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Abstract In this paper, the authors propose a novel smoothing descent type algorithm
with extrapolation for solving a class of constrained nonsmooth and nonconvex problems,
where the nonconvex term is possibly nonsmooth. Their algorithm adopts the proximal
gradient algorithm with extrapolation and a safe-guarding policy to minimize the smoothed
objective function for better practical and theoretical performance. Moreover, the algo-
rithm uses a easily checking rule to update the smoothing parameter to ensure that any
accumulation point of the generated sequence is an (affine-scaled) Clarke stationary point
of the original nonsmooth and nonconvex problem. Their experimental results indicate the
effectiveness of the proposed algorithm.
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1 Introduction

Nonconvex and nonsmooth composite problems have been receiving much attention in mod-
ern science and technology, such as signal processing (see [9, 17, 51]), image restoration (see [19,
32, 34, 49]) and image reconstruction (see [2, 15, 33, 39-40]). This is mainly because of their
superior ability to produce sparser solutions and recover images with neater edges (see [11, 22,
32-34, 49]). In particular, compared to unconstrained nonconvex models, the corresponding
constrained models can achieve reasonable improvements when most pixel intensities of an im-
age are around the boundary of a closed convex set (see [3-6, 10, 12, 24, 41, 51]). In this paper,
we focus on the following constrained nonconvex nonsmooth composite minimization

min F(u) = r(u) + h(u), (1.1)
uet)
where Q is a closed convex set, r(u) is a nonconvex possibly non-Lipschitz function and h(u)
is a smooth function and possibly nonconvex. In image processing problems, r(u) in (1.1) can
be considered as the regularization term dependent on the prior knowledge of images, such as
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£, regularization (0 < p < 1) (see [2, 12, 19, 22, 45, 48-49, 51]), h(u) can be considered as the
fidelity term for measuring the deviation of a solution from the observation, such as the least
squares data fitting term (see [2, 37, 43]) and  is usually a box constrained set.

Algorithms for solving the nonsmooth and nonconvex problems of form (1.1) have been s-
tudied extensively, due to their wide range of applications. If & is smooth (possibly nonconvex)
and r is simple (i.e., its proximal operator has a closed form solution or the proximal point is
easy to compute), the proximal gradient method (also known as the forward-backward splitting)
is very effective (see [1, 7, 18, 29]). An abstract convergence result for nonconvex descent meth-
ods including proximal gradient and gradient descent algorithms under a sufficient decrease
condition and a relative inexact optimality condition has been presented in [1]. For non-simple
r, several inexact proximal gradient and gradient descent algorithms have developed to reduce
computational cost while still ensuring convergence under certain conditions (see [1, 21, 24-25,
28, 30, 38, 47]). Moreover, a number of works were proposed to integrate the Nesterov’s accel-
erated gradient descent algorithm into the proximal gradient algorithm for improved iteration
efficiency while maintaining convergence guarantee for nonconvex programming (see [20, 2728,
39, 42]). The iPiano algorithm combined proximal gradient method with an inertial force has
better performance and nice convergence properties (see [35, 44]). However, most of standard
or accelerated and/or inexact proximal gradient algorithms for nonconvex programming require
r to be smooth or satisfy the Kurdyka-Lojasiewicz (KL for short) inequality for global conver-
gence (see [1, 27, 44, 46]). In this work we consider more general nonconvex nonsmooth problem
composed of gradient operators, which may not satisfy these conditions.

For more general nonconvex and nonsmooth optimization problems, especially for the non-
convex component being also nonsmooth, a natural choice is to use the smoothing strategy (see
[4-6, 11-14, 22, 26, 33-34, 36]). Smoothing methods construct a sequence of smooth nonconvex
problems to approximate the original nonsmooth problem, and each smooth problem with the
fixed smoothing parameter can be solved by efficient algorithms such as the gradient descent
method combined with line search (see [11]), the nonlinear conjugate gradient method (see
[14]) and the trust region Newton method (see [13]). By updating the smoothing parameter, s-
moothing algorithms are able to solve the original nonsmooth nonconvex optimizations and any
accumulation point of the generated sequence is a Clarke stationary point when the gradient
consistency of subdifferential associated with a smoothing function is proved (see [4-6, 11-14]).
For instance, [4] discussed the first order necessary optimality condition for local minimizers
and defined the generalized stationary point for a class of constrained nonsmooth nonconvex
problems where the feasible set is a closed convex set. Recently, to accelerate the smooth-
ing method for nonconvex problems, [39] introduced a convergent smoothing gradient descent
type algorithm with extrapolation technique. It can not only guarantee that any accumulation
point is an (affine-scaled) Clarke stationary point, but also obtain better experimental results
compared to the standard smoothing gradient descent method. Instead of directly converting
the nonsmooth function into parameterized smooth function, iterative support shrinking with
proximal linearization algorithms (see [19, 30, 4041, 48]) obtained a nonconvex smooth objec-
tive function by putting nondifferentiable points of the nonsmooth function into constraints.
These methods were easy to produce piecewise constant regions and thus were not suitable for
recovering smooth parts of images.

In this paper, we propose an accelerated smoothing descent algorithm for solving a general
class of constrained nonsmooth nonconvex optimization problems, where the nonconvex term is
a potential function composed with the L, norm of the gradient of the unknown function. Our
algorithm adopts the proximal gradient algorithm with extrapolation and a safe-guarding policy
to minimize the smoothed objective function to guarantee a better practical and theoretical
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performance. The smoothing method is inspired by [11], which is equivalent to Nesterov’s
smoothing technique for non-smooth optimization (see [31]). Moreover, the algorithm uses a
rule that is easy to implement to adoptively reduce the smoothing parameter. We can prove
that any accumulation point of the generated sequence is an (affine-scaled) Clarke stationary
point of the nonsmooth nonconvex problem (1.1). The main contributions are summarized as
follows:

e We propose an extrapolated smoothing descent algorithm for constrained nonconvex non-
smooth minimization problems, where the nonconvex part is also nonsmooth and may not be
simple or satisfy KL property. Our algorithm adopts the proximal gradient algorithm with
extrapolation and a safe-guarding policy to minimize the smoothed objective function. The
algorithm can also adaptively reduce the smoothing level to approach a stationary point of the
original problem.

e We prove that the sequence generated by the proposed algorithm has at least an accumu-
lation point, and any accumulation point of the sequence is an (affine-scaled) Clarke stationary
point of the nonconvex and nonsmooth problem. Moreover, the total number of iterations
required to terminate our algorithm with a given tolerance is also studied.

e We conduct a series of numerical experiments with comparisons to several existing descent
type of algorithms with or without box constraints and with or without extrapolation for sparse-
view CT reconstruction. The experimental results demonstrate the effectiveness of the proposed
algorithm.

The paper is organized as follows. In Section 2, we identify a class of constrained nonconvex
and nonsmooth optimization problems, and present an extrapolated smoothing descent algo-
rithm (ESDA for short) for solving the problem. In the meantime the smoothing method and
properties of the smoothed objective function are studied. In Section 3, we provide convergence
and iteration complexity analyses of the proposed algorithm. Experimental results are given in
Section 4. At last, conclusions are summarized in Section 5.

2 The Problem and the Algorithm

2.1 Preliminaries

In this paper, we use R™ to denote the n-dimensional Euclidean space with inner product
(-,-) and Euclidean norm || - ||, (p > 0). For p = 2, we simply denote it by || - ||. Denote by
) a compact convex subset of R™. IIn(u) represents the projection of a vector u € R™ to Q
defined by Ilg(u) = argrvneig v — ul|. For a real-valued matrix A, ||A||> denotes its spectral

norm that is the largest singular value of A. For a vectored 2-dimensional image u € R"”,
diu = (d¥u;d/u) € R? represents du at pixel i, and d; = (d?,d?Y) € R?*" is the discrete
gradient operator at pixel i. In our notation Ry = [0,00) and N is the set of non-negative
integers.

Using the definition of Clarke generalized directional derivative (see [8, 16]) we give the

following definitions.

Definition 2.1 Assume that g : R™ — (—o0, +00] is a locally Lipschitz continuous function.
The Clarke subdifferential of g at x € R™ is defined as

tv) —
aog(X) = {W eR": <W, V> < 111?pr w
tl0

, Vv e R"}.
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Definition 2.2 (Clarke stationary point) For a locally Lipschitz function g : R™ —
(—00,400], a point x* € Q, where Q is a compact subset of R™, is said to be a Clarke sta-
tionary point, if there exists a d € 0°g(x), such that {d, x —x*) > 0 for all x € Q.

Definition 2.3 (see [16]) A function g : R™ — R is said to be regular at x provided the
following hold:

(i) For all v, the usual one-sided directional derivative g'(x;v) = lim

g(x+tv)—g(x)
10 t

exists.

(i) For all v, ¢'(x;v) = limsup w'

y—x
tl0

Remark 2.1 (see [16]) Suppose that g; : R® — R, i =1,2,--- ,m, are Lipschitz continuous

m
and regular near x. Then, their sum g = > g; is also Lipschitz continuous near x and
i=1

dg(x) = Z gi(x).

2.2 The problem and basic assumptions

We consider the following type of regularized inverse problem

n

. _ o _ @ _fl2
(P) iy PO =70 h) = D) + G (2.1)
where ||d;ul| = /(d¥u)? + (d/u)?; ¢ : [0,+00) — [0,+00) is a potential function; o > 0 is a

model parameter to balance the data fitting term and the regularization term.

Assumption 2.1 We assume that

(a) o(t) is C% on (0,+00), and p(0) = 0. Specifically, for any fixed 1, ¢ and ¢’ are
Lipschitz continuous on [%, oo) with constants Loﬁ,n_bovw and Ll,wn_blv@, respectively, where
Lo, L1,s, bo,p, b1,, > 0 and independent of 7.

(b) ¢"(t)](0,40) = 0 and tl_i)]%l+ o' (t) = ¢'(07) > 0.

(c) ¢"(t) is increasing on (0, 4-00) with ©” ()]0, 100) < 0.

Many widely used regularizations in image deblurring and reconstruction problems meet
these assumptions. In Table 1, we list some nonconvex nonsmooth potential functions (see [11,
14, 32-33]).

Remark 2.2 (1) If ¢/(0%) is finite, ¢(||d;ul|) is Lipschitz at ||d;u|| = 0. For example, o (t)
and ¢9(t) in Table 1.

(2) If ¢’ (07) = 400, ¢(||d;u]|) is non-Lipschitz at ||d;ul| = 0. For example, p3(t) and ¢4 (t)
in Table 1.

(3) Assumption 2.1(a) and (b) show that 0 is the strict minimizer of ¢(t).

(4) Assumption 2.1(c) implies that (¢) is a concave function.

2.3 The algorithm

Before we present the proposed algorithm, we first define a smooth approximation problem
for the nonsmooth and nonconvex problem (2.1).

The function ¢(||d;ul|) is nonsmooth and possibly also non-Lipschitz at ||d;ul| = 0 when
¢'(07) = +oo. Inspired by the approximation technique for |¢| in [11], we approximate ¢(||d;ul|)
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Table 1 Nonconvex nonsmooth potential functions with a parameter g > 0.

o(t) @' (t)(0,400) ©" (t)](0,400)
_ Bt B —25
p1(t) = 1o T+50)? (E:DE
_ B —B?
wa(t) = In(1+ 5t) (¢==0) g
pa(t) =t?,0<p<1 ptr~? p(p — 1)tr=2
p—1 — p—2 P _
palt) =In(1+ A1), 0<p<1 i (%110
by
e(l|dsul]), if [|dial| > 7,

en(lldinl]) = (p(”diuHQ n (2.2)

- if ||dsull <,
py ) ldml <

where 7 > 0 is a smoothing parameter. For this smoothed ¢, (), we have the following propo-
sition.

Proposition 2.1 If ¢, (||d;ul|) is a smoothing approzimation function of o(||d;ul|) in (2.2),
the following statements hold:

(i) For any fized n > 0, we have ¢(||diul]) < ¢y ([|diul)) < ¢([|diull)) + ¢(3).

(i) lim o (lldiul)) = (lldsul).

(iii) For any fized n € (0, 1], V('Y ¢y(lldiul)) is Ly-Lipschitz continuous, where
i=1
Ly = Cyn ' (2.3)

for some constants Cp, > 0 and b, > 0 that depend on ¢, but independent of n.

Proof From the definition of ¢, (||d;ul|) in (2.2), it is easy to get Parts (i)-(ii). To show
Part (iii), we let

ldal, i dau] >
A o)
i n .
—— + 2, if ||diu]] <.
g i ) <n

Apparently, s;(u) > Z. In the next, we first to show that s;(u) admits Lipschitz continuous
gradient with constant

T (1 P (24)

where ||d;||2 is the spectral norm of the matrix d; € R?*",
Notice that s;(u) can be rewritten as

n n
si(w) = 2 +argmax {(du,v) - 2|lv[[*}, (2.5)

where V = {v e R? | |v| < 1}.
For any uy, us € , define vi and vy as follows,

vi =2 +argmax {(dous, v) - 2[v?}. (2.6)
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=1 ‘ _1 2}
V2= + arg max {(dluQ, V) 2Hv|| , (2.7)

which are well defined since the maximization problems have unique solutions. Also using the
concavity of the set (V') constrained problems above in v, the optimality conditions of v; and
vo lead to

(diuy — vy, vo — Vi)

<0,
<0

(diuz —nva, vi —Vv2)
Adding the two inequalities above yields
(diug — djug —n(vy —va), vo —vy) <0,
which, together with the Cauchy-Schwarz inequality, implies
[divy — diuz|| = n[ve — va. (2.8)

From (2.5)—(2.6), it is easy to see that Vi (u;) = V{(u;,d! v;) = dl'v; for j = 1,2, where
dI' € R"*2. Therefore,

[Vi(ur) — Vi (ua)|| = [|d] (vi — vo)|
< ldsll2]l(ve = v2)|
< Hdill2llding - diug|
<07 Hdill3 ] — s,

in the last inequality we used (2.8). The claim (2.4) is proved.
Observe that V(s (u)) = dﬁf) d%b—(“) = ¢/ (54(un)) Vs (u) and thus,

V(34 (u1)) — V(s (us)) |
= [’ (3 (w1)) Vi (u1) — ¢ (54(02)) Vi (u2) |
< ¢ (e (1)) Ve (wr) — ¢ (54 (u1)) Vg () |
+ 119 (54 (a1)) Vi (u2) — ¢’ (32:(02)) Vi ()
Sigg”@'(%(u))\ [V (a1) — Vg (ua)|

+ ¢’ (e (w1)) — ¢ (56 (u2)) | - sup Vi (u)]|

< Lo -0 "% - Ly gllur — ual| + Ly "¢ - ||56(u1) — 56 (u2)| - max{1,n}

< (Lon ™% + Lign %) - Lopi - [us — ua.
Here, the last second inequality is due to (a) the Lipschitz continuity of ¢ with constant
Ly,,, (b) the Lipschitz continuity of the gradient of ¢ with constant Lq ., from Assumption 2.1,

(c) the facts that n < ng = 1 from algorithm ESDA and hence |V (u)|| < max{1l,n} =1, (d)
(2.4). Meanwhile, the last inequality is due to again sup ||V (u)|| < 1 and [|s¢(ug) — 4 (ug)]| <
u

sup | Vs (u)] - [Jur — uz||. Combining the above with (2.4), we immediately have the desired
ue

result in Theorem 3.2 with C,, = (Lo,, + L1,,) - [Q] 3 [|d; |3, where || represents the diameter
i=1
of , and b, = 1 4+ max{bg ,, b1, }-
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The function §[[Hu — f||? also has Lipschitz continuous gradient, we denote its Lipschitz
constant by Lj. Define a smoothing approximation problem of (2.1) as

n

min £ (w) i= 1oy (u) + h(w) = Y i ([ldeul]) + 5| Hu — £ (2.9)
i=1

Clearly, F,)(u) has Lipschitz continuous gradient with the Lipschitz continuous gradient L, + Ly,.
Now we propose the following extrapolated smoothing decent algorithm (ESDA for short)
for (2.1).

Algorithm 1: Extrapolated Smoothing Decent Algorithm (ESDA for short) for (2.1)

Step 0: Input (p,d,7)€(0,1), 7 > 0, Maximum number of iterations K or tolerance e¢o > 0;
Initialize u_1 =up € Q, g =1, and n_1 =y > 0.

Step 1: For £k =0,1,2,---,
/ 2
Step 1.1: Set 01 = %ﬂe’“.

Step 1.2: Let wpy1 = ug + (Zz;l)(uk —Ug_1)-

Step 1.3: Define qy41:

, if F, < F, d € Q,
gy = 4 Ve 1 F (f’Vk+1) < Fy, (uy) and Wy (2.10)
ug, otherwise.
Step 1.4: Compute Ugi1:
Ziy1 = dQet1 — SoVA(dr41), (2.11)
ﬁk+1 = HQ (Zk+1 — sk+1Vrmc (Zk+1))7 (212)
Step 1.5: Compute Uy41:
Upp1 = HQ(uk — ak—HVFnk (uk)), if (213)
Fop (Wp1) = Fy (uy) < =0 Wepn — ug]®. (2.14)
Otherwise, api+1 + pag+1 and go back to (2.13). (2.15)
Step 1.6: Choose ugy1:
u if F, (a <F, (u
W1 = {Ek-klv 1 ﬁk(?k+1) = nk(uk+1)7 (2.16)
Uy41, otherwise.
Step 2: Update ng41
I —
e {ka, 1 ||uk+.1 ui|| < TNROK41, (2.17)
Mk otherwise.

Step 3: If mpar+1 < €401, terminate and output ug41.

Note that in ESDA the generation of 11 in (2.11) can be viewed as using the proximal
gradient algorithm with extrapolation, where sy and si41 are stepsizes determined by user.
The Uy plays a role in ESDA to attain better efficiency than the standard gradient descent
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method. Our experimental results confirmed this. However, due to the nonconvexity and
nonsmoothness of problem (2.1), the sequence {U1} may not converge. The Ug41 in (2.13)
is obtained by the standard gradient descent to safeguard the convergence of the ESDA. The
stepsize a4 is determined by a simple line search strategy in (2.14). We set ug41 being Ug41
or U4 whichever has lower value of F;, to encourage reduction of the objective function.

3 Convergence and Complexity Analysis

In this section, we will discuss the convergence of ESDA and the bound for the number of the
iterations required to terminate the algorithm with the prescribed accuracy e for ||[Ug41 —ug||.
First, we give the following lemma that has been proved in [39].

Lemma 3.1 For ¢, (-) defined in (2.2), we have @y, . (||[diul]) < ¢y, (||dsul]) for any i €
{1,2,--,n}, if ey < . Consequently, I, . (n) < Fy, (u), where F)(u) is defined in (2.9).

Theorem 3.1 Let {ug} be the sequence generated by ESDA with any fized n = ni. > 0 (that
is by Step 1 of the algorithm). Then for any ug € Q and § > 0, we have

1. the condition (2.14) in Step 1.5 can be met by finitely many times of line search.

2. |@x41 —ug| — 0 as k — oo.

3. For any e >0, let k. := min{k € NT : ||G11 — ugl| <e}. Then

ke < Fy(ug)ste 2 < (F(uo) + (p(%)) Sote2 (3.1)
Proof To prove Part 1. By the optimality conditions for g1, we have
(W1 — ug + ap1 VF,, (ug), u —Tiq1) >0, Vu € Q. (3.2)
And thus
(VE,, (ug), Uy —u) < _fﬂHﬁk—H —ul - [[TWpg1 —ugl|, Vue (3.3)
If we let u = uy, we then obtain
(VP (), T = ) < =[G — e, (3.4)

By the last statement of Proposition 2.1, VF;, is (L, + Ly, )-Lipschitz, where L,, is given in (2.3)
with 7 = 7, and Ly, is the Lipschitz continuous for $V(|[Hu — f|*) = §o(H), where o(H) is
the largest singular value of H. Hence, we have

_ _ Ly+ Ly _
Fy(Wei1) < Fy(ug) + (VEy (i), Wer — i) + =10 [ —we®. (3.5)
Combining (3.4) and (3.5) we get
_ 1 L,+L _ _
Fn(uk+l) - Fn(uk) < (— el + WT}I) : Huk+1 - uk||2 < —5Huk+1 - ukHQ, (36)
+

if apyr < ((5+ #) - Hence, the condition (2.14) in Step 1.5 can be met after finitely many
line search steps. This proves Part 1. Notice that the smallest oy for having (2.14) can be
chosen as ag41 = (5 + #)_1. The purpose of the line search is to search a better stepsize

Qk+1, which makes the condition (2.14) met and

Ln"’Lh)_l'

Q1 = (5+ 5

(3.7)
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Moreover, even the ay41 satisfying (3.7), it is able to find a s € Ny, such that

L,+ Lp\—
PPy < (5 n "Th) (3.8)
From (3.6) and the choice for ug41 in Step 1.6, we have that for any n = ny,
Fy(upt1) < Fy(Qggr) < Fy(ug) <--- < Fy(ug), k=0,1,--- (3.9)

For any positive integer K, summing up over k£ from & = 0 to £ = K on the both sides of
(3.6). By using (3.9) and the fact that F,,(u) > 0 due to Assumption 2.1, we obtain

Z W1 —ugf® <07t Z Fy(Uk41)]
= 5‘1(Fn(u0) — Fy(Ug11)) < 071F,(up). (3.10)

Because K is arbitrary, we have |[Ux+1 — ug|| — 0 as k — oo. This then proves Part 2.
As for Part 3, we observe that, for any k < ke, ||[@x+1 —ug|| > €. From (3.10) with K = k.—1,
it must hold that

ke €2 < 671F,(ug) < 0! (F(uo) + cp(%))

Here, the last inequality is due to Part (i) of Proposition 2.1. Then, (3.1) follows immediately
and Part 3 is proved.

Now we are ready to discuss the iteration complexity for the ESDA for any €4, > 0.

Note that Part 3 of the Theorem 3.1 implies that the reduction criterion in Step 2 of ESDA
can be met within finitely many iterations of Step 1 (Steps 1.1-1.6). Let k; be the counter of
iteration when the criterion for reduction of n, in (2.17) is met for the I-th time (we set kg = —1),
then we can partition the iteration counters £ = 0,1,2, .-, into segments accordingly, such
that in the I-th segment k = k; + 1, , k1 and . = nx, = no7i. The following theorem will
provide the bound for the length of each segment, from which we can get the total iteration
number required to terminate the algorithm with ey, tolerance.

Theorem 3.2 Let {ug} be the sequence generated by ESDA with any ug € Q and § > 0.
Then we have
1. the number of iterations required for the l-th segment

fian — ky < Chrr 2 4 Oy 2100, 3.11
1

where 2
sl ) e

and
cr-a (o o))

and the constants Cy, and b, are given in (2.3).
2. The total number of iterations L for ESDA to terminate with the tolerance ey > 0 is
bounded by

L-1 ~2(L-1) _ 2 AL (b)) 7_12(1+b¢)

> (kipr — ki) < G2 —r + Cot

—_ 2 12
= — =0, (312)
=0

2(1+4b.
2)
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Proof Applying Part 3 of Theorem 3.1 to the I-th segment with the initial ug = ug,+1 and
hyper-parameter € = 77, k11, where a1 is the stepsize used in the [-th segment to minimize

Fy, (u). From (3.1) we obtain

ke — ke <670 By (W) - (T, 1) 2 (3.13)

Next we estimate each term in the RHS of (3.13) in terms of the order of 7.
By the combination of Lemma 3.1 and (3.9), for all £ > 0, it holds that

By (i) € By (W) < Fyy () €0 < F(wo) € Fluo) +0(H). (3.14)

From (3.7) with n = nx, and (2.3), we have

oty < [(o+ WHQ = [(s+ %) + %Cw;;b“’r (3.15)

Combining (3.13)—(3.15), also noticing that 7y, = 7071, we obtain

kigr — k<6t (F(uo) + @(@))7_2771;2 [((5 + ﬂ) + %Cwﬂk_lbwr

2 2
< 7% Oy 20T (3.16)
where LNz
1 = 25_1 (F(U()) + (,O(%)) . 7'_2770_2 (5 + 7}1)
and

Cy = 25‘1(F(u0) I @(%)) .7__2770—2(1+b<p)032'

To show Part 2, let L be the number of times the reduction of 7 is satisfied before the
algorithm is terminated in Step 3 with the tolarence e¢o1. Then ™k, , ak+1 > €tol, Where i1
is the stepsize used in the (L — 1)-th segment to minimize £}, ~ (u). Hence,

TNky, -1 Qk+1 2 Etol- (3.17)
From (3.8) and (2.3) with 7 =, _, it holds that

LﬁkL,l + Ly,

- < p=s Lm“Lfl - < —sc—l b,
> sp il <2p7°C, " my; - (3.18)

agt1 < p° (5 +
Noticing that 7, , = o7, then the combination of (3.17) and (3.18) yields that
207 (nori 1O (o ™)™ > et
Rearranging the above inequality, we have

Tl(L—l)(l+b¢)> s Cottol
= 2T77(()1+b¢)

=: OBEtoh (3.19)
C
where 03 = pSWj’bW'
To terminate with tolerant e, after L times reduction of 1 from 79, from (3.16), we then
have

L—-1 L—-1

Z(kl"’l - kl) < Z(OlTl_2l + O2Tl_2l(1+bso))

=0 =0
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SR o “2L-D(1+by) | 2(1+5,)

T
201172 + 02 L

(3.20)
L= 1—- 7'12(1+b“’)

From this estimate and (3.19), we can see that for fixed 7 € (0,1),

L—-1

> (kg1 — ki) = O(eep).

1=0
The theorem is proved.

If we set et = 0 and K = oo in the ESDA, the algorithm will never terminate and hence
can generate an infinite sequence {uy}. We focus on the subsequence {uy, 1} as discussed in
Theorem 3.2. That is the reduction criterion in Step 2 being satisfied for £ = k; and 7 being
reduced. The next theorem below will show that every accumulation point of this subsequence
is a Clarke stationary point.

We need the following lemma before to prove the convergence result. This lemma has been
proved in [39]. But here we provide more simple proof.

Lemma 3.2 Let ¢, (||d;ul]) be a smooth approzimation of ¢(||d;ul|) defined in (2.2) for any
i =1,---,n. Suppose that p(t) is continuously differentiable in [0,+00). If {u;} C Q is a
sequence that converges to a point u* € §, then

dim_ Ve, (du;]) € dp(du’]) (3.21)
Z?jlﬂ
and
lim VF, (u;) € OF (u*). (3.22)
szw

Proof Firstly, we will show that the Clarke subdifferential d(||d;ul|) for any u € Q and
1=1,--- ,nis the following:
/ dld;u .
& (Idsul)) s, i [Jdyul] 0,

{£'(01)dT ¢ - VE € R2, |Pig]| < 1}, if ||diuf =0 (3.23)

¢ (||dsull) = {

can be obtained by using Definition 2.1. Consider following two cases:
Case 1: If ||d;u]| # 0, then there is a small neighborhood of u such that for any z in the
neighborhood it holds ||d;z|| # 0 . Then, for any v € R™, we have

<d1‘Z, d1V>
|diz||

T U, vV
= o/ ([ldpu) DY) 5 0y

. di(z+tv)]]) — d;z
oy £z + £9)1) = o diz]) i,

z—u t
10

—_— ] / .
= lim '([|diz|)

Case 2: If ||d;u|| = 0, then d;u = 0. Moreover by Assumption 2.1(a), ¢(0) = 0. Then, for
any v € R", we have

Jim sup o(lldi(z + tV)tH) —o(lldizll) tin SO(”tdiV'p —#(0)

tl0

= (0)[[divll > ¢ (07)(€, div) = &' (07)(Pi&, div) (3.25)
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for any & € R? and ||P;£| < 1, where P;£ is the projection of &€ onto the column space of d,
which is perpendicular to the null space of d”. The combination of (3.24) and (3.25) gives
(3.23).
Next we compute lim Vo, (||diug])).
1540

It is easy to compute the maximizer v* in (2.5) that yields

d; .
RN (4 e
. _ ) lldiull (3.26)
diu . '
, if |d;u|| <n
n
and V¢ (u) = df'v. Hence we have
/ r divg
o, (4 (15))d; TRk if [|diu; || > nj;
iU
Vo, (Idivs|l) = ¢, (52(0;)) Vi (u;) = dws (3.27)
¢, (2 (uy))di :]_ja if [yl < nj.
J

Let u; — u* and 7; | 0 on both sides of (3.27). From (3.23) and the fact |
follows immediately.
Next we prove (3.22). From (3.21), we have

diuj-
Sl <1, (3.21)

. - . . (6%
Jim VE, ()= Tim Ve, ([du|) + lim 2 V(|Hu; - £]?)
7340 =1 7;l0 !
- A * a *
€ op(ldu’|)) + SV (|l Hu” —£[%). (3.28)

i=1

Furthermore, from (3.24)—(3.25) and Definition 2.3, ¢(||d;ul|) is regular at any u € Q, in
particular u = u*. Then, by Remark 2.1 it holds that

n

A * a *
> Op(lldiur]) + 5 V(IHu —£[%)
i=1

= (D el ) + S Hu" —£]2) = 9P (u”). (3.29)
i=1

The combination of (3.28) and (3.29) gives (3.22).
Now we are ready to present the convergence result for ESDA.

Theorem 3.3 Let {ux} is the sequence generated by the ESDA with any ug € Q, § > 0,
etol = 0, and the maximum number of iterations K = oo. Let {uk,+1} be the subsequence of
{ur}, where the reduction criterion in Step 2 is satisfied for k = k; and 1 =1,2,--- Then the
following statements hold:

1. {ug,+1} has at least one accumulation point on Q.

2. If o(t) is continuously differentiable on [0, +00), every accumulation point of {uy,+1} is
a Clarke stationary point of problem (2.1).

3. If o(t) is continuously differentiable only on (0,4+00), then every accumulation point of
{ug,+1} is an affine-scaled Clarke stationary point of model (2.1), i.e., if u* is an accumulation
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point of {uy, 1}, then there is a
A * «@ *
de z5o( 3 wllldr ) + SlHa — £
iele.,
satisfying
d, ZL(u—u"))>0 forallueQn {u: u= Zyv for some v}, (3.30)

where Zy, is an n X r matrix whose columns are an orthonormal basis for the null space of
{d*,d? : i € Iy} with r > 0 being its dimension, Iy- = {i = 1,--- ,n : ||[d;u*]] = 0}, and

177

I ={i=1,---,n:|du*| # 0}.

Proof The first statement is evident due to the boundedness of Q and {ux} C Q.

To prove Part 2, denote by {uy,, +1} the convergent subsequence of {ug, 41} to an accumu-
lation point U € Q as m — co. Denote also by 7, the corresponding 7y, used in the iteration
to generate Uy, +1 and ug,, +1. Since the reduction criterion in Step 2 is satisfied for & = k; and
[l=1,2,---, we have

Tk, +1 — g, | < 70k, Okt 1, (3.31)

where aj41 is the stepsize used for the m-th segment to minimize F,, (u).
By the optimality condition for generating Uy, 41, it holds that

(Wk,, +1 — Uk, + 1V E, (ug,), u =10, 1) >0, VueQ, (3.32)

and thus for any u € Q,
1

Qp41

(VEF,,, (ag,), 0 =Ty, +1) > — (Wk,, +1 — Ug,,, 0w — Vg, 1)

1 .
> ———|[ W, 41 —ufl - [Tk, 41 — U, || > —70%,, diam(Q), (3.33)
A1
where diam(Q2) is the diameter of 2, and the last inequality is from (3.31).
Recall that as m — oo,
M, = Mo7i" 4 0, U, +1 — U.

Denote d := lim VF,, (g, ). Now letting m — oo on both sides of (3.33), we get

m— 00
(d, u—d) > 0. (3.34)

By Lemma 3.2, d € 9°F(u). Hence, by Definion 2.2 @ is a Clarke stationary point of problem
(2.1).

To prove the last statement, let u* be an accumulation point of {uy,+1} and {uy,, 41} is the
subsequence of {uy, 11} converging to u* € 2 as m — oo, and 7y, the corresponding smoothing
parameter to generate Uy, +1 and ug,, +1. When ¢(t) is continuously differentiable in (0, 4+00)
rather than [0, +00), from the proof of Lemma 3.2 we have

T Vi, (ldue, ) € dp(ldia”]) it [ldru”] #0.

Mk, 10

u

Now let
d= lim ZLVF, (u,).

ug —u*
m
nkmLO
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Then

. S T . a7
d = uk}irilu* Zl Zu*vgonkm (HdzukmL H) + Uk}jgu* §ZU*V(HHuk7n - fH2)
e 0 V5

. o *
=25 dim Y Ve, (lda, ) + 525 V(|1 Hu' ~ £])
n;cnmw AT e
° " o ° "

€ Zge Y Oplldi ) + 523 O(| Hu* — £]%)

i€l

A * a *
= Z5.0( Y elldi’ ) + Sl Hu" —£]2), (3.35)

=

where the second equality uses (3.27) and ZL.dT = 0 for all i € I,,+, and the last equality can
be obtained by a discussion similar to get (3.29).

Let Z,+V,,+1 be the Euclidean projection of Uy, 1 onto the intersection between 2 and
the null space {u: u = Z,-v for some v}. Observe that (3.33) and the fact that I = Z,\. Z,-
imply that, for any u € QN {u: u= Z,-v for some v},

(Za:VFy,,, (k) V= Vi 41) = (V. (ug,), Zus (V= Vi, 41))

(VFy,,, (uk,), =0, +1) = (VEy, (W, ), ZoVi,+1 — Uk, 41)

1 _ _ _ _
> ——— |k, +1 — ul| - [[Wk,, 41 — Uk, [| = (VFy,, (Uk,,), ZuVi, +1 — Uk, +1)
Af+1
> — 7, diam(Q) — [|[VE,, g, )| - | 2ok, +1 — i, +1]- (3.36)

Let m — oo, which implies ug,, — u* € {u: u = Zy+v for some v}, Z,+Vg, 41 — u* and
Nk,, 4 0. Thus, we have ||Zy+Vk, +1 — Ug,,+1|| = 0. We therefore obtain (3.30) immediately.
This combined with (3.35) leads to the desired.

4 Numerical Experiments

In this section, we consider a class of box constrained problem (2.1), where Q@ = {u € R™ :
lie<u<lse}ande=(1,1,---,1)T € R" in the application of sparse view CT reconstruction.
To exam the performance of the proposed algorithm, we compare it to the standard smoothing
gradient descent method to minimize the same objective function with and without box con-
straints, named as (BSGD for short) and (SGD for short) respectively. The BSGD is the same
as the proposed algorithm without Steps 1.1-1.4. We also compare the proposed algorithm
with accelerated smoothing algorithm (ESA for short) in [39] for corresponding unconstrained
problem. All numerical experiments are conducted in MATLAB R2016a running on a PC with
Intel Core i5 CPU at 1.6GHz and 8G of memory. Besides visual evaluation we also use peak
signal-to-noise ratio (PSNR for short) to evaluate the quality of reconstruction. The PSNR is

defined by ,
PSNR(u,u) = 10log;, HmLNlNQdB,
[a—ul
where u and u are restored and original images, N1 N» is the total number of pixels of an image
with the same rows and columns, and u,,,, represents the maximum pixel value of the image.
CT reconstruction problem can be modeled as an inverse problem f = Hu + v, where u is
the image to be reconstructed, H is the system matrix for CT scanner depending on the beam

geometer, f is the noisy sinogram measurements and v is the noise with normal distribution.
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Here, we consider 2D parallel-beam CT with an N x N domain, using p parallel rays for each
angle as in [23]. The regular view CT has angles 0,1,---,179, whereas the sparse view CT
that we deal with has angles 0,5,10,---,175 (i.e., Ny= 36 rotated projection views). Number
of parallel rays for each angle and the distance from the first ray to the last ray are set to be
the nearest integer to 2N and 2N, respectively. H is implemented by Radon transform.
The images used in this experiment are the “Shepp-Logan” phantom (128 x 128), “NCAT”
phantom (256 x 256) and the cerebral phantom (512 x 512) (see [50]) shown in Figure 1. The
corresponding noisy sinograms for parallel-beam scanning with N5 = 36 are also presented in
this figure.

Shepp-Logan NCAT cerebral

Figure 1 Test images and the corresponding sinogram observations when Nz = 36.

Figure 2 presents the reconstruction results after 100 iterations by using aforementioned
four different algorithms with three potential functions ¢(t) = t°%, ©(t) = In(1 + 0.5¢) and
o(t) = % when the Gaussian noise level is 0.005|| f||oo. Although the convergence of SGD
and ESA might fail for ¢(t) = %L due to the lack of coercivity but they can still work

experimentally. In both SGD ané—%g& we fix the parameters 1y = 0.01, § = 1073, p = 0.25
and 71 = 0.5 as that in [39], while tune the model parameter «, sy and 7. In BSGD, we fix
no = 0.01, p=0.25, 6 = 107°, 7y = 0.5 and tune a and 7. In the proposed algorithm, we also
fix ng = 0.01, p = 0.25, 6 = 107°, 71 = 0.5, and tune «, sg, sp+1 and 7. Moreover, we set
Iy = =5 and [, = 5 in both BSGD and our algorithm. For a fair comparison, each algorithm is
tuned to get the highest PSNR values. From Figure 2, under all three potential functions, one
can see that BSGD yields higher PSNR values than SGD, while the proposed algorithm always
performs better than BSGD and obtains comparable results with ESA. Similar phenomena
can be found from Figure 3 visually and quantitatively, where all parameters in these four
algorithms are tuned as that in Figure 2.

In Figure 4, we present reconstruction results on “cerebral” after 100 iterations with N5 =
36. In this experiment, we adopt same rules as above to tune parameters in all compared algo-
rithms. The PSNR of reconstructed images from SGD, ESA, BSGD and proposed algorithms
for three different regularization functions are shown under the image in this figure. The im-
provement of PSNR by the proposed algorithm is about 1.01dB, 0.20dB, 0.90dB increase on
average for those regularization functions compared to SGD, ESA and BSGD, respectively. To
better visualize the results, the zoomed regions are shown in Figure 5.

Figure 6 gives the PSNR values of reconstruction versus number of iterations on “Shepp-
Logan”, “NCAT” and “cerebral” images obtained by BSGD and the proposed algorithm. One
can observe that for potential functions ¢(t) = In(1 + 0.5¢) and ¢(t) = % the PSNR values
resulted from BSGD are similar for all of three images, while the PSNR values produced by the
proposed algorithm increase faster than BSGD after 40 iterations in all experiments.
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32.43dB 33.59dB 34.26dB

34.27dB 36.91dB 37.81dB

33.89dB 34.40dB 34.66dB

34.69dB 36.15dB 37.43dB
o(t) = 08 o(t) = In(1 + 0.5¢) o(t) = 13’(%,5

Figure 2 Results after 100 iterations on “Shepp-Logan”. From the first column to the third column:
Reconstructions by different potential functions. From the first row to the fourth row:
Reconstructions by SGD, ESA, BSGD and the proposed algorithm. PSNR values are listed.



Extrapolated Smoothing Descent Algorithm 1065

33.01dB 31.58dB 31.49dB

Figure 3 Results after 100 iterations on “NCAT”. From the first column to the third column:
Reconstructions by different potential functions. From the first row to the fourth row:
Reconstructions by SGD, ESA, BSGD and the proposed algorithm. PSNR values are listed.
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26.91dB

26.30dB 24.99dB 25.26dB
(t) =98 w(t) = In(1 + 0.5¢) o(t) = 13'(?.%51&

Figure 4 Results after 100 iterations on “cerebral”. From the first column to the third column:
Reconstructions by different potential functions. From the first row to the fourth row:
Reconstructions by SGD, ESA, BSGD and the proposed algorithm. PSNR values are listed.
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Figure 5 The zoomed regions corresponding to results in Figure 4.
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Figure 6 From left to right: The PSNR value of the recovered images by BSGD and the proposed
algorithm versus iteration with three potential functions for “Shepp-Logan”, “NCAT” and “cerebral”.

5 Conclusion

In this paper, we proposed a smoothing inexact projected gradient descent with extrapola-
tion to solve a class of constrained nonsmooth nonconvex minimization problems. The inexact
projected gradient descent with extrapolation is applied to improve the performance of mini-
mizing the corresponding smoothed nonconvex problem. Combined with a safe-guarding policy
and adaptively updating the smoothing parameter, the proposed algorithm guarantees that
any accumulation point of the sequence generated by this algorithm is an (affine-scaled) Clarke
stationary point of the original nonsmooth and nonconvex problem. Numerical experiments
and comparisons indicated that the proposed algorithm performed better visually and quanti-
tatively than nonaccelerated gradient descent algorithms for the same model with or without
box constraints for CT reconstruction problem.
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