physics molecu-
lar dynamics (MD) simulations, the last decade has
seen “computational microscopy” of heterogeneous
multi-subunit macromolecular complexes, including
the ribosome [3], proteasome [4], nuclear pore com-
plex [5], virus capsids (reviewed in the study by Goh
et al. [6]), an entire gene [7], crowded environments
inside bacterial cells [8], budding of mitochondrial
membrane [9], and energy transduction across a
photosynthetic organelle [10], and the list continues to
grow (Figure 1).

A story of hits and misses

Despite delivering biological insights across the molec-
ular, meso, and even up to phenotypic scales [10], the
merits of large-system simulations are worth reflecting
on. A discrepancy remains between biological and
simulatable timescales, which is aptly summarized in
the equation: Simulation time= (o« N In N) 1.,/ Av; o

=~ 10° [11]. Simulating a millisecond-scale event
(Trs = 1ms) of a 1 million-atom system (N = 10°)
with a femtosecond timestep MD (A = 100 5) ona

petaflop architecture (v = 107 flops) will take 159
days, assuming) perfect scalability. This duration in-
creases to ~ 107 years, when V = 3 X 10°, representing
the number of atoms in a simple bacterial cell, and the
T} scales up to hours. More dramatic are estimates for
simulating firing neurons in a human brain with ~ 10%¢
atoms, which takes up to an impossible 10%° years. Be-
sides this practical limit, one also raises philosophical
arguments about the value of simulation systems in
which the majority of the atoms are bulk water mole-
cules that often contribute only parametrically to the
biophysical properties.

Limited-timescale larger system simulations are also
plagued by a lack of convergence in capturing diffusive
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History of large-scale simulations. Searches on the Scopus database showing an overall increase in the number of documents per year containing (a)
MD and (b) multiscale simulations of large biological systems. (c) Pie-chart showing the broad range of application areas of MD simulations of bio-
molecules (data accumulated over the same period as in panel a). Interestingly, over the pandemic the number of studies with large-system MD sim-
ulations seems to have decreased, while those with the multiscale simulations have plateaued.

events. Appropriate tests of convergence are required
for all simulations, but more so as the simulation-sizes
and timescales grow for monitoring the emergent
properties. Studies have looked into the convergence
for specific properties, but distributions capturing
physical properties of macromolecules do not converge
on timescales that can be assessed currently; even the
timescales for converging the distributions of smaller
molecules such as lipids around membrane proteins
are tens of microseconds or more [12]. In practice, this
means the interpretation of large-scale simulations
requires a careful assessment of which properties are
likely to be converged (Summarized in Table 1) os
which ones are affected by an initial-model bias. In
some cases, many copies of a particular protein in a
system or simulating many replicas of a system in-
creases the statistical information, but this is not
helpful for properties that are only apparent over
longer time scales. For example, simulating slow
interface dynamics or modeling of viscous properties
arising from the collective interactions of many system
components offer exemplary challenges to MD ap-
proaches. Thus, how many repeats are required to
trust a large-scale simulation result remains conten-
tious. Rarely have repeat simulations been reported to
examine and establish reproducibility. Also, the initial
models are often an eclectic mixture of molecular

structures determined over a range of resolutions,
reflecting different levels of disorder on different
components of the model. How this uncertainty in
inputs shows up as unphysical interactions in the force
fields, and manifests in the quality of the final out-
comes is seldom tracked.

Identifying important features within a large-scale
simulation creates its own challenges. Unlike single-
molecule simulations, where reproducible visualization
over multiple replica often picks up interesting confor-
mational changes, such visual hints are lost in crowded
large-scale models. Machine learning in the context of
dimensionality-reduction approaches can potentially
identify key observations. But searching hundred
million-dimensional datasets requires a deep network
architecture with a huge input layer, which greatly in-
creases the number of weights, often making the
training process highly memory-intensive and practically
infeasible. Also, the choice of a library of descriptors for
training makes the observation of a key property sus-
ceptible to the users’ bias.

