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Abstract

We present a new sublinear time algorithm for approximating the spectral density (eigenvalue
distribution) of an n × n normalized graph adjacency or Laplacian matrix. The algorithm
recovers the spectrum up to ε accuracy in the Wasserstein-1 distance in O(n · poly(1/ε)) time
given sample access to the graph. This result compliments recent work, which obtains a solution
with runtime independent of n, but exponential in 1/ε [CKSV18]. We conjecture that the trade-
off between dimension dependence and accuracy is inherent.

Our method is simple and works well experimentally. It is based on a Chebyshev polynomial
moment matching method that employees randomized estimators for the matrix trace. We
prove that, for any Hermitian A, this moment matching method returns an ε approximation to
the spectral density using just O(1/ε) matrix-vector products with A. By leveraging stability
properties of the Chebyshev polynomial three-term recurrence, we then prove that the method is
amenable to the use of coarse approximate matrix-vector products. Our sublinear time algorithm
follows from combining this result with a novel sampling algorithm for approximating matrix-
vector products with a normalized graph adjacency matrix.

Of independent interest, we show a similar result for the widely used kernel polynomial
method (KPM), proving that this practical algorithm nearly matches the theoretical guarantees
of our moment matching method. Our analysis uses tools from Jackson’s seminal work on
approximation with positive polynomial kernels [Jac12].

1 Introduction

A ubiquitous task in computational science, engineering, and data science is to extract information
about the eigenvalue spectrum of a matrix A ∈ Rn×n. A full eigendecomposition takes at least
O(nω) time1, which is prohibitively expensive for large matrices [Par98, BVKS19]. So, we are
typically interested in extracting partial information about the spectrum. This can be done using
iterative methods like the power or Lanczos methods, which access A via a small number of matrix-
vector multiplications. Each multiplication takes at most O(n2) time to compute, and can be
accelerated when A is sparse or structured, leading to fast algorithms.

However, the partial spectral information computed by most iterative methods is limited. Algo-
rithms typically only obtain accurate approximations to the outlying, or largest magnitude eigenval-
ues of A, missing information about the interior of A’s spectrum that may be critical in applications.

1Here ω < 2.373 is the fast matrix multiplication exponent.
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For example, in network science, clusters of interior eigenvalues can indicate graph structures like
repeated motifs [DBB19]. In deep learning, information on how the spectrum of a weight matrix
differs from its random initialization can give hints about model convergence and generalization
[PSG18, MM19], and Hessian eigenvalues are useful in optimization [GKX19]. Coarse information
about interior eigenvalues is also used to initialize parallel GPU based methods for full eigende-
composition [AKS17, LXES19].

To address these needs and many other applications, there has been substantial interest in methods
for estimating the full spectral density of a matrix A [WWAF06]. Concretely, assume that A is
Hermitian with real eigenvalues λ1, . . . , λn. We view its spectrum as a probability density s:

Spectral density: s(x) =
1

n

n∑
i=1

δ(x− λi). (1)

Here δ is the Dirac delta function. The goal is to find a probability density q that approximates
s in some natural metric, like the Wasserstein distance. The density q can either be continuous
(represented in some closed form) or discrete (represented as a list of approximate eigenvalues
λ̃1, . . . , λ̃n). See Figure 1 for an illustration. Both sorts of approximation are useful in applications.

Figure 1: Different approximations for the spectrum of a matrix A with eigenvalues in [−1, 1]. A
typical approximation computed using an iterative eigenvalue algorithm mostly preserves informa-
tion about the largest magnitude eigenvalues. In contrast, the spectral density estimates in the
two right figures coarsely approximate the entire distribution of A’s eigenvalues, the first with a
low-degree polynomial, and the second with a discrete distribution.

Methods for spectral density estimation that run in o(nω) time were first introduced for applications
in condensed matter physics and quantum chemistry [Ski89, SR94, Wan94]. Many are based on
the combination of two important tools: 1) moment matching, and 2) stochastic trace estimation.
Specifically, if we had access to moments of the distribution s, i.e. 1

n

∑n
i=1 λi,

1
n

∑n
i=1 λ

2
i ,

1
n

∑n
i=1 λ

3
i ,

etc., then we could find a good approximation q by finding a distribution that agrees with s on
these moments. Moreover, these spectral moments can be computed via the matrix trace: note
that tr(A) =

∑n
i=1 λi, tr(A2) =

∑n
i=1 λ

2
i , tr(A3) =

∑n
i=1 λ

3
i , etc. While we cannot hope to compute

tr(Ak) exactly in o(nω) time, thanks to stochastic trace estimators like Hutchinson’s method, this
trace can be approximated much more quickly [Hut90, AT11]. Such estimators are based on the
observation that, for any matrix B ∈ Rn×n, tr(B) can be well approximated by tr(GTBG) where
G ∈ Rn×m contains random sub-Gaussian entries and m � n. For any k degree polynomial
g, GT g(A)G can be computed with just O(km) matrix-vector multiplications, so we can quickly
approximate any low-degree moment of A’s spectral density.

While this high-level approach and related techniques have been applied successfully to estimating
the spectra of a wide variety of matrices [WWAF06, LSY16], theoretical guarantees have only
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appeared relatively recently. Perhaps surprisingly, it can be shown that many common methods
provably run in linear time for any Hermitian matrix A. For instance, in work concurrent to
ours, Chen, Trogdan, and Ubaru [CTU21] show that for any n × n Hermitian matrix A with
spectral density s, the popular Stochastic Lanczos Quadrature (SLQ) method provably computes
an approximate spectral density q satisfying:

W1(s, q) ≤ ε (2)

using just poly(1/ε) matrix-vector multiplications with A. Above W1 denotes the Wasserstein-
1 distance, aka the “earth-movers distance”.2 We defer a formal definition of W1 to Section 2.
The measure is convenient because, unlike many other measures of statistical distance, it allows a
discrete distribution like the spectral density to be meaningfully compared to a possibly continuous
approximation. For discrete approximations, the Wasserstein distance is related to a simple `1
metric. If we let Λ = [λ1, . . . , λn] be a vector of A’s eigenvalues and Λ̃ = [λ̃1, . . . , λ̃n] be a vector of
approximate eigenvalues, then ‖Λ − Λ̃‖1 ≤ nε if and only if W1(s, q) ≤ ε for the discrete spectral
density q with eigenvalues in Λ̃.

As a step towards our main sublinear time result, in this work we show that similar bounds to
[CTU21] can also be proven for the popular kernel polynomial method (KPM) [WWAF06] and for
a natural moment matching algorithm based on Chebyshev polynomials.

1.1 Our contributions

With linear time spectral density estimation algorithms in hand for all Hermitian matrices, a natural
question is if we can go faster for specific classes of matrices. In particular, there has been growing
interest in SDE algorithms for graph structured matrices like adjacency matrices and Laplacians
[DBB19]. A remarkable recent result by Cohen et al. [CKSV18] shows that, for normalized graph
adajeceny matrices, it is possible to achieve guarantee (2) in 2O(1/ε) time, given appropriate query
access to the target graph. Importantly, this runtime does not depend on n. However, given the
exponential dependence on ε, the algorithm is impractical even for coarse spectral approximations.

Our main contribution is a method that obtains a polynomial dependence on ε, at the cost of a
linear dependence on the matrix dimension n. Since A can have n2 non-zero entries, the runtime
is still sublinear in the problem size, but with a much more acceptable dependence on accuracy.

Theorem 1.1 (Sublinear time spectral density estimation for graphs.). Let G = (V,E) be an
unweighted, undirected n-vertex graph and let A ∈ Rn×n be the normalized adjacency of G with
spectral density s. Let ε, δ ∈ (0, 1) be fixed values. Assume that we can 1) uniformly sample a
random vertex in constant time, 2) uniformly sample a random neighbor of any vertex i ∈ V in
constant time, and 3) for a vertex i with degree di, read off all neighbors in O(di) time.3 Then
there is a randomized algorithm with expected running time O(n poly(log(1/δ)/ε)) which outputs a
density function q : [−1, 1]→ R+ such that W1(q, s) ≤ ε with probability at least 1− δ.

Note that the normalized graph Laplacian L = I − A has the same eigenvalues as A up to a shift

2We assume ‖A‖2 ≤ 1 for simplicity of stating errror guarantees, noting that Wasserstein distance is not scale
invariant. This assumption is without loss of generality since ‖A‖2 can always be scaled after computing the top
eigenvector up to constant fact accuracy, which takes just O(log n) matrix-vector multiplications [MM15].

3A standard adjacency list representation of the graph would support these operations. As discussed in Section
5, assumption (3) can be eliminated at the cost of an extra log n in the runtime as long as we know vertex degrees.
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and reflection, so Theorem 1.1 also yields a sublinear time result for normalized Laplacians, whose
spectral densities are of interest in network science [DBB19].

Robust spectral density estimation

Theorem 1.1 is proven in Section 5. A key component of the result is a sublinear time routine
for computing coarse approximate matrix-vector products with any normalized graph adjacency
matrix. To make use of such a routine, we need to develop an SDE algorithm that is robust to the
use of an approximate matrix-vector oracle. This is one of the main contributions of our work, as
previous methods assume exact matrix-vector products. Formally, we assume access to the oracle:

Definition 1.2. An εMV-approximate matrix-vector multiplication oracle for A ∈ Rn×n and error
parameter εMV ∈ (0, 1) is an algorithm that, given any vector y ∈ Rn, outputs a vector z such that
‖z −Ay‖2 ≤ εMV ‖A‖2‖y‖2. We will denote a call to such an oracle for by AMV(A, y, εMV).

In Section 4.2 we prove the following for any Hermitian matrix A (e.g., real symmetric) under the
assumption that ‖A‖2 ≤ 1, i.e., that A’s eigenvalues lie in [−1, 1]:

Theorem 1.3 (Robust spectral density estimation). Let A ∈ Rn×n be a Hermitian matrix with
spectral density s and ‖A‖2 ≤ 1. Let C,C ′, C ′′ be fixed positive constants. For any ε, δ ∈ (0, 1) and
εMV = C ′′ε−3 ln(1/ε), there is an algorithm (Algorithm 1, with Algorithm 3 used as a subroutine
to approximate moments) which makes T = C`/ε calls to an εMV-approximate matrix-vector oracle

for A, where ` = max
(

1, C′

n ε
−2 log2( 1

εδ ) log2(1
ε )
)

, and in poly(1/ε) additional runtime, outputs a

probability density function q : [−1, 1]→ R≥0 such that W1(s, q) ≤ ε with probability 1− δ.

The requirement for the approximate matrix-vector oracle in Theorem 1.3 is relatively weak: we only
need accuracy εMV that is polynomial in the final accuracy ε. Importantly, there is no dependence
on 1/n, which allows for the theorem to be combined with coarse AMV methods, including the one
developed in Section 5 for normalized adjacency matrices. Based on random sampling, that method
returns an ε-approximate matrix-vector multiply in O(n/ε2) time. This immediately yields our
result for graphs given by Theorem 1.1. We hope that Theorem 1.3 will find broader applications,
since spectral density estimation is often applied to matrices where we only have inexact access
to A. For example, A might be a Hessian matrix that we can multiply by approximately using
stochastic approximation [Pea94, YGKM20], or the inverse of some other matrix, which we can
multiply by approximately using an iterative solver.

We note that the result in Theorem 1.3 actually improves as n increases. Intuitively, when A is
larger, each matrix-vector product returns more information about the spectral density s, so we
can estimate it more easily. We also remark that the density function q returned by Algorithm 1
is in the form of an O(1/ε3) dimensional vector, with the i-th entry corresponding to probability
mass placed on the i-th point of an evenly spaced grid on [−1, 1]. Alternatively, a simple rounding
scheme that runs in O(n+ poly(1/ε)) time can extract from q a vector of approximate eigenvalues
Λ̃ = [λ̃1, . . . , λ̃n] satisfying ‖Λ − Λ̃‖1 ≤ nε, which, as discussed, is ε close to the spectral density s
in Wasserstein distance (see Theorem B.1).

Our approach for density estimation is based on a moment matching method that approximates
Chebyshev polynomial moments instead of the standard moments. I.e. we approximate tr(T0(A)),
. . ., tr(TN (A)) where T0, . . . , TN are the Chebyshev polynomials of the first kind and then return a
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distribution whose Chebyshev moments closely match our approximations. By leveraging Jackson’s
theorem on polynomial approximation of Lipschitz functions [Jac30], we show how to bound the
Wasserstein distance between two distributions in terms of the magnitude of the differences between
their first N = O(1/ε) Chebyshev moments (see Lemma 3.1). Unlike results for standard moments
[KV17], the bound shows a near-linear relationship between Wasserstein distance and difference in
the Chebyshev moments. Ultimately this allows us to obtain a polynomial dependence on ε in the
number of approximate matrix-vector multiplications needed in Theorem 1.3.

Along the way to proving that theorem, in Section 4.1 we first establish the follow result that is
compatible with exact matrix-vector multiplications:

Theorem 1.4 (Linear time spectral density estimation). Let A ∈ Rn×n be a Hermitian matrix with
spectral density s and ‖A‖2 ≤ 1. Let C,C ′ be fixed positive constants. For any ε, δ ∈ (0, 1), there
is an algorithm (Algorithm 1, with Algorithm 2 used as a subroutine to approximate moments) which

computes T = C`/ε matrix-vector multiplications with A where ` = max
(

1, C′

n ε
−2 log2( 1

εδ ) log2(1
ε )
)

,

and in poly(1/ε) additional runtime, outputs a probability density function q : [−1, 1] → R≥0 such
that W1(s, q) ≤ ε with probability 1− δ.

As in Theorem 1.3, the theorem improves as n increases, requiring just T = O(1/ε) matrix vector
multiplies when n = Ω(1/ε2). The runtime of Theorem 1.4 is dominated by the cost of the matrix-
vector multiplications, which take O(T ·n2) time to compute for a dense matrix, and O(T ·nnz(A))
time for a sparse matrix with nnz(A) non-zero entries, so the algorithm runs in linear time when
ε, δ are considered constant.

