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Abstract—1In dynamic spectrum access (DSA), secondary
users (SU) should only be allowed to access a licensed band
belonging to incumbent users (IU) when the quality-of-service
(QoS) requirements of both IUs and SUs can be satisfied at the
same time. However, IU’s location and its received interference
strength are considered sensitive in many DSA systems which
should not be revealed, making it very challenging to optimize the
network utility subjected to satisfying the operation and security
requirements of SUs and IUs. In this paper, we develop a secure
and distributed SU transmit power control algorithm to solve this
challenge. Our algorithm achieves optimal SU power control to
maximize the sum of SU rates. The SINR-guaranteed coexistence
between SUs and IUs are enabled to maintain effective com-
munication, while no information is directly required from IUs.
Local measurements of IU signals provided by Environmental
sensing capability (ESC) also undergo a security masking process
to ensure that IU location cannot be derived from its outputs.
Convergence and stability properties of our algorithm and its
privacy-protection strength are both theoretically analyzed and
experimentally evaluated through simulations.

Index Terms—DSA, distributed power control, network utility
optimization.

I. INTRODUCTION

YNAMIC Spectrum Access (DSA) has been proposed

as a promising solution to mitigate the spectrum scarcity
problem caused by the rapid growth in the demand for wireless
communication. The key form of the DSA recommended by
NTIA [1] and FCC [2] is to share the licensed bands belonging
to government incumbents with commercial wireless devices.
DSA systems deployed in 3.5 GHz band is one of the eminent
DSA architectures. This architecture is composed of a spec-
trum access system (SAS) and an ESC system [3]. ESC system
is a distributed network of sensors built to detect the 1U’s
presence in 3.5 GHz band and inform SAS with its received
signal strength (RSS) of IU signals. SAS is responsible for
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granting and coordinating SUs’ access to the spectrum based
on the reported activities of both IUs and SUs. Specifically,
SUs are not allowed to access the licensed channel unless it
can be concluded from ESC-provided IU sensing results that
no harmful interference to the IUs will be triggered by SUs’
transmission. Power control for secondary networks, thus, can
be a feasible way to ensure an SU can obtain such transmission
permission to coexist with IUs. In this paper, we mainly focus
on the uplink SU power control in 3.5 GHz DSA systems
aiming at maximizing secondary network utility.

One crucial challenge of designing optimal power control
schemes for the above DSA system is that some IU infor-
mation (e.g. IU location information) required in making an
optimal power allocation is sensitive and cannot be revealed
to any other user. Essentially, when making an optimal power
assignments, all SUs need to be jointly coordinated to optimize
the network utility, which traditionally requires a central-
ized controller with global knowledge of the entire network.
However, centralized optimal power allocation is not feasible
considering IU privacy protection and the inevitably heavy
computational overheads on the controller. A practical scheme,
thus, has to be decentralized without requiring any sensitive
information exchange between users.

Several existing works attempt to partially address the
optimal SU power control problem, and we will discuss
them in three categories: centralized optimization algorithms,
distributed algorithms for SUs only and distributed algorithms
for all tiers of users. Centralized optimization algorithms, such
as those proposed in [4], [5], lack scalability when the number
of SUs in the system is large because the central controller has
to coordinate all SUs and becomes the bottleneck. In addition,
the central controller needs to know sensitive IU operation
data, violating IU’s privacy protection demand. Distributed SU
power control strategies, such as [6], [7], solves the scalability
issues, but is even worse in IU privacy protection since they
have to distribute sensitive IU location and interference level
information to all SUs. Distributed power control algorithms
for all tiers of users, such as [8], [9], do not share the
IU’s information with SUs, but they assume that all users
(including both SUs and IUs) will participate in the power
adaptation procedure simultaneously. Such assumption is also
not feasible in 3.5 GHz DSA since IU operations in this band
are independent to SU operations and classified.

To fill in the void of existing works, in this paper, we for-
mulate the uplink power control problem in DSA scenarios as
a utility maximization problem, which is then solved using a
proposed distributed and secure algorithm. The key idea of the
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algorithm is that each SU can distributively adapt its transmit
power to maximize the sum of throughput while satisfying
the IU’s interference requirements and preserving the IU’s
location privacy. We theoretically prove the uplink power
control algorithm’s convergence at the maximum of network
utility, and also show that both IU’s interference constraint
and SU’s power limit and SINR requirement are satisfied at
the optimal stable point whenever the formulated problem is
feasible. When the optimization problem is infeasible, our
algorithm can still converge to a sub-optimal point where all
requirements are satisfied except some SU’s SINR constraints.
In this case, SINR of SUs is sacrificed due to IU’s interference
protection or SU’s power limit. This is reasonable because
in DSA, FCC regulation demands that IU’s performance has
to be guaranteed and SU’s maximum power limit cannot be
exceeded. Furthermore, no exchange of sensitive IU operation
information is required in the algorithms. Instead of directly
sharing the raw IU signal strength sensed by ESC, we proposed
a geometry-based model so that the algorithm only requires
some ESC processed values related to IU signal strength. Our
algorithm ensures that accurate operation information of U
cannot be derived from the masked information exchanged in
this system.

The remainder of this paper is organized as follows.
Section II reviews the related works. Section III intro-
duces the system model and formulates the uplink power
control problem in the DSA system. Section IV provides a
brief introduction on D.C. programming as a preliminary to
our algorithm. Section V describes how each SU uses our
algorithm to distributively adjust its transmit power, and the
convergence and stability properties of the uplink algorithm
are demonstrated in Section VI. Section VII further shows
how IU’s interference requirement is statistically guaranteed
based on geometry modeling. Section VIII analyzes that even
when the ESC-supplied information is leaked, it is still difficult
for adversaries to infer the true IU location. Evaluations are
provided in Section IX. Finally, Section X concludes this

paper.

II. RELATED WORK
A. Transmit Power Control for SUs

In [10], [11], several global optimization algorithms are
proposed to achieve the optimal network utility. These algo-
rithms either offer some theoretical and mathematical solutions
such as convex relaxation and branch-and-bound methods to
the target optimization problem, or provide some centralized
strategies with a central controller to manage the transmit
power of all SUs within its coverage. The theoretical solutions
provide no indication on the implementation, and the central-
ized algorithms have to deal with the heavy communication
cost as the number of SU increases. Also, SU and IU privacy
is a concern in centralized power control because the central
controller need to know the location information and operation
states of SUs and IUs.

Second group of approaches [6], [7] focus on distrib-
uted SU power control strategies, where SUs distributively
adapt the transmit power based on some optimal formulation
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with target objective and constraints. Only locally observable
measurements and received information are used. However,
these schemes provide no privacy protection on IU’s informa-
tion. Many of them assumed that IU’s location is known to all
SUs and hence each SU can locally measure the channel gain
between IU and itself. Some even need to put a genie near
an IU to obtain the interference level at the IU’s location.
Thus, these algorithms will not be compatible with the strict
IU operation privacy protection requirement in 3.5GHz DSA
system.

Algorithms in [8], [9] distributively adjust the transmit
power of different tiers of users simultaneously to achieve
maximum utility. They developed the cognitive radio network
duality which decouples the transmit power, SINR assign-
ment and the interference threshold allocation. IU’s location
information is assumed unknown to SU in their algorithms.
However, the assumption that IUs will coordinate with SUs
to adapt their transmit powers is also not feasible in 3.5 GHz
DSA since IU operations in this band should be independent
to SU operations.