Unlike relatively simple single-protein systems, cell-
scale systems are highly complex, thereby compli-
cating direct comparison of theory with experiments.
Cell-level results are often not useful to validate
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Table 1

Examples of large-scale AA and CG simulations. Table summarizes some recent simulations, scientific discoveries, the physical property used by the authors to ascertain conver-
gence, and validation of simulated results.
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Publication (software)

System size/dimensions

Simulation length

Discovery

Converged property

Expt. Validation

AA SIMULATION

Perilla, 2017 [13] HIV-1 capsid 1.2 ps Electrostatics, and acoustic RMSD, cross-section lon-binding affinity
NAMD 64 M atoms properties area

of empty capsid
Hadden, 2018 [14] HBV capsid 1us Viral mechanism for displaying Volume and sphericity Local resolution of cryo-
NAMD 6 M atoms of cellular signals EM density
Bulow, 2019 [15] (GROMACS) 3.6 M atoms 1us Soluble proteins in RMSD Viscosity, diffusivity

Singharoy, 2019 [10] (NAMD)

Purple bacteria’s
chromatophore
136 M atoms

500 ns MD, 40 ps CG,
30 ms BD

concentrated solutions
diffuse as transient clusters

Electrostatic environment of an
organelle supports low light-
adaptation

Radial distribution of
charge carriers, radius
of gyration, PMF
profiles

Cell doubling times

Choudhary, 2020 [16] (NAMD) Cadherin repeats 3-500 ns Plasticity and structural Force distributions X-ray crystallography
1.1-2.3 M atoms determinants of sensory SAXS
perception
Durrant, 2020 [17] (NAMD) H1N1 virus capsid 121.04 ns Secondary substrate binding RMSD, rate matrices Mutational assays
160 M atoms site on capsid surface
Farr, 2021 [18] (LAMMPS) Nucleosome assembly (30 M 1 us REMD Plasticity is critical for Persistence length of Force spectroscopy
atoms/50K beads)< 40 ps CG liquid—liquid phase DNA

separation

Jung, 2021 [7] (GENESIS) GATA4 gene Only reported
1 billion atoms benchmarks
CG SIMULATIONS
Chavent, 2018 [19] (GROMACS) Outer membrane proteins 120 ps Restricted diffusion of OMPs OMP cluster size Single-molecule TIRFM
(OMP)-containing membrane
480 x 480 nm?
Vogele, 2018 [20] (NAMD) Lipids, proteins, and carbon 0.5-2 pus Infinite-system diffusion Diffusion coefficient N/A
nanotubes in membranes coefficients and membrane using MSD
152 M particles surface viscosities
Pezeshkian, 2020 [9] (GROMACS) Back mapping 0.2 us Membrane bud formation upon Total area of the N/A
mitochondrial membrane Shiga toxin binding monolayer
80 M particles triangulated surfaces
Jefferies, 2020 [21] (GROMACS) Outer membrane vesicles 2 us Membrane composition can be No. of lipid- Confocal microscopy
(OMVs) manipulated to suppress lipopolysaccharide
20 nm diameter OMV encapsulation contacts
Duncan, 2020 [22] (GROMACS) Inward rectifier potassium 80 us Cooperation between PIP, and  Radial distribution N/A
channel (Kir2) PS lipids for activating Kir2 function of lipids
3.5 M particles channel
Maity, 2020 [23] (GROMACS) Macrocyclic polymer fiber 1us Diffusion-driven growth of self- Distribution of proper Diffusion seen by AFM
10.8 x 11.7 x 14.5 nm® replicating fiber and improper
dihedrals
Yu, 2021 [24] (NAMD, LAMMPS) SARS-CoV2 virion 10 ps Collective surface modes of Radial distribution N/A

100 x 140 nm?

virion

function of proteins
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simulations because they tend to have a small number
of data points with a very complex origin. Consider
simulating ATP activity of an enzyme as function of
environmental conditions. For this case, it is difficult to
pinpoint whether, within a chain of computational re-
sults specific issues has emerged from the convergence
the ATP-hydrolysis computations, force field discrep-
encies between the protein and the ligand, scaling
mismatch between the rate of ATP turnover and that of
the environmental changes or compensation of errors,
which ultimately leads to a disagreement or agreement
between the computations and experiments. Given the
sparse amount of experimental data that can be used to
either constrain or test the simulation, overfitting can
be expected at the level of atomistic models. Due to
such over-interpretation, the transferability of cellular
models is compromised. An #-fold cross validation
analysis is utilized to examine and avoid the over-fitting
artifacts, but such procedures only work for data-
rich models.

Large simulation systems are still well-defined. When
using classical force fields, all chemically equivalent
units are treated similarly, allowing the derived param-
eters to be generalized to other molecules where the
same units are used as building blocks. Yet, it is all but
impossible to define an experimental system at an
equivalent level, due to fluctuations in concentration of
components, arising out of metabolism. Molecular
modeling a cell-scale system that further includes bio-
logical functions such as protein synthesis, degradation,
and osmosis, remains unfeasible. Such complications
make it even more difficult to interpret simulation re-
sults in the context of experimental data.

Early surprises in the enhanced sampling of
confined subsystems

Even in the early days of biomolecular computations of
multi-million or larger sized systems, and despite the
aforementioned outstanding questions of simulation
convergence and quality, a number of studies performed
over the past five years have paved the way to billion-
atoms MD simulations e.g., to model the structure of
a complete GATA4 gene (Figure 2). There is a
remarkable similarity in the properties derived from
these studies of very different biological systems. Three
common themes emerge: insights in (i) the mobility and
binding of water and ionic species in confined protein
environments; (ii) rare substrate binding mechanisms;
and (ii1) stability and diffusion of proteins in crowded
environments. We summarize some of these mile-
stone discoveries.

Solution dynamics in confined environments

Recognizing that the majority of simulation systems are
composed of ions and solvent molecules, the dynamics
of which are characterized by rapid picosecond-scale

relaxation times, which may scale up to nanoseconds
on the protein surfaces, the statistics from microsecond-
scale MD simulations was clustered to find ion locali-
zation sites in the trimer—of—dimer interfaces of brome
mosaic virus capsids [14]. In the same spirit, a rapid
exchange of water molecules across an empty poliovirus
was determined [25]. This exchange rate is so high that
all water molecules inside the capsid can be replaced by
new ones from the outside in ~25 s, explaining the
capsid’s tolerance to high pressures. Protein—protein
interactions mediate these solvent transport properties
within large yet finite system boundaries [13]. Such
finite-size effects of the nanocontainer cannot be
reproduced with periodic representations of the isolated
smaller subunits, where the spatial correlations and the
impact of confinement on transport rates are lost. Thus,
AA or GG simulations of conformationally-correlated
transport of solvent molecules and ions across symmetric
or asymmetric porous protein nanocontainers have
gained popularity over the past few years [6].

Protein—ligand binding mechanisms

Determination of accurate thermodynamic or kinetic
properties remains challenging in any large-system
simulation. Nonetheless, a key advantage of large sim-
ulations is derived by synthesizing ideas from kinetic
theories, which could have been easily overlooked had a
handful of teams not pursued cell-scale modeling
[10,15,17,26]. The multimeric architecture of large
systems, which encompasses recurrent instances of key
structural features, offers a “multi-copy” representation
of the protein or associated cofactors. The so-called
“multi-replica” representation of a single protein, seen
in free energy simulations, can be recovered in this
multi-copy instance of the same protein within the
large-system architecture.