Given Theorem 1.4, we prove Theorem 1.3 by showing that the error introduced by approximate
matrix-vector multiplications does not hinder our ability to estimate the Chebyshev polynomial
moments. We do so by drawing on stability results for the three-term recurrence relation defining
these polynomials [Cle55, MMS18].

Remark. The number of matrix-vector multiplies N` = N ·max(1, C
′

n ε
−2 log2( 1

εδ ) log2(1
ε )) in The-

orems 1.3 and 1.4 can be improved by up to a log2(1/ε) factor in the regime when n is small,
specifically n ≤ C ′ε−2 log2(1/(εδ)). This is discussed further in Section 4.

Spectral density estimation via the kernel polynomial method

In addition to the Chebyshev moment matching method used to give Theorem 1.4 and Theorem
1.3, we prove that a version of the popular kernel polynomial method (KPM) can be used to obtain
a spectral density estimate with similar running times, albeit with slightly worse dependence on
the accuracy parameter ε.4 Along with the Stochastic Lanczos Quadrature method, the kernel
polynomial method is one of two dominant spectrum estimation algorithms used in practice.

Given sufficiently accurate approximations to the Chebyshev polynomial moments, the KPM
method outputs a density function q in the form of a O(1/ε) degree polynomial multiplied by
a simple closed form function. This is described in Algorithm 6 in Section A.2 and should be
thought of as analagous to Algorithm 1. Specifically, we can obtain Theorem 1.4 and Theorem 1.3

4We believe that the extra O(ε−2) factor in the number of matrix-vector multiplications (or calls to an approximate
matrix-vector oracle in the robust setting) may be an artifact of our analysis and can be further improved to match
the approximate Chebyshev moment matching bounds.
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with ` = max(1, C′

n ε
−4 log2( 1

εδ )) and εMV = C ′′ε−4 (in the robust setting), by using Algorithm 6
instead of Algorithm 1. Our proof in the KPM case is again based on Jackson’s work on polyno-
mial approximations for Lipschitz functions: we take advantage of the fact that Jackson constructs
approximations that are both linear and preserve positivity [Jac12].

1.2 Related work

As mentioned, most closely related to our sublinear time result on graphs is the result of Cohen et
al. [CKSV18]. They prove a result which matches the guarantee of Theorem 1.1, but with runtime
of 2O(1/ε) – i.e., with no dependence on n. In comparison, our result depends linearly on n, but
only polynomially on 1/ε. An interesting open question is if a poly(1/ε) time algorithm is possible
but we conjecture that the trade-off between the dependence on n and the accuracy ε is inherent.
Our bound in Lemma 3.1 on the Wasserstein-1 distance between two distributions can be seen as
analagous to Proposition 1 from [KV17], which is the basis of the result in [CKSV18]. They bound
the Wasserstein-1 distance between two distributions in terms of the differences in the standard
moments of the distributions. The bound requires an exponentially small dependence on 1/ε, i.e.
2−O(1/ε), in the difference between the standard moments while the bound from Lemma 3.1 only
requires an O(ε/ ln(1/ε)) difference in the Chebyshev moments.

As discussed, algorithms for spectral density estimation have been studied since the early 90s [Ski89,
SR94, Wan94] but only analyzed recently. In addition to the work of Chen, Trogdon, and Ubaru that
was discussed [CTU21], [MNS+18] provides an algorithm for computing an approximate histogram
for the spectrum of matrix. That result can be shown to yield an ε error approximation to the
spectral density in the Wasserstein-1 distance with roughly O(1/ε5) matrix-vector multiplications.
This compares to the improved O(1/ε) matrix-vector multiplications required by our Theorem 1.4.

Matrix-vector query algorithms. Our work fits into a broader line of work on proving upper
and lower bounds on the matrix-vector query complexity of linear algebraic problems, from top
eigenvector, to matrix inversion, to rank estimation [SWYZ19, SEAR18, BHSW20, MMMW20,
DM21]. The goal in this model is to minimize the total number of matrix-vector multiplications
with A, recognizing that such multiplications either 1) dominate runtime cost or 2) are the only
way to access A when it is an implicit matrix. The matrix-vector query model generalizes both
classical Krylov subspace methods, as well as randomized sketching methods [Woo14]. Studying
other basic linear algebra problem when matrix-vector multiplication queries are only assumed to
be approximate (as in Definition 1.2) is an interesting future direction.

1.3 Paper Roadmap

We describe notation and preliminaries on polynomial approximation in Section 2. We use these
tools in Section 3 to prove that a good approximation to the first O(1/ε) Chebyshev polynomial
moments of the spectral density can be used to extract a good approximation in Wasserstein-1
distance. This result is the basis for our result on robust spectral density estimation stated in
Theorem 1.4 and linear time spectral density estimation stated in Theorem 1.3, which are proven
in Section 4. Finally, we give a randomized algorithm to implement an approximate matrix-vector
multplication oracle for adjacency matrices in Section 5 and prove our main result, Theorem 1.1. In
Section A we describe and analyze the kernel polynomial method, showing that it too can be used to
obtain a spectral density estimate given approximations to the first O(1/ε) Chebyshev polynomial
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moments. In Section 6, we empirically investigate the potential of combining approximate matrix-
vector multiplications with our moment matching method, the kernel polynomial method, and the
stochastic Lanczos quadrature method studied in [CTU21]. We show that all three can achieve
accurate SDE estimates in sublinear time for a variety of graph Laplacians.

2 Preliminaries

Throughout we assume that A ∈ Rn×n is Hermitian with eigendecomposition A = UΛU∗, where
UU∗ = U∗U = In×n. We assume that A’s eigenvalues satisfy −1 ≤ λn ≤ · · · ≤ λ1 ≤ 1. In many
applications A is real symmetric. We denote A’s spectral density by s, which is defined in (1).
Our goal is to approximate s in the Wasserstein-1 metric with another distribution q supported
on [−1, 1]. Specifically, as per the dual formulation given by the Kantorovich-Rubinstein theorem
[KR57], for s, q supported on [−1, 1] the metric is equal to:

W1(s, q) = sup
f :R→R

|f(x)−f(y)|≤|x−y| ∀x,y

{∫ 1

−1
f(x)

(
s(x)− q(x)

)
dx

}
. (3)

In words, s and q are close in Wasserstein-1 distance if their difference has small inner product
with all 1-Lipschitz functions f . Alternatively, W1(s, q) is equal to the cost of “changing” one
distribution to another, where the cost of moving one unit of mass from x to y is |x − y|: this
is the “earthmover’s” formulation common in computer science. Note that (3) can be applied to
arbitrary functions s, q, even if they are not distributions, and we will occasionally do so.

Functions and inner products. We introduce notation for functions used throughout the paper.
Let F([−1, 1],R) denote the space of real-valued functions on [−1, 1]. For g, h ∈ F([−1, 1],R), let
〈g, h〉 denote 〈g, h〉 :=

∫ 1
−1 g(x)h(x)dx. For f ∈ F([−1, 1],R), we define ‖f‖2 :=

√
〈f, f〉 and let

‖f‖∞ denote the max-norm ‖f‖∞ = maxx∈[−1,1] |f(x)|. We let ‖f‖1 denote ‖f‖1 =
∫ 1
−1 |f(x)|dx.

Let F(Z,R) be the space of real-valued functions on the integers, Z. For f, g ∈ F(Z,R) let (f ∗ g)
denote the discrete convolution: (f ∗ g)[n] =

∑∞
m=−∞ f [m]g[n −m]. Let F(N,R) be the space of

real-valued functions on the natural numbers, N. For functions in F(Z,R) or F(N,R) we typically
used square brackets instead of parentheses.

For two functions f, g let h = fg (or h = f · g) and j = f/g denote the pointwise product and
quotient respectively. I.e. h(x) = f(x)g(x) and j(x) = f(x)/g(x) for all x.

Chebyshev polynomials. Our approach is based on approximating Chebyshev polynomial mo-
ments of A’s spectral density, and we will use basic properties of these polynomials, the kth of which
we denote Tk. The Chebyshev polynomial of the first kind can be defined via the recurrence:

T0(x) = 1 T1(x) = x

Tk(x) = 2x · Tk−1(x)− Tk−2(x) for k ≥ 2.

We will use the well known fact that the Chebyshev polynomials of the first kind are bounded
between [−1, 1], i.e. maxx∈[−1,1] |Tk(x)| ≤ 1.
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Let w(x) := 1√
1−x2 . It is well known that 〈T0, w · T0〉 = π, 〈Tk, w · Tk〉 = π/2 for k > 0, and

〈Ti, w · Tj〉 = 0 for i 6= j.

In other words, the Chebyshev polynomials are orthogonal on [−1, 1] under the weight function w.
The first k Chebyshev polynomials form an orthogonal basis for the degree k polynomials under this
weight function. We let T̄k denote the normalized Chebyshev polynomial T̄k := Tk/

√
〈Tk, w · Tk〉.

Definition 2.1 (Chebyshev Series). The Chebyshev expansion or series for a function f ∈ F([−1, 1],R)
is given by

∞∑
k=0

〈f, w · T̄k〉 · T̄k.

We call
∑N

k=0〈f, w · T̄k〉 · T̄k the truncated Chebyshev expansion or series of degree N .

Other notation. Let [n] denote 1, . . . , n. For a scalar function f : R → R and n × n matrix A
with eigendecomposition UΛU∗ , we let f(A) denote the matrix function Uf(Λ)U∗. Here f(Λ) is
understood to mean f applied entrywise to the diagonal matrix Λ containing A’s eigenvalues. Note
that tr(f(A)) =

∑n
i=1 f(λi). When f(x) is a degree q polynomial, c0 + c1x+ . . . , cqx

q, then we can
check that f(A) exactly equals c0I + c1A + . . . , cqA

q, where I is then n × n identity matrix. So
f(A)y can be computed for any vector y using q matrix-vector multiplications with A.

3 Approximate Chebyshev Moment Matching

In this section we show that the spectral density s of a Hermitian matrix A with eigenvalues in
[−1, 1] can be well approximated given access to approximations of the first N = O(1/ε) normalized
Chebyshev polynomial moments of s, i.e., to approximations of tr(T̄1(A)), . . . , tr(T̄N (A)). We state
our result in Algorithm 1 and analyze it in Section 3.1. We show later, in Section 4, a method to
approximate these moments using a stochastic trace estimator, implemented with either exact or
approximate matrix vector multiplications with A.

Given approximations τ̃1, . . . , τ̃N to the first N normalized Chebyshev moments of A, a natural ap-
proach is to find a probability density q : [−1, 1]→ R+ such that the first N normalized Chebyshev
moments of q, i.e., 〈T̄1, q〉, . . . , 〈T̄N , q〉, closely approximate τ̃1, . . . , τ̃N . In order for this approximate
moment matching approach to return a good spectral density estimate, it requires that: for any
density function q, if the first N Chebyshev moments of q closely approximate those of s, then q
must be close to s in Wasserstein distance. To that end, we prove the following lemma:

Lemma 3.1. Let N ∈ 4N+ be a degree parameter and p, q be distributions on [−1, 1].

W1(p, q) ≤ 36

N
+ 2

N∑
k=1

|〈T̄k, p〉 − 〈T̄k, q〉|
k

.

Lemma 3.1 shows that if the first N normalized Chebyshev moments of two distributions are identi-
cal, then the Wasserstein distance between the distributions is at most O(1/N). When the moments
between the distributions differ, the contribution of the difference between the k-th moments to
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the Wasserstein distance is scaled by O(1/k). In particular, the lemma shows that deviation in the
lower moments between distributions contributes more to the Wasserstein distance.

To prove Lemma 3.1, we will use two well-known results on approximating Lipschitz functions
by polynomials. The first is proven in [Jac30]. and concerns uniform approximation of Lipschitz
continuous functions by a Chebyshev series:

Fact 3.2. Let f ∈ F([−1, 1],R) be a Lipschitz continuous function with Lipschitz constant λ > 0.
Then, for every N ∈ 4N+, there exists N + 1 constants b̂N [0] > · · · > b̂N [N ] ≥ 0 such that the

polynomial f̄N =
∑N

k=0
b̂N [k]

b̂N [0]
〈f, w · T̄k〉T̄k has the property that maxx∈[−1,1] |f(x)− f̄N (x)| ≤ 18λ/N.

The coefficients of the polynomial in Fact 3.2 are not explicitly stated since we only require the
existence of such a polynomial in order to prove Lemma 3.1. We defer the reader to Appendix A.1
for an explicit construction of the polynomial5 and Appendix C.6 for a proof of Fact 3.2.

Next, we state a well-known fact that the magnitude of the inner-product of a Lipschitz function
f with the k-th Chebyshev polynomial (for k ≥ 1) under the Chebyshev weight function w =
1/
√

1− x2 is bounded by O(1/k), i.e., |〈f, w · T̄k〉| ≤ O(1/k). Our proof is given in Appendix E
and is a simple adaptation of the proof of Theorem 4.2 in [Tre08].

Fact 3.3. Let f ∈ F([−1, 1],R) be a Lipschitz continuous function with Lipschitz constant λ > 0.
Then, for any k ≥ 1, we have that |〈f, w · T̄k〉| = |

∫ 1
−1 f(x)T̄k(x)w(x)dx| ≤ 2λ/k.

With Fact 3.2 and 3.3 in place, we are now ready to prove Lemma 3.1

Proof of Lemma 3.1. Recall that the dual formulation of the Wasserstein-1 distance due to Kantorovich-
Rubinstein gives us that W1(p, q) = supf∈lip1

∫ 1
−1 f(x)(p(x)− q(x))dx where lip1 denotes the set of

1-Lipschitz functions on [−1, 1]. Let f ∈ lip1 be an arbitrary 1-Lipschitz function and let {b̂N [k]}Nk=0

and f̄N be the coefficients and polynomial respectively from Fact 3.2 for function f . We can then
bound W1(p, q) using the triangle inquality as

W1(p, q) ≤
∫ 1

−1
|f(x)− f̄N (x)|(p(x)− q(x))dx︸ ︷︷ ︸

t1

+

∫ 1

−1
f̄N (p(x)− q(x))dx︸ ︷︷ ︸

t2

.

Using the fact that f is Lipschitz and the bound from Fact 3.2, along with the fact that p and q
are distributions, we have that t1 ≤ 36/N .

It is left to bound t2. We expand t2 using the Chebyshev series expansion of f̄N and note that
〈g/w,w · T̄k〉 = 〈g, T̄k〉 for any function g ∈ F([−1, 1],R), giving us

t2 =

∫ 1

−1
f̄N (x)w(x) · p(x)− q(x)

w(x)
dx =

∫ 1

−1
f̄N (x)w(x) ·

∞∑
k=0

〈p− q, T̄k〉T̄k(x)dx

=

∫ 1

−1

w(x)

N∑
k=0

b̂N [k]

b̂N [0]
〈f, w · T̄k〉T̄k(x)

 ∞∑
k=0

〈p− q, T̄k〉T̄k(x)

 dx.

5The construction of the polynomial f̄N in Fact 3.2 and its uniform approximation to f forms the basis of our
alternate approach, the Kernel Polynomial Method, which is discussed in-depth in Appendix A.1.
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By the orthogonality of the Chebyshev polynomials under the weight function w and the fact that
〈T̄k, T̄k〉 = 1 for all k ∈ [N ], we can bound the magnitude of t2 as

|t2| ≤
N∑
k=1

|〈f, w · T̄k〉| · |〈T̄k, p〉 − 〈T̄k, q〉|

since we have that 0 ≤ b̂N [k]/b̂N [0] ≤ 1 and |
∫ 1
−1 T̄k(p(x) − q(x))dx| = |〈T̄k, p〉 − 〈T̄k, q〉| for each

k ∈ [N ]. Additionally, since p and q are distributions we have that 〈T̄0, s〉 = 〈T̄0, z〉 = 1/
√
π. We

then use the bound from Fact 3.3 on |〈f, w · T̄k〉| for each k ∈ [N ]. Putting this together gives us
that |t2| ≤

∑N
k=1 2|〈T̄k, p〉 − 〈T̄k, q〉|/k.

Putting together the bound on t1 and t2 gives us the bound on W1(p, q).

3.1 Moment Matching Algorithm

With Lemma 3.1 in place, our next step is develop a method to find a distribution q with Chebyshev
moments closely matching a given set of target moments. In order to search for a distribution, we
consider an evenly-spaced grid of the interval [−1, 1]. Specifically, let d ∈ N+ be a discretization
parameter and let Xd = [−1,−1 + 2

d , . . . , 1 − 2
d , 1] be a (d + 1)-length evenly-spaced grid of the

interval [−1, 1]. Our goal is to output a distribution supported on Xd for an appropriately chosen
value of d. Any such distribution can be described by a vector in Rd≥0 such that the i-th entry
corresponds to the probability mass placed at point −1 + 2i/d on the grid. Where it is clear from
the context, we will denote the distribution and its probability mass vector interchangeably.

In order to compute the first N normalized Chebyshev moments of functions on the grid Xd, we
define two matrices T dN , T̂ dN ∈ RN×d such that for k ∈ [N ] and i ∈ [d],

(T dN )k,i = T̄k(−1 + 2i/d) and (T̂ dN )k,i =
T̄k(−1 + 2id)

k
.

The matrix T dN corresponds to a “discretization” of the continuous operator that computes the
first N normalized Chebyshev moments of a continuous function on [−1, 1]. In particular, for a
distribution q supported on Xd, we have that 〈q, T̄k〉 =

∑d
i=0 qiT̄k(−1 + 2i/d) = (T dNq)k. Notice

that the matrix T dN does not contain the row for T̄0; since we are working with distributions we

know that T̄0(q) = 1/
√
π ·
∫ 1
−1 qdx = 1/

√
π for any distribution q on [−1, 1]. The matrix T̂ dN is the

matrix T dN with the k-th row scaled by 1/k. With this notation in place, we state the approximate
moment matching algorithm in full in Algorithm 1.

Algorithm 1 Approximate Chebyshev Moment Matching

Input: Symmetric A ∈ Rn×n, degree parameter N ∈ 4N+, algorithmM(A) that computes moment
approximations τ̃1, . . . , τ̃N with the guarantee that |τ̃k − 1

n tr(T̄k(A))| ≤ (N ln(eN))−1 for all k.
Output: A vector q corresponding to a discrete density function on [−1, 1].

1: For k = 1, . . . , N use M to compute τ̃1, . . . , τ̃N and set z = [τ̃1/1, τ̃2/2, . . . , τ̃N/N ].
2: Set d = dN3/2e and compute matrix T̂ dN ∈ RN×d. . (T̂ dN )k,i = T̄k(−1 + 2i

d )/k.

3: Minimize ‖T̂ dNq − z‖1 subject to q>~1 = 1 and q ≥ 0.
4: Return q.
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Note that the optimization problem in Line 3 of Algorithm 1 can easily be written as a linear
program in O(d+N) variables and constraints and hence can be solved efficiently in poly(N, d) =
poly(1/ε) time6. Since this method is independent of the matrix dimension n, it is a lower order
term in the running time stated in Theorems 1.4 and 1.3, as we will discuss in Section 4.

We show that when N = O(1/ε), Algorithm 1 returns a distribution satisfying W (s, q) ≤ ε.

Lemma 3.4. Let ε ∈ [0, 1] and let N ≥ 18/ε. Then the distribution q : [−1, 1] → R+ returned by
Algorithm 1 satisfies W1(q, s) ≤ 3ε.

Proof. We start by giving some notation – for a distribution y : [−1, 1] → R+, we denote ~τy :=
[〈T̄1, y〉, . . . , 〈T̄N , y〉] to be the vector of the first N normalized Chebyshev moments of y. For an
integer k ∈ N+, we denote ~k to be the vector in Rk given by ~k := [1, . . . , k] and for a vector y ∈ Rk
write y/~k to denote the vector y/~k := [y1/1, . . . , yk/k]. Notice then that we have ~τq = T dNq and

~τq/ ~N = T̂ dNq.

We start by bounding the scaled differences in the first N normalized Chebyshev moments of q and
s in order to use Lemma 3.1 on q and s.

‖~τq/ ~N − ~τs/ ~N‖1 ≤ ‖~τq/ ~N − z‖1 + ‖z − ~τs/ ~N‖1 ≤ ‖~τq/ ~N − z‖1 +
1

N
. (4)

The first inequality follows by applying the triangle inequality and in the second inequality we used
the fact that ‖z − ~τs/ ~N‖1 =

∑N
k=1 |τ̃k − (~τs)k|/k ≤ Hn · (N ln(eN))−1 ≤ 1/N .

Next we show that there exists a distribution q′ supported on Xd such that ‖~τq′/ ~N − z‖ ≤ 1/N .
To this end, consider the following distribution q∗ on Xd:

q∗(x) =
1

n

n∑
i=1

δ(x− argmin
p∈Xd

|p− λi|).

In words, q∗ is the distribution corresponding to moving the mass from each λi to its nearest point
on the grid Xd. Notice that we have W1(s, q∗) ≤ 1/d due to the earthmover distance interpretation
of the Wasserstein-1 distance.

Applying the triangle inequality and the guarantee from the moment approximations, we get that
‖~τq∗/ ~N − z‖1 ≤ 1/N + ‖~τq∗/ ~N − ~τs/ ~N‖1. It is left then to bound ‖~τq∗/ ~N − ~τs/ ~N‖1. To this end,
we state the following well-known fact about the derivatives of Chebyshev polynomials.

Fact 3.5. For k ≥ 1, dTk(x)
dx = kUk−1(x).

We then have using the definition of q∗ that, for any 1 ≤ k ≤ N ,

|〈T̄k, s〉 − 〈T̄k, q∗〉| =

∣∣∣∣∣∣ 1n
n∑
i=1

T̄k(λi)− T̄k(argmin
p∈Xd

|p− λi|)

∣∣∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣∣∣T̄k(λi)− T̄k(argmin
p∈Xd

|p− λi|)
∣∣∣∣∣

6Additionally, note that the optimization problem has a convex objective and constraints – in particular, the set
of distributions supported on Xd is a convex set. The objective function ‖T̂ d

Nq − z‖1 is not differentiable, but has
subgradients. Hence, this program can be solved efficiently in poly(1/ε) time using a projected subgradient method.
This requires an oracle that projects onto the the probability simplex supported on the grid Xd – an algorithm that
runs in O(d log d) time has been given in multiple papers, see [WCP13] for more details.

11



≤
√

2

n
√
π

n∑
i=1

max
x∈[−1,1]

∣∣∣∣dTk(x)

dx

∣∣∣∣ · |λi − argmin
p∈Xd

|p− λi|| ≤
√

2k2

d
√
π

where in the last inequality we used the fact that maxx∈[−1,1] |Uk−1(x)| ≤ k. It follows then that

‖~τq∗/ ~N − ~τs/ ~N‖1 =

N∑
k=1

|(~τq∗)k − (~τs)k|
k

≤ N(N + 1)

d
√

2π
≤ 1

N

by taking the sum over all k and noting that d ≥ N3/2. Putting these bounds together gives us
that ‖~τq∗/ ~N − z‖1 ≤ 2/N .

Since ‖~τq/ ~N − z‖1 ≤ ‖~τq∗/ ~N − z‖1 from Line 3 of Algorithm 1, we plug this into (4) to get that

‖~τq/ ~N − ~τs/ ~N‖1 ≤ 3/N . We can then use Lemma 3.1 with distributions q and s along with the

fact that ‖~τq/ ~N −~τs/ ~N‖1 =
∑N

k=1 |(~τs)k− (~τq)k|/k ≤ 3/N to give us the result since N > 18/ε.

Remark. Note that Algorithm 1 can easily be adapted when the minimization problem in Line
3 is solved approximately – as is the case if projected subgradient descent methods are used. In
particular, a constant factor approximation to the minimal loss increases the Wasserstein distance
bound in Lemma 3.4 by an O(1) factor.

4 Efficient Chebyshev Moment Approximation

With Lemma 3.4 in place, we are ready to prove our main results. To do so, we need to show how
to efficiently approximate the first N Chebyshev moments of a matrix A’s spectral density s, as
required by Algorithm 1. Recall that the kth normalized Chebyshev moment of s is equal to 〈s, T̄k〉 =
1
n tr(T̄k(A)). We will prove that this trace can be approximated using Hutchinson’s stochastic trace
estimator, implemented with either exact or approximate matrix-vector multiplications with A.

This estimator requires repeatedly computing T̄k(A)g for a random vector g, which is done using
the standard three-term (forward) recurrence for the Chebyshev polynomials and requires a total of
k matrix-vector multiplications with A. We analyze the basic approach in Section 4.1, which yields
Theorem 1.4. Then in Section 4.2, we argue that the approach is stable even when implemented
with approximate matrix-vector multiplication, which yields Theorem 1.3.

4.1 Exact Matrix-Vector Multiplications

Hutchinson’s estimator is a widely used estimator to efficiently compute accurate estimates of tr(R)
for any square matrix R ∈ Rn×n. Each instance of the estimator computes the quadratic form g>Rg
for a random vector g ∈ {−1, 1}n whose entries are Rademacher random variables. This an unbiased
estimator for tr(R) with variance ≤ 2‖R‖2F , and its error has been analyzed in several earlier results
[AT11, RA15]. We apply a standard high-probability bound from [MMMW20, RV13]:

Lemma 4.1 (Lemma 2, [MMMW20]).7 Let R ∈ Rn×n, δ ∈ (0, 1/2], l ∈ N. Let g(1), . . . , g(`) ∈
{−1, 1}n×n be ` random vectors with i.i.d {−1,+1} random entries. For a fixed constant C, with

7In [MMMW20] the lemma is stated with an assumption that ` > O(1/δ). However, it is easy to see that the
same claim holds without this assumption, albeit with a quadratically worse log(1/δ) dependence. The proof follows
from same application of the Hanson-Wright inequality used in that work.
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probability at least 1− δ, ∣∣∣∣∣∣tr(R)− 1

`

l∑
i=1

(g(i))>Rg(i)

∣∣∣∣∣∣ ≤ C log(1/δ)√
`

‖R‖F .

For a polynomial p ∈ F([−1, 1],R) with degree k, applying Hutchinson’s estimator to R = p(A)
requires computing p(A)g, which can always be done with k matrix-vector multiplies with A. If
p(x) admits a recursive construction, like the Chebyshev polynomials, then this recurrence can be
used. Specifically, for the Chebyshev polynomials, we have:

T0(A)g = g T1(A)g = Ag

Tk(A)g = 2A · Tk−1(A)g − Tk−2(A)g for k ≥ 2. (5)

A moment estimation algorithm based on Hutchinson’s estimator is stated as Algorithm 2.

Algorithm 2 Hutchinson Moment Estimator

Input: Symmetric A ∈ Rn×n with ‖A‖2 ≤ 1, degree N ∈ 4N+, number of repetitions ` ∈ N+.
Output: Approximation τ̃k to moment 1

n tr(T̄k(A)) for all k ∈ 1, . . . , N .

1: Draw g(1), . . . , g(l) ∼ Uniform({−1, 1}n).

2: For k = 1, . . . , N , τ̃k ←
√

2/π

`n

∑l
i=1(g(i))>Tk(A)g(i). . Computed using recurrence in (5)

3: Return τ̃1, . . . , τ̃N .

Remark. In total, Algorithm 2 requires N · ` matrix multiplications with A since for each i
T1(A)g(i), . . . , TN (A)g(i) can but computed using the same N steps of the (5) recurrence. It requires
O(n`N) additional runtime to compute and sum all inner products of the form (g(i))TTk(A)g(i).

Our main bound on the accuracy of Algorithm 2 follows:

Lemma 4.2. If Algorithm 2 is run with ` = max
(

1, C · log2(N/δ)/(n∆2)
)

, where C is a fixed

positive constant, then with probability 1 − δ the approximate moments returned satisfy |τ̃k −
1
n tr(T̄k(A))| ≤ ∆ for all k = 1, . . . , N .

Proof. Fix k ∈ {1, . . . , N}. Note that 1
n tr(T̄k(A)) =

√
2/π

n tr(Tk(A)). Let C be the constant

from Lemma 4.1. If ` = max
(

1, C2 · log2(N/δ)/(n∆2)
)

, then by that lemma we have that with

probability at least 1− δ/N :∣∣∣∣∣τ̃k −
√

2/π

n
tr(Tk(A))

∣∣∣∣∣ ≤ 1

n

C log(N/δ)√
`

‖Tk(A)‖F ≤
C
√

2/π√
n

√
log(N/δ)

`
≤ ∆.

The second to last inequality follows from the fact that ‖Tk(A)‖2 ≤ 1 and thus ‖Tk(A)‖F ≤
√
n.

Applying a union bound over all k ∈ 1, . . . , N gives the claim.

Theorem 1.4 immediately follows as a corollary of Lemma 4.2 and Lemma 3.4.
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Proof of Theorem 1.4. We implement Algorithm 1 with Algorithm 2 used as a subroutine to ap-
proximate the Chebyshev polynomial moments, which requires setting ∆ = 1

N ln(eN) . By Lemma

4.2, we conclude that we need to set ` = max
(

1, CN2 log2(N/δ) log2(eN)/n
)

. Then, by Lemma

3.4, setting N = O(1/ε) ensures that Algorithm 1 returns a distribution q which is ε close to A’s
spectral density s in Wasserstein distance.

4.2 Approximate Matrix-Vector Multiplications

Algorithm 2 assumes access to an oracle for computing exact matrix-vector multiplies with A. In
this section, we show that the method continues to work well even when each term in Hutchinson’s
estimator, g>Tk(A)g, is computed using an approximate matrix-vector multiplication oracle for
A (see Definition 1.2). As discussed in Section 1.1, the robustness of the estimator allows the
approximate moment matching method to be applied in many settings where A can only be access
implicitly. It also forms the basis of our sublinear time algorithm for computing the spectral density
of a normalized graph adjacency or Laplacian matrix, which are presented in the Section 5.

To show that approximate matrix-vector multiplications suffice, we leverage well understood sta-
bility properties of the three-term forward recurrence for Chebyshev polynomials of the first kind
[Cle55, MMS18]. These properties allows us to analyze the cumulative error when Tk(A)g is com-
puted via this recurrence. Specifically, we analyze the following algorithm:

Algorithm 3 Hutchinson Moment Estimator w/ Approximate Multiplications

Input: Symmetric A ∈ Rn×n with ‖A‖2 ≤ 1, degree N ∈ 4N+, number of repetitions ` ∈ N+,
εMV-approximate matrix vector multiplication oracle AMV for A (see Definition 1.2).

Output: Approximation τ̃k to moment 1
n tr(T̄k(A)) for all k ∈ 1, . . . , N .

1: for i = 1, . . . , ` iterations do
2: Draw g ∼ Uniform({−1, 1}n).
3: ṽ0 ← g, ṽ1 ← AMV(A, g, εMV).
4: τ̃1,i ← gT ṽ1

5: for k = 2 to N do
6: ṽk ← 2 ·AMV(A, ṽk−1, εMV)− ṽk−2.
7: τ̃k,i ← gT ṽk

8: For k = 1, . . . , N , τ̃k ← 1
`

∑`
i=1 τ̃k,i.

9: Return τ̃1, . . . , τ̃N .

Algorithm 3 assumes access to an approximate matrix-vector multiplication oracle for A with error
εMV (recall Definition 1.2). Since ‖A‖2 ≤ 1, for any vector y, we have that:

‖AMV(A, y, εMV)−Ay‖2 ≤ εMV ‖y‖2. (6)

The algorithm uses this oracle to apply the recurrence from (5), approximately computing each
Tk(A)g for k = 1, . . . , N , which in turn allows us to approximately compute g>Tk(A)g. Note that
when εMV = 0, Algorithm 3 is exactly equivalent to Algorithm 2.

Notation. Analyzing this approach requires accounting for error accumulates across iterations. To
do so, we introduce some basic notation. Let vk denote the true value of Tk(A)g, and let ṽk denote
our computed approximation. We initialize the recurrence with ṽ−1 = ~0 and ṽ0 = v0 = g. For

14



k = 0, . . . , N − 1, let wk = AMV(A, ṽk, εMV) and note that ‖wk − Aṽk‖2 ≤ εMV ‖ṽk‖2. In iteration
k of the recurrence, we compute ṽk+1 by applying the recurrence:

ṽk+1 := 2wk − ṽk−1.

For each i ∈ 0, . . . , N we denote:

• δk := vk − ṽk, with δ0 = ~0. This is the accumulated error up to iteration k.

• ξk+1 := Aṽk − wk, with ξ0 = 0. 2ξk+1 is the new error introduced in iteration k due to
approximate matrix-vector multiplication.

As in Clenshaw’s classic work [Cle55], it can be shown that δk itself evolves according to a sim-
ple recurrence, which ultimately lets us show that it can be expressed as a summation involving
Chebyshev polynomials of the second kind, which are easily bounded. Specifically, we have:

Fact 4.3. δ1 = ξ1 and for 2 ≤ k ≤ N , δk = 2Aδk−1 − δk−2 + 2ξk.

Proof. The claim for δ1 is direct since v0 = ṽ0: we have δ1 = v1 − ṽ1 = Av0 − w0. For 2 ≤ k ≤ N ,
we prove the claim by writing the difference δk = vk− ṽk = vk−2(Aṽk−1 + ξk) + ṽk−2. We can then
replace vk = 2Avk−1 − vk−2 and substitute in (vk−1 − ṽk−1) = δk−1 and (vk−2 − ṽk−2) = δk−2.

The Chebyshev polynomials of the second kind are defined via the following recurrence:

Definition 4.4 (Chebyshev Polynomials of the Second Kind). For k ∈ N≥0 the k-th Chebyshev
polynomial of the second kind Uk(x) is given by

U0(x) = 1 U1(x) = 2x

Uk(x) = 2x · Uk−1(x)− Uk−2(x) for k ≥ 2.

We also define U−1(x) = 0, which is consistent with the recurrence.

Using these polynomials, we can characterize the accumulated error δk in terms of the error intro-
duced in each of the prior iterations.

Lemma 4.5. For k = 1, . . . , N , we have

δk = Uk−1(A)ξ1 + 2
k∑
i=2

Uk−i(A)ξi. (7)

Proof. We prove the lemma by induction on j ≤ k. For j = 0, the lemma is trivial since δ0 = 0 by
definition and U−1(A) = 0. For j = 1, δ1 = ξ1 = U0(A)ξ1. By Fact 4.3, for 2 ≤ j < k, we have:

δj = 2ξj + 2Aδj−1 − δj−2︸ ︷︷ ︸
z1

. (8)

We can apply the inductive hypothesis on z1 and recombine terms using Definition 4.4 to get:

z1 = 2A ·

Uj−2(A)ξ1 + 2

j−1∑
i=2

Uj−1−i(A)ξi

− Uj−3(A)ξ1 − 2

j−2∑
i=2

Uj−2−i(A)ξi
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= Uj−1(A)ξ1 + U1(A) · 2ξj−1 +

j−2∑
i=2

(
2AUj−1−i(A)− Uj−2−i(A)

)
· 2ξi

= Uj−1(A)ξ1 +

j−1∑
i=2

Uj−i(A) · 2ξi

Noting that plugging into (8) and noting that 2ξj = 2U0(A)ξj completes the proof.

Our goal is to use Lemma 4.5 to establish that δk is small because each ξi is small. It is well known
that the Chebyshev polynomials of the second kind satisfy the following bounds for any k ∈ N:

|Uk(x)| ≤ k + 1 for x ∈ [−1, 1]. (9)

This is the upper bound we need to proceed. Specifically, we will show that each estimator using
Algorithm 3, g>ṽk, well approximates Hutchinson’s estimator g>Tk(A)g = g>vk.

Claim 4.6. For quantities vk, ṽk and 0 ≤ εMV ≤ 1/2k2, we have∣∣∣g>Tk(A)g − g>ṽk
∣∣∣ ≤ 2 εMV ·(k + 1)2‖g‖22.

Proof. By the definition of δk, we have |g>Tk(A)g − g>ṽk| = |g>δk|. By Cauchy-Schwarz we
can bound |g>δk| ≤ ‖g‖2‖δk‖2. We are left to bound ‖δk‖2. Applying Lemma 4.5 and triangle
inequality, we have

‖δk‖2 ≤ ‖Uk−1(A)‖2‖ξ1‖2 +
k∑
i=2

2‖Uk−i(A)‖2‖ξi‖2

Then applying (9) and the fact that ‖A‖2 ≤ 1, we have ‖Uk−i(A)‖2 ≤ (k − i+ 1). Hence,

‖δk‖2 ≤ k‖ξ1‖2 +
k∑
i=2

2(k − i+ 1)‖ξi‖2 ≤
k∑
i=1

2(k − i+ 1)‖ξi‖2.

Using that ξi ≤ εMV ‖ṽi−1‖2, and that ‖Ti(A)‖2 ≤ 1 for all i and thus ‖vi‖2 ≤ ‖g‖2, we have:

‖δk‖2 ≤
k∑
i=1

2(k − i+ 1) εMV ‖ṽi−1‖2 ≤ 2 εMV

k∑
i=1

(k − i+ 1)(‖vi−1‖2 + ‖δi−1‖2)

≤ εMV k(k + 1)

(
‖g‖2 + max

i<k
‖δi‖2

)
.

Inducting on δj for j ≤ k gives us ‖δk‖2 ≤ 2 εMV(k + 1)2‖g‖2, which completes the proof.

Lemma 4.7. If Algorithm 3 is run with ` = max
(

1, C · log2(N/δ)/(n∆2)
)

and εMV = ∆/4N2,

where C is a fixed positive constant, then with probability 1− δ the approximate moments returned
satisfy |τ̃k − 1

n tr(T̄k(A))| ≤ ∆ for all k = 1, . . . , N .
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Proof. Fix k ∈ {1, . . . , N}. Let g(1), . . . , g(`) be the random vectors drawn in the outer for-loop

of Algorithm 3. Let {ṽ(i)
k }i∈[`] be the ` vectors computed by the inner for-loop and let {δ(i)

k :=

ṽ
(i)
k − Tk(A)g(i)}i∈[`] be the ` error vectors. Recalling that 1

n tr(T̄k(A)) =

√
2/π

n tr(Tk(A)), we have:∣∣∣∣∣τ̃k −
√

2/π

n
tr(Tk(A))

∣∣∣∣∣ ≤
√

2/π

n`

∑̀
i=1

∣∣∣(g(i))>δ
(i)
k

∣∣∣+

∣∣∣∣∣∣
√

2/π

n`

∑̀
i=1

(g(i))>Tk(A)g(i) − 1

n
tr(Tk(A))

∣∣∣∣∣∣
Applying Claim 4.6 and Lemma 4.1, with probability at least 1 − δ/N , we thus have

|τ̃k −
1

n
tr(T̄k(A))| ≤ 2(k + 1)2 εMV ·

√
2/π

n`

∑̀
i=1

‖g(i)‖22 + ∆/2 ≤ ∆/2 + ∆/2.

The last inequality follows from the fact that ‖g(i)‖22 = n for all i ∈ [`], and the choice of εMV =
∆/4N2. Applying a union bound over all k = 1, . . . , N gives the claim.

Theorem 1.3 immediately follows.

Proof of Theorem 1.3. We implement Algorithm 1 with Algorithm 3 used as a subroutine to approx-
imate the Chebyshev polynomial moments, which requires setting ∆ = 1

N ln(eN) . By Lemma 4.7, we

conclude that we need to set ` = max
(

1, CN2 log2(N/δ) log2(eN)/n
)

and εMV = 1/(4N3 ln(eN)).

Then, by Lemma 3.4, setting N = O(1/ε) ensures that Algorithm 1 returns a distribution q which
is ε close to A’s spectral density s in Wasserstein distance.

Improving the number of matrix-vector multiplications. We currently require the error
bound in Algorithm 1 for estimating the Chebyshev moments to be the same for each of the N
moments, i.e., parameter ∆ = (N ln(eN))−1. We note that the number of matrix-vector multi-
plications can be improved slightly in Theorems 1.3 and 1.4, potentially by a factor of log2(1/ε)
for small n. This can be achieved by requiring a different error bound for estimating each mo-
ment. Specifically, we modify the requirement in Algorithm 1 for the estimate τ̃k of the k-th
normalized Chebyshev moment 1

n tr(T̄k(A)) to have error |τ̃k − 1
n tr(T̄k(A))| ≤ (k/N5)1/4. Plug-

ging this into Lemma 4.2, we require at most
∑N

k=1 max(1, CN2.5 log2(N/δ)/(n
√
k)) matrix-vector

multiplications to estimate the N moments, where C is a fixed constant. For comparison to the
bounds in Theorems 1.4 and 1.3, the above bound decreases linearly in n until n ≥ CN2 log2(N/δ)
and for very large n is bounded by O(1/N). In the regime where n is small, e.g., when n ≤
CN2 log2(N/δ), the bounds from the theorems give O(N3 log2(N/δ) log2(eN)/n) matrix-vector
multiplications, whereas the above bound simplifies to at most O(N3 log2(N/δ)/n) multiplications,
saving a O(log2(N)) = O(log2(1/ε)) factor. Lemma 4.7 can be adapted identically to give the same
bound in the approximate matrix-vector multiplication case. To give intuition for the Wasserstein
error of the resulting density, if the density estimate q output by Algorithm 1 satisfied the require-
ment that |〈q, T̄k〉 − 1

n tr(T̄k(A))| ≤ (k/N5)1/4 for k ∈ 1, . . . , N , then we have by Lemma 3.1 that

W1(s, q) ≤ 36/N + (2/N5/4) ·∑N
k=1 k

−3/4 ≤ 36/N + 8/N = O(1/N). This intuition can be used
to adapt the proof of Lemma 3.4 to show that Algorithm 1 with moment guarantees as mentioned
output a density q such that W1(s, q) ≤ O(1/N).
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5 Sublinear Time Methods for Graphs

With the proof of Theorem 1.3 in place, we are now ready to state our sublinear time result for
adjacency matrices of graphs. The significance of Theorem 1.3 is that it allows for the approximate
Chebyshev moment matching method in Algorithm 1 to be combined with any randomized algo-
rithm for approximating matrix-vector multiplications with A. In this section we prove Theorem
1.1 by showing that for the normalized adjacency matrix of any undirected, un-weighted graph, such
an algorithm can actually be implemented in sublinear time, leading to a sublinear time spectral
density estimation (SDE) algorithm for computing graph spectra from these matrices.