All of the above schemes require IUs to either reveal
their private information or actively join the power adapta-
tion in secondary networks to ensure their received interfer-
ence will not exceed an allowable threshold. In this paper,
we successfully avoid the above problems and provide a
privacy-protecting distributed power control algorithm for
SUs. In our designs, ESC does not provide any informa-
tion directly related to an IU’s location to SAS, so that no
high-overhead encryption is needed to ensure IU privacy in
the SU power allocation process. In Section VIII, we formally
demonstrate that under our design, it is difficult for an adver-
sary (e.g., malicious SAS or SUs) to accurately infer the IU’s
location using ESC-provided information.

B. Location Privacy Protection for IUs

IU location privacy protection in DSA has attracted much
attention recently. These schemes can be mainly divided
into three categories. The first category [12], [13] protects
IU’s operational information using anonymity, clustering or
pertubation based methods. In second category [3], [14], IU’s
location information is concealed by adding noise, distortion
or other blind factor on its inputs to SAS. Works in the
third category [15], [16] recruit homomorphic encryption
based techniques where IUs’ inputs are encrypted before
being sent to SAS. However, all these approached assume
IU’s participation in spectrum sharing process and require
modification of U designs, hence cannot be applied off-the-
shelf to many DSA systems. Another work [17] do not demand
IU’s participation in spectrum sharing process. It encrypts the
ESC’s input to SAS with a proxy re-encryption scheme, which
requires a central trusted Key Issuer for keys distribution
to SUs and ESCs. How an IU can trust such a Key Issuer
remains unclear. Furthermore, the heavy encryption schemes
lead to high communication overhead, where the cost of
communication is in the magnitude of hundreds of MB and the
handling time per SU operation permission reaches thousands
of seconds. Hence, these existing schemes for IU location
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Fig. 1. System model.

privacy protection cannot be directly applied to solve the
problem of secure uplink transmit power control in DSA.

IIT. PROBLEM FORMULATION

The system model considered in the paper is illustrated
in Figure 1. Specifically, we assume that m; IUs, my ESC
sensors, and n pairs of SUs and BSs are distributed in an
area. Both the IUs and SUs can be mobile. In uplink, all SUs
transmit on the same frequency band. We assume an SU i
(¢ € [1,n]) only transmits towards a BS i. Note that a BS
that receives messages from multiple SUs can be modeled as
multiple co-located BSs, each communicating with one SU.

One typical objective of an uplink power control problem is
to find the optimal power allocation that maximizes the sum
of individual rates in uplink. To formulate the problem, denote
the transmit power of SU ¢ as P;. The path attenuation from
SU i to BS j is denoted by g;;. The SINR of SU 1 received
at BS 14, thus, can be expressed by SINR; = %’
where P;g;; denotes the SU 4’s signal strength detected at BS
Y ki Pjgj; denotes the BS 7’s received interference from
all other SU js (j # i), and ¢; denotes the environmental
noise between SU ¢ and BS ¢ including the additive receiver
noise.

Since the QoS requirements of IU and SUs need to be
satisfied, the uplink power control problem can be formulated
as:

- Pigii
max loge(=——=———+1)
P ; Zj;éi Pigji + i
Pigii ,
st =——————>T1,0€[l,n] (1a)
Zj;&i Pigji + @i
Pr(y_guP,<T)zA (1b)
i
0 < P, < Poa,i € [1,7] (1c)

The objective is to maximize the sum of SU rates. 7 denotes
the minimum required SINR level for SU to maintain effec-
tive communications as shown by constraint (1a). Note that
the constraints in (la) are actually the linear constraints.
Constraint (1b) shows the IU’s interference requirement. g;r
represents the signal attenuation from SU ¢ to the IU, and
T denotes the IU’s interference tolerance threshold. Con-
straint (1b) in essence states that the probability that the
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aggregated SU interference received at IU is no larger than
the TU’s interference requirement 7" must be no smaller than
an acceptable threshold A. Constraint (1c) shows that SUs’
transmit power P; is not allowed to exceed its maximum P,

Though the constraints in problem (1) are straightforward,
it is hard to guarantee them directly. Due to IU’s location
privacy protection, g;r in problem (1) should not be revealed to
any SU/BS/ESC. Thus, neither the direct measurement nor the
theoretical estimate of interference suffered by IU is feasible.
In addition, an IU in 3.5GHz band usually does not have
real-time communications with any SU/BS/ESC. Thus, it is
also impossible to expect IU to inform SU about its local
interference level.

Our solution is to translate the constraints on IU’s received
interference to the restrictions on ESC’s received interfer-
ence, which can then be directly measured or theoretically
estimated by ESC since ESCs’ location information can be
found publicly according to FCC regulation in 3.5GHz [18].
Specifically, we propose that once an ESC e has detected the
existence of IU, it uses the sensing results of IU to derive its
local requirement on the maximum allowable SU interference,
denoted as 7T.. The computation of T, demonstrates that the
aggregated SU signals at IU is likely to be constrained below
T if every ESC’s received interference from SUs does not
exceed T, (See Section VII for details). Thus, the formulation
in (1) is converted into (2):

- P;gii
max » logo(=——FH —— +1 2)
P ; (E#i Pjgji + i )
s.t. (1a)7 (1c)
Z Pigic < Te,e € [i,my] (2b)

(3

where g, is the signal attenuation from SU ¢ to ESC e. It can
be seen that direct IU location information is not required for
SU utility maximization in this formulation (2).

Denote the SU power assignments that solve the opti-
mization problem in formulation (2) as a solution set .S :=
{P|P solves (2)}, where P is a column vector and P =
{P;,i € [1,n]}. In the following sections, we will present
our distributed uplink power control algorithm and analyze the
convergence and stability of our algorithm. When the solution
set S exists, meaning that all three constraints can be satisfied
together, our algorithm successfully converges at the optimal
stable point in S. When a solution to (2) does not exist (a.k.a.
S = ()), meaning that a power setting satisfying all three
constraints in (2) does not exist, our algorithm will converge to
a sub-optimal point that guarantees IU’s QoS requirement (2b)
and SU’s upper power limit constraint (1¢), while SUs” SINR
constraints (la) may be violated. We believe this to be a
desirable feature of our algorithm because in DSA system,
guarantee of IU’s QoS is generally a strict requirement, while
degrading SU communication quality is often acceptable when
the system becomes too crowded with SUs.

1V. D.C. PROGRAMMING

The uplink power control problem in (2) has a non-convex
objective, and thus can be hard to solve. Fortunately, D.C.
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programming is extensively developed to cover almost all
non-convex global optimization problems. Among the general
D.C. approaches, DCA is a robust and efficient method to
solve large-scale DC programs [10]. Based on DC program-
ming, rewrite (2) as:

max hi(P) — ho(P) s.t. (1a),(1c), (20) 3)

h(P) = >3 1loga(32; Pigji + wi) and ho(P) =
>iz110g2(37 i Pigji + i) are both concave.

As presented in [10], DCA iteratively locates the global
optimal solution of (3) by generating a sequence {f’(t),t =
0,1,2,...} of improved feasible solutions. Specifically, initial-
ized from a feasible starting point P(©), P(*+1) s computed
as the optimal solution to the ¢-th convex sub-problem, which
is formulated as:

max hy(P) — ho(P®) — vhy(POYT (P — PO)
s.t. (la), (1c), (20) 4)

where th(pi(t)) is the gradient of hy(P(*) at each Pi(t),
as expressed as:

) In2 ; Zk# Pk(t)gkj + o
Since (4) is convex, whenever the global optimal solution
P+ to (4) exists, it must be unique.

Also, it has been proved in [10] that the sequence {I—’(t), t=
0,1,2,...} of improved solutions always converges in finite
iterations. The iterative process can be terminated at [P(*) —
PN < ¢ or |3, Pi(t)gij -3 Pi(t_l)gij| < €p, where
€0 > 0 is some threshold. Note that DCA is designed
only based on its local characteristics, it cannot theoretically
guarantee the globality of converged solutions for general
DC programs. However, in practice, DCA converges quite
often to a global solution, and is proved to be more robust
and more efficient than related standard methods [19], [20].
In Section IX, we compare the performance of DCA and
a global optimizer, which shows that DCA indeed performs
better in our case.