For example, within the first 0.5 [ts long AA simulation of
an entire cell organelle, we simulated 900 ubiquinone
molecules embedded within a bacterial photosynthetic
membrane composed of 101 protein complexes [10]. On
this timescale, which is much shorter than the diffusion
of membrane proteins or even lipids, a single quinone is
displaced minimally (by < 5 A). However, a cumulative
sampling of 800 x 0.5 pus = 400 ps led to the surprising
discovery of two distinct modes of quinone movement in
the bacterial membrane—the “swimming” mode with
the quinone tail parallel to those of the lipids in lipid-
rich environments, and the “diving” mode with the
tail perpendicular to the membrane within protein-rich
environments. Arguably, 400 replicas of 0.5 s of single
quinone simulations would have captured the swimming
motion adequately; however, in the absence of the
heterogeneous protein environments in smaller protein-
membrane patches (Figure 2A), the rare diving mode
would have been missed or underestimated, clearly
establishing the need for a large-system simulation.

Current Opinion in Structural Biology 2022, 73:102338
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Figure 2

Computational microscopy of cells Gupta etal. 5
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Examples of large-scale AA models of heterogeneous macromolecular assemblies. (a) a photosynthetic organelle of purple bacteria, showing
conformational diversity of "swimming” vs “diving” charge-carrier quinone molecules (colored by their penetration depth in the membrane) [10]; (b) capsid
of the H1N1 influenza virus showing an ensemble of open vs closed conformations of salicylic acid binding pockets [17]; and finally (c) a typical ar-
chitecture of an entire gene, the GATA4 gene, colored by position along the DNA [7].

Following this general notion and combining Markov
state models with AA simulation of an entire capsid, two
rare conformations of soluble protein loops were
discovered on the surface of the influenza virus [17],
prompting a “bind and transfer” mechanism for binding
sialic acid residues (Figure 2B). Taken together, the
realistic environments created by large system simula-
tions offer unique binding conformations that are
seldom seen while modeling soluble or membrane-
bound proteins and cofactors in isolation.

Protein crowding

Modeling of crowded environments requires quintes-
sential big-system simulations, wherein a majority of the
simulation box is filled with macromolecules, taking up
to 70% of the volume. Such set-ups are effective in
capturing how the heterogeneity in protein environ-
ments induces unexpected structural changes. For
example, simple volume exclusion would suggest that
with crowding the proteins should resort to contracted
conformations. However, atomistic simulations reveal

that a few proteins actually assume extended forms.
Akin to molecular flooding simulations, crowded envi-
ronments enhance the feasibility of rare events, making
them more entropically favorable and reducing their
energy barriers over simulations of single proteins in
infinite dilution. Thus, large scale crowding simulations
offer a tangible way of looking into /# vivo-like structures
that are unachievable within single or multi-replica MD
simulations of the same protein in isolation. Crowding
studies show that proteins are able to “hitchhike” within
the crowded periplasm by binding to lipoprotein carriers
and remain rarely un-complexed when in the periplasm,
forming both transient and long-lived interactions with
proteins, osmolytes, the outer membrane and the cell
wall [26]. MD simulations also revealed an increase in
the viscosity of protein solutions at higher protein
fractions than expected from colloidal models [15]. This
increase in viscosity emerges from accessing explicit
atomistic interactions and macromolecular clustering
within the MD simulations that are missing from the
colloidal models. Altogether, starting from well-mixed
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models, million atom-MD simulations reveal a plethora
of physically correct and experimentally verifiable re-
sults, even with sub-microsecond simulations. The
challenge, however, lies in generating well-mixed start-
ing states, the methods for which we describe next.

New tricks for old dogs

The core methodologies used in large-system applica-
tions have been developed little over the last decade.
Despite being established methods, their implementa-
tions to model assemblies of > 50 nm sizes pose new
practical problems. While all-atom MD simulations
clearly gained efficiency by porting most of the under-
lying computations to Graphical Processor Units (or
GPUs), parallel scalability over thousands of nodes is
achieved in programs such as NAMD [27] by dynamic
load-balancing. These algorithms vary the number of
atoms or interactions per processor to preserve the
nearest-neighbor computations within the same GPU as
more processors are added for handling multi-million
atom systems, even going up to 2 X 10° atoms [10].

While equilibration of soluble small proteins has become
computationally tractable, though sometimes taking up
to tens of microseconds, the same cannot be said for
larger constructs. As reported in the study by Perilla
etal. [13], it takes over 1200 ns for an empty HIV capsid
model to reach the early stages of equilibration. This
equilibration problem is further complicated with
folding—unfolding transitions, and yet using population
correlation functions it has been shown that equilibra-
tion time for unfolded proteins is ~100 ns, which is
computationally tractable with all-atom MD [28]. In
contrast, heterogeneous membrane systems have much
higher relaxation or mixing times, given the two orders
of magnitude slower diffusion coefficients in the viscous
lipid environments. Here, brute-force MD fails to
achieve equilibrated models within finite simulation
resources. One solution to the problem is to use pre-
equilibrated membranes in the simulations, as is pro-
vided by platforms such as CHARMM-GUI. However,
this platform does not guarantee equilibration of a
newly-built system and this approach is challenging for
cell-scale systems with exotic shapes. Here, coarse-
grained simulations offer a practical alternative to
construct large-scale models.

Coarse-grained methodologies

Coarse-grained or CG simulations are a useful tool in
large-scale modeling. The Martini model is widely used
for simulations of systems that would be very challenging
to simulate atomistically (Table 1). At a computational
cost of 2—3 orders of magnitude less than AA models, it
enables both larger system sizes and, importantly, longer
time scales, which are harder to achieve even by paral-
lelization of atomistic simulations. In addition to direct
insight from such simulations, CG models are useful to

test scaling laws, finite-size effects, and collective phe-
nomena that may not be worth the computational effort
on national supercomputers. Two recent examples
include simulations of toxin-induced budding of vesicles
from membranes [9] and of hydrodynamic modes that
explain finite-size effects on diffusion of proteins in
membranes [20]. CG simulations also show promise to-
wards building complex atomistic models, as it is in
practice considerably easier to build, minimize, and
equilibrate large coarse-grained systems than atomistic
ones due to softer potentials, much lower particle
numbers, and larger integration time steps. One concern
is how accurate the resulting distributions of molecules
are compared to reality and to AA simulations, but that is
a fundamental question for all computational methods,
and it is not & priori obvious that atomistic simulations are
more accurate in this respect. The entropy and temper-
ature dependence of CG models can be inaccurate
because of a reduced number of degrees of freedom; free
energies often are accurate but this is because enthalpy
overcompensates (by parameterization), and the accu-
racy of rates is variable. Also, for disordered systems the
parametrization of CG models is non-trivial. Addressing
the issue of distributions, methods such as multiscale
coarse-graining (MSCG) or Langevin dynamics of order
parameters [29] tend to coarse-grain and yet retain
multiple levels of details simultaneously. A recent
example of the MSCG approach is the reconstruction of
an entire SARS-CoV2 virion showing long—range corre-
lations on the virus surface [24].

Ultra-CG methodologies

While CG simulations are successful in accessing events
at the microseconds timescale, further assumptions are
needed to study cellular processes at the millisecond
timescale. In Brownian dynamics (BD) simulations,
entire protein or nucleic acid subunits are approximated
as atom-resolved rigid bodies diffusing under the influ-
ence of a mean electrostatic and van der Waals field
created by the surroundings. Given integration time
steps of 10—100 fs and a greatly reduced number of
explicit particles, molecular recognition events are
routinely captured at the millisecond timescale. For
example, we have employed BD simulations to model
the membrane-wide transport of charge carriers across a
crowded chromatophore, revealing how salinity plays a
role controlling the rate of energy conversions [10].

