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Approximating the Koopman operator from data is
numerically challenging when many lifting functions
are considered. Even low-dimensional systems can
yield unstable or ill-conditioned results in a high-
dimensional lifted space. In this paper, Extended
Dynamic Mode Decomposition (DMD) and DMD
with control, two methods for approximating the
Koopman operator, are reformulated as convex
optimization problems with linear matrix inequality
constraints. Asymptotic stability constraints and
system norm regularizers are then incorporated as
methods to improve the numerical conditioning of the
Koopman operator. Specifically, theH∞ norm is used
to penalize the input-output gain of the Koopman
system. Weighting functions are then applied to
penalize the system gain at specific frequencies. These
constraints and regularizers introduce bilinear matrix
inequality constraints to the regression problem,
which are handled by solving a sequence of convex
optimization problems. Experimental results using
data from an aircraft fatigue structural test rig and
a soft robot arm highlight the advantages of the
proposed regression methods.

1. Introduction
Koopman operator theory [1–4] allows a nonlinear
system to be exactly represented as a linear system in
terms of an infinite set of lifting functions. The Koopman
operator advances each of these lifting function to the next
timestep. Thanks to recent theoretical developments [2–
4] and the widespread availability of computational
resources, there has been a recent resurgence of interest in
using data-driven methods to approximate the Koopman
operator. The Koopman operator defines a linear state-
space system in the chosen lifted space, making it
convenient for control system design. Koopman models
have been paired with a wide variety of existing linear
optimal control techniques [5–10] with great success.
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(a) Collect data snapshots
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(c) Lift and arrange snapshots

Extended DMD (Section 3):
U∗ = arg min

U
‖Θ+ − UΨ‖2F

Asymptotic stability constraint (Section 4):
U∗ = arg min

U
‖Θ+ − UΨ‖2F
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(d) Approximate Koopman operator

Figure 1: Overview of the data-driven Koopman workflow, including the role of the proposed
regression methods. (a) First, data is collected from the system to be identified. (b) Next, a set
of lifting functions is chosen. (c) The lifting functions are then applied to the data and snapshot
matrices are formed. (d) Finally, one of several regression methods is used to approximate the
Koopman matrix. The proposed regression methods seek to address the numerical problems often
present in this step by viewing it as an optimization over discrete-time linear systems.

To use the Koopman representation in practical applications, a finite-dimensional
approximation of the infinite-dimensional Koopman operator must be found. First, a finite
set of lifting functions is selected. These functions are often hand-picked based on known
dynamics [7,8], or are combinations of sinusoids, polynomials, and other basis functions [9,11].
Time delay embeddings are also popular [5,9]. However, there is no universally agreed-upon
method for selecting lifting functions. Given a set of lifting functions, linear regression is used to
find the matrix approximation of the Koopman operator, also called a Koopman matrix [6,12].

Unfortunately, the regression problem associated with finding an approximate Koopman
operator is numerically challenging, as complex lifting function choices can yield unstable
or ill-conditioned Koopman models for stable systems [13]. Regularization techniques play
a crucial role in obtaining usable Koopman models for prediction and control applications.
Standard regularization techniques like Tikhonov regularization [14] or the lasso [15] are often
used to promote well-conditioned Koopman matrices. These regularization techniques penalize
different matrix norms of the Koopman matrix, without considering the fact that the Koopman
matrix defines a discrete-time linear system with input, state, and output. While these methods
may indirectly promote asymptotic stability in this Koopman system, their success is highly
dependent on the regularization coefficient used. Furthermore, they do not consider the input-
output gain of the Koopman system. This paper takes a systems view of the Koopman matrix
regression problem, proposing regression methods that constrain the asymptotic stability of the
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Koopman system and regularize the regression problem by penalizing its input-output gain,
as represented by its H∞ norm. To accomplish this, the Extended Dynamic Mode Decomposition
(EDMD) [16] and Dynamic Mode Decomposition with control (DMDc) [17] methods are reformulated
as convex optimization problems with linear matrix inequality (LMI) constraints. Regularizers
and additional constraints are incorporated in a modular fashion as either LMI constraints,
or bilinear matrix inequality (BMI) constraints. The data-driven Koopman workflow and the
proposed regression methods are summarized in Figure 1.

(a) Related work
Convex optimization and LMIs have previously been used to synthesize controllers for

Koopman models [10], but they have not yet been leveraged to regularize the Koopman matrix
regression problem. A related optimization problem is posed in [18], where both the Koopman
matrix and lifting functions are treated as unknowns. While this problem is NP-hard, a convex
relaxation allows both to be found by solving two semidefinite programs. The H∞ norm of the
Koopman operator has previously been considered in [19], however it is in the form of a hard
constraint on the system’s dissipativity, rather than as a regularizer in the cost function.

In [20], the problem of learning Lyapunov stable and asymptotically stable linear systems
is explored in the context of subspace identification, where Lyapunov inequalities are used to
enforce the corresponding stability conditions. The related problem of learning positive real and
strictly positive real systems using constrained subspace identification is discussed in [21]. A
convex relaxation of the Lyapunov inequality is considered in [22], where linear constraints are
added incrementally to enforce the Lyapunov stability of a system. In [13], a gradient-descent
method called SOC [23] is applied to find locally optimal Lyapunov stable or asymptotically
stable Koopman matrices. The method relies on a parameterization of the Koopman matrix
that guarantees Lyapunov stability or asymptotic stability [24]. While addressing the asymptotic
stability problem, this formulation lacks the modularity of the proposed approach.

(b) Contribution
The core contributions of this paper are solving the EDMD and DMDc problems with

asymptotic stability constraints and with system norm regularizers. Of particular focus is the use
of theH∞ norm as a regularizer, which penalizes the worst-case gain of the Koopman system over
all frequencies. The BMI formulation of the EDMD problem with asymptotic stability constraints
and H∞ norm regularization were previously explored by the authors in [25]. LMI formulations
for Tikhonov regularization, matrix two-norm regularization, and nuclear norm regularization
were also presented in [25]. This paper expands on [25] to include an LMI formulation of the
DMDc problem, and discusses the corresponding asymptotic stability constraint and H∞ norm
regularizer. As with EDMD, these modifications add BMI constraints to the DMDc problem.
Furthermore, weightedH∞ norm regularization is explored, which allows the Koopman system’s
gain to be penalized in a specific frequency band, where experimental measurements may be less
reliable, or where system dynamics may be irrelevant. Finally, the proposed regression methods
are evaluated using two experimental datasets, one from a fatigue structural testing platform,
and the other from a soft robot arm. The significance of this work is the use of a system norm
to regularize the Koopman regression problem, which is viewed as a regression problem over
discrete-time linear systems, resulting in a numerically better conditioned data-driven model.

2. Background

(a) Koopman operator theory
Consider the discrete-time nonlinear process

xk+1 = f(xk), (2.1)
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where xk ∈M evolves on a manifoldM⊆Rm×1. Let ψ :M→R be a lifting function. Any scalar
function of the state xk qualifies as a lifting function. The lifting functions therefore form an
infinite-dimensional Hilbert space H. The Koopman operator U :H→H is a linear operator that
advances all scalar-valued lifting functions ψ ∈H in time by one timestep. That is [12, §3.2],

(Uψ)(·) = (ψ ◦ f)(·). (2.2)

Using (2.2), the dynamics of (2.1) can be rewritten linearly in terms of ψ as

ψ(xk+1) = (Uψ)(xk). (2.3)

In finite dimensions, (2.3) is approximated by

ψ(xk+1) = Uψ(xk) + rk, (2.4)

where ψ :M→Rp×1, U∈Rp×p, and rk is the residual error. Each element of the vector-valued
lifting function ψ is a lifting function inH. The Koopman matrix U is a matrix approximation of the
Koopman operator.

(b) Koopman operator theory with inputs
If a discrete-time nonlinear process with exogenous inputs is considered, the definitions of the
lifting functions and Koopman operator must be modified. Consider

xk+1 = f(xk, uk), (2.5)

where xk ∈M⊆Rm×1 and uk ∈N ⊆Rn×1. In this case, the lifting functions become
ψ :M×N →R and the Koopman operator U :H→H is instead defined so that

(Uψ)(xk, uk) =ψ(f(xk, uk), ?), (2.6)

where ?= uk if the input has state-dependent dynamics, or ?= 0 if the input has no dynamics [12,
§6.5]. If the input is computed by a controller, it is often considered to have state-dependent
dynamics. Let the vector-valued lifting function ψ :M×N →Rp×1 be partitioned as

ψ(xk, uk) =

[
ϑ(xk)

υ(xk, uk)

]
, (2.7)

where ϑ :M→Rpϑ×1, υ :M×N →Rpυ×1, and pϑ + pυ = p. When the input is exogenous, (2.6)
has the form [12, §6.5.1]

ϑ(xk+1) = Uψ(xk, uk) + rk, (2.8)

where U =
[
A B

]
. Expanding (2.8) yields the familiar linear state-space form,

ϑ(xk+1) = Aϑ(xk) + Bυ(xk, uk) + rk. (2.9)

When identifying a Koopman model for control, the input is often left unlifted, that is,
υ(xk, uk) = uk [5]. However, recent work demonstrates that this choice of lifting functions
is insufficient for describing control affine systems, which are ubiquitous in real-world
applications [26]. An alternative choice of input-dependent lifting functions proposed in [26] is

υ(xk, uk) =

[
uk ⊗ ϑ(xk)

uk

]
, (2.10)

where ⊗ denotes the Kronecker product. These bilinear input-dependent lifting functions are
capable of representing all control affine systems, and therefore present an interesting alternative
to leaving the input unlifted [26].
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(c) Approximating the Koopman operator from data
To approximate the Koopman matrix from a datasetD= {xk, uk}

q
k=0, consider the lifted snapshot

matrices

Ψ =
[
ψ0 ψ1 · · · ψq−1

]
∈Rp×q, (2.11)

Θ+ =
[
ϑ1 ϑ2 · · · ϑq

]
∈Rpϑ×q, (2.12)

where ψk =ψ(xk, uk) and ϑk =ϑ(xk). The Koopman matrix that minimizes

J(U) = ‖Θ+ − UΨ‖2F (2.13)

is [12, §1.2.1]
U =Θ+Ψ

†, (2.14)

where (·)† denotes the Moore-Penrose pseudoinverse.

3. Reformulating the Koopman Operator Regression Problem

(a) Extended DMD
The direct least-squares method of approximating the Koopman operator in (2.14) is fraught with
numerical and performance issues. Namely, computing the pseudoinverse ofΨ is costly when the
dataset contains many snapshots. Extended Dynamic Mode Decomposition (EDMD) [16] reduces
the dimension of the pseudoinverse required to compute (2.14) when the number of snapshots is
much larger than the dimension of the lifted state (i.e. , p� q) [12, §10.3].

Extended DMD consists of computing (2.14) using

U =Θ+

(
ΨTΨT†)

Ψ† =
(
Θ+Ψ

T
)(
ΨΨT

)†
= GH†, (3.1)

where
G =

1

q
Θ+Ψ

T ∈Rpϑ×p, H =
1

q
ΨΨT ∈Rp×p. (3.2)

Now, only a p× p pseudoinverse is required, rather than a p× q pseudoinverse. To improve
numerical conditioning, G and H are often scaled by the number of snapshots q, as in (3.2). Note
that H = HT > 0 if the columns of Ψ are linearly independent.

(b) LMI reformulation of EDMD
To incorporate regularizers and constraints in a modular fashion, the Koopman operator
regression problem is reformulated as a convex optimization problem with LMI constraints.
Recall that the Koopman matrix U minimizes (2.13). It therefore also minimizes

J(U) =
1

q
‖Θ+ − UΨ‖2F =

1

q
tr
(

(Θ+ − UΨ) (Θ+ − UΨ)T
)

(3.3)

= tr

(
1

q
Θ+Θ

T
+ −He

{
UGT

}
+ UHUT

)
(3.4)

= c− 2tr
(

UGT
)

+ tr
(

UHUT
)
, (3.5)

where c= 1
qΘ+Θ

T
+ is a scalar constant, G and H are defined in (3.2), and He{·}= (·) + (·)T. The

minimization of (3.5) is equivalent to the minimization of

J(U, ν,W) = c− 2tr
(

UGT
)

+ ν (3.6)

subject to
tr(W)< ν, W> 0, UHUT <W, (3.7)
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where ν and W are slack variables that allow the cost function to be rewritten using LMIs [27,
§2.15.1]. To rewrite the quadratic term in (3.7) as an LMI, consider the matrix decomposition
H = LLT. The matrix L can be found using a Cholesky factorization or eigendecomposition of H,
or a singular value decomposition of Ψ . Assuming the decomposition has been performed, the
quadratic term in the optimization problem becomes

W− UHUT = W− ULLTUT = W− (UL) 1(UL)T, (3.8)

where 1 is the identity matrix. Applying the Schur complement [27, §2.3.1] to (3.8) yields[
W UL

LTUT 1

]
> 0. (3.9)

The LMI form of the optimization problem is therefore

min J(U, ν,W) = c− 2tr
(

UGT
)

+ ν (3.10)

s.t. tr(W)< ν, W> 0,

[
W UL

LTUT 1

]
> 0, (3.11)

where H = LLT.
As previously mentioned, the decomposition H = LLT can be realized via a Cholesky

factorization, eigendecomposition, or singular value decomposition. Using a Cholesky
factorization directly gives L. When using an eigendecomposition, H = VΛVT, it follows that
L = V

√
Λ. Alternatively, using a singular value decomposition, Ψ = QΣZT, and substituting it

into the definition of H in (3.2) yields H = 1
qQΣ2QT. It follows that L = 1√

qQΣ. A singular value
decomposition is used to compute L in the experiments presented in this paper.

4. Asymptotic Stability Constraint
Since many systems of interest have asymptotically stable dynamics, it is desirable to identify
Koopman systems that share this property. In [13], it is proven that an asymptotically stable
nonlinear system can only be represented accurately by an asymptotically stable Koopman
system, thus highlighting the importance of enforcing the asymptotic stability property during
the regression process.

However, in practice, it is possible to identify an unstable Koopman system from
measurements of an asymptotically stable system [13]. Even if the identified Koopman system
is asymptotically stable in theory, the eigenvalues of its A matrix may be so close to the unit circle
that it is effectively unstable in practice. One solution, presented in this section, is to constrain the
largest eigenvalue of A to be strictly less than one in magnitude, within a desired tolerance.

(a) Constraint formulation

To ensure that the system defined by the Koopman matrix U =
[
A B

]
is asymptotically stable,

the eigenvalues of A must be constrained to have magnitude strictly less than one. A modified
Lyapunov constraint [28, §1.4.4]

P> 0, (4.1)

ATPA− ρ̄2P< 0, (4.2)
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can be added to ensure that the magnitude of the largest eigenvalue of A is no larger than
0< ρ̄ < 1. Applying the Schur complement to (4.2) yields

ATPA− ρ̄2P< 0 ⇐⇒
(

ATP
)

P−1
(

ATP
)T
− ρ̄2P< 0 (4.3)

⇐⇒ −ρ̄P−
(
−ATP

)
(−ρ̄P)−1

(
−ATP

)T
< 0 (4.4)

⇐⇒

[
−ρ̄P −ATP
−PTA −ρ̄P

]
< 0, −ρ̄P< 0 (4.5)

⇐⇒

[
ρ̄P ATP

PTA ρ̄P

]
> 0, P> 0. (4.6)

The full optimization problem with asymptotic stability constraint is therefore

min J(U, ν,W,P; ρ̄) = c− 2tr
(

UGT
)

+ ν (4.7)

s.t. tr(W)< ν, W> 0,

[
W UL

LTUT 1

]
> 0, P> 0,

[
ρ̄P ATP

PTA ρ̄P

]
> 0, (4.8)

where H = LLT and U =
[
A B

]
.

Since both A and P are unknown, (4.6) includes a BMI constraint. The optimization problem
is therefore nonconvex and NP-hard. One method to find a locally optimal solution is outlined
in [29]. First, assume P is constant with an initial guess of P = 1 and solve (4.7)–(4.8) as an LMI
problem. Then, hold the remaining variables constant using the solution from that optimization,
and solve a feasibility problem for P. Repeat this process until the cost function stops changing
significantly. Although this approach is rather simple, it does result in an asymptotically stable
Koopman system with reasonable prediction error.

(b) Experimental results
The effectiveness of the proposed asymptotic stability constraint is demonstrated using
experimental data collected from the Fatigue Structural Testing Equipment Research (FASTER)
platform at the National Research Council of Canada (NRC) [30], which is used for aircraft fatigue
testing research. In the fatigue structural testing dataset used in this paper, the structure under test
is an aluminum-composite beam. During a test, the FASTER platform applies a force to this beam
using a hydraulic actuator, which is controlled by a voltage. This input, the applied force, and
the structure’s deflection are recorded at 128 Hz. The actuator voltage is determined by a linear
controller designed to track a reference force profile. In this case, the dynamics of the controller
are neglected and the actuator voltage is considered to be exogenous. All states and inputs in the
FASTER dataset are normalized. A photograph of this experimental setup can be found in [30].

The Koopman lifting functions chosen for the FASTER platform are first- and second-order
monomials. The full lifting procedure consists of several steps to improve numerical conditioning.
First, all states and inputs are normalized so that they do not grow when passed through the
monomial lifting functions. Then, all first- and second-order monomials of the state and input are
computed. Finally, the lifted states are standardized to ensure that they are evenly weighted in
the regression. To standardize the lifted states, their means are subtracted and they are rescaled to
have unit variance [31, §4.6.6]. When using the identified Koopman matrices for prediction, the
state and input are lifted, then multiplied by the Koopman matrix. The state is then recovered and
re-lifted with the input for the next timestep. Using this prediction method leads to the local error
definition presented in [13], which is used throughout this paper.

Given that the true FASTER system is asymptotically stable, it is crucial to ensure that the
identified Koopman system shares this property. To demonstrate the impact of the asymptotic
stability constraint, Koopman matrices with maximum spectral radii of ρ̄= 1.00 and ρ̄= 0.99 are
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Figure 2: (a) Eigenvalues and spectral radius constraints of Koopman A matrices approximated
from the FASTER dataset. The eigenvalues of A satisfy their respective spectral radius
constraints. Additionally, lowering the spectral radius constraint from ρ̄= 1.00 to ρ̄= 0.99 does
not significantly alter the eigenvalues. (b) Multi-step prediction error of Koopman systems
approximated from the FASTER dataset. All units are normalized. States are recovered and re-
lifted between prediction timesteps. Although both systems are asymptotically stable, only the
system with ρ̄= 0.99 is usable in practice, as the other system’s response diverges due to the
accumulation of numerical error.

computed and compared to an unconstrained Koopman matrix computed with standard EDMD.
Figure 2a shows the eigenvalues of the two constrained Koopman A matrices. In both cases, the
eigenvalues indicate that the systems obey their respective maximum spectral radii. However,
the multi-step prediction errors of the two Koopman systems in Figure 2b show that only the
system with the spectral radius constraint of ρ̄= 0.99 is usable in practice. The other system
produces prediction errors that diverge to infinity due to the accumulation of numerical error.
The Koopman matrix without asymptotic stability constraint behaves identically to the matrix
with maximum spectral radius ρ̄= 1.00, and is therefore not shown Figure 2. By introducing a
small amount of conservatism in the spectral radius constraint, the identified Koopman system is
rendered asymptotically stable in the face of accumulated numerical error.

5. System Norm Regularization
While constraining the asymptotic stability of the identified Koopman system helps ensure that
the system’s predictions are usable, it does not consider the input-output properties of the system.
A system norm like the H2 norm or the H∞ norm can be used to regularize the system’s
gain, while also ensuring asymptotic stability for any regularization coefficient. Specifically, the
existence of a finite H2 or H∞ norm guarantees the asymptotic stability of the resulting linear
time-invariant (LTI) system [32]. Regularizing using theH2 norm can be thought of as penalizing
the average system gain over all frequencies, while using the H∞ norm penalizes the worst-
case system gain. As such, the use of the H∞ norm as a regularizer is explored next. Weighted
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H∞ norms are also considered as regularizers, which allow the regularization problem to be
tuned in the frequency domain with weighting functions.

(a) H∞norm regularization
Since approximating the Koopman matrix amounts to identifying a discrete-time LTI system, it
is natural to consider a system norm as a regularizer rather than a matrix norm. The Koopman
representation of a nonlinear ODE can be thought of as a discrete-time LTI system G : `2e→ `2e,

where `2e is the extended inner product sequence space [33, §B.1.1] and U =
[
A B

]
. Consider

the lifted output equation,
ζk = Cϑk + Dυk, (5.1)

where C∈Rpζ×pϑ and D∈Rpζ×pυ . In the simplest formulation, C = 1, and D = 0. The Koopman
system is then

G min∼

[
A B
C D

]
, (5.2)

where min∼ denotes a minimal state-space realization [33, §3.2.1]. The Koopman system G has a
corresponding discrete-time transfer matrix [32, §3.7], G(z) = C(z1− A)−1B + D.

TheH∞ norm of G is the worst-case gain from ‖υ‖2 to ‖Gυ‖2. That is [33, §B.1.1]

‖G‖∞ = sup
υ∈`2,υ 6=0

‖Gυ‖2
‖υ‖2

, (5.3)

where `2 is the inner product sequence space [33, §B.1.1]. In the frequency domain, this definition
is equivalent to [33, §B.1.1]

‖G‖∞ = sup
θ∈(−π,π]

σ̄
(

G(ejθ)
)
, (5.4)

where σ̄(·) denotes the maximum singular value of a matrix. In (5.4), the transfer function is
evaluated at z = ejθ , where θ= 2π∆tf is the discrete-time frequency,∆t is the sampling timestep,
and f is the continuous-time frequency.

WithH∞ norm regularization, the cost function associated with the regression problem is

J(U;β) = ‖Θ+ − UΨ‖2F + β‖G‖∞, (5.5)

where β is the regularization coefficient. To integrate the H∞ norm into the regression problem,
its LMI formulation must be considered. The inequality ‖G‖∞ < γ holds if and only if [27, §3.2.2]

P> 0,


P AP B 0

PTAT P 0 PCT

BT 0 γ1 DT

0 CPT D γ1

> 0. (5.6)

The full optimization problem withH∞ regularization is

min J(U, ν,W, γ,P;β) = c− 2tr
(

UGT
)

+ ν +
β

q
γ (5.7)

s.t. tr(W)< ν, W> 0,

[
W UL

LTUT 1

]
> 0, (5.8)

P> 0,


P AP B 0

PTAT P 0 PCT

BT 0 γ1 DT

0 CPT D γ1

> 0, (5.9)

where H = LLT and U =
[
A B

]
.
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Like the asymptotic stability constraint proposed in Section 4, (5.9) includes a BMI constraint in
terms of the unknowns P and A. As such, the optimization problem in (5.7)–(5.9) is nonconvex and
NP-hard. However, it can be solved using the same iterative procedure described in Section 4 [29].

(b) Weighted H∞norm regularization
The H∞ norm used in (5.7) can be weighted by cascading G with another LTI system, Gw. For
example, choosing Gw to be a highpass filter penalizes system gains at high frequencies. Weights
can be cascaded before or after G to weight the inputs, outputs, or both. Recall that multi-input
multi-output LTI systems do not commute.

Consider the weight

Gw min∼

[
Aw Bw

Cw Dw

]
, (5.10)

with state ϑw, input υw, and output ζw. Cascading Gw after G yields the augmented state-space
system [

ϑk+1

ϑw
k+1

]
=

[
A 0

BwC Aw

][
ϑk
ϑw
k

]
+

[
B

BwD

]
υk, (5.11)

ζwk =
[
DwC Cw

] [ϑk
ϑw
k

]
+ DwDυk. (5.12)

Minimizing theH∞ norm of the augmented system

GwG min∼

 A 0 B
BwC Aw BwD
DwC Cw DwD

 (5.13)

is equivalent to minimizing the weighted H∞ norm of the original system. The choice of
weighting function used can be viewed as another hyperparameter in the regression problem.

Weighting the regression problem in the frequency domain comes at the cost of increasing the
dimension of the optimization problem. When cascading the weight before G, the dimension of
ϑw scales with the dimension of υ. When cascading after G, the dimension of ϑw scales with the
dimension of ζ. In the regression problems considered here, only post-weighting is considered,
since ζ has a much smaller dimension.

(c) Experimental results
The unique advantages of theH∞ norm regularizer are demonstrated using the soft robot dataset
published alongside [34] and [9]. Unregularized EDMD and Tikhonov-regularized EDMD [14,25],
two standard Koopman matrix approximation methods, are compared with the asymptotic
stability constraint from Section 4 and the H∞ norm regularizer presented in this section. The
Koopman systems identified using these regression methods are analyzed in terms of their
prediction errors, system properties, and numerical conditioning.

Identifying a Koopman representation of a soft robot arm is a particularly interesting problem,
as its dynamics are not easily modelled from first principles. The soft robot under consideration
consists of two flexible segments with a laser pointer mounted at the end. The laser pointer
projects a dot onto a board positioned below the robot. The two states of the system are the
Cartesian coordinates of the dot on the board, as measured by a camera. The soft robot arm is
actuated by three pressure regulators, each controlled by a voltage. The dot position and control
voltages are recorded at 12 Hz. Thirteen training episodes and four test episodes were recorded in
this manner. The third test episode is shown in Figure 3. Photographs of this experimental setup,
along with additional details, can be found in [34] and [9].
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Figure 3: Multi-step prediction error and trajectory plot of the third test episode for Koopman
systems approximated from the soft robot dataset. States are recovered and re-lifted between
prediction timesteps. All Koopman systems have comparable prediction errors, with the
exception of two large error spikes in the system with the asymptotic stability constraint.
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Figure 4: Eigenvalues of Koopman A matrices approximated from the soft robot dataset. EDMD
without regularization and EDMD with Tikhonov regularization both identify unstable systems,
while the asymptotic stability constraint and H∞ norm regularizer yield asymptotically stable
Koopman systems.
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Figure 5: Singular values of Koopman A and B matrices approximated from the soft robot dataset
plotted on a logarithmic scale. The A and B matrices computed using unregularized EDMD both
have large singular values. EDMD with Tikhonov regularization decreases the singular values of
both matrices, but does not yield an asymptotically stable system. With an asymptotic stability
constraint, the singular values of A are reduced, but the singular values of B are unaffected
and remain large. Using an H∞ norm regularizer reduces the singular values of both A and B
significantly, yielding a better-conditioned Koopman matrix.

The lifting functions chosen for the soft robot system consist of a time delay step, followed
by a third-order monomial transformation. Although time delays do not, strictly speaking, meet
the definition of a lifting function outlined in Section 2, they are commonly used in the lifted
states of Koopman identification problems [5,9]. As with the FASTER dataset in Section 4, the
states and inputs are first normalized. Then, the states and inputs are augmented with their
delayed versions, where the delay period is one timestep. Next, all first-, second-, and third-order
monomials are computed. Finally, the lifted states are standardized. Since the time delay step
occurs before the monomial lifting step, cross-terms including delayed and non-delayed states
and inputs occur in the lifted state.

Unregularized EDMD and Tikhonov-regularized EDMD are used as baselines for comparison
with the proposed regression methods. Tikhonov regularization improves the numerical
conditioning of U by penalizing its squared Frobenius norm [14,25]. The regularizers used in
this section have coefficients of β = 7.5× 10−3, while the asymptotic stability constraint has a
maximum spectral radius of ρ̄= 0.999. Figure 3 shows the multi-step prediction errors of the four
Koopman systems for the third test episode of the dataset. The prediction errors are comparable
for all four Koopman systems, aside from two large error spikes produced by the system with the
asymptotic stability constraint.

One way to compare the resulting Koopman systems is to analyze the eigenvalues of their A
matrices. Figure 4 shows that unregularized EDMD and Tikhonov-regularized EDMD produce
unstable Koopman systems, even though, as shown in Figure 7, the multi-step prediction errors
do not happen to diverge in any test episodes. As expected, EDMD with anH∞ norm regularizer
and EDMD with an asymptotic stability constraint both yield asymptotically stable Koopman
systems.

While the Koopman system identified with an asymptotic stability constraint is indeed
asymptotically stable, the system is not well-conditioned. To see this, consider Figure 5, which
shows the singular values of the Koopman A and B matrices. These singular values indicate the
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Figure 6: (a) Bode plot of Koopman systems approximated from the soft robot dataset. The
Koopman system identified with unregularized EDMD has high gain, with a resonant peak at
a high frequency. EDMD with Tikhonov regularization reduces the system’s gain, but identifies
an unstable system and retains an undesirable high-frequency resonant peak in the frequency
response. Constraining the asymptotic stability of the system does not significantly reduce the
gain compared to the unregularized system. Penalizing the H∞ norm of the Koopman system
reduces its gain at all frequencies without compromising prediction error. (b) Bode plot of
unweighted and weighted Koopman systems approximated from the soft robot dataset, along
with weighting function. The dashed line representing the weighting function uses the right axis,
while the solid lines use the left axis.

sizes of the entries in each matrix. With unregularized EDMD, both matrices have singular values
on the order of 103. Using Tikhonov regularization decreases the singular values of both A and
B, though it still yields an unstable system. Constraining the spectral radius of A greatly reduces
the singular values of A but increases the singular values of B. The numerical conditioning of this
Koopman system is arguably worse, as the A and B matrices contain entries of drastically different
scales. Regularizing using theH∞ norm resolves this problem, as it reduces the singular values in
both matrices, yielding a better-conditioned, asymptotically stable Koopman system with similar
prediction error. The key takeaway is that constraining the spectral radius of A is not sufficient
to guarantee a well-conditioned Koopman matrix, as the constraint does not directly impact B.
Using theH∞ norm as a regularizer considers the system as a whole, thus impacting both A and
B, and reducing their entries to reasonable sizes.

Another way to compare the identified Koopman systems is by looking at their frequency
responses, which can be found by plotting the maximum singular value of the transfer matrix
at each frequency. Figure 6a shows the magnitude responses of the four Koopman systems,
and paints a similar picture to Figure 5. Unregularized EDMD yields a Koopman system with
very high gain and a resonant peak in the upper frequency range. Incorporating Tikhonov
regularization reduces the system’s gain, but retains the resonant peak at a high frequency.
Constraining the asymptotic stability of the system does not significantly impact the system’s
gain, which, given the large singular values of B in Figure 5, is not surprising. However,
regularizing using theH∞ norm directly penalizes the peak of the Bode plot in Figure 6a, yielding
a system with significantly lower gain and similar prediction error.
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The H∞ norm regularizer can be expanded upon by weighting the H∞ norm using a
highpass filter. This weighting function penalizes high gains at high frequencies while allowing
higher gains at low frequencies. Penalizing gain at high frequencies is desirable because relevant
system dynamics typically occupy low frequencies, while high frequencies are corrupted by
measurement noise. Furthermore, causal physical systems have frequency responses that roll
off as frequency grows, since it is unrealistic for a system to have infinite gain at infinitely
high frequencies. Figure 6b demonstrates the impact of weighting the H∞ norm regularizer
with a highpass filter that has a zero at 4 Hz and a pole slightly below 6 Hz. This weighted
regularizer yields a Koopman system with high gain at low frequencies and decreasing gain at
high frequencies.

Note that Figure 6 shows the frequency response of the Koopman system in the lifted space,
which is not the same as the “frequency response of the nonlinear system.” Since the ultimate
goal is to design linear controllers in the lifted space, only the frequency response of the Koopman
system in the lifted space and the correspondingH∞ norm are relevant.
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Figure 7: RMS Euclidean errors of Koopman systems approximated from the soft robot dataset.
Error bars indicate mean and standard deviation of RMS error over the four test episodes. In
terms of mean error, all identified Koopman systems perform similarly well. However, the system
identified usingH∞ norm regularizer performed more consistently throughout the test set.

In Figure 7, the multi-step prediction errors of the five identified Koopman systems are
compared across each episode in the test set. Given that the laser pointer dot projected by
the soft robot moves within a circle of radius 10 cm, it’s practically meaningless to distinguish
each method based on mean prediction error alone. However, the distribution of each identified
system’s prediction errors across the test set clearly highlights the importance of regularization.
The Tikhonov regularizer, H∞ norm regularizer, and weighted H∞ norm regularizer lead
to systems with smaller standard deviations in the RMS error over the test set. In contrast,
EDMD without regularization and EDMD with an asymptotic stability constraint lead to systems
that perform inconsistently over the test set. Comparing standard deviations indicates that the
regularized systems generalize better to previously unseen data, with the H∞ norm regularizer
performing most consistently over the four test episodes.
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The results in this section highlight the desirable properties of the proposed H∞ norm
regularizers. While all systems have comparable RMS prediction errors on the test set,
unregularized EDMD results in an unstable, poorly conditioned Koopman system with large
gain. While Tikhonov regularization improves numerical conditioning, the resulting system is
still unstable. Conversely, constraining the asymptotic stability of the system does not improve
it numerical properties. Only the H∞ norm regularizers guarantee asymptotic stability while
improving the numerical conditioning of the system. These key results are summarized in
Table 1, which also highlights the difference between the unweighted and weighted H∞ norm
regularizers. Weighting the H∞ norm regularizer further improves the condition numbers of A
and B.

Table 1: Comparison of regression methods through the condition numbers of their Koopman
matrices and asymptotic stability guarantees. Only the H∞ regularizers guarantee asymptotic
stability while significantly improving the condition number of the Koopman matrices. In this
case, weighting theH∞ norm further improves cond(A) and cond(B).

regression method cond(A) cond(B) asymptotic stability
no regularization 5.77× 107 3.40× 107 no

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tikhonov regularization 4.39× 105 2.90× 103 no
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

asymptotic stability constraint 7.32× 104 4.87× 103 yes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H∞ regularization 3.87× 104 2.14× 102 yes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

weightedH∞ regularization 1.69× 103 5.43× 101 yes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. Reducing the Size of the Regression Problem
As the number of lifting functions required grows, so does the size of the optimization problem.
With several hundred lifting functions, finding a solution can take days and consume an
intractable amount of memory. To combat this limitation, an approach reminiscent of DMDc is
now presented.

(a) DMD with control
DMD with control [17] reduces the dimension of the Koopman matrix regression problem when
the dataset contains many more lifted states than time snapshots (i.e. , p� q) [12, §10.3]. In DMDc,
the Koopman matrix is projected onto the left singular vectors of Θ+. The size of the problem is
then controlled by retaining only the r̂ largest singular values in the SVD. Consider the truncated
singular value decompositionΘ+ ≈ Q̂Σ̂ẐT, where Q̂∈Rpϑ×r̂ , Σ̂ ∈Rr̂×r̂ , and Ẑ∈Rq×r̂ . Instead

of solving for U =
[
A B

]
, the regression problem is written in terms of [17]

Û =
[
Q̂TAQ̂ Q̂TB

]
= Q̂TU

[
Q̂ 0
0 1

]
, (6.1)

where Û∈Rr̂×r̂+pυ is significantly smaller than U∈Rpϑ×p. The least-squares solution to the
Koopman matrix (2.14) can be written as

U =Θ+Z̃Σ̃†Q̃T, (6.2)

where Ψ ≈ Q̃Σ̃Z̃T. The number of singular values retained in this SVD is denoted r̃. Thus
Q̃∈Rp×r̃ , Σ̃ ∈Rr̃×r̃ , and Z̃∈Rq×r̃ . The standard solution to the DMDc problem is obtained by
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substituting (6.2) into (6.1), yielding

Û = Q̂TΘ+Z̃Σ̃†Q̃T

[
Q̂ 0
0 1

]
. (6.3)

The SVD dimensions r̂ and r̃ are a design choice. A common approach is the hard-thresholding
algorithm described in [35]. Note that typically r̂ < r̃ [12, §6.1.3].

(b) LMI reformulation of DMDc
To reformulate DMDc as a convex optimization problem with LMI constraints, the cost function
is rewritten in terms of Û instead of U. Recall that the rescaled Koopman cost function (3.3) can be
written as

min J(U) =
1

q
tr
(
Θ+Θ

T
+ −He

{
UΨΘT

+

}
+ UΨΨTUT

)
. (6.4)

With the introduction of a slack variable, (6.4) becomes [27, §2.15.1]

min J(U,W) =
1

q
tr(W) (6.5)

s.t.W> 0, Θ+Θ
T
+ −He

{
UΨΘT

+

}
+ UΨΨTUT <W. (6.6)

Substituting the SVDs ofΘ+ and Ψ into the optimization problem yields

min J(U,W) =
1

q
tr(W) (6.7)

s.t.W> 0, Q̂Σ̂2Q̂T −He
{

UQ̃Σ̃Z̃TẐΣ̂Q̂T
}

+ UQ̃Σ̃2Q̃TUT <W. (6.8)

Next, consider the projection of (6.7) and (6.8) onto the column space of Q̂, denotedR(Q̂). Recall
that W> 0 is equivalent to

ϑTWϑ> 0, ∀ϑ 6= 0∈Rpϑ×1. (6.9)

Since (6.9) holds over all of Rpϑ×1, it must also hold over the subspace R(Q̂). Let the vectors in
R(Q̂) be parameterized by

ϑ= Q̂ϑ̂, (6.10)

where ϑ̂∈Rr̂×1. Substituting (6.10) into (6.9) yields

ϑ̂TQ̂TWQ̂ϑ̂> 0, ∀ϑ̂ 6= 0∈Rr̂×1, (6.11)

which is equivalent to
Ŵ = Q̂TWQ̂> 0 (6.12)

overR(Q̂). Applying the same logic to (6.8) yields

Σ̂2 −He
{

Q̂TUQ̃Σ̃Z̃TẐΣ̂
}

+ Q̂TUQ̃Σ̃2Q̃TUTQ̂< Ŵ, (6.13)

where the fact that Q̂TQ̂ = 1 has been used.
To further simplify the problem, it is advantageous to rewrite (6.7) in terms of Ŵ. To accomplish

this, first recall that the trace of a matrix is equal to the sum of its eigenvalues. The eigenvalue
problem for W is

Wvi = λivi. (6.14)

Projecting (6.14) ontoR(Q̂) by substituting vi = Q̂v̂i, then premultiplying the result by Q̂T, yields

Q̂TWQ̂v̂i = λiv̂i. (6.15)

Thus, W and Ŵ share the same eigenvalues for eigenvectors in R(Q̂), which indicates that
minimizing tr(Ŵ) is equivalent to minimizing tr(W) in that subspace.
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The full regression problem projected ontoR(Q̂) is therefore

min J(U, Ŵ) =
1

q
tr(Ŵ) (6.16)

s.t. Ŵ> 0, Σ̂2 −He
{

Q̂TUQ̃Σ̃Z̃TẐΣ̂
}

+ Q̂TUQ̃Σ̃2Q̃TUTQ̂< Ŵ. (6.17)

Substituting Û from (6.1) into the optimization problem yields

min J(Û, Ŵ) =
1

q
tr(Ŵ) (6.18)

s.t. Ŵ> 0, Σ̂2 −He
{

ÛQ̄Σ̃Z̃TẐΣ̂
}

+ ÛQ̄Σ̃2Q̄TÛT < Ŵ, (6.19)

where

Q̄ =

[
Q̂ 0
0 1

]T
Q̃. (6.20)

Applying the Schur complement to (6.19) yields the LMI formulation of DMDc,

min J(Û, Ŵ) =
1

q
tr(Ŵ) (6.21)

s.t. Ŵ> 0,

[
−Ŵ + Σ̂2 −He

{
ÛQ̄Σ̃Z̃TẐΣ̂

}
ÛQ̄Σ̃

Σ̃Q̄TÛT −1

]
< 0. (6.22)

This is now a significantly smaller optimization problem, as its size is controlled by the truncation
of the SVD of Θ+. Reducing the first dimension of Û also reduces the dimension of the slack
variable Ŵ.

(c) Constraints and regularization
The projection in (6.10) defines a new Koopman system,

ϑ̂k+1 = Âϑ̂k + B̂υk, (6.23)

ζk = Ĉϑ̂k + Dυk, (6.24)

where Ĉ = CQ̂. The asymptotic stability constraint discussed in Section 4 and the H∞ norm
regularizers discussed in Section 5 can be equally applied to the projected system in (6.23)
and (6.24) to ensure that the projected system of smaller dimension has the desired stability and
frequency response characteristics.

(d) Experimental results
The properties of the asymptotic stability constraint from Section 4 and theH∞ norm regularizer
from Section 5 are now compared when applied to the EDMD and DMDc regression problems.
The same dataset and experimental setup as Section 5 is used here.

An important decision in the DMDc algorithm is the choice of singular value truncation
method. Optimal hard singular value truncation [35] is used to determine r̂, while r̃ is left
at full rank. For the soft robot dataset, the optimal hard truncation algorithm retains only 14
of the 34 singular values of A. Figure 8 demonstrates that the DMDc methods indeed reduce
the dimensionality of the problem, while also showing that the remaining singular values are
close to their EDMD counterparts. Figure 9a shows that the frequency responses of the original
Koopman systems are preserved by the DMDc methods. In spite of their reduced dimensionality,
the Koopman systems identified with DMDc retain their frequency domain properties.

In Figure 9b, the RMS Euclidean errors of the EDMD and DMDc methods with asymptotic
stability constraints and H∞ norm regularization are summarized. Since the Koopman systems
identified by the DMDc methods are of a lower order, their mean prediction error is higher
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Figure 8: Singular values of Koopman A and B matrices approximated from the soft robot dataset
using EDMD and DMDc regressors. Singular values smaller than 10−12 are not shown. Note the
logarithmic scale. While the EDMD methods retain all 34 singular values, the DMDc methods
truncate all but the first 14. The singular values retained by the DMDc methods are close to the
corresponding singular values computed by the EDMD methods.
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Figure 9: (a) Bode plots of Koopman systems approximated from the soft robot dataset using
EDMD and DMDc regressors. The DMDc methods preserve the frequency responses of the
corresponding systems identified with the EDMD methods. (b) RMS Euclidean errors of
Koopman systems approximated from the soft robot dataset using EDMD and DMDc regressors.
Error bars indicate standard deviation of RMS error over the four test episodes. Since the DMDc
methods identify reduced-order Koopman models of the system, they have larger mean errors.
However, theH∞ norm regularizer still significantly reduces the standard deviation.
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than that of the EDMD methods. However, the H∞ norm regularizer retains its benefit of
improving prediction consistency. Furthermore, as demonstrated by Figure 9a, the frequency
response properties of the EDMD regression methods are preserved by the reduced-order DMDc
models.

Note that, in one case, the Koopman system identified using stability-constrained DMDc
diverged due to poor numerical conditioning. This short segment of the dataset was omitted
throughout the paper to allow for a more fair comparison between regression methods. This
finding highlights the advantages of the H∞ regularization method in identifying numerically
well-conditioned Koopman matrices.
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Figure 10: (a) Execution time per iteration and (b) peak memory consumption of EDMD and
DMDc regression methods using the soft robot dataset. The DMDc methods run significantly
faster and consume less memory than the EDMD methods. Tests were run on a PC with an Intel
Core i7-10700K processor using the MOSEK solver.

The most important advantage of the DMDc regression methods is their computational
savings when many lifting functions are required. The long execution times of the EDMD
methods, along with their high memory consumption, make cross-validation impractical.
Figure 10 demonstrates the significant resource savings provided by the DMDc methods in
both execution time and peak memory consumption. Memory consumption is of particular
importance when running multiple instances of a regressor in a multi-process cross-validation
scheme. The DMDc regression methods presented provide significant computational savings
while still retaining the frequency-domain characteristics of their EDMD counterparts. In spite of
their higher mean prediction error, it is often worthwhile to leverage them for Koopman operator
identification, particularly when hyperparameter optimization is a priority.

7. Conclusion
Approximating the Koopman matrix using linear regression proves challenging as lifting function
complexity increases. Even small problems can become ill-conditioned when many lifting
functions are required for an accurate fit. Viewing the problem from a systems perspective,
where system inputs pass through dynamics and lead to outputs, provides multiple avenues to



20

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

enforce asymptotic stability and penalize large input-output gains in the system, thus ensuring
improved numerical conditioning. In particular, regularizing the regression problem with the
H∞ norm provides the opportunity to tune the regularization process in the frequency domain
using weighting functions. The significant performance savings presented by the DMDc-based
regression methods allow the H∞ norm regularizer to be applied to much larger systems while
still remaining tractable.

The nonconvex optimization problems required to use the asymptotic stability constraint and
H∞ norm regularizers limit their applicability to practical problems. Future research will address
this limitation by making use of more efficient BMI solution methods, including Iterative Convex
Overbounding [36] and branch-and-bound methods [37]. Although the use of the H∞ norm [27,
§3.2] as a regularizer is explored in this paper, any system norm, like the H2 norm [27, §3.3] or a
mixed H2 norm [27, §3.5], can be used. The unique properties of system norms prove useful in
addressing the numerical challenges associated with approximating the Koopman operator from
data, and will be explored further in future work.

Data Accessibility. The methods presented in this paper and its predecessor [25] are implemented in release
v1.0.4 of pykoop, the authors’ open source Koopman operator identification library [38]. The code required
to reproduce the plots in this paper is available in a companion repository at https://github.com/
decarsg/system_norm_koopman, release v1.0.3.
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