Essentially, the procedure of DCA can be regarded as a
nested loop. The inner loops are responsible for computing
each P() as the solution to every (¢ — 1)-th convex sub-
problem (4) to form the sequence of improved solutions
{P® ¢t =0,1,2,...}, so that the outer loop (envelope) can
approach the optimal solution to the original non-convex prob-
lem (3) (i.e., problem (2)) based on the sequence {P(t),t =
0,1,2,...}. DCA provides a theoretical idea to find the global
optimum of D.C. problems efficiently. However, it cannot
be directly applied to the scenario of uplink power control
in 3.5 GHz DSA systems, because it does not have any
indication on a practical way to solve the sub-problems (4)
in such scenario. In our proposed SU transmit power control
algorithm, presented in the following sections, we adopt the
general idea of DCA and demonstrate that our algorithm can
solve the sub-problem (4) in a practical and distributed manner
repeatedly to generate the sequence of improved solutions,
and thus the optimal solution to original problem (2) can be
approached iteratively and distributively.
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TABLE I
OUR DISTRIBUTED UPLINK POWER CONTROL ALGORITHM

Our distributed uplink power control algorithm:

For each iteration ¢ in outer loop do
Each BS j (5 € [1,n]): a) compute I‘;t); b) broadacst F§t) to SUs
For each iteration & in inner loop do
Each ESC e (e € [1,m2]): a) compute A, based on (6);
b) forward A, to SAS
SAS: a) compute A based on SAS update algorithm;
b) forward A to BSs
Each BS j (j € [1,n]): a) for every associated SU ¢, compute
f1, and A; based on (7)-(10);
b) broadcast 25, A, and f{)\? for
all ¢ to SUs
Each SU ¢ (i € [1,n]): update transmit power P; based on

an

end
end

V. OUR DISTRIBUTED UPLINK POWER
CONTROL ALGORITHM

In this section, we present our distributed uplink power
control algorithm. The key idea of the algorithm is that each
SU adjusts its transmit power in a distributed way to maximize
the total throughput as well as to meet its SINR requirement
and IU’s interference requirement, without using or leaking
the sensitive IU location information. In the algorithm, SUs
only require some IU-insensitive information from BSs and
do not need to communicate with other SUs. To achieve this,
we adopt the general concept of DCA in our algorithm design.

As discussed, the procedure of DCA is a nested loop.
Thus, our algorithm also contains an outer loop and several
inner loops. Similar to DCA, our algorithm will generate
the sequence of improved solutions {P®) ¢t = 0,1,2,...}
which construct the envelope, and each element P® inside
the sequence is essentially the converged SU transmit power
of each (¢t — 1)-th inner loop and is also the initial transmit
power of t-th inner loop. In our algorithm, the solution P(*) to
every convex sub-problem (4) will be distributively computed,
and hence the optimal power allocation of original problem
(2) can also be gradually approached in a distributed way.
The algorithm can be divided into four parts: the ESC update
algorithm, the SAS update algorithm, the BS update algorithm,
and the SU update algorithm. The procedure of our algorithm
is presented in Table I, and the details of each part and each
parameter will be described in the following.

A. ESC Update Algorithm

As in Table I, each ESC e measures its local aggregated SU
interference, denoted as C., and then updates SAS in every
iteration inside each inner loop with

Ae - (7]2Te - Ce)nlv (6)

Here, ;1 and 7y are two random numbers in the range of
(0,1]. Both n; and 7 take different values for each A,
computation to increase the variations in the value of A, to
ensure privacy-protection of IU. The detailed analysis for U
location protection can be found in Section VIII. T, is the
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maximum allowable interference at ESC e. ESC e generates T,
based on its local RSS of IU and the IU’s maximum acceptable
interference level T" posted by the IU. In Section VII, we will
discuss the details of T, generation.

In the ESC update algorithm, we assumes ESC to be able
to differentiate IU signals from SU signals based on the
dissimilarities in their signal characteristics (e.g. modulation
schemes). Such signal classification can be realized through
many existing approaches [21]-[23]. Most of current and
proposed ESC design proposals already have this capability.

B. SAS Update Algorithm

SAS calculates the minimum value of ESC-supplied A.s,
denoted by A, which is computed by A = min(A.,e €
[1,m2]), and then forwards A to all BSs in every iteration
within each inner loop.

C. BS Update Algorithm

As in Table I, at every t¢-th point of the outer loop, BS j
broadcasts a parameter F§t> which is the sum of its received
SU interference and environmental noise level. While in each
iteration of the inner loops, BS j broadcasts a set of parameters
including A, f/A\? and Q; for each associated SU . We will
explain the details of each parameter in the following.

In the inner loops, the BS’s parameter f; for its associated
SU i is computed as follows:

1, SINR; <
!i= f'(t=SINR;)) =4 ' 7
fi=1tr ) {0, SINR, 57

where f(z) := max(0, ). (8)

In addition, for each associated SU ¢, \; is a non-zero positive
time dependent variable that is updated by the following
differential equation:

% = B,f(r — SINR;)2\. ©

where (3; is a positive number. [3; is designed to always
guarantee \; < Apyq0, Where \p,q, 1S a very large number.
(; is updated by ensuring:

N+ X = N+ Bif(T— SINR)2N: < Aas

Amam - >\’L
= 0B s S —SINR)
Note that the initial A;(0) must be positive and satisfy \;(0) <
Amaz to ensure \; and 3; to be non-negative. And it is easy
to achieve because \;(0) can be determined by BS itself.

In the inner loops, BS j also computes its total received
signal and noise strength, denoted as 2;, which is the sum of
its received signal level and environmental noise level. BS j
then broadcasts €2; in every iteration of every inner loop.

Thus, each BS j broadcasts the parameter F§t> at the each
t-th point of the outer loop, and it also broadcasts the global
parameters A, €);, {Af for i € [1,n] to its associated SUs in
every iteration within each inner loop. The update frequency
and information exchange rate between BS j and its associated
SUs is evaluated in Section IX.

i =

(10)
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D. The SU Update Algorithm

SU ¢ adapts its transmit power P; in every iteration inside
each inner loop by:

P, = aixi, (1)
Jik ik
xi = [ Q. Oln FiXigii + Zf]/cAiTgik]Pi
v ok Iy kti
(12)
1
a; < A |- (13)
nXiGie

In the above algorithm, A, Q;, f/\? (i,j € [1,n]) are broad-
casted by BSs at every iteration of each inner loop, while th)
is broadcasted by BSs at each outer loop iteration and remains
the same during the entire inner loop. Channel gain g;; from
SU ¢ to BS k can be measured by SU i using downlink
reference (e.g. beacon signal). For example, in time-division
duplex (TDD) systems, BSs will broadcast beacon signals at
a fixed reference power once or twice within each frame. Due
to channel reciprocity in TDD systems, SUs can measure its
uplink channel gain to various BSs based on these downlink
reference signals [24], [25]. SU ¢ can estimate its channel
gain g;. to each ESC e using radio propagation model based
on the ESC’s location, which is public information. «; is a
locally computed step size based on a step size control function
described in Section VI-C. The step size value depends on both
locally observable and measurable parameters g;. and ;, and
a global scalar parameter A from BS’s broadcasts.

In our algorithm, only locally observable and measur-
able information and some insensitive aggregated information
broadcasted by BSs are required for each SU to update its
transmit power distributively. The broadcasted information
from BSs reveals no IU location or IU interference levels.
Also, accurate IU location or interference level cannot be
derived using the information transmitted from ESC to BS.
The computation in BS side is not difficult and requires no
privacy sensitive information from IU. In Section VI, we prove
that our system will asymptotically converge into an optimal
stable point in the set S whenever S is nonempty. Then,
we will demonstrate how the system stabilizes when S is
empty.

VI. CONVERGENCE AND STABILITY OF OUR UPLINK
POWER CONTROL ALGORITHM

In this section, we prove the convergence of our uplink
power control algorithm. Note that theoretically, the aggre-
gated SU interference at ESC e can be expressed as C, =
Zi Pigje, the total received signal and noise strength 2; at
BS j can be written as ; = Y, Prgx;j+;, and the received
SU interference and noise level F§t> at BS j is expressed as
I‘§t> = Zk# pk(t)gkj + ;. The value of I‘;t) will not change
during inner loop iterations.

Combining this with (9) and (11), power update algorithm
at SU 7 can be re-expressed as:

Py = ;[P — fiX]gii + Zf’;AiTgik]Pi’
ki

(14)
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where P Z 5
k

Pkgkj + j

iy
VE) Zk?ﬁj Pk 9kj + SOJ
Ai = Bif[=(Pigii — 7(O_ Pagri + ¢:))]2Xi.  (16)
ki
Since f(z) in (7) is not differentiable at z = 0, we only

consider the convergence of the algorithm in the domain where
P;gi; > T(Ek# Prgri+pi), i € [1,n] to ensure the existence
of f! over [0, Ppaz]. Essentially, in this section, we will
examine the system’s convergence to an uplink transmit power
allocation set S that is defined as S := {P|P solves (17)}:

P;gii
max loga( +1) (17)
P ; > ki Prgri + 0
P;
1Jii > 71,0 € [1,n] (17a)

Zk;ﬁz Prgri + i
(1¢), (20)

Comparing S to the solution set S to problem (2), we have

S C S. Thus, once the system converges into S, it also
converges into S and solve problem (2). We will prove that
whenever S is nonempty, our algorithm will stabilize at it
and hence maximizes the sum of SU rates in uplink as
well as satisfies both TU and SUs’ requirements. Even when
an optimal solution does not exist (i.e. S = (), all three
constraints cannot be guaranteed together), the system will
asymptotically converge to a sub-optimal stable point which
always satisfies SU’s maximum power constraint (1c) and the
ESC'’s interference constraint (2b).

As mentioned, our algorithm should converge to an optimal
solution P(*+1) of the convex sub-problem (4) during the
inner loop inside the t-th iteration of the outer loop, such
that the improved sequence {P(®), ¢ = 0,1,2, ...} is gradually
generated, and the optimal power allocation of problem (17)
can be asymptotically approached. Note that the constraints
of problem (17)’s corresponding convex sub-problem are also
(17a), (1c) and (2b). Our proof includes four stages and a
special case. We only consider the case where (17) is feasible
(i.e., S is not empty) in the four stages. Convergence in the
special case where S = () is analyzed in Section VI-E.

For S # (), in stage 1, we first consider a simplified
optimization problem by removing SU’s SINR constraint
(17a), its upper power limit (1c) and ESC’s interference con-
straint (2b) in sub-problem (4). Through the relaxed problem,
we derive the first condition that an optimal power allocation
must satisfy to maximize the objective of (4). In the next
stage, constraint (17a) is reconsidered. We prove the system’s
convergence at a point satisfying both the optimal condition
derived in stage 1 and the constraint (17a). In stage 3,
a step size control method is proposed to guarantee ESC’s
interference constraint (2b). In stage 4, we show how SU’s
maximum power constraint (I1c) is guaranteed with a simple
stop criterion. Since IU’s interference constraint should be
treated with higher priority than SU’s SINR requirement,
we prove that by using this algorithm, IU’s requirement is
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satisfied in any cases even when SUs’ and [Us’ requirements
cannot be satisfied simultaneously (i.e. S = 0)).

A. Stage 1: A Relaxed Problem

To derive the first condition for the optimal solu-
tion of convex sub-problem (4), let’s consider a simpli-
fied problem by removing SU’s constraints (17a) and (lc)
and ESC’s interference constraint (2b). The problem now
becomes:

hQ(p(t)) _
)= Zlogz(z Pjgji + i),
p) Zl‘)g? S POgsi + ).

i=1 j#i

Since it is a convex problem, the unique optimal solution to
(18) is given by:

max hy(P) — Vho(POYT (P — P®)

where hi(P

(18)

Jij —vho(By =0, ic

N 98 1,n
In2 zj: >k Pegrs + ¢ Ll

19)

Essentially, the optimal power allocation solution for (17) must
satisfy (19), meaning that the equilibrium of our power control
algorithm must first satisfy (19).

B. Stage 2: Proof of System Convergence
at a Point Satisfying (19) and (17a)

In this subsection, we consider SU’s SINR constraint (17a).
We prove that the system will stabilize at a unique point
satisfying both the optimal condition (19) and constraint (17a),
such that the objective in (4) is maximized and SUs’ SINR
requirements are guaranteed.

For ease of notation, denote the power setting meeting the
optimal condition (19) and SUs’ SINR constraint (17a) as a
column vector Z := {P|P satisfies (19) and (17a)}.

Theorem 1: Starting from any initial state 0 < P;(0) <
Ppaz, the system described in (14) to (16) asymptotically
converges to an optimal power allocation setting Z.

Proof: The proof includes two steps. At step 1, we prove
that the power setting Z is a saddle point of our algorithm.
At step 2, by constructing a Lyapunov function, we prove that
the system is asymptotically stable at 7.

Step 1: Denote P* = {PF,i € [L,n]}, A" = {\},i €
[1,n]} as the saddle point of the system. Setting P, =0 and
Ai = 0,1 € [i,n], P* is defined by:

P = oyl P - szlngkakngk =0 (20a)
k#i
P
Z Zk kgkj + ©;

_ Z 9(1) (20b)
) j#i Ek;&] Pk Ikj + Pj
Ni=fl=(Prgi — 7O Pigi+@))20=0  (20c)

ki
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Since A; > 0, from (20), it is clear that f[—(Pgi; —
T(3 ki P gri + i))] = 0, which, based on f(-) definition

P gii > 7. Hence, f/ =0,Vi € [i,n],

in (7), means Sz FroniTen

and P, =0 becomes equivalent to P; = 0. Thus, (20) to (20)
can be converted to:
=2 i
5, (t)

> =
J 2ok J#i Zk;ﬁj

Pigrj + ¢
> 71,Vi € [1,n]

ki + 90]
Pi*gz'i

> ki DR gki + 0

21

Based on (5) and (19), clearly (21) is equivalent to the
definition of Z. Hence, Z equals the saddle point P* for the
system. B

Step 2: Given the system’s saddle point Z, now we prove
that Z is the equilibrium of the system and the system
converges at Z by constructing a Lyapunov function K (X, P)
as

K\ P):=V(\,P)+ F(\P),
where V' := Zln ZPkgkj—i—soj

= Zf ZP’“Q’“+%

k#j

P In2,

Z th

— Pigj;]A;. (22)

Theorem 2: K (X, P) defined in (22) is a Lyapunov function
for the system defined in (14) - (16). In addition, K = 0 if
and only if P* = Z.

Proof: The partial derivative of V(\, P) in (22) over P;

is derived as:
-2 o

— PO, _

j#i Zk;ﬁj kGkj + ©j
(23)

_ Yij
oP; z]: Yok Prarj + ¢

Similarly, the partial derivative of F'(\, P) in (22) over P,
and )\; are derived as:

oF /)2

P —fiNlgii + kz?;fk)‘k'rgika (24)
oF .

o FIrO) - Pegni + i) — Pigisl2Xi = Xi/Bi - (25)

ki

Then we prove that K (-) is a Lyapunov function for the
system described by (14) - (16). Since we are discussing a
maximization problem, the convergence condition are K >
0 and K(-) is upper bounded, and K = 0 if and only if
P =2

Firstly, we show that K (-) is upper bounded. The function
K(-)’s second order partial derivative over P; satisfies £ 875 <
0, thus, K (-) is concave over P;. From (10) we can see ‘that
Ai < Amao is always true. Thus, K (-) is also upper bounded
OVer \;.

Next the time derlvatlve of K(-) is computed by K =
>, 8 3P, Kp+3,2 oW K \;. Based on (24), the value of >, gf\()\

can be calculated as ), gf\()\ > i /51 > 0, and
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Pigii

Sioo Peorton > 71,4 € [1,n].

3.2 oW K X; = 0 if and only if
In this case, f/ =0,i € [1,n].

Next step is to compute Zz P P Given (14), (15) (23)

and (24), Ezap E(ap"'ap)P ZzaPP = 0.
Hence, Zz s K p; = 0 if and only if P, = 0. Since f/ = 0,

P =7 K () is proved to be a Lyapunov function of our
system. 0

C. Stage 3: Step Size Control for IU’s Interference Constraint

So far we only consider the constraints (17a) in prob-
lem (17). In this section, ESC’s interference constraint (2b) is
taken into account. We show that IU’s interference requirement
(ESC'’s interference constraint) can be guaranteed in any case
by proposing a step size control method.

The step size control method need to ensure that the ESC’s
interference at any iteration to be smaller than its threshold 7,
by enforcing Eze[l n] (P, + P;)gic < Te,e € [1,mg]. In this

way the requirement ) . P g;c < T, can be guaranteed. Since
C. = Zz P;g;e, given (11), we can have:

Z Pigie = Z ;X iGie é Z%|X1|91e é Te - Ce

Since T, — C. > A > A, (26) must hold if the following
inequality >, o[ Xi|gie < A is satisfied: Thus, our algorithm
limits o, Vi € [1,n] setting by a; < A

(26)

n)mhe :
Essentially, each SU ¢ tunes the step size «; in each

iteration based on the above inequality, which ensures the
ESC’s interference requirements will not be exceeded at any
time.

D. Stage 4: Stopping Criterion

Finally, we handle the maximum power constraint (1c) of
SUs. There are cases when the transmit power P; of SU ¢
already reaches P, ., while the optimal solution has not been
achieved. In this case, SU ¢ will simply stop increasing its
P; and keep P; = P4, unless the algorithm guides it to
decrease the transmit power, while other SUs keep on updating
their transmit power until the convergence of the system.
Now, we have proved that our algorithm will asymptotically
converge to the optimal solution P(*+1) of sub-problem (4)
through the inner loop at every t¢-th outer loop iteration.
Hence, the optimal power allocation of problem (17) can
be gradually approached based on the constructed sequence
{P® ¢t =0,1,2,...} of improved solutions.

E. Special Case: S=10

There are cases where all three constraints in (17) cannot
be guaranteed together (i.e., S = ()). In such a case, our
algorithm chooses a rational step size based on Stage 3 to
ensure at least IU’ interference requirement is always satisfied.
Moreover, the stopping criterion is applied to guarantee that
SU’s transmit power is within the allowable range. Note that
in this case, the algorithm sacrifices the SINR of SUs. Thus,
the constraint (2a) may be violated. This is reasonable because
in DSA, FCC regulation demands that IU’s performance has
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to be guaranteed and SU’s maximum power limit cannot be
exceeded. Therefore, in this special case, some SUs have to fix
their transmit power due to ESC’s interference requirement or
SU’s transmit power limit unless the algorithm guides them to
update the transmit power, while other SUs keep on updating
their transmit power until the convergence of the system.

VII. ESC INTERFERENCE REQUIREMENTS

As discussed in Section III, due to the sensitivity in IU’s
location privacy, the interference from SUs to an IU cannot
be directly measured and thus the uplink problem formulation
in (1) cannot be solved directly. Therefore, we estimate the
interference from SU to ESC instead and create problem
formulation (2). In Section VI, we have proved that our
uplink power control algorithm asymptotically stabilize at an
equilibrium that solves the respective optimization problems
with ESCs’ requirements. In this section, we describe how
our algorithm computes ESC’s interference constraint 7, and
verify that using this 7, computation, the solution to the uplink
problem in (2) is approximately also a solution to (1).

From a high level, denoting Tg as the set of all T,, Tg
can be computed by solving:

U(Tg) :=Pr(I <T|C.<T., forallee[l,mg])>T

27)

where W is a constant threshold satisfying ¥ € [0,1] and
U ~ 1. We denote the left side of the inequality as U(Tg),
which represents the conditional probability that the aggre-
gated SU interference I at IU does not exceed its requirement
T given that the SU interference C, received at each ESC e
is bounded by Tg. The formula essentially means that ESCs
should choose a proper Tg to ensure the probability on the
left side to be close to 1.

In the next sections, we derive the explicit expression
of U(TE). To achieve this, we first present the geometric
model of our system in Section VII-A. Based on the model,
we derive the statistical distribution of C. in Section VII-B.
In Section VII-C, we model the statistical distribution of I.
Next, in Section VII-D, (27) is solved as a cumulative density
function (CDF) of a conditional normal distribution, and use
this CDF to determine Tz that guarantees U(Tg) > .

A. Geometry-Based Heterogeneous Network Modeling

The network architecture used in our model is shown in
Figure 2. Here we consider a heterogeneous network con-
taining different tiers of SUs. The IU is denoted by green
triangle. In this section, we take one IU case as an example
for detailed explanation. The case of multiple IUs is discussed
in Section VII-E. All SUs are denoted by red crosses. SUs
inside each orange area form a cluster, and are regarded as
the hotspot SUs. The average number of hotspot SUs per
cluster is ns. The center of clusters, denoted by blue dots, are
modeled as a homogeneous Poisson Point Process (PPP) with
the density of p;. Hotspot SUs are distributed around cluster
centers according to a Gaussian distribution (a.k.a. Thomas
cluster process [26]) with a scattering variance of o2. SUs
outside the clusters are the macro cell users. The locations of
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Fig. 2. Network of SUs and IUs in a two-tier user-centric deployed HetNets.
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Fig. 3. The relation among hotspot SU, ESC and cluster center.

macro cell SUs are also modeled as a homogeneous PPP with
the density of p,. ESC is denoted by a black square. Without
loss of generality, we assume that each ESC is in charge of
detecting the IU’s presence in a large circular area centered
at itself with a radius /. Thus, the average number of hotspot
SUs in the given area is p;n 7%, and the average number of
macro cell SUs is poml?.

B. Statistical Distribution of ESC e’s Received SU
Interference C,

To derive the statistical distribution of C, for ESC sensor
e, the path attenuation between SU ¢ and ESC e needs to be
estimated. Since SU locations are usually not known to an ESC
due to SU’s location privacy protection, we cannot measure
or compute the channel gain directly. Thus, we establish
a statistical model of channel gain between SU and ESC.
According to Section VII-A, the SUs are categorized into
macro cell users and hotspot users. Thus, we model the
distribution of distance between hotspot SU and ESC, denoted
as uq, and the distribution of distance between macro cell SU
and ESC denoted as us, respectively. In this paper, we adopt
the simplified path loss model P"(d) = Pcd™* for analysis
since it captures the main characteristics of ray tracing. Here,
P7(d) denotes the received power at distance d and P?
denotes the transmit power. ¢ is a constant which is given
by ¢ = Prl(ﬁ,)db, d is a reference distance, and ¢ is the path
loss exponent. Hence, the channel gain between an ESC and
a hotspot SU can be computed by ¢,,, = cu; ~*, and similarly
gu, = cuz™“. Next, we examine the statistical distributions of
u; and ug, which are used for modeling g,,, and g,,.

1) Distribution of Distance u; Between Hotspot SU and
ESC: We assume that the centers of SU clusters follow a
homogeneous PPP, and hotspot SUs are normally distributed
inside its cluster. The relation among hotspot SU, ESC and
cluster center is illustrated in Figure 3, zy denotes the distance
between cluster center and ESC.
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According to [27], conditioned on the distribution of a
cluster center, the distance u; from ESC to an SU fol-
lows the Rician distribution, and the conditioned probability
density function (PDF) can be written as &y, |x(ui|zo) =
02 exp(— “‘”0) Io(“”“)) where Iy(-) is the modified Bessel
function with order zero and o2 is the scattering variance.
Since cluster centers are umformly distributed, and the PDF is
given by {x (zg) = 2“ . Thus, the PDF of u; can be computed
based on £y, (u1) = fxﬁ &u, |x (ur]@o)€x (2o )dao.

2) Distribution of Distance us Between Macro Cell SU and
ESC: We assume that macro cell SUs are uniformly distributed
inside the given area. The PDF of ug, denoted as &(uz), can
be expressed as &y, (ug) = 242,

3) Distribution of gu,, gu, and C.: So far we have derived
the PDFs for u; and us, and the distributions of their cor-
responding channel gain g,, and g,, can be derived based
on:

Pr(gu, < g) = Pr(u = (£)7H) =1 - Pr(u < ()7,
(28)
ggul (g) = g (c%gf%) (29)

. — . 2
Then the expectation g,, and variance T, of g,, can be

derived from the PDF ¢, (g) of channel gain g,,. The PDF
of gy, is derived in the same way, and the expectation and
variance of g,,,, denoted as g,, and og can also be derived.

Since all hotspot and macro cell SUs are independent,
Gu, 1s i1.d. and Guz is also i.i.d.. C’e is then re-expressed

as C, = Y e il Prgu, + Ep”l P"gy,, where P! and
P/ denote the transmit power of hotspot SU and macro
cell SU, respectively. Given the number of hotspot SUs
p1n57r12 and the number of macro cell SUs p27rl2 in the
model, when pin,ml? and pyml? increase, using the Central
Limit Theorem and the Law of Large Numbers, C. can
be approximated by a summation of two normal distribu-

tions which is still a normal distribution, C, ~ N (ue, 2),

where p. = Sopane ol Phgul + Z”MZ PGy, 02 =
2 12

YT (P)og, + R (P2,

C. Statistical Distribution of 1U’s Received SU Interference 1

In this section, we model the statistical distribution of the
IU’s received SU interference I. Denoting g, as the path loss
from a hotspot SU to the IU and g¢,, as the path loss from
a macro cell SU to the IQU we again re-express I as I =
oo omt? Plg,, + 377" Prg,,. Same as C., to model I,
we again need to derive ¢,, and g,,’s statistical distribution
while IU’s location is not explicitly known due to IU location
privacy protection.

The first step for modeling g,, and g,, is to establish the
statistical model of IU’s location range to ESC, denoted as
dy, given ESC’s local measurement of IU signal strength.
Then, based on this model, each ESC independently estimate
dp, which leads to the derivation of g¢,, and g,, as well
as the distribution of I and U(Tg) in (27). It is important
to note that this calculation process satisfies FCC’s security
regulation, which demands that ESCs must not share any IU’s
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Fig. 4. The relation among IU, ESC, SU and cluster center.

location-related information. In our algorithm, ESC only uses
local information and there is no exchange of any IU-related
information with other ESC or other parties in the system.

1) Distribution of dy Based on ESC’s local IU Signal
Strength: We assume IU’s transmit power P, is known since
the general transmit power of 3.5GHz IU transmitters, such as
radar systems, is easily found [28]. Hence, given the received
IU signals, denoted as Pj;;, an ESC can roughly model the
distribution of its channel gain to IU as g through a path loss
formula go = Pj;;/P};;. Thus, the distance between ESC and
IU, denoted as dg, is given by dy = (g—g)_% where cq is
a constant. Assuming IU’s signal is transmitted through a
Rayleigh fading channel, the CDF of Pj;; can be modeled
as Zpr(Pfy) =1—exp(— P—T‘i) where s, is the expectation
of Pj;, which can be measured by ESC e. Therefore the CDF

of go is given by Z¢,(go) = 1 —exp (— goP ’U) The CDF of

dp is then computed by Ep, (dp) = exp ( —%) Finally,
the PDF of dy can be derived based on its CDF.

2) Distribution of Distance v, Between Hotspot SU and 1U:
The relation among IU, ESC, hotspot SU and cluster center
is illustrated in Figure 4. From an ESC’s perspective, IU’s
possible location is uniformly distributed on a circle that is
centered at itself and has a radius of dy. We denote the distance
from cluster center to IU as r, and the angle between dy and

To as 6.
To derive the distribution of wv;, we need to
compute the distribution for r. Clearly, r satisfies

2 = d2 + 2% — 2dozo cos f. Since w9, 0, dy are independent,
and the PDF of 6 is o (0) = L, Eg(r) is derived as Zp(r) =

l210 g+xg—r2 cDP}‘Udg“ LconU ——1
o B fo— arccos gzl |exp(— =L ) =l d g

ddpdxg, hence, r’s PDF £ (r) can also be derived.

Having £r(r), the next step is to compute the PDF of
v1. Similarly, conditioned on the distance r between an U
and a cluster center, the distance v; from IU to the SU,
who is in a Thomas cluster process, is also Rician distrib-
uted, and the conditioned PDF is given by &y, (g(vi|r) =

2 exp(— 12?:27" )Io(’“r) Then the PDF of vy can be derived
by &v; (v1) f §V1|R (v1]r)ér(r)dr

3) Distribution of Distance vy Between Macro Cell SU and
IU: From an ESC’s perspective, once the value of dj is
determined, the possible location of TU should be uniformly
distributed in a circle that is centered at itself and has a radius
of dy. Denote vo as the distance between a macro cell SU and
IU. PDF of vy conditioned on dp, denoted as &y, p, (v2|do),
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is expressed as:

&(valdo)
2v
1—22, 0<v <l—dp
- 209 d% + ’U% —1?
e 072 " _ <
5 arccos( 2do0s ), I —do<wve <l+doy

(30)

Thus ve’s PDF can be computed based on &y, (va) =
Ja, §va1Do (v2]d0)€D, (do)ddo.

4) Distribution of g,,, g, and I: Given the derived the
PDFs for distance v; and wo, the corresponding PDFs of
channel gain g,, and g,, can be derived in the same way
as in (28).

The expectation g,, and variance 03 of g,, can be
calculated based on the dlstrlbutlon of gv1 Similarly, g,,’s
expectation g,, and variance agvz can also be derived from
G, distribution.

Because all hotspot and macro cell SUs are independent,
g, 1s ii.d. and g,, are also i.i.d.. When the number of
hotspot SUs and the number of macro cell SUs increase,
using the Central Limit 2Theorem and the Law of Large
Numbers, I = Y /0™ phg, 4 5027 2l P™"g,, can be
approximated by a normal distribution, I ~ N(ur,o?),

pinsml? /)27Tl - 2
where pr = 0%, Phgm + 2zt P07 =

12 1?
Zﬂﬂl ST (ch)Q 3,,1 Zﬂzﬂ (Pm)Q ;vz

D. Determine ESCs’ Interference Constraints

In Section VII-B and VII-C, we approximate C. and
I by normal distributions. The remaining problem to solve
U(Tg) > ¥ in (27) is how each ESC e independently chooses
a proper value of T,. To achieve this, we rewrite (27) to:

paml?

Z Pim Goy < T|

i=1

p1 n57rl2

U(Tg) = Pr( > Plg, +

pinsml? porl?

§ : h § :
P1', Guy + ]Dq',mguz < Tev

i=1 =1

Ve € [l,mg]) > U, 31

Given that channel gains and transmit powers are all
non-negative, and I = Y 217° il Phgv1 Zp”l P™g,
and C. = Y M il Phg., + Zp”l P™g,,, we have
Pr(I<T|C.<T.foralle) > Pr(I<T|C.<T.) >
Pr(I <T|C.=T.). Thus, so long as each ESC sensor e
independently computes a 7. that satisfies this inequality
Pr(I<T|C.=T.)> WV, we know (27) must hold, meaning
that IU’s interference requirement is statistically guaranteed.

Based on the theory of conditional normal distribution [29],
the conditional random variable I|C, = T, is also normally
distributed, with expectation . and variance oy, computed
by:

D

Ole = 211 — o>

Y
=12 (T. e

pr + S - Me)

Hie =
(32)
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where X211 = cov(I,I), 312 = cov(I,C), (33)
Yoo = cov(Cy, C.), (34)

where function couv(-) calculates the covariance of the two
input distributions. Since the distribution of I|C, = T, is
known, given a W, the value of puj., denoted as pg, that
makes Pr (I <T|C,=T.) > ¥ can be computed as pi9 =
T. — 07.® (V). Here, ®!(-) is the quantile function of
standard normal distribution. Thus, based on (32), T, can be
calculated by

Te = (po — NI)% + fle- (35)

12

(35) is the formula used by each ESC e to generate T,
locally as its interference requirement. With a proper 7% in the
algorithm (6), the IU’s interference requirement is statistically
guaranteed.

E. Multiple IU Cases

So far only the scenario with one IU is considered. However,
the way to handle multiple IUs in ESC requirement compu-
tation is straightforward. If an ESC e detects the existence of
multiple IUs, it can simply compute the constraint threshold
for each IU and choose the minimum one as final T, such
that (27) is guaranteed for every IU. Note that there are a large
amount of existing focusing on wireless signal classification,
including traditional signal classification [21], [30] and deep
learning based classification [23], [31], [32]. The ESCs can
distinguish multiple IU signals by adopting some of these
signal classification approaches.

VIII. ANALYSIS ON IU LOCATION PROTECTION

In this section, we demonstrate how the IU’s location pri-
vacy is protected in our algorithm. As seen from our algorithm,
since ESCs are responsible for detecting an IU’s existence in
the spectrum and measuring the average received IU signal
strength. ESCs are the only entities that obtain information
directly related to the IU’s location. In our attack model,
we assume ESCs are trustworthy so an adversary cannot
know its raw measurement of IU RSS. But the adversary
may see all the information exchanged in the DSA system by
compromising SAS, BSs, SUs or the communication channel.
The attacker will attempt to derive sensitive IU location data
from information that they observed.

According to (6) - (11) and Section VII, each ESC e uses
the average IU signal strength s. to generate its requirement
T. and computes A, to be sent to SAS. The minimum value
A of Ags is then forwarded to SUs. From the adversary’s
perspective, since A’s and A.’s computation are both based
on T,, which again relates to the distance between IU and
ESC e, A, and A may carry some IU location information
and can be used to infer the changes in IU’s true location.

In this section, we mainly focus on the case with one
IU to analyze the strength of A, on IU location protection.
If the attacker cannot infer IU location changes from A.s
in this simple case, neither can he derive the IU location
changes from A or in multiple TU cases. This is because A
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Fig. 5. Example of our simulation settings.

is the minimum value of A.,e € [1,mg]. Thus, it contains
no additional information regarding IU locations comparing
to Acs. In multiple TU cases, A.s calculated by ESC e in
different iterations may not match to the same IU. Thus, A,
in this case may not have the consecutive location information
of any IU, which makes deriving a single IU location change
even harder comparing to a single U case.

Consider a single IU case. To ensure that IU-ESC distance
changes cannot be discovered in a sequence of A., our
method increases the randomness in the value of A. by
using random numbers 7; and 72 in the generation of A,
as shown in equation (6). To analyze if the variations in
A, are related with the changes in IU’s location, one can
calculate the correlation and p-value between the sequence of
A, and the TU-ESC distances [33]. Correlation coefficient and
p-value are often used together to measure the strength of the
relationship between two variables. A lower p-value can be
interpreted as a stronger relation between two sets of data,
and a p-value higher than 0.05 means that the correlation is
not statistically significant [33]. If the sequences of A, and
IU-ESC distances have a low correlation coefficient with a
large p-value, we can say that the correlation between A.s
and TU-ESC distances is not statistically significant, and the
attacker can hardly use A.s to infer the IU’s true location.
Using this method, in evaluation section IX-C, we compute
the correlation coefficient and p-value through simulation.

I1X. EVALUATION

In this section, we evaluate the performance of the proposed
uplink power control algorithm by simulation. The simulation
platform is MATLAB 2018a on a macOS Sierra with 2.7 GHz
Intel Core i5 processor. Evaluation for the proposed algorithm
is divided into two sets. The first set considers the scenario
with static SUs and IUs, and the second set assumes the
mobility of SUs and IUs. Both sets examine the secondary
network utility, convergence speed of SU transmit power,
SINR of SUs and the SU interference received at IU.

Figure 5 shows an example of our simulation setting. We
consider spectrum sharing in the 3.5 GHz band which is imple-
mented mainly along the U.S. coastal areas. SUs, BSs and
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TABLE 11
PARAMETER SETTINGS

Parameter Description Value
p1 Density of cluster centers 5 x 10~ /m?
P2 Density of macro cell SUs 1 x 107%/m?
Ng Avg. No. of hotspot SUs 15
Os Scattering variance 40m
l ESC sensing range 1000m
Pt IU’s transmit power 1000W

TABLE III
AVERAGE CONVERGENCE SPEED OF SU’S TRANSMIT POWER

SU number 60 135
Avg. iterations for convergence | 139.2122 | 146.0846

240
151.3658

ESCs are located inland and the IUs are randomly distributed
in the sea. Both IUs and SUs can be mobile, and cases with
different IUs’ and SUs’ speeds are evaluated in the second set
of the simulation. In terms of parameter settings, the number
of macro cell BS is set to {2, 5,10}, the number of small cell
BS is set to {2,4, 6}, the number of SUs communicating with
each BS is 15, and the ESC number is chosen from 2 to 4.
The range of SU’s minimum required SINR 7 is selected
from 30 to 100, and IU’s maximum allowable interference
T is set to {1077,107%,107°}W. Each ESC senses the
interference from both SUs and IU 100 times per second. Each
BS broadcasts the required information per 10 millisecond.
We assume that in our algorithm the messages transmitted
between entities are all 16-bit floating point numbers. By using
time series compression with delta encoding [34], [35], the
data transmission rate of each BS to its SUs is around 7 Mbps.
Each SU reads its location information at a rate of 10Hz from
a GPS sensor. A standard path loss model is applied for each
SU. The path loss exponent ¢ is set to 4. The maximum SU
transmit power is 1W. The environment interference ¢; to
BS 7 includes both the receiver noise and other environment
noises, and is set to —80dbm. Parameters used by ESC to
theoretically estimate its interference threshold are shown in
Table II.

A. Stability Analysis

1) Case With Static 1U and SU: In the first set of simulation,
we examine the algorithm’s performance given static U
and SU. Table III shows the average convergence speed of
SU’s transmit power. In this case, 7 = 50, T" = 10w,
numBESC = 3. The system is assumed to be stable when
the fluctuations in transmit power are smaller than 0.0001W.
It can be observed that SU’s transmit power converges quickly
in less than 200 iterations. Only a slight increase in the conver-
gence speed is observed as the total number of SU increases,
which indicates the good scalability of our algorithm.

Next, we evaluate our algorithm’s performance in achieving
the maximum network utility (sum of SU rates). We randomly
generate 100 simulation settings for the comparison between
our algorithm and the Global Search algorithm [36]. Global
Search uses a multi-start framework designed to find global
optima for pure and mixed integer nonlinear problems with
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Fig. 7. Our algorithm’s performance under different IU number.

many constraints and variables. By processing all the results,
we observe that our algorithm outperforms Global Search in
every test given SU number equal to 60 and 135, and when
SU number equal to 240, our algorithm outperforms Global
Search in 99% of the tests. As mentioned, DCA converges
quite often to a global solution in practice, this comparison
at least demonstrates that our algorithm performs better than
a commonly used global solver in finding the global optima
of the given uplink power control problem. Moreover, for
each setting, the average running time of our algorithm for
convergence is around 3.5 seconds, and it is much smaller
than the running time of the Global Search algorithm which
is around 70.5 seconds.

Figure 6 shows the average ratio of SU satisfying its
SINR requirement given different SUs numbers and SU SINR
requirements. We can see that the amount of SUs who have
their SINR guaranteed is gradually decreasing as the minimum
required SINR grows. This is intuitive since it becomes
harder to meet every SU’s required SINR when all SUs are
demanding for higher SINR. However, given a certain SINR,
there is only a slight decrease in the percentage as the total SU
number increases, which also indicates the good scalability of
our algorithm.

Next, we calculate the ratio of IU satisfying its interference
requirement under different parameter settings, where the
number of SU ranges from 60 to 240, the number of ESC
ranges from 2 to 4 and the IU’s interference requirement is
set to {10~ "W, 10~5W, 105 }. We observe from the results
that the interference received by IU is guaranteed 100% of time
to be below their requirements under all the above settings.

We also evaluate the effect of the number of IU on system
performance as shown in Figure 7. In this simulation, we set
SUnum = 240, ESCnum = 3, 7 = 50 and T = 10~5W.
Given IU number from 1 to 5, we evaluated the average
convergence speed of SU’s transmit power, the ratio of SUs
whose required SINR is satisfied and the ratio of IUs whose
interference requirement is met. As in Figure 7, both the
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average iterations SU uses for convergence and the ratio of
SUs satisfying its require SINR are not obviously influenced
by different IU numbers. It is because when an ESC e detects
the existence of multiple IUs, it can simply compute the
constraint threshold for each IU and choose the minimum one
as final T¢, and the following SU power update procedure is
the same as that in one IU case. Different T,.s only affect
the upper bound on SU’s power adaptation step size. We also
observe from the results that the interference received by all
IUs is always guaranteed to be below their requirements under
all the above settings.

2) Case With Mobile 1U and SU: The second set of simula-
tions takes the mobility of IU and SU into consideration. Each
simulation lasts for 10 minutes (i.e. 60000 iterations). In the
simulation, both ESC and BS broadcast their information per
10 ms, and SU updates its location information 10 times per
second. The number of macro cell BS is set to 10 and the
number of small cell BS’s is 6. ESC number is set to 3 in this
case.

We first set IU’s moving speed to 10m/s and SU’s mov-
ing speed to 1m/s. In Figure 8, it can be seen that each
SU only takes around 2% of its total operation time in
the convergence process. We also observe that the average
amount of time during which the SU’s SINR is satisfied is
gradually decreasing as the minimum required SINR grows,
since it becomes more difficult to guarantee the SUs’ target
SINR if they are requiring for higher SINR. However, IU’s
interference requirement is satisfied 100% of time, because
our algorithm treats IU’s interference constraint with higher
priority than SU’s SINR requirement. By using this algo-
rithm, IU’s interference requirement is statistically guaran-
teed by ESC’s interference threshold in any case even when
SUs’ and IUs’ constraints cannot be satisfied simultaneously
(ie. S =0).

Figure 9 shows our algorithm’s convergence under different
IU’s and SU’s moving speeds. In this case, the required
SU SINR is set to 50. In the left figure of Figure 9, SU’s
moving speed is set to lm/s and IU’s speed varies from
Im/s to 30m/s. Because the IUs in 3.5 GHz DSA scenario
are commonly shipborne radars, the simulation settings of
IU’s speed are determined based on the speed range of navy
ships which is mostly less than 30 m/s. In addition, such
parameter settings also satisfy the speed range of some other
vehicles like cars, hence the IUs in our simulation are not
necessarily specified as shipborne radars. We can see that
the system’s convergence time is not obviously influenced by
the changes in TU’s speed, because IU’s location only affects
the calculation of ESC’s interference requirement which only
provides an upper bound on SU’s power adaptation step size.
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In the right figure of Figure 9, IU’s moving speed is fixed
to 10m/s and SU’s moving speed ranges from lm/s to
20m/s (e.g., from walking speed to freeway speed). It can
be seen that the average convergence time per SU slightly
increases as the SU’s moving speed increases. It is intuitive
because when an SU’s speed increases, its movement within
an iteration becomes larger and it becomes harder to converge.
However, the observed increase is relatively small, which
means our algorithm is not very sensitive to the SU’s moving
speed. By processing all the results, we also observe that IU’s
interference requirement is always guaranteed under different
moving speeds of both SUs and IUs.

B. Efficiency Evaluation

First, we compare our algorithm with the existing primary
user (PU) protection schemes [37], [38] in terms of net-
work throughput under the same IU interference protection
level. A geographic exclusion zone (GEZ) scheme in [37]
calculates the minimum radius of the primary exclusion zone
based on the primary outage constraint, and [38] proposes a
shapeless PU protection scheme called the discrete exclusion
zone (DEZ), which is achieved by switching off the first
k — 1 nearest neighboring SUs surrounding the PU. With IU’s
interference requirement equal to 1081/ and the number of
SUs equal to 240, the minimum radius of exclusion zone in
GEZ ends up to be 1000m and the number of SUs being
switched off in DEZ becomes 70. Under these settings, our
scheme can improve total SU capacity by 56% over GEZ and
by 48% over DEZ on average.

We also compare our algorithm with three power control
algorithms all aiming at throughput maximization subject to
satisfying a minimum target SINR for all SUs. [10] devel-
oped an efficient centralized DC algorithm that achieves the
global optimal throughput. A binary power control algorithm
is proposed in [39] to maximize the total SU throughput
in a CRN while limiting the interference to the PU within
an acceptable range. [40] proposed a distributed algorithm
aiming at maximizing the throughput with minimum power
consumption.

In the evaluation, we assume 9 to 36 pairs of SU trans-
mitters/receivers are distributed in a 500m x 500m square.
Because the formulation of [10] and [40] do not consider
PU (IU) interference constraint, we assume the PU locates
far enough from SU network, and hence the PU will not
be affected by SUs, the PU interference requirement in our
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algorithm and [39] will not be violated even when all SUs
transmit at the maximum power simultaneously. 100 simula-
tion settings are randomly generated for each number of SU
pair. The average throughput of each algorithm is measured.
From Figure 10, we can see that our algorithm outperforms
binary algorithm [39] and the algorithm for energy efficiency
and throughput maximization [40]. The average throughput
achieved by our algorithm and centralized DC algorithm [10]
are almost the same. This is because our algorithm and [10]
both refer to Frank and Wