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Predicting Sagittal-Plane Swing Hip Kinematics in
Response to Trips

Shannon M. Danforth!, Xinyi Liu?, Martin J. Ward?, Patrick D. Holmes', and Ram Vasudevan'

Abstract—State-of-the-art wearable lower-limb robot con-
trollers typically use established baseline human kinematics
during common mobility tasks. Unfortunately due to the vari-
ability in human response during perturbations, these lower-
limb controllers are unable to effectively assist with perturbation
recovery. Accurate and quick predictions of kinematic responses
to unexpected disturbances during motion can help assistive
robotic devices safely aid with an individual’s recovery. This
paper presents three methods for predicting swing hip kinematics
during trip recovery: a Gaussian process regression (GPR)
model; a time-series neural network; and a pendulum model with
linear feedback. Data were collected in an experiment where 16
subjects were tripped at random percentages of swing phase.
The three prediction methods were applied to these data and
evaluated for simulation accuracy and computation time. Both
subject-specific and generalized models were investigated. Results
indicate that the GPR model is the best choice for kinematic
predictions due to its low simulation error in both subject-specific
and generalized cases and lowest computation time.

Index Terms—Modeling and simulating humans, datasets for
human motion, humanoid and bipedal locomotion.

1. INTRODUCTION

EARABLE lower-limb robotic devices, such as ex-
Woskeletons or prostheses, offer advantages for people
with mobility limitations by supplying positive work to joints
[1], [2]. Control options for these devices typically focus
on common tasks (e.g., walking on level ground), because
baseline kinematics for these tasks are well-known [3]. If
an unexpected event such as a trip occurs during walking,
controllers struggle to effectively assist with recovery because
it is unclear how the human will respond. We therefore
need accurate predictions of human kinematics during these
unexpected events. As illustrated in Fig. 1, this paper focuses
on predicting sagittal-plane swing hip response during and
after trips.
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Fig. 1. This paper develops and compares predictions of sagittal-plane swing
hip kinematics after a trip occurs. The three hip states of interest (height,
anterior-posterior position, and flexion-extension angle) are shown in blue to
the left. On the right, the stick figures show an example of one subject’s
trip-recovery response from our experiment. Note that the knee location is
determined by the hip flexion-extension angle and thus is plotted in addition
to the hip positions. The black line shows the ground truth hip and knee
locations, and the pink line shows the predicted response from our Gaussian
process regression model.

When tripped, humans typically exhibit one of three recov-
ery strategies: Elevating, where the swing foot clears the obsta-
cle and the heel strikes in front of the body; delayed lowering,
where the swing foot initially elevates, then lowers behind the
body with the toe contacting the ground first; and lowering,
where the swing foot immediately lowers behind the body
with the toe contacting the ground first [4]. These strategies
have been studied most often in able-bodied subjects, but have
also been observed in studies with lower-limb amputees [5].
Each of the trip-recovery strategies is accompanied by distinct
swing hip kinematics, which are of interest if the controller
aims to avoid toe scuffs or place the swing foot in a location
that ensures stability at the end of the step. Furthermore, if
the controller is planning trip-recovery behavior in real-time
as in [6], the predictions must be generated before the human
responds. Human perturbation reaction time is influenced
by many factors, including psychological and neurological
limitations [7], but studies have shown stretch reflex responses
around 40 ms and voluntary responses around 160 ms [8].
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Human trip reactions are difficult to model due to the trip’s
unpredictability and the variability in the human reaction. Trips
can occur throughout the swing phase, and human recoveries
can differ based on the perturbation onset and duration [4].
Eveld et al. developed an algorithm for predicting which of
the three strategies a human will use after tripping [9], but
even within a given recovery strategy, large variation in human
kinematics exists. No models have been developed to predict
trip-recovery kinematics after a specific strategy is identified.
Thatte et al. used a Gaussian process regression (GPR) model
conditioned on previously measured points to predict swing
hip height and angle in response to “hip drop” perturbations
[6]. Because the predictions were not the main focus of their
paper, the authors did not provide information on training the
model or report the model’s prediction accuracy. The authors
trained separate GPR models for each hip state, but training
one multi-output model could increase accuracy by accounting
for correlation between states.

Two other classes of models have been used for predictions
of human kinematics. Neural networks are often used to
estimate current kinematic variable values given measurements
of different variables [10], but a recent study used neural
networks to predict future lower-limb kinematics during dif-
ferent walking speeds [11]. The second common models are
dynamic models that generate kinematic perturbation-recovery
behavior. For example, a pendulum model with linear feedback
has been shown to accurately estimate foot placement after
a lateral perturbation [12]. Another study induced simulated
trips in a sagittal-plane dynamic model and simulated its
response using limit cycle optimization methods [13]. These
studies, while highlighting the potential of various models
for kinematic predictions, do not compare prediction accuracy
between model classes or generate the strategy-specific trip-
recovery predictions of interest.

In this paper, we evaluate hip response predictions using
data from an able-bodied trip experiment with 16 subjects,
described in Sec. II. Given Eveld et al’s previous work in
predicting strategy selection [9], this work assumes knowl-
edge of the subject’s trip-recovery strategy and focuses on
predicting strategy-specific kinematics. First, we implement
multi-output GPR models with conditional predictions of trip-
recovery swing hip response variables (Sec. III). We com-
pare the GPR models to nonlinear autoregressive exogenous
(NARX) neural networks and pendulum models with a moving
base (Sec. IV and V, respectively). Recognizing the need
for both safety and low computation time, we evaluate all
prediction methods for both simulation accuracy and online
prediction time. We also evaluate each model’s ability to
generalize predictions across subjects, which would increase
the prediction method’s real-world applicability. Out of all
simulation methods and training cases, the subject-specific
GPR models exhibited the highest simulation accuracy and
the lowest computation time. The 16-subject trip dataset is
available at https://doi.org/10.7302/pvhg-q324, and MATLAB
code with examples for training each model is available at
https://github.com/roahmlab/swing hip trip prediction.
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Fig. 2. Our experiment introduced trips via tethers attached to subjects’ feet.
(a) shows the trip experiment setup, including tethers attached to each foot,
brakes applied at short intervals, and load cells to measure the tether force.
(b) illustrates the swing leg during each strategy, adapted from [4]. (c) shows
example swing heel heights for one subject during each type of recovery
compared to nominal data.

II. TriP-RECOVERY EXPERIMENT AND DATASET

This section describes our trip-recovery experiment with
16 subjects and the resulting dataset used to train and test
predictive models.

A. Experiment

In our experiment, we tripped subjects using tethers attached
to their feet. The tethers were routed to the back of the
treadmill through a custom braking device, shown in Fig.
2, which was activated during the swing phase to interrupt
the forward motion of the foot, thus inducing a trip-like
perturbation. Shirota et al. found that this technique resulted
in similar responses to trips as those from physical obstacles
[4].

We collected data from 16 participants: Eight female and
eight male; ages 18-29; mean (standard deviation) height 1.77
(0.10) m; mean (standard deviation) body mass 69.6 (12.6)
kg. Each subject gave their informed written consent, and
had no physical or balance disorders which could affect their
ability to walk on a treadmill. The experimental protocol was
approved by the University of Michigan Health Sciences and
Behavioral Sciences Institutional Review Board, eResearch
ID: HUMO00195042.

Subjects were fit with a harness in case of falls, then the
tethers were attached to each foot. The subjects selected their
desired level-ground treadmill (Bertec) walking speed in a
warm-up that started at 1 m/s. After one minute, subjects could
request to increase or decrease the speed in 0.2 m/s increments.


https://doi.org/10.7302/pvhg-q324
https://github.com/roahmlab/swing_hip_trip_prediction

DANFORTH et al.: PREDICTING HIP KINEMATICS IN RESPONSE TO TRIPS

The mean (standard deviation) chosen walking speed was 1.14
(0.16) m/s. Then, the perturbed trials commenced. In total,
the experiment consisted of 100 20-second walking trials,
divided into 4 sessions of 25 trials each. A custom targeting
algorithm measured force plate values from the instrumented
treadmill in real-time, estimating whether each leg was in
stance or swing. The trips were randomized by leg side (right
or left); percentage of swing phase (10-80%); percentage of
time into each 20-second trial (5-15 seconds); and duration
of tether brake (150, 250, or 350 ms) to simulate varying
contact duration with an obstacle. A minimum of 10 seconds
between each trip allowed time for the subject to recover, and
15 random trials did not include trips. Load cells measured
the force in each tether throughout the experiment, and a
26-camera Vicon motion capture system collected kinematic
observations of 16 markers at 100 Hz. We applied a Woltring
filter and fit lower-body segment models to each subject’s data
using Nexus Plug-in Gait [14], and we used MATLAB for all
subsequent analyses [15]. A 6th-order Butterworth filter with
a cut-off frequency of 6 Hz was used to filter joint position
trajectories.