Computational Model. Let A ∈ Rn×n be the adjacency matrix for an unweighted, n-vertex
graph G = (V,E) and let Ā = D−1/2AD−1/2 be the symmetric normalized adjacency matrix,
where D is an n × n diagonal matrix containing the degree of each vertex in V . For a node i,
let N (i) = {j : (j, i) ∈ E} denote the set of i’s neighboring vertices. We assume a computational
model where we can 1) uniformly sample a random vertex in constant time, 2) uniformly sample a
random neighbor of any vertex i in constant time, and 3) for a vertex i with degree di, read off all
neighbors of i in O(di) time. A standard adjacency list representation of the graph would allow us
to perform these operations but weaker access models would also suffice.8

Using this model for accessing the adjacency matrix, we show that, for any εMV ∈ (0, 1) and
failure probability δ ∈ (0, 1), an εMV-approximate matrix-vector multiplication oracle for Ā can be
implemented in O(n εMV

−2 log(1/δ)) time. Via Theorem 1.3, this immediately yields an algorithm
for computing an SDE that is ε close in Wasserstein-1 distance to Ā’s spectral density in roughly
Õ(n/ε7) time for sufficiently large n, and at most Õ(n/ε9) time, for fixed δ where the Õ(·) hides
factors of poly(log(1/ε)). Our main result is stated as Theorem 1.1 in Section 1.1.

The same algorithm can be used to approximate the spectral density of the normalized Laplacian
of G by a simple shift and scaling. Specifically, Ā can be obtained from the normalized Laplacian
L̄ via Ā = I − L̄, and the spectral density of L̄, sL̄(x) satisfies sL̄(1− x) = sĀ(x), where sĀ is the
spectral density of Ā. So if we obtain an ε-approximate SDE q for Ā by Theorem 1.1, then the
function p satisfying p(1− x) = q(x) is an ε-approximate SDE for sL̄. We thus have:

Corollary 5.1. Given the the normalized adjacency matrix of G, there exists an algorithm that

takes O

(
n poly

(
log(1/δ)

ε

))
expected time and outputs a density function q that is ε close to the

spectral density of the normalized Laplacian of G with probability at least 1− δ.

5.1 Approximate Matrix-Vector Multiplication for Adjacency Matrices

We implement an approximate matrix-vector multiplication oracle for Ā in Algorithm 4, which is
inspired by a randomized matrix-multiplication method of [DKM06]. Throughout this section, let
Āi denote the ith column of Ā. Given a sampling budget t ∈ N, the algorithm samples t indices from
1, . . . , n independently and with replacement – i.e., the same index might be sample multiple times.
For each index it samples, the algorithm decides to accept or reject the column corresponding to

8E.g., random crawl access to a network [KLS11]. We also note that, if desired, assumption 3) can be removed
entirely with a small logarithmic runtime overhead, as long as we know the degree of i. Specifically, 3) can be
implemented with O(di log n) calls to 2): we simply randomly sample neighbors until all di are found. A standard
analysis of the coupon collector problem [Section 3.6, MR95] shows that that the expected number of samples will
be O(di log di) ≤ O(di log n).
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that index with some probability. To approximate Āy, the algorithm outputs the multiplication of
the accepted columns, rescaled appropriately, with the corresponding elements of y.

Algorithm 4 AMV Multiplication Oracle for Normalized Adjacency Matrices

Input: Normalized adjacency matrix Ā ∈ Rn×n, degrees [d1, . . . , dn], y ∈ Rn, and parameter t ∈ N.
Output: A vector z ∈ Rn that approximates Āy.

1: Initialize z ← ~0.
2: for t iterations do
3: Sample a node j uniformly at random from {1, . . . , n}.
4: Sample a neighbor i ∈ N (j) uniformly at random.
5: Sample x uniformly at random from [0, 1].
6: if x ≤ 1

di
then

7: w ← 1
pi
· yiĀi where pi = 1

ndi

∑
j∈N (i)

1
dj

.

8: else
9: w ← ~0.

10: z ← z + w.

11: return 1
t z

The following lemma bounds the expected squared error of Algorithm 4’s:

Lemma 5.2. Let z ∈ Rn be the output of Algorithm 4 with sampling budget t. We have:

E[‖Āy − z‖22] =
n

t
‖y‖22 −

1

t
‖Āy‖22

Proof. Let b denote b = Āy. Consider a single iteration of the main loop in Algorithm 4, which
generates a vector w that is added to z. Let Xi be an indicator random variable that is 1 if w
is set to a scaling of Āi on that iteration, and 0 otherwise. Xi = 1 if and only if 1) a neighbor
of i is sampled at Line 3 of the algorithm, 2) i is sampled at Line 4 of the algorithm, and 3)
the uniform random variable x satisfies x < 1/di. So, we see that Pr[Xi = 1] is exactly equal to
pi = 1

ndi

∑
j∈N (i)

1
dj

. It follows that, by the time we reach Line 11, w is an unbiased estimator for

b. I.e., E[w] = b. Of course, this also implies that E[z] = b.

Our goal is to show that E[‖b− z‖2] = n
t ‖y‖22 − 1

t ‖b‖22. Since the random vector b − z has mean
zero and is the average of t i.i.d. copies of the mean zero random vector b−w, it suffices that show:

E[‖b− w‖22] = n‖y‖22 − ‖b‖22. (10)

By linearity of expectation and the fact that E[w] = b, we have

E[‖b− w‖22] = ‖b‖22 + E[‖w‖22]− 2〈E[w], b〉 = E[‖w‖22]− ‖b‖22.

So to prove (10), we need to show that E[‖w‖22] = n‖y‖22. We expand w in terms of the indicator
random variables X1, . . . , Xn. Notice that since we only sample one column in each iteration, the
random variable XiXj = 0 for all i 6= j. Thus, we have:

E[‖w‖22] =
n∑
k=1

E

 ∑
i,j∈[n]

XiXj

pipj
(Āiyi)k(Ā

jyj)k

 =

n∑
k=1

E

 n∑
i=1

X2
i

p2
i

· (Āiyi)2
k


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=

n∑
i=1

1

pi
· ‖Āiyi‖22 =

n∑
i=1

ny2
i = n‖y‖22

In the last equalities we used the fact that E[X2
i ] = pi and that, for a normalized graph adjacency

matrix, ‖Āi‖22 =
∑

j∈N (i)
1

didj
= npi. This proves (10), from which we conclude the lemma.

Using Lemma 5.2, we show that there is an εMV-approximate matrix-vector oracle for Ā based on
Algorithm 4 with success probability at least 1 − δ that runs in O(n εMV

−2 log2(1
δ )) time.

Proposition 5.3. Let Ā ∈ Rn×n be the symmetric normalized adjacency matrix of an n-vertex
graph G and let εMV, δ ∈ (0, 1) be fixed constants. There is an algorithm that, given a vector
y ∈ Rn, and access to G as described above, takes O(n εMV

−2 log(1
δ )) expected time and outputs a

vector z ∈ Rn such that ‖z − Āy‖2 ≤ εMV ‖y‖2 with probability at least 1− δ.

Proof. By Lemma 5.2, we have that E[‖Āy − z‖22] ≤ n
t ‖y‖22. Fix t = 48n εMV

−2. Then, by Lemma
5.2 and Markov’s inequality, we have that when Algorithm 4 is called on Ā with parameter t,

Pr[‖Āy − z‖2 >
εMV

4
‖y‖2] ≤ 16n‖y‖22

t εMV
2 ‖y‖22

≤ 1

4
. (11)

In order improve our success probability from 3/4 to 1 − δ, we use the standard trick of repeating
the above process r = c log(1

δ ) times for a constant c to be fixed later. Let z1, . . . , zr ∈ Rn be the
output of running Algorithm 4 r times with parameter t. We can return as our estimate for Āy the
first zi such that ‖zi − zj‖2 ≤ εMV

2 ‖y‖2 for at least r/2 + 1 vectors zj from z1, . . . , zn.

To see why this works, note that a Chernoff bound can be used to claim that with probability
> 1− δ, at least r/2 + 1 vectors zj from z1, . . . , zr have that ‖zj − Āy‖2 ≤ εMV

4 ‖y‖2.

By a triangle inequality we have that for all such zj and zk,

‖zj − zk‖2 ≤ ‖zj − Āy‖2 + ‖zk − Āy‖2 ≤
εMV

2
‖y‖2.

Thus, the zi we picked must satisfy that ‖zi − Āy‖ ≤ 3 εMV
4 ‖y‖2 by the triangle inequality.

All that remains is to bound the expected runtime of Algorithm 4, which we will run r separate
times. To do so, note that all index sampling can be done in just O(t) time, since sampling a
random vertex and a random neighbor of the vertex are assumed to be O(1) time operations. The
costly part of the algorithm is computing the sampled column w at each iteration. In the case that
w = ~0, this cost is of course zero. However, when w = 1

pi
Āiyi for some i, computing the column

and adding it to z takes O(di) time, which can be large in the worst case. Nevertheless, we show
that it is small in expectation. This may seem a bit surprising: while nodes with high degree are
more likely to be sampled by Line 4 in Algorithm 4, they are rejected with higher probability in
Line 6. Formally, let nnz(w) denote the number of non-zero entries in w. We have:

E
[
nnz(w)

]
=

n∑
i=1

nnz(Āi) · pi =

n∑
i=1

∑
j∈N (i)

di
n · didj

=
1

n

n∑
i=1

∑
j∈N (i)

1

dj
= 1.

The final equality follows from expanding the double sum: since node j has exactly dj neighbors,
1
dj

appears exactly dj times in the sum. So
∑n

i=1

∑
j∈N (i)

1
dj

= n.
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We run Algorithm 4 with t = O(n/ εMV
2) iterations, so it follows that the expected total sparsity of

all w’s constructed equals O(n/ εMV
2), which dominates the expected running time of our method.

Proof of Theorem 1.1. The accuracy and running time claim follows from combining the εMV-
approximate vector multiplication oracle described in Proposition 5.3 with Algorithm 1, which
is analyzed in Theorem 1.3.

As discussed in the introduction, Cohen et al. [CKSV18] prove a result which matches the guarantee
of Theorem 1.1, but with runtime of 2O(1/ε) – i.e., with no dependence on n. In comparison, our
result depends linearly on n, but only polynomially on 1/ε. In either case, the result is quite
surprising, as the runtime is sublinear in the input size: A could have up to O(n2) non-zero entries.

6 Experiments

We support our theoretical results by implementing our Chebyshev moment matching method
(Algorithm 1). When using exact matrix-vector multiplications, the kernel polynomial method
(KPM) of Algorithm 6 and the stochastic Lanczos quadrature method (SLQ) studied in [CTU21]
have both been confirmed to work well empirically. So, one set of experiments is aimed at comparing
these methods to the moment matching method (MM) implemented with exact matrix-vector
multiplications. A second set of experiments evaluates the performance of the MM and KPM
methods when implemented with approximate matrix-vector multiplies. Specifically, we use our
sublinear time randomized method for multiplication by graph adjacency matrices from Section 5.

We consider the normalized adjacency matrix of three graphs, two of which we construct and one
which we obtain from a publicly available dataset for sparse matrices:

• cliquePlusRandBipartite is a graph with 10000 vertices, partitioned into two disconnected
components. The first component is a clique with 5000 nodes and the second is a bipartite
graph with 2500 vertices in each partition, constructed by sampling each of the 25002 possible
edges independently with probability 0.05. This graph has a normalized adjacency matrix
with ∼ 5000 eigenvalues at 0, two eigenvalues at 1, one at −1 and the rest of its eigenvalues
are roughly evenly spread out between −0.5 and 0.5.

• hypercube is a 16384 vertex boolean hypercube graph on 14 bit strings.9 Its normalized
adjacency matrix has eigenvalues at −1,−6

7 ,
−5
7 , . . . , 0, . . . ,

6
7 , 1. The multiplicity of the 0

eigenvalue is largest, with eigenvalues closer to −1 and 1 having lower multiplicity.

• Erdos992 is an undirected graph with 6100 vertices, containing 15030 edges from the sparse
matrix suite of [DH11]. Its normalized adjacency matrix has ∼ 5000 eigenvalues at 0, one at
1 and the rest evenly spread out between −0.5 and 0.5.

We consider three additional matrices to evaluate the performance of MM against KPM and SLQ
when exact matrix-vector multiplies are used to estimate the Chebyshev moments:

9A boolean hypercube contains a vertex for each distinct b bit string, and an edge between two vertices if the
corresponding strings differ on exactly 1 bit.
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Figure 2: Wasserstein error of density estimate resulting from approximate Chebyshev moment
matching method (MM), the Jackson damped kernel polynomial method (KPM) and Stochastic
Lanczos Quadrature (SLQ) method. For MM and KPM, Hutchinson’s estimator is used to estimate
the Chebyshev moments. The x-axis corresponds to the number of moments computed for MM and
KPM, and the number of Lanczos iterations used for SLQ. All methods use 5 (random) starting
vectors except for resnet20 and hypercube that use 1 starting vector, so the x-axis is directly
proportional to the number of matrix-vector multiplications used by each method. Each experiment
is repeated 10 times; the solid line represents the median error of the 10 trials and the shaded regions
represent the first and third quartiles.

• gaussian is a 1000×1000 matrix constructed by drawing n = 1000 Gaussian random variables
λ1, · · · , λn ∼ N (0, 1) and a random orthogonal matrix U ∈ Rn×n, and outputting UΛU>

where Λ is a n× n diagonal matrix with entries λ1
maxi λi

, . . . , λn
maxi λi

.

• uniform is a 1000× 1000 matrix constructed identically to gaussian except with λ1, . . . , λn
drawn independently and uniformly from the interval [−1, 1].

• resnet20 is a Hessian for the ResNet20 network [HZRS16] trained on the Cifar-10 dataset.
The matrix is 3000× 3000 and its eigenvalues have been normalized to lie between [−1, 1] for
our experiments.

For reference, the histogram of the eigenvalues for each matrix are shown in Figure 3 by breaking
the range of the eigenvalues into 50 equally spaced intervals for each matrix.

In the first set of experiments, we compute the normalized Chebyshev moments τ1, . . . , τN of each
of the six aforementioned matrices using Hutchinson’s moment estimator as in Algorithm 2, and,
compute a spectral density estimate by passing these moments into Algorithm 1 for approximate

22



−1.0 −0.5 0.0 0.5 1.0

100

101

102

cliquePlusRandBipartite

−1.0 −0.5 0.0 0.5 1.0

100

101

102

103

Erdos992

−1.0 −0.5 0.0 0.5 1.0

100

101

gaussian

0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

103

resnet20

−1.0 −0.5 0.0 0.5 1.0

100

101

102

103

hypercube

Figure 3: Histograms of the eigenvalues of cliquePlusRandBipartite, Erdos992, gaussian,
uniform, resnet20 and hypercube using 50 equally spaced buckets.

Chebyshev moment matching method (MM)10 and into Algorithm 6 for the Jackson damped kernel
polynomial method (KPM). For KPM we compute the density with N = 4, 6, 8, 10, . . . , 52 and for
MM we compute it with N = 4, 5, 6, 7, . . . , 52. We also compute the density estimate resulting from
the stochastic Lanczos quadrature (SLQ) method of [CTU21] with N = 4, 5, 6, 7, . . . , 52 Lanczos
iterations. We use ` = 5 starting vectors (i.e., random vectors in Hutchinson’s method, or random
restarts of the SLQ method) for each method, except for the large resnet20 and hypercube

matrices, for which ` = 1 random vector is used. Each experiment is repeated 10 times and the
Wasserstein-error between the true density and the density estimate are shown in Figure 2. The
results show that MM is more than 10x more accurate than KPM in almost all cases. The error
of MM and SLQ are more comparable, except for hypercube, on which the errors are comparable
for larger values of N . Both methods show an unusual convergence curve for this matrix, which we
believe is related to the sparsify of its spectrum (a small number of distinct eigenvalues).

In our second set of experiments, we test the performance of our randomized sublinear time al-
gorithm (Algorithm 4) for approximate matrix-vector multiplies with normalized graph adjacency
matrices. This method is used to estimate Chebyshev moments in Algorithm 1 (MM) and in Al-
gorithm 6 (KPM). We compute the normalized Chebyshev moments τ1, . . . , τN for N = 12 using
various values of the oversampling parameter t in the approximate matrix-vector multiplication
method. We then compute, for each value of t, the average number of non-zero elements of A
accessed by the method for each matrix-vector product, which reflects the runtime improvement
over a full matrix-vector product. Figure 4 plots the Wasserstein error of the density estimate
(y-axis) and the average fraction of non-zeros used in each matrix-vector multiplication (x-axis) to
estimate the Chebyshev moments used by MM and KPM respectively.

The results show that the KPM method can achieve error nearly identical to that obtained when us-

10We solve the optimization problem from Line 3 by formulating it as a linear program and using an off-the-shelf
solver from scipy.
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Figure 4: Wasserstein error of density estimate returned by MM and KPM on the hypercube,
cliquePlusRandBipartite and Erdos992 graphs using approximate matrix-vector multiplications
(Algorithm 4) to estimate the Chebyshev moments. For both methods, N = 32 moments are
computed using 5 random starting vectors for cliquePlusRandBipartite and Erdos992 and 1 for
hypercube. The x-axis corresponds to the average fraction of non-zeros sampled from the matrix
and the y-axis is the Wasserstein error from the resulting density estimate. Each experiment is
repeated for 10 trials: the solid line correponds to the median error of the 10 trials and the shaded
region corresponds to the first and third quartiles.

ing exact matrix-vector multiplications, while only using a small fraction of non-zero entries for each
approximate matrix-vector multiplication. Specifically, on the dense cliquePlusRandBipartite

graph and even the relatively sparse hypercube graph, KPM uses less than 15% of the non-
zero entries on average to achieve nearly the same error as when using exact multiplies. On
cliquePlusRandBipartite, the MM method achieves error close to that of the exact method
while using ∼ 20% of the non-zero entries on average. On the sparse Erdos992 and hypercube

graphs, the MM method requires ∼ 80% of the non-zero entries on average to achieve error com-
parable to exact matrix-vector multiplications. However, it still obtains a good approximation
(consistently better than the KPM method) when coarse matrix-vector multiplications are used
(i.e., fewer non-zeros are sampled).
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A The Kernel Polynomial Method

In this section we show how to obtain a spectral density estimate based on a version of the kernel
polynomial method that also approximates Chebyshev polynomial moments: tr(T0(A)), . . . , tr(TN (A)).
We again rely on Jackson’s classic work on universal polynomial approximation bounds for Lips-
chitz functions: we take advantage of the fact that Jackson’s construction of such polynomials is
both linear and preserves positivity [Jac12].
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A.1 Idealized Kernel Polynomial Method

As an alternative to the moment matching method presented in Section 3, a natural approach to
using computed Chebyshev moments is to construct a truncated Chebyshev series approximation
to s (see Definition 2.1). To do so, note that the scaled moments 1

n tr(T̄0(A)), . . . , 1
n tr(T̄N (A)) are

exactly equal to the first N Chebyshev series coefficients of s/w, where w(x) = 1√
1−x2 is as defined

in Section 2. Specifically, the eigenvalues of T̄k(A) are equal to T̄k(λ1), . . . , T̄k(λn), where λ1, . . . , λn
are the eigenvalues of A. Since the trace of a diagonalizable matrix is the sum of its eigenvalues,
we have 1

n tr(T̄k(A)) = 1
n

∑n
i=1 T̄k(λi) = 〈s, T̄k〉 = 〈s/w,w · T̄k〉.

After using the scaled Chebyshev moments to construct a truncated Chebyshev series for s/w, i.e.
a degree N polynomial approximation, we can then multiply the final result by w to obtain an
approximation to s. Unfortunately, there are two issues with this approach: 1) it is difficult to
analyze the quality of the Chebyshev series approximation, since s is not a smooth function, and
2) this approximation will not in general be a non-negative function, which is a challenge because
our goal is to find probability density that well approximates s.

Figure 5: Jackson coefficients for N = 8.

A common approach for dealing with the second is-
sue is to instead use a damped Chebyshev expan-
sion [WWAF06], where the Chebyshev coefficients are
slightly reweighted to ensure that the resulting polyno-
mial is always non-negative. Such non-negativity pre-
serving damping schemes follow from the connection be-
tween Chebyshev and Fourier series: we refer the reader
to Appendix C for details. In short, by the convolution
theorem, Fourier series truncation corresponds to convo-
lution with a function whose Fourier support is bounded.
If this function is also non-negative, convolution preserves non-negativity of the function being ap-
proximated, leading to truncated series that is guaranteed to be positive. One such damping
schemes was introduced in classic work of Jackson [Jac12]. For any positive integer z, let N = 4z.
Then, for k = 0, . . . , N , define the coefficient

b̂N [k] =

N
2

+1−k∑
j=−N

2
−1

(
N

2
+ 1− |j|

)
·
(
N

2
+ 1− |j + k|

)
. (12)

While (12) may look opaque, b̂N [0], . . . , b̂N [N ] are actually equal to the result of a simple discrete
convolution operation. Let g ∈ F(Z,R) have g[j] = 1 for j = −z, . . . , z, and g[j] = 0 otherwise.
Then let b̂N = (g ∗ g) ∗ (g ∗ g) and b̂N [0], . . . , b̂N [N ] be the values corresponding to non-negative
indices.11 See Fig. 5 for an illustration of these coefficients. They are all positive and b̂N [0] >
b̂N [1] > . . . > b̂N [N ]. Jackson suggests approximating a function using the following truncation
based on these coefficients:

Definition A.1 (Jackson damped Chebyshev series). Let f ∈ F([−1, 1],R) have Chebyshev series∑∞
k=0〈f, w · T̄k〉 · T̄k. The Jackson approximation to f is a degree N polynomial f̄N obtained via

11This formulation allows the coefficients to be easily computed in most high-level programming languages. E.g.,
in MATLAB we can compute g = ones(2*z+1,1); c = conv(conv(g,g),conv(g,g)); b = c(N+1:2*N+1);.
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the following truncation with modified coefficients:

f̄N (x) :=

N∑
k=0

b̂N [k]

b̂N [0]
〈f, w · T̄k〉T̄k(x). (13)

Note that b̂N [0]/b̂N [0] = 1, and all other terms are strictly less than one. It is not hard to show this
damped series preserves positivity. We prove the following fact as Lemma C.7 in the appendix:

Fact A.2. If f : [−1, 1] → R≥0 is a non-negative function, then the polynomial f̄N (x) defined in
(13) is non-negative for all x ∈ [−1, 1].

Beyond preserving non-negativity, as claimed in Fact 3.2, the Jackson damped Chebyshev ap-
proximation is more well-known for the fact that it provably provides a good uniform polynomial
approximation to any Lipschitz function. For completeness, we give a proof of this fact as Theorem
C.6 in the appendix. With Facts A.2 and 3.2 in place, we are ready to introduced the basic kernel
polynomial method for approximating the spectral density s as Algorithm 5. This algorithm is
identical to the “Jackson Kernel” KPM from [WWAF06]. Recall that, for now, we assume we have
access to exact Chebyshev moment of the spectral density s for our matrix A. In Section A.2 we
prove that Algorithm 5 is robust to using approximate moments.

Algorithm 5 Idealized Jackson Damped Kernel Polynomial Method

Input: Symmetric A ∈ Rn×n with spectral density s : [−1, 1]→ R≥0, degree N ∈ 4N+.
Output: Density function q : [−1, 1]→ R≥0.

1: For k = 0, . . . , N compute τk = 1
n tr(T̄k(A)) = 〈s, T̄k〉.

2: For k = 0, . . . , N compute b̂N [k] as is (12).

3: Return q = w ·∑N
k=0

b̂N [k]

b̂N [0]
· τk · T̄k.

Lemma A.3. If N ≥ 18
ε , then the function q : [−1, 1] → R≥0 returned by Algorithm 5 is a

probability density and satisfies:
W1(s, q) ≤ ε.

Proof. We first prove that q is a probability density. To see that it is positive, note that h =∑N
k=0

b̂N [k]

b̂N [0]
· τk · T̄k is a Jackson approximation to the positive function s/w, so is must be non-

negative by Fact A.2. Since w is also non-negative, we conclude that q = w · h is as well. Then we
consider q’s integral. We need to show that

∫ 1
−1 q(x)dx = 1 =

∫ 1
−1 s(x)dx. Since T̄0 is a scaling of

the constant function, it suffices to show that 〈T̄0, q〉 = 〈T̄0, s〉. We have:

〈T̄0, q〉 = τ0 · 〈T̄0, w · T̄0〉 = 〈T̄0, s〉 · 1.

The first step follows directly from the orthogonality of the Chebyshev polynomials under the weight
function w, which implies that 〈T̄0, w · T̄k〉 = 0 for all k > 0. We also use that 〈T̄0, w · T̄0〉 = 1.

Next, we prove the approximation guarantee. Referring to the formulation of Wasserstein-1 distance
from equation (3), we have that W1(s, q) = sup〈s − q, f〉 where f is a 1-Lipschitz function. So,
we want to show that any 1-Lipschitz f has small inner product with the difference between s
and its degree-N Jackson approximation, q. To do so, we show that this inner product is actually
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exactly equal to the inner product between s and a degree-N Jackson approximation to f . Since
f is 1-Lipschitz, this approximation is guaranteed to be have small error. This key equivalency
follows because, like a standard Chebyshev series approximation, the Jackson approximation can
be viewed as the output of a symmetric linear operator applied to s.

Formally, we introduce notation for several linear operators needed to analyze (13). Let T̄ :

F([−1, 1],R)→ F(N,R) be the operator mapping a function f ∈ F([−1, 1],R) to its inner-product
with the normalized Chebyshev polynomials. Define the transpose operator T̄ ∗ : F(N,R) →
F([−1, 1],R) to satisfy 〈T̄ f, g〉 = 〈f, T̄ ∗g〉 for any g ∈ F(N,R). Concretely, for i ∈ N and x ∈ [−1, 1],

[T̄ f ][i] :=

∫ 1

−1
T̄i(x)f(x)dx and [T̄ ∗g](x) :=

∞∑
i=0

T̄i(x)g[i]. (14)

We also define operators W : F([−1, 1],R)→ F([−1, 1],R) and I : F(N,R)→ F(N,R) as follows:

[Wf ](x) := w(x)f(x) =
1√

1− x2
f(x) and [Ig][i] := g[i].

Note that I is an identity operator. For any N ∈ 4N, we define BN : F(N,R)→ F(N,R) as:

[BNg](i) :=


β̂N [i]

β̂N [0]
g(i) for 0 ≤ i ≤ N

0 i > N.

The operators W, I, and BN are all commutative with respect to the inner-products in their re-
spective spaces. Specifically, for f1, f2 ∈ F([−1, 1],R) and g1, g2 ∈ F(N,R), 〈f1,Wf2〉 = 〈Wf1, f2〉,
〈g1, Ig2〉 = 〈Ig1, g2〉, and 〈g1,BNg2〉 = 〈BNg1, g2〉. Also note that by orthogonality of the Cheby-
shev polynomials under w, T̄ ∗T̄ W is the identity operator on F([−1, 1],R) and so is WT̄ ∗T̄ .

With these operators defined, the remainder of the proof is short. We have via direct calculation:

〈f, s− q〉 = 〈f, s−WT̄ ∗BN T̄ s〉
= 〈f,WT̄ ∗(I − BN )T̄ s〉 = 〈T̄ ∗(I − BN )T̄ Wf, s〉 = 〈f − T̄ ∗BN T̄ Wf, s〉.

Note that T̄ ∗BN T̄ Wf is exactly the degree-N Jackson approximation to f . So by Fact ??, if f is a
1-Lipschitz function, ‖f−T̄ ∗BN T̄ Wf‖∞ ≤ 18/N . Since s is a non-negative function that integrates
to 1, it follows that 〈f, s−q〉 = 〈f−T̄ ∗BN T̄ Wf, s〉 ≤ 18/N . Since W (s, q) = sup1-Lipschitz f 〈f, s−q〉,
we conclude that W (s, q) ≤ ε as long as as long as N ≥ 18/ε.

Remark. Given access to the Chebyshev polynomial moments, tr(T̄0(A)), . . . , tr(T̄N (A)), Algo-
rithm 5 can be implemented in O(1/ε) additional time. The function it returns is an O(1/ε) degree
polynomial times the closed form function w. The polynomial can be represented as a sum of
Chebyshev polynomials, or converted to standard monomial form in O(1/ε2) time. The function is
easily plotted or integrated over a range – see discussion around Fact B.2 for more details.

A.2 Full Kernel Polynomial Method

Since it is not possible to efficiently compute the exact Chebyshev polynomial moments, we need
to show that the kernel polynomial method can work with approximations to these moments,
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Algorithm 6 Jackson Damped Kernel Polynomial Method

Input: Symmetric A ∈ Rn×n with spectral density s : [−1, 1]→ R≥0, degree parameter N ∈ 4N+,
algorithm M(A) that computes moment approximations τ̃1, . . . , τ̃N with the guarantee that
|τ̃k − 1

n tr(T̄k(A))| ≤ 1/N2 for all k.
Output: Density function q : [−1, 1]→ R≥0.

1: For k = 1, . . . , N use M to compute τ̃1, . . . , τ̃N as above. Set τ̃0 = 1/
√
π.

2: For k = 0, . . . , N compute b̂N [k] as is (12).

3: Compute polynomial s̃N = w ·∑N
k=0

b̂N [k]

b̂N [0]
· τ̃k · T̄k.

4: Return the probability density q =
(
s̃N + w

√
2

N
√
π

)
/
(

1 +
√

2π
N

)
.

computed e.g. using a stochastic trace estimator as described in Section 4. Here, we first prove a
general result on the accuracy of approximation needed to ensure we obtain a good spectral density
estimation. Specifically, we analyze the following “robust” version of Algorithm 5.

The final transformation of s̃N in Line 4 of Algorithm 6 ensures that we return a proper density,
since error incurred by approximating 1

n tr(T̄k(A)) = 〈s, T̄k〉 could leave the function with negative
values. So, we shift by a small positive function, and rescale to maintain unit integral. Our main
result on the error of Algorithm 6, which parallels Lemma A.3 for Algorithm 5, is as follows:

Lemma A.4. If N ≥ 18
ε , then the function q : [−1, 1] → R≥0 returned by Algorithm 6 is a

probability density and satisfies:
W1(s, q) ≤ 2ε.

Proof. We first prove that q is a probability distribution. Let sN denote the ideal distribution
returned by Algorithm 5 if exact Chebyshev moments were used. I.e.,

sN = w ·
N∑
k=0

b̂N [k]

b̂N [0]
· τk · T̄k

where τk = 1
n tr(T̄k(A)) = 〈s, T̄k〉. Note that for any density s, τ0 = 〈s, T̄0〉 = 1/

√
π. Let ∆k =

τ̃k − τk. We have s̃N (x) = sN +
∑N

k=1 ∆k
b̂N [k]

b̂N [0]
w(x)T̄k(x). Define functions η = sN/w and η̃ = s̃/w.

It follows that for any x ∈ [−1, 1],

∣∣η̃(x)− η(x)
∣∣ =

∣∣∣∣∣∣
N∑
k=1

b̂N [k]

b̂N [0]
∆kT̄k(x)

∣∣∣∣∣∣ ≤
√

2

N
√
π
. (15)

The last inequality uses that 0 ≤ b̂N [k]/b̂N [0] ≤ 1 and for x ∈ [−1, 1], T̄k(x) ≤
√

2/π for k ≥ 1.

Since η is a non-negative function, from (15) we can conclude that the function η̃ +
√

2
N
√
π

is non-

negitive, and thus w · (η̃ +
√

2
N
√
π

) = s̃N + w
√

2
N
√
π

is also non-negative. The density of this function

is
∫ 1
−1 s̃N (x)dx+

√
2

N
√
π

∫ 1
−1w(x)dx = 1 +

√
2π
N , so dividing by 1 +

√
2π
N gives a probability density.

Next we prove the approximation guarantee. By Lemma A.3 we know that W1(s, sN ) ≤ ε, so if
we can show that W1(sN , q) ≤ ε, then by triangle inequality we will have shown that W1(s, q) ≤
W1(s, sN ) +W1(sN , q) ≤ 2ε.
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To bound W1(sN , q), we need to show that 〈f, sN − q〉 ≤ ε for any 1-Lipschitz function f ∈
F([−1, 1],R). Without loss of generality, we can assume that

∫ 1
−1 f(x)dx = 0, as the 1-Lipschitz

function f ′ = f −
∫ 1
−1 f(x)dx satisfies 〈f, sN −q〉 = 〈f ′, sN −q〉 (since sN and q are both probability

densities). If
∫ 1
−1 f(x)dx = 0, f(x) must be zero for some x ∈ [−1, 1], and since it is also 1-Lipschitz

we can in turn bound ‖f‖∞ ≤ 1.12 We can then bound the inner product:

〈f, sN − q〉 ≤ ‖f(s̄N − q)‖1 ≤ ‖f‖∞‖s̄N (x)− q(x)‖1 ≤

∥∥∥∥∥∥∥w ·
η − η̃ +

√
2

N
√
π

1 +
√

2π
N


∥∥∥∥∥∥∥

1

≤

∥∥∥∥∥∥w ·
(
η − η̃ −

√
2

N
√
π

)∥∥∥∥∥∥
1︸ ︷︷ ︸

z1

+

∥∥∥∥∥∥
√

2π

N
· w ·

(
η̃ +

√
2

N
√
π

)∥∥∥∥∥∥
1︸ ︷︷ ︸

z2

The last inequality uses the fact that 1 − 1
1+γ ≤ γ for 0 ≤ γ ≤ 1, which we apply with γ =

√
2π
N .

Using the fact that ‖w‖1 =
∫ 1
−1

1√
1−x2dx = π and the bound on ‖η − η̃‖∞ from (15), we have

z1 ≤ ‖w‖1 ·
∥∥∥∥∥η − η̃ −

√
2

N
√
π

∥∥∥∥∥
∞

≤ 2π
√

2

N
√
π
.

Examining z2, recall that we showed earlier that w(η̃ +
√

2
N
√
π

) = s̃N +
√

2
N
√
π
w has `1 norm 1 +

√
2π
N .

So we have z2 ≤
√

2π
N (1 +

√
2

N
√
π

) ≤ 2
√

2π
N for all N ≥ 1.

Compiling the bounds on z1 and z2, we have that for all 1-Lipschitz f , 〈f, sN − q〉 ≤ 4
√

2π
N ≤ 11

N ,
and thus W1(s̄N , q) ≤ 11

N . For N ≥ 18
ε we conclude that W1(s̄N , q) ≤ ε. Applying triangle quality

as discussed above completes the proof.

Lemma A.4 is exactly analogous to Lemma 3.4. We can take advantage of the result by using the
Hutchinson’s based method from Section 4 or the sublinear time method from Section 5 to obtain
the approximations for the Chebyshev moments required by Algorithm 6. The end result is that we
can obtain the same bounds as Theorem 1.4 and Theorem 1.3 with ` = max(1, C′

n ε
−4 log2( 1

εδ )) and
εMV = C ′′ε−4, respectively. The slightly worse ε dependence follows from the fact that Algorithm 6
has a more stringent requirement on the approximate Chebyshev moments used than Algorithm 1.

B Approximate Eigenvalues from Spectral Density Estimate

Algorithm 5 and Algorithm 6 in the previous sections output a closed form representation of a
distribution q which is close in Wasserstein-1 distance to s. In particular, the distribution output
is continuous. Alternatively, we describe a simple greedy algorithm (Algorithm 7) that recovers a
list of n eigenvalues Λ̃ = [λ̃1, . . . , λ̃n] such that ‖Λ − Λ̃‖1 ≤ 3nε, which implies that the discrete
distribution associated with Λ̃ is 3ε close to s in Wassersetin-1 distance. Formally:

12Let z maximize f(x). Since f is 1-Lipschitz we have f(z) ≤ |x− z| − f(x) for all x. Integrating both sides from
−1 to 1, we have 2f(z) ≤ (z2 + 1)− 0 ≤ 2. So, f(z) ≤ 1.
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Theorem B.1. Let s be a spectral density and let q be a density on [−1, 1] such W1(s, q) ≤ ε
for ε ∈ (0, 1). As long as q can be integrated over any subinterval of [−1, 1] (e.g., has a closed
form antiderivative), there is an algorithm (Algorithm 7) that computes 1/ε such integrals and in
O
(
n+ 1/ε

)
additional time outputs a list of n values Λ̃ = [λ̃1, . . . , λ̃n] such that ‖Λ− Λ̃‖1 ≤ 3nε.

At a high-level, Algorithm 7 computes a grid with spacing ε for the interval [−1, 1], “snaps” the
mass of the continuous density onto the nearest point in the grid, and then readjusts the resulting
point masses to a distribution where every point mass is divisible by 1/n (and can therefore be
represented by a certain number of eigenvalues). It does so by iteratively shifting fractional masses
to the next point in the grid so that the mass at the current point is divisible by 1/n.

The method requires computing the mass
∫ b
a q(x)dx where −1 ≤ a < b ≤ 1. For Algorithms 5

and 6, q is written as q = w · p where p is a degree N polynomial written as a sum of the first
N + 1 Chebyshev polynomials. So to compute the integral

∫ b
a q(x)dx, we just need to compute

the integral
∫ b
a Tk(x)w(x)dx for any k ∈ 0, . . . , N . We can do so using the following closed form

expression (see Appendix D for a short derivation):

Fact B.2. For k ∈ N>0 and −1 ≤ a < b ≤ 1 we have that∫ b

a

Tk(x)√
1− x2

dx =
− cos(k sin−1 b)

k
− − cos(k sin−1 a)

k

For k = 0, Tk(x) = 1 for all x and we have that
∫ b
a Tk(x)w(x)dx = sin−1(b)− sin−1(a).

Using the above fact, when q = w · p for a degree N polynomial p, we can compute
∫ b
a q(x)dx in

O(N) time. In our main results N = O(1/ε), so this cost is small.

Algorithm 7 Approximate Eigenvalues from Spectral Density

Input: Spectral density q : [−1, 1]→ R+, integer n.
Output: Vector Λ̃ = [λ̃1, . . . , λ̃n].

1: compute ~v = (v−1+ε, v−1+2ε . . . , v0, vε, . . . , v1) such that vt =
∫ t
t−ε q(x)dx

2: for t in (−1 + ε,−1 + 2ε . . . , 0, ε, . . . , 1) do
3: r ← vt − bvtc1/n . bvtc1/n is the largest value ≤ vt that is divisible by 1

n
4: vt+ε ← r + vt+ε
5: Set n · bvtc1/n values in Λ̂ to be t

6: return Λ̂

Proof of Theorem B.1. Consider the output Λ̃ of Algorithm 7 with input q and n. Notice that
W1(v, q) ≤ ε by the definition of v and the earthmover’s definition of the Wasserstein distance.
Hence, by triangle inequality, we have that W1(v, s) ≤ 2ε. Let ṽ be the vector of masses after
the shifting procedure (Line 4) in the for-loop of the algorithm. Notice that ṽ is the distribution
corresponding to having n equally weighted point-masses on the points in Λ̃. Since the procedure
in Line 4 moves at most 1/n mass at most ε distance in each iteration, we have W1(v, ṽ) ≤ ε by the
earthmover’s distance definition of the Wasserstein-1 distance. It follows then that W1(ṽ, s) ≤ 3ε.
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We note that there are other options beyond Algorithm 7 for discretizing a continuous density
return by the Jackson damped kernel polynomial method – i) the optimal discretization of a con-
tinuous density on the interval [−1, 1] into n equally-weighted point-masses, and ii) an algorithm
by [CKSV18] that can be seen as a combination of Algorithm 7 and the optimal method.

Optimal Discretization. Given the continuous density q, consider the discrete density that
results from the following procedure:

1. Initialize t = −1, then repeat the following steps until t = 1.

2. Let t′ ≥ t be the smallest value such that
∫ t′
t q(x)dx = 1

n .

3. Place a point-mass at Ex∼q
[
x | x ∈ [t, t′]

]
. I.e. a point-mass is placed in the interval [t, t′] at

the point given by the conditional distribution of q on the interval.

4. Update t← t′.

The values Λ̃ = λ̃1, . . . , λ̃n given by the point-masses computed by the aforementioned procedure is a
optimal discretization of q into n equally-weighted point-masses on [−1, 1] in terms of Wasserstein-1
distance. To see why this is the case, consider the first 1/n fraction of the mass of the density q, i.e.
the smallest t > −1 such that

∫ t
−1 q(x)dx = 1/n. The policy minimizing the earthmover’s distance

to any n equally-weighted point-wise masses must “move” the mass of q on the interval [−1, t] to
the point-mass closest to −1. Hence, it is sufficient to restrict our attention to the interval [−1, t]
when computing the smallest point-mass, i.e. the mass closest to −1. Now that we are constrained
to looking at the interval [−1, t] one can check that the point-mass minimizing the earthmover’s
distance to q, restricted to [−1, t], is the point-mass at Ex∼q

[
x | x ∈ [−1, t]

]
. The optimality of the

procedure follows from making this argument inductively for all n point-masses.

We note that all steps of the procedure takes roughly O(n) time, although a numerical integration
technique or binary search would need to be used to find each t′ to sufficiently high accuracy.

A result combining the greedy discretization in Algorithm 7 and the optimal discretization is given in
[CKSV18]. They compute a fractional discretization on an ε-spaced grid of [−1, 1], as in Algorithm
7, but then compute the eigenvalues using the conditional expectation of every 1/n fraction of mass
based on the discrete density on the grid.

C Positive Polynomial Approximation

In this section, we introduce Jackson’s powerful result from 1912 on the uniform approximation
of Lipschitz continuous periodic functions by low-degree trigonometric polynomials [Jac12, Jac30].
This result will directly translate to the result for algebraic polynomials needed to analyze the
kernel polynomial method. We start with basic definitions and preliminaries below.
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C.1 Fourier Series Preliminaries

Definition C.1 (Fourier Series). A function f with period 2π that is integrable on the length of
that period can be written via the Fourier series:

f(x) =
α0

2
+

∞∑
k=1

αk cos(kx) + βk sin(kx)

where

αk =
1

π

∫ π

−π
f(x) cos(kx)dx βk =

1

π

∫ π

−π
f(x) sin(kx)dx.

Equivalently we can write f in exponential form as:

f(x) =

∞∑
k=−∞

f̂ke
ikx

where i =
√
−1, f̂0 = α0/2, f̂k = f̂∗|k| for k < 0, and for k > 0,

f̂k =
1

2
(αk − iβk).

If the Fourier series of a periodic function f has f̂k = 0 for k > N (equivalently, αk = βk = 0 for
k > N), we say that f is a degree N trigonometric polynomial.

In working with Fourier series, we require the two standard convolution theorems:

Claim C.2 (First Convolution Theorem). Let f, g be integrable 2π-periodic functions with exponen-
tial form Fourier series coefficients [f̂k]

∞
k=−∞ and [ĝk]

∞
k=−∞, respectively. Let h be their convolution:

h(x) = [f ∗ g](x) =

∫ π

−π
f(u)g(x− u)du.

The exponential form Fourier series coefficients of h, [ĥk]
∞
k=−∞, satisfy:

ĥk = 2π · f̂kĝk

Claim C.3 (Second Convolution Theorem). Let f, g be integrable 2π-periodic functions with expo-
nential form Fourier series coefficients [f̂k]

∞
k=−∞ and [ĝk]

∞
k=−∞, respectively. Let h be their product:

h(x) = f(x) · g(x).

The exponential form Fourier series coefficients of h, [ĥk]
∞
k=−∞, satisfy:

ĥk =
∞∑

j=−∞
f̂j · ĝk−j

In other words, the Fourier coefficients of h are the discrete convolution of those of f and g.

35



C.2 Jackson’s Theorem for Trigonometric Polynomials

We seek a low-degree trigonometric polynomial f̃ that is a good uniform approximation to any
sufficiently smooth periodic function f . I.e., we want ‖f − f̃‖∞ < ε where ‖z‖∞ denotes ‖z‖∞ =
maxx z(x). A natural choice for f̃ is the truncated Fourier series

∑N
k=−N cke

ikx, but this does not
lead to good uniform approximation in general. Instead, Jackson showed that better accuracy can
be obtained with a Fourier series with damped coefficients, which is equivalent to the convolution
of f with an appropriately chosen “bump” function (aka kernel), defined below:

Definition C.4 (Jackson Kernel). For any positive integer m, let b be the 2m− 2 degree trigono-
metric polynomial:

b =

(
sin(mx/2)

sin(x/2)

)4

=
2m−2∑

k=−2m+2

b̂ke
ikx,

which has exponential form coefficients b̂−2m+2, . . . , b̂0, . . . , b̂2m−2 equal to:

b̂−k = b̂k =
m−k∑
j=−m

(m− |j|) · (m− |j + k|) for k = 0, . . . , 2m− 2. (16)

When m is odd it is easy to see that b is a degree 2m − 2 trigonometric polynomial. Specifically,
for odd m we have the well known Fourier series of the periodic sinc function s(x) = sin(mx/2)

sin(x/2) =∑(m−1)/2
k=−(m−1)/2 e

ikx. We then apply the convolution theorem (Claim C.3) to s(x) · s(x). to see that

s2(x) =
(

sin(mx/2)
sin(x/2)

)2
is an m−1 degree trigonometric polynomial with coefficients c−k = ck = m−k.

Applying it again to s2(x) · s2(x) yields (16). For a derivation of (16) when m is even, we refer the
reader to [Jac30] or [Lor66].

Figure 6: Jackson’s bump function b(x) for m = 5, alongside its Fourier series coefficients.

Jackson’s main result is as follows. We include a short proof for completeness.

Theorem C.5 (Jackson [Jac12], see also [Jac30]). Let f be a 2π-periodic, Lipschitz continuous
function with Lipschitz constant λ. I.e., |f(x) − f(y)| ≤ λ|x − y| for all x, y. For integer m, let
b be the bump function from Definition 16, with kth Fourier ceofficients b̂k. The function f̃(x) =

1
2πb̂0

∫ π
−π b(u)f(x− u)du satisfies:

‖f̃ − f‖∞ ≤ 9
λ

m
.
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f̃ is a 2m−2 degree trigonometric polynomial, and by the convolution theorem, its exponential form

Fourier series coefficients are given by
ˆ̃
fk = b̂k

b̂0
· f̂k for k = −2m+ 2, . . . , 2m− 2.

Remark. The function f̃ takes the form of a damped truncation of f ’s Fourier series: b̂0
b̂0

= 1 and

b̂k
b̂0

falls off towards zero as k → 2m − 2. After 2m − 2, the Fourier series coefficients from f are

fully truncated to 0.

Proof. Recalling that b̂0 = 1
2π

∫ π
−π b(x)dx, we have that

∫ π
−π

1
2πb̂0

b(u)du = 1, and thus

|f̃(x)− f(x)| ≤
∫ π

−π

1

2πb̂0
b(u) · |f(x)− f(x− u)|du.

By our Lipschitz assumption of f , we can bound |f(x)− f(x− u)| ≤ λ|u| and thus have:

max
x
|f̃(x)− f(x)| = ‖f̃ − f‖∞ ≤ λ ·

∫ π
−π |u|b(u)du

2πb̂0
= λ ·

∫ π
0 ub(u)du∫ π
0 b(u)du

. (17)

In the last equality, we use that b is symmetric about zero. We have that 2 ·sin
(
u
2

)
≤ u ≤ π ·sin

(
u
2

)
for x ∈ [0, π] and thus:∫ π

0
ub(u)du ≤ π4

∫ π

0
u

sin(mu/2)4

u4
du = π4m2

∫ πm

0

sin(v/2)4

v3
dv ≤ π4m2

∫ ∞
0

sin(v/2)4

v3
dv.

The last integral evaluates of ln 2
4 , so overall we have

∫ π
0 b(u) · udu ≤ π4 ln 2

4 ·m2. Moreover we can
check that: ∫ π

0
b(u)du = π · (2

3
m3 +

1

3
m) ≥ 2π

3
m3.

Plugging into (17) we have that:

‖f̃ − f‖∞ ≤ 8.06
λ

m
.

The result follows. We note that the constant above is loose: numerical results suggest the bound
can be improved to ≤ π

2
λ
m .

Theorem C.5 translates to a result for algebraic polynomials via a standard transformation between
Fourier series and Chebyshev series, which we detail below.

C.3 Jackson’s Theorem for Algebraic Polynomials

Theorem C.6. Let f ∈ F([−1, 1],R) be a Lipschitz continuous function on [−1, 1] with Lipschitz
constant λ. I.e., |f(x) − f(y)| ≤ λ|x − y| for all x, y. For integer m, let b̂0, . . . , b̂2m−2 be the
coefficients from (16). Let ck = 〈f, w · T̄k〉 be the kth coefficient in f ’s Chebyshev polynomial
expansion, where w and T̄k are as defined in Section 2. The degree (2m− 2) algebraic polynomial

f̃(x) =
2m−2∑
n=0

b̂k

b̂0
ck · T̄k(x)

satisfies ‖f̃ − f‖∞ ≤ 9 λ
m .
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Proof. To translate from the trigonometric case to the algebraic setting, we will use the identity
that for all k,

Tk(cos θ) = cos(kθ). (18)

Consider any function r ∈ F([−1, 1],R) with Chebyshev expansion coefficients c0, c1, . . ., where
ck = 〈r, w · T̄k〉. Transform r into a periodic function as follows: let g(θ) = r(cos θ) for θ ∈ [−π, 0]
and let h(θ) = g(−|θ|) for θ ∈ [−π, π]. The function h(θ) is periodic, and also even, so its Fourier
series has all coefficients β1, β2, . . . equal to 0. We thus have that

h(θ) =
∞∑
n=0

αk cos(nθ),

where

α0 =
1

2π

∫ π

−π
h(θ) cos(kθ)dθ =

1

π

∫ 0

−π
g(θ) cos(kθ)dθ

and, for n > 0,

αk =
1

π

∫ π

−π
h(θ) cos(kθ)dθ =

2

π

∫ 0

−π
g(θ) cos(kθ)dθ.

Using (18) and the fact that d
dx cos−1(x) = 1√

1−x2 , we have:∫ 0

−π
g(θ) cos(kθ)dθ =

∫ 1

−1
r(x)Tk(x)

1√
1− x2

dx.

We conclude that the Chebyshev coefficients of r are precisely a scaling of the Fourier coefficients

of h. Specifically, since T̄0 =
√

2
πT0 and T̄k =

√
1
πTk, we have:√

2

π
c0 = α0,

√
1

π
ck = αk for k > 0. (19)

With this fact in hand, Theorem C.6 follows almost immediately from Theorem C.5. Specifically,
given f ∈ F([−1, 1],R) with Chebyshev series coefficients c0, c1, . . ., we let g(θ) = f(cos θ) and
h(θ) = g(−|θ|). Let α0, α1, . . . denote h’s non-zero Fourier coefficients. Then, let h̃ be the approx-
imation to h given by Theorem C.5. h̃ is a 2m − 2 degree trigonometric polynomial and is even
since h is even and the bump function b is symmetric. Denote h̃’s non-zero Fourier coefficients

by α̃0, . . . , α̃2m−2. We have that α̃k = b̂k
b̂0
αk for 0 ≤ k ≤ 2m − 2. Finally, let f̃ ∈ F([−1, 1],R)

be defined by f̃(cos(θ)) = h(−θ). By (19), we have that f̃ is a degree 2m − 2 polynomial and its

Chebyshev series coefficients c̃0, . . . , c̃2m−2 are exactly equal to b̂k
b̂0
ck.

Moreover, we have ‖f − f̃‖∞ = maxx∈[−1,1] |f(x) − f̃(x)| = maxx |h(x) − h̃(x)|. By Theorem C.5

we have maxx |h(x)− h̃(x)| < 9 λ
m , so we conclude that ‖f − f̃‖∞ < 9 λ

m .

In addition to the main result of Theorem C.6, our SDE algorithm alsos require an additional
property of the damped Chebyshev approximation f̃ :
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Lemma C.7. For any non-negative function f ∈ F([−1, 1],R) (not necessarily Lipschitz), let f̃ be
as in Theorem C.6. We have that f̃ is also non-negative on [−1, 1].

Proof. Let h(θ) and h̃(θ) be the 2π perioduc functions as in the proof of Theorem C.6. I.e.,
h(θ) = g(−|θ|) where g(θ) = f(cos θ) and h̃ is the truncated, Jackson-damped approximation to
h from Theorem C.5. If f is non-negative, then so is h, and since h̃ is the convolution of h with
a non-negative function, it is non-negative as well. Finally, since f̃(cos(θ)) = h(−θ), we conclude
that f̃(x) ≥ 0 for x ∈ [−1, 1].

D Derivation of Fact B.2

Let x = sin(u) then we have that dx = cos(u)du. Substituting the change of variable in the integral
and noting the fact that Tk(cos θ) = cos(kθ) for θ ∈ [−π, π] gives us that∫ b

a

Tk(x)√
1− x2

dx =

∫ sin−1 b

sin−1 a

cos(k cos−1 sin(u))√
1− sin2(u)

cos(u)du =

∫ sin−1 b

sin−1 a
cos(k(π/2− u))du

=
− sin(k(π/2− u))

k

∣∣∣∣sin−1 b

sin−1 a

=
− cos(ku)

k

∣∣∣∣sin−1 b

sin−1 a

where we used the fact that cos2(u) + sin2(u) = 1 and
∫

cos(u)du = sin(u) + c.

E Proof of Fact 3.3

Proof. We start by doing a change of variables; set x = cos θ and note that dx = − sin θdθ.
Substituting this into the expression for 〈f, w · T̄k〉 and noting that Tk(cos θ) = cos kθ gives us that√

2

π

∫ 1

−1
f(x)

Tk(x)√
1− x2

dx =

√
2

π

∫ 0

−π
−f(cos θ)(cos kθ)dθ

since
√

1− cos2 θ = sin θ and dx = − sin θdθ. Integrating by parts and noting that (f(cos θ)
∫
− cos kθdθ)|0−π =

−f(cos θ) sin kθ
k |0−π = 0 gives us that

〈f, w · T̄k〉 =

√
2

π

∫ 0

−π

sin kθ

k
df(cos θ).

We use the definition of the Riemann-Stieltjes integral and let M ∈ N+ be a parameter and
PM = {−π = x0 ≤ · · · ≤ xM = 0} be the set of all M intervals partitioning the interval [−π, 0].
Then for a partition P ∈ PM we denote norm(P ) to be the length of its longest sub-interval. The
Riemann-Stieltjes integral

∫ 0
−π sin(kθ) df(cos θ) can be written as

∫ 0

−π
sin kθ df(cos θ) = lim

ε→0
sup

M, P∈PM
s.t.norm(P )≤ε

m−1∑
i=0

(f(cosxi+1)− f(cosxi)) sin kxi.
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Since f(x) ∈ lip1 and | sin kθ| ≤ 1 we can bound the magnitude of the above summation as∣∣∣∣∣∣
m−1∑
i=0

(f(cosxi+1)− f(cosxi)) sin kxi

∣∣∣∣∣∣ ≤
m−1∑
i=0

λ| cosxi+1 − cosxi| ≤ 2.

The last inequality follows from the fact that cos(θ) is 1-Lipschitz. Putting these bounds together
gives us that |〈f, w · T̄k〉| ≤ 2λ/k.
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