A two-layered coarse-graining was recently introduced
to introduce flexibility in ultra-CG models [18].
These simulations show that nucleosome breathing
favors stochastic folding of chromatin and promotes
compartmentalization of the nucleus by simulta-
neously boosting the transient nature and heteroge-
neity of nucleosome—nucleosome contacts. Thus, by
combining two coarse-grained models, namely a 3-
sites/nucleotide DNA model and an energy model
for proteins, nucleosome folding, and organization is

Current Opinion in Structural Biology 2022, 73:102338
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captured. Analogous to the development of all-atom
force fields, multiple CG models are now becoming
available for tracking distinct physical properties of
the same cellular system, exemplified here by appli-
cation to nucleosomes. Bayesian inferencing offers a
first step in exchanging information between multiple
models. Also, AA simulations still offer an initial
“parts-list” of key interactions that is essential for
subsequent CG and ultra-CG endeavors.

Multi-resolution methodologies

A choice made in CG and ultra-CG schemes is that the
associated energy surfaces are smooth and easy to sample.
Therefore, ruggedness of the "true” free energy surface
that underpins the molecular dynamics of the system will
not be captured. Reverse coarse-graining as a post-facto
refinement is a popular solution to recover the more
detailed underlying molecular physics. Nonetheless, by
leveraging adiabatic scale separations, a number of multi-
resolution MD methodologies have been developed to
model large biological systems [30]. These methods are
especially complicated to parallelize because (i) bound-
aries and coupling between the different levels of reso-
lutions are monitored on-the-fly, (ii) adaptive decision-
making is needed to treat the same moieties at
different resolutions (i.e. on energy surfaces of different
ruggedness) at different timepoints and (iii) despite
larger timesteps, compute nodes engaged at the CG level
wait for completion of the slower high-level tasks, thus
affecting parallel efficiency of the overall computation.
We highlight some recent examples of multi-resolution
MD simulations that will be of relevance to modeling
cell-scale systems in the future.

Multi-resolution simulations have been applied to phase
separation between saturated lipids, unsaturated lipids,
and cholesterol [31]. In these simulations, inhomoge-
neous populations of disordered chains with higher chain
configurational entropy are found to have strong inter-
digitation [32]. Membrane dynamics revealed specifically
by the multi-resolution methods show the multicompo-
nent complexity of bacterial membranes, central to anti-
microbial resistance [33]. The multi-resolution methods
have also started gaining traction in the structure pre-
diction area, particularly for modeling DNA/RNA
aptamers [34] and for rapid protein folding [35]. Recovery
of near-atomic resolution in these simulations allows es-
timates of realistic fluctuations, and consequently
experimentally verifiable rates of association/dissociation
events [34]. Thus, the precise kinetic information that is
accessible in multi-resolution simulations is clearly an
advantage over brute-force CG models.

Practical means of cell-scale molecular modeling

Intuitively speaking, one would assume that performing
AA simulations would be a first step prior to subsequent
coarse-graining, as has been done historically (Review in

Computational microscopy of cells Gupta etal. 7

the study by Saunders et al. [30]). However, this con-
ventional wisdom seems to be less useful for simulating
large systems as equilibration of the model at the atomic
level remains contentious. Presented in Figure 3, an
alternate modeling approach starts at an intermediate
resolution. If the CG force fields are available, these
simulations are useful to overcome diffusive bottlenecks
to obtain well-mixed subsystems. Thereafter, the
equilibrated CG subsystems are stitched together and
back-mapped to complete AA models, using methods
such as dynamically triangulated surface reconstruction
[9]. A practical issue arises during this step. Re-solvation
of closed membrane systems and backmapping of the
CG models to AA representations causes density and
pressure imbalances in MD simulations, creating
unphysical cavities on the membrane—protein in-
terfaces [36]. The most widely used Martini-level script
[37] can go almost seamlessly from Cooke-type lipids (3
beads/lipid) to Martini to atomistic. But in practice the
resulting atomistic systems still have overlapping prob-
lems and are difficult to minimize without manual
intervention. Schemes such as LipidWrapper [38] are
available to simultaneously identify holes across the
system and fill them with membrane fragments to
restore water density and overall pressure of the simu-
lation box. Successful recovery of the whole-system AA
models brings to light the molecular origins of the
diffusive bottlenecks seen at the CG level. Since the AA
models refined from the CG simulations are nearly-
equilibrated, short nanosecond-scale MD simulations
are adequate to construct ultra-CG models (e.g., BD
trajectories) using mean field approximations. Thus,
capitalizing on the CG-guided AA models, the ultra-CG
results can now be scaled up from atomistic details to
spatio-temporal ranges amenable to cell-biology mea-
surements [39].

Dawn of new technologies

The upcoming exascale computers will be able to
perform 108 floating point operations per second, easily
increasing the timescale of the simulations in Table 1 by
at least an order of magnitude, already in 2022. Using
distributed computing on folding@home, exascale per-
formance is already achieved for smaller systems, such as
the SARS-CoV-2 spike protein [40]. By optimizing
memory usage of the nonbonded interactions, billion-
atom simulations of fully connected biological systems
are now feasible [7], and exascale computing will only
boost the timescale of such simulations. Machine
learning tools such as Deep drive MD [41] are well
posited to enrich the statistics gained from the large-
scale simulations. The dimensionality problem of
learning dynamics at the multi-million to billion di-
mensions will be a challenge. However, large matrix
manipulations within @b-initio MD can now be acceler-
ated on tensor cores without compromising floating
point precision [42]. Thus, armed with the graphical
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Figure 3
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Recipe for large system modeling. A workflow of the creation of CG and AA parts-list to be integrated into a cell-scale model using an organizational
blue-prints of (e.g. location, shape, stoichiometry) from experimental datasets.

and tensor processing units that already challenge the
limits set by Moore’s law, and the disruptive simulation
methodologies that have started capturing the cellular
mechanics, we note that at least the million-atom
models will shortly become a norm in the area of mo-
lecular modeling.

Integrative modeling is the future

The atomic models and their equilibrated forms
contribute to the parts list on which the cellular models
are based. Construction of such larger architectures ne-
cessitates additional knowledge of the “blueprint” of the
assembly and conveying this information as part of the AA
or CG simulation field. These blueprints are now
experimentally tractable in varying sparsity: while cryo-
electron tomography and microscopy, and also X-ray
scattering and high-speed atomic force imaging experi-
ments offer information on anywhere between near-
atomic positions to inter-domain conformations up to
shapes, cross-linking experiments offer a distribution of

intra- and inter-macromolecular distances in dynamic
assemblies; optical spectroscopy has been key in deter-
mining protein location and even concentration close to
the cell surface together with mass spectrometry.
Bayesian inferencing tools have emerged that can build
on these meso-to-macroscale experimental data, while
still maintaining detailed balance with the chemical de-
tails derived from AA and CG levels of description [43]. A
key strength of integrative modeling lies in the consensus
interpretation it offers, resolving both uncertainties in
the experimental data as well as sampling inadequacies of
the molecular simulations. Thus, the outcome of such
modeling are data-guided ensembles that visit multiple
metastable states of even large multimeric systems,
where each state is captured by one or more experimental
datasets. Unsurprisingly, methods such as Molecular
Dynamics Flexible Fitting, or maximum entropy-based
conformational sampling approaches such as Modeling
Employing Limited Data [44] and CryoFold [45] are
available across almost all popular MD engines. Another
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class of inferencing scheme, namely Meta-inference [46],
allows constructing such data-guided ensemble models
by also accounting for experimental errors. However,
when using the maximum entropy principle to enforce
agreement between simulation and experiment, one free
parameter is used for each data point. As a consequence,
different chemically equivalent units might be treated
differently. This does not allow the corrections to be
transferred to other molecules, for which new experi-
mental data would be required. Some recent examples
include our determination of molecular dynamics of an
active Ryanodine receptor of size 2.2 MDa [47], molec-
ular modeling of the desmosome complexes to study
bacterial cell adhesion [39], and flagellar motors to study
chemotaxis and microbial locomotion [48]. Recognizing
that cooperative interactions within all these complexes
could have only been determined using data-guided
simulations, we posit that molecular simulations of
even larger cellular systems will heavily depend on
today’s developments in integrative modeling.
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