B. Dataset

We analyzed these experimental data during the swing
phase only, i.e. between toe-off and heel-strike events. We
determined each gait event using force plate readings with a
threshold of 30 N for the stance phase. In this paper, the swing
phase trajectories for the left and right foot are combined
into one dataset. We aligned all of a subject’s swing phase
trajectories by peak heel height. After shifting the trials so the
peaks aligned, we found the minimum and maximum shifted
time across all trials for one strategy, then used the values
to normalize time. The normalized swing time was defined
separately for each recovery strategy.

Humans typically use one of three strategies to recover from
trips, shown in Fig. 2(b) and (c) and described in Sec. I.
Subjects tend to use elevating strategies when trips occur early
in the swing phase, delayed lowering when trips occur towards
the middle, and lowering when trips occur at the end. The
trip-recovery data in this document was sorted into the three
strategies by hand. If the trips did not induce a noticeable
recovery due to incorrect brake timing, the trials were not
analyzed. In this paper, we analyze 963 total trips across the
16 subjects: 433 elevating, 310 delayed lowering, and 220
lowering. The higher number of elevating trials is likely due
to the targeting algorithm, which elicited more trips earlier in
the swing phase.

Each recovery strategy was associated with distinct hip
motion, shown for one subject in Fig. 3. The trip-recovery
trials’ difference from nominal level-ground walking varies
by response variable and recovery strategy. For example,
lowering trials most closely resemble nominal motion, while
both elevating and delayed lowering trials exhibit more di-
vergence. Within each strategy and response variable, the
variation between trip-recovery trajectories also differs. The
elevating and delayed lowering hip angles, for example, show
a relatively large amount of variation between trials, while the
lowering hip angles appear more uniform.
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Fig. 3. Hip flexion-extension angle, height, and anterior-posterior (AP)
position relative to the stance foot, plotted for the elevating, delayed lowering,
and lowering strategies in orange, green, and purple, respectively. The thick
black lines show the average nominal hip states. These data are from one
subject in our dataset.

III. GaussiaN PrRoceEss REGRESSION MODEL

Given a set of noisy observations of a dependent variable,
evaluated at certain values of an independent variable x, our
prediction problem aims to find the best estimate of the
dependent variable at a new value, x.. Rather than assuming
the underlying function is linear or another specific model,
Gaussian process regression (GPR) assumes the observations
can be represented as a sample from a multivariate Gaussian
distribution. Note, we can always imagine a dataset with m
observations to be a single point in R”™ drawn from an m-
variate Gaussian distribution [16]. GPR models also provide
uncertainty bounds on predictions.

For our predictions, we compute a separate multi-output
GPR model for each recovery strategy, with outputs of hip
flexion-extension angle, height, and AP position, described
in Sec. III-A. The GPR models are formed using a training
dataset containing multiple trials for each recovery strategy.
We then test trials that are excluded from the training dataset.
For each test trial, we condition the trip-recovery prediction
on its pre-trip values, described in Sec. III-B. The training and
testing procedure is described in Sec. VI.

A. Multi-Output GPR Distribution

Each observation in our training dataset (note, the dataset
contains multiple trip trials) can be thought of as related to an
underlying function f through a Gaussian noise model:

(1)

where x; € [0,1] C R is the argument to f and can be thought
of as normalized time in our formulation, y; € R? is the output
variable given by the hip flexion-extension angle, height, and
AP position, and n is the number of points in the training

y,-:f(x,-)+6l-, i:l,...,n,
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dataset. The noise term € € R is a zero mean Gaussian
distribution. We denote the covariance matrix of €; as S.

Let k(x;,x;) denote the covariance function, which relates
one input value x; to another x;. We use the rational quadratic
kernel, a common covariance function for GPR models [17,
Chapter 4], given by

)= (14

where |- |l denotes the ¢2-norm, « is the scale mixture
parameter, and / is the length scale of the kernel. Parameters «
and / are estimated separately for each recovery strategy. Sec.
III-B describes the procedure for estimating « and /.

We calculate the covariance matrix K by evaluating (2) at
all possible combinations of x; for i e {1,...,n}:

2

[lx;i = x;ll \ ™
2a0? ’

k(x1,x1)  k(x1,x2) k(x1,x,)
k(x2,x1)  k(x2,x2) k(x2,x,)

K= ) . ) ) . 3
k(xr;,X1) k(xr;,m) k(xr;,xn)

Recall that we aim to predict hip response values at a test input
x.. We therefore compute (2) between x. and each observation
x; fori=1,..,n:

T
K. = [k(rox)  K(xox2) kxex))| . @)

and the covariance between x, and x.:
K** = k(x*, X*). (5)

In a single-output GPR model, we would now have our data
represented as Gaussian distribution with covariance matrix K.
The mean and variance of this distribution evaluated at test
input x, would form the best estimate of the output. A multi-
output GPR model adds an additional challenge, because our
response vector y = [le, yh ]T is itself a Gaussian with zero
mean and covariance matrix C € R¥*3" Let the entry Ci 7 be
the covariance between the p™ and ¢ response variable of
vectors y; and y;, for each p,q € {1,2,3} and for each i,j €
{1,2,...,n}. Recalling the three-dimensional noise term €; in
(1), each entry of C has two components: one corresponding
to the cross-response covariance Ccross, and one corresponding
to the covariance of the noise term, Cpojse.

Calculating C requires the estimation of significantly more
hyper-parameters. Two assumptions are made to simplify the
multi-output formulation[18]:

1) Within a cross-response pair indexed by (p,q), the
covariance function is formulated as a scalar-valued
covariance matrix k(x;,x;) scaled by a cross-response
weight B),. The cross-response covariance is therefore
be written as [Ccmss]l’,’] 7 = Bpyk(xi,xj). The B, entries
construct a symmetric matrix B, representing the pair-
wise covariance between different response variables.

2) The noise covariance matrix S is assumed to be diagonal,
because the covariances between responses have already
been captured in the Coss component. We therefore de-
fine [Cnoise]fj" =0pq0i;S ij, where 0 indicates a Kronecker
delta.

With these assumptions, the covariance matrix C is:

B|1K+S|11n B]2K B]3K
C= By K BnK+S»l, By K . (6)
B3 1K B3 K B33 K+ 85331,

where I, is the nxXn identity matrix, or C=B®K+S®]I,,
where ® denotes the Kronecker product. Note that if S,B and
K are all positive definite, then so is C, because both the
Kronecker product and the summation on two positive definite
matrices maintain positive definiteness.

Because B is symmetric, constructing B only requires
the six elements from the upper triangle. Adding the three
diagonal elements of S, the multi-output formulation adds nine
estimation parameters to the training process.

Our training dataset takes the form y = [le,yg yenn ,yZ]T for
n data points, and we aim to predict the response y.. at a test
input x,.. The probability of a certain prediction for y. follows
a Gaussian distribution. Evaluating (4) and (5), we find the
distribution’s mean and covariance at x:

p,=CICly

., =BeoK,.+S-CI'C!C,,
where C, = B®K.. The best estimate for y. and its associated
uncertainty are given by u, and X.. In our implementation,
we evaluate the mean predictions and their covariance at m

evenly-spaced values of x, from O to 1, generating a 3m X 1
mean vector:

(7

p=lul ) ®)

The associated covariance matrix X has size 3m X 3m.

B. Conditional Prediction

The mean values in (8), computed from a training dataset,
provide a prediction of hip responses at discretized points
in normalized time. Given a test trip trial, we can use u to
predict the hip response values after the trip onset. However,
p does not account for the pre-trip points of a test trial, and
therefore does not generate a continuous prediction from pre-
trip points. To improve prediction accuracy, we condition the
GPR prediction on pre-trip points in the test trial.

Our test trial begins and ends at normalized time values x|
and xp, not necessarily spanning the entire normalized swing
time range. To ensure the test trial is the same size as u, we
re-sample the test trial, and pad with NaN values if x; does
not equal 0 and/or x> does not gqual 1, to obtain a 3mx 1 test
trajectory y; = [sz,psz,zv"’ytT,m]

For a given test trial, we denote the index of trip occurrence
as iyip € {1,...,m}. We then divide y, into completed (pre-trip)
and future (trip-recovery) trajectories:

T T r 7
Yice= [yt,] ’yf,z’ te ’yt,itrip]
)

T
—|vT T T
Yuor = [ytqim’p‘*l > yt,i,,,'l,+2’ e yl,m] ?

where subscript ¢ indicates completed and f indicates future.
We likewise partition the GPR mean and covariance into
completed and future parts:
_ Hc] _ [ECC
n= s &=
[ﬂ f Zf ¢

e } (10)

iy
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Then, our predicted future (trip-recovery) hip states and the
prediction’s uncertainty are given by the conditional mean and
covariance:

f=pp+ I (Ve —p,)

A » (1n
£=% X T

The prediction covariance can be used to form a confidence
interval. As the number of conditional points grows, the
inverse term in (11) takes longer to compute. In practice, to
enable real-time predictions, we use at most 15 conditional
normalized time points in our predictions.

For each recovery strategy, our multi-output GPR has 11
parameters to train: Parameters « and / from (2) and the nine
parameters from the multi-output formulation. During training,
we select parameters that minimize the root mean square
error (RMSE) between the ground truth trip response and the
conditioned GPR prediction across all response variables and
training trials. One can solve this optimization problem using
a nonlinear programming solver like MATLAB’s fmincon.
Although the training process may be time-consuming, the
resulting GPR model can be saved and loaded for real-time
conditional prediction.

IV. NARX MobpEL

For comparison to the GPR model in Sec. III, we develop
nonlinear autoregressive exogenous (NARX) models to predict
hip response kinematics. Neural network methods, such as
recurrent neural networks (RNNs) and autoregressive networks
(ARs), have been popular options for forecasting time series
with unknown underlying functions [11]. It has been shown
that any RNN network can be equivalent to a NARX neural
network with a similar neuron transfer function [19]. Because
NARX models exhibit computational advantages in training
compared to RNNs, we use NARX models in this work.

We fit separate multi-output NARX models for each recov-
ery strategy. We form the models using a training dataset and
then test the models on trials that are excluded from training.
Because the NARX model requires sequential time-series data
for training, we concatenate the training trials into one time
series. When combining the normalized time values from each
trial into one vector, we add an offset to each subsequent trial,
i.e., the first training trial’s normalized time points lie in [0, 1],
the second trial’s normalized time points lie in [1,2], and so
on. For the hip response variables, we likewise concatenate
the trajectories from each training trial into one time series
(with no offset). Our concatenated dataset with n points has
normalized time values x; C R,i = 1,...,n. The 3 Xn response
variable training data takes the form y = [y1,y2,...,¥n], With
each y; e R3.

The NARX model fits a function f that relates each entry of
the time series, y;, with previous values, y; prev, and exogenous
input, X;ex:

Yi= f(y:',prev, xi,ex) + &, (12)

where &; is an error term. At the i step, we specify the

exogenous input to be the previous normalized time value,
i.e. Xjex = Xi—1, and use N previous response values, i.e.

Yiprev = [Yi=N:Yi-N+15--»Yi-1]-

Perceptron Perceptron
Layer Layer
T TDL Ti—1 70 T TDL Ti—1 70
/ : yi : \ yi

Dot

|—>TDL lvon, / T30

(b) Closed-Loop Configuration

yi
— DLy / T30

(a) Open-Loop Configuration

Fig. 4. Diagram of the (a) open-loop configuration and (b) closed-loop
configuration of the NARX model, where TDL stands for time delay layer.

We train the NARX networks using MATLAB’s narxnet.
As shown in Fig. 4, there are two configurations, open-
loop and closed-loop. When training each network, we use
the open-loop configuration. At each index i of our training
dataset, we input the delayed ground truth response y; prey and
the exogenous input x; .x. The inputs first pass through a fully-
connected layer of perceptrons, also depicted in Fig. 4, which
apply the sigmoid operation to yield intermediate outputs. For
the j/ perceptron, the intermediate output o/ at step i is given
by

0o/ = (W) Xiex + (W) Yiprev + ), (13)

where o is the sigmoid function, X;ex = [x,',ex,xi,ex,)'c,-,ex]T,
b/ € R is the bias for the j” perceptron, and w) € R
and W§ € R¥N are the weights for the j” perceptron [20].
The intermediate outputs are then passed through the output
linear perceptron, yielding a prediction §;. The NARX network
selects the bias and weights for each perceptron that minimize
the RMSE between the true output y; and predicted output §;,
forie{l,...,n}.

For a test trial with m data points, we denote the nor-
malized time and response as X; = [X:1,Xt2,...,X:,»] and
Y: = [¥e1,¥:2,--..Yeml, respectively. Because we predict fu-
ture values in the time series with the NARX model, the
x; vector is offset so that it occurs immediately after the
concatenated training data. As in Sec. III-B, the test trial has
trip onset index i, and can be divided into completed and
future partitions. We use the completed portion of the trial,
Yie =[¥01,¥125--. ,Yt,i,,,-,,], to inform post-trip predictions.

We use the closed-loop configuration, shown in Fig. 4(b),
to generate predictions of the test trial for multiple future
steps. The optimized bias and weight parameters from the
training process are used in the closed-loop model. To pre-
dict a future post-trip value y;; where i > iz, the closed
loop configuration uses previous predicted values, ¥r;prev =
[§1.i-n,¥1i-N+1,---,3ri-1], as input. However, for the first N
points after the trip occurs, there are not yet enough predicted
values to form N previous inputs. Therefore, to predict the
first post-trip point yy;,,,+1, we use N previous points of y;;
to predict y;;, , ,+2, We use yt,im.pH and N —1 previous points
of y;.; and so on. We set the feedback delay N to be 15
normalized time steps, the same as the number of conditional
points used for the GPR model.

V. PexpuLuM MoDEL wWiTH MoVING BASE

To describe the dynamics of the swing hip variables, we
use a pendulum model with a moving base, shown in Fig. 5.
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Fig. 5. Our model for predicting hip kinematics has a floating base located
at the hip joint and a pendulum representing the swing leg. The model has
horizontal and vertical forces and a torque applied at the hip.

Although we focus on kinematics in this paper, dynamic mod-
els have been used to effectively predict kinematic variables
in previous research [12], [13]. A dynamic model could also
prove useful if predictions of hip forces/torques are needed in
a wearable robot’s control scheme.

Our pendulum model consists of a mass m; at the hip joint
location, which can translate in the horizontal and vertical
direction, connected to a pendulum of length / and mass m;.
The mass m; consists of the estimated torso, arms, and head,
and the mass my, consists of the estimated swing leg mass.
The pendulum length / is the estimated swing thigh length.
Masses and lengths were estimated using average distributions
from anthropometric data [21, Chapter 4]. Because my is
considerably larger than m,, our model neglects the effect of
the pendulum motion on the moving base. The model’s origin
is the location of the stance heel.

For this section, we define the normalized time as x €
[0,1] c R. At each point x, our model has anterior-posterior
hip position y4p(x), hip height yg(x), and hip flexion-extension
angle O(x). The linear and angular velocities (with respect
to normalized time) are denoted as y4p(x), yg(x), and 6(x).
Let y(x) = [yap(x) yap(x) yu(x) yu(x) 6(x) (x)]" denote the
state vector. The model has three inputs: a horizontal force
uap(x,y(x)) acting on my, a vertical force upy(x,y(x)) acting
on miy, and a torque ug(x,y(x)) applied to the pendulum.
The acceleration of the horizontal hip position is given by

Yap(x) = miluAp(x,y(x)) and the vertical hip acceleration is

given by yy(x) = mLIuH(x, y(x))—g, where g is the gravitational
acceleration 9.81m/s*. The hip flexion-extension angular ac-

celeration is given as

. 1 1
0(x) == 7 cos(0(x))jap(x) = 7 sin(O(x)iu () + ...
(14)

- % sin(@(x)) + ug(x,y(x)).

m212
We produce six first-order differential equations for the system
using these accelerations.

Drawing from work that used pendulum models with linear
feedback to accurately predict perturbation-response kinemat-
ics [12], our model’s control law consists of linear feedback

gains to position and velocity error from each recovery strat-
egy’s mean kinematics. One can solve for these feedback
gains by using a nonlinear optimization procedure. As in Sec.
III-B, we use MATLAB’s fmincon to solve for feedback gains
on position and velocity that minimize the RMSE between
simulated and ground truth training trials.

VI. TRAINING AND TESTING THE MODELS

Because we aim to test the significance of mean predic-
tion errors across models, we select our training and testing
datasets in accordance with the Combined 5x2 cv F Test
framework [22]. This test has been shown to have higher
power and lower false positives than previous statistical tests
for comparing model performance. The training and testing
process for each model is as follows:

1) Split each dataset into 50% testing, 50% training.

2) Fit the model using the training dataset.

3) For each test trial, use the trained model to simulate the
trip-recovery hip states.

4) Compute the RMSE between predicted and ground truth
trip-recovery trajectories. Normalize the RMSE for each
response variable by the total range of response variable
values in the test trial. Average these normalized RMSE
(NRMSE) values across all three response variables.

5) Swap training and testing datasets; repeat steps 2)-4).

6) Repeat steps 1)-5) for five iterations.

For any two models, we compute an approximate f statistic
to investigate whether the difference in NRMSE is statistically
significant [22]. For the Combined 5x2 cv F Test, we
conclude that the difference in mean NRMSE values between
two models is statistically significant with 95% confidence if
f>4.74.

Individualized, data-driven models can produce accurate
predictions of perturbation response, e.g. [23], but they ne-
cessitate collecting experimental (and often perturbative) data.
Such experiments are infeasible for widespread use. We there-
fore conduct the Combined 5x2 cv F Test for both subject-
specific and generalized cases. For the subject-specific case,
we did not train and test models for strategies where subjects
exhibited fewer than five trials (Subject 005 and 015’s lowering
trials and Subject 002’s elevating trials). For the generalized
case, we first normalize the hip heights and AP positions by
subject leg length, then train and test the models using all
subjects’ data combined.

VII. REsurrs

Fig. 6 shows a box plot of the subject-specific model results.
Due to the extreme values from the NARX model which
often generated unstable predictions, we removed the outliers
from all models for all following results and analyses. Table
I presents the mean and standard deviation of NRMSE values
for each strategy, model, and case across all subjects. In each
strategy’s column, the minimum NRMSE is highlighted for
both subject-specific (darker shade) and generalized (lighter
shade) models. Example prediction results for each method,
plotted for one subject’s delayed lowering trial, are shown
in Fig. 7. Tab. II shows f statistics computed between each
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TABLE I
AVERAGE NRMSE FOR ALL THREE PREDICTION METHODS, WITH LOWEST SUBJECT-SPECIFIC AND GENERALIZED ERRORS HIGHLIGHTED FOR EACH STRATEGY.
Prediction Method Case Elevating Delayed Lowering Lowering
mean (stdev) mean (stdev) mean (stdev)
GPR Model Subject-Specific 0.110 (0.0333) 0.119 (0.0522) 0.0567 (0.0266)
Generalized 0.151 (0.0500) 0.160 (0.0630) 0.0879 (0.0362)
Subject-Specific 0.660 (0.482) 0.500 (0.360) 0.320 (0.333)
NARX Model Generalized 0262 (0.119) 0321 (0.171) 0.141 (0.124)
Subject-Specific 0.241 (0.0618) 0.285 (0.0792) 0.277 (0.0782)
Pendulum Model — T ed 0.254 (0.108) 0.262 (0.135) 0.264 (0.147)
: ‘. TABLE TI
[ Elevating
:I Delayed Lowering APPROX[MATE f STATISTIC BETWEEN MODELS, WITH * INDICATING STATISTICAL
101 L I:l Lowering i SIGNIFICANCE, AND CORRESPONDING p-VALUES.

NRMSE
~|:,» B HHIE i — —

i
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.
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Fig. 6. Visualization of summary statistics for the subject-specific models. The
central black line indicates the median NRMSE for each model; the bottom
and top edges of each box are the 25th and 75th percentiles, respectively; the
dashed whiskers extend to the limits of the data not considered outliers; and
the outliers (determined using the interquartile range) are plotted individually
as plus signs. The y-axis is a logarithmic scale due to the extreme magnitude
of outliers.

model within the subject-specific and generalized cases and
their corresponding p-values.

The mean computation time to generate conditional GPR
predictions, NARX predictions, and dynamic model predic-
tions was 2.67 ms, 8.81 ms, and 25.1 ms, respectively, on
a computer with a 3.5 GHz Intel Core i7 processor. For the
GPR models, we checked whether the 95% confidence bounds,
shown in Fig. 7(a), encompassed each ground truth trajectory.
For the subject-specific models, 77.3% of angle, 100% of
height, and 75.1% of AP position trajectories remained inside
the confidence bounds. For the generalized models, 56.5% of
angle, 98.2% of height, and 67.9% of AP position trajectories
remained inside the confidence bounds.

VIII. DiscussioN AND CONCLUSION

Predicting human trip-recovery kinematics can help wear-
able lower-limb robots choose appropriate coordinating be-
havior. Previous studies that investigate predictive models
for human kinematics report results for only one class of
model [12]; use simulated trip data instead of human subject

f f f ()
Models Case Elev. Del. Low. Lower.
. 63.7* 82.6% 29.1%
GPR and | Subj.-Spec.
NARX (<0.001) | (<0.001) | (<0.001)
G 10.4% 7.98% 4.08
en. (0.009) (0.02) (0.07)
. 275% 83.5% 531
GPR and | Subj.-Spec.
Pendulum (<0.001) | (<0.001) | (<0.001)
G 17.4% 82.6% 167%
en. 0.003) | (<0.001) | (<0.001)
. 45.6% 18.4% 1.43
NARX and | Subj.-Spec.
Pondulims (<0.001) | (0.002) (0.4)
G 2.70 2.04 15.0%
en. (0.1) (0.2) (0.004)

experimental data [13]; or use unperturbed data, where less
variation is likely present [11]. This paper investigates three
modeling methods to predict swing hip kinematics in experi-
mental trip data from 16 subjects. We restricted predictions to
the sagittal plane, but we expect the models could be extended
to include other hip motions (abduction-adduction, interior
exterior rotation) in future work.

The subject-specific GPR produced the lowest mean error
for each strategy out of all modeling methods. Across all
strategies, we found that its NRMSE was statistically signif-
icant from that of the other two subject-specific models. The
generalized GPR models produced the lowest mean NRMSE
across generalized models, which was statistically significant
from the NARX and pendulum models in all cases but one.
Furthermore, the GPR model’s lower computation time is
useful for real-time trip-recovery control in wearable robots.

The GPR model’s confidence bounds offer another ad-
vantage over the other prediction methods. Most ground
truth trajectories remained within the 95% confidence bounds,
though more often in the subject-specific case. Future work
will further investigate the discrepancies between response
variables, especially angle and height.

The subject-specific NARX models frequently generated
unstable predictions, especially for trips that occurred earlier
in the swing phase. We speculate that the considerably large
error in elevating and delayed lowering trials is a result of
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(a) GPR Model (NRMSE: 0.0706)

®  Conditional Points
s Conditional Prediction

(b) NARX Model (NRMSE: 0.242)

(c) Pendulum Model (NRMSE: 0.213)
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Fig. 7. An example of simulation results for one delayed lowering trial using the subject-specific (a) GPR, (b) NARX, and (c) pendulum models. The GPR
model prediction in (a) includes a 95% confidence interval. The entire ground truth trial is shown in the black line, with the trip onset indicated by the arrow.
The NRMSE for this trial, averaged across each response variable, is provided for each prediction method. The black dots represent the information provided
to each model: 15 conditional points in (a); 15 feedback delay points in (b), and one initial condition for simulation in (c).

overfitting the network to relatively small datasets. Notably,
the generalized NARX models’ mean NRMSE decreased
by approximately 50% from the subject-specific, likely due
to larger training datasets. The dynamic pendulum model
produced higher mean NRMSE than the GPR model, with
differences in NRMSE statistically significant from GPR in
both subject-specific and generalized cases. We found that of
the three response variables, the hip height contributed most to
this high mean NRMSE. Because the dynamic model applied
feedback to mean kinematics, the high error could be explained
by the relatively large variation in subjects’ trip-recovery hip
height trajectories.

Our results show the multi-output GPR model’s promise
for producing accurate predictions of kinematic responses to
trips with low computation time and quantified prediction
uncertainty. The generalized GPR models exhibited similar
simulation accuracy to the subject-specific case, increasing the
modeling method’s real-time applicability. Although our ex-
periment included only able-bodied subjects, individuals with
lower-limb amputation have exhibited similar trip-recovery
strategies in experiments [5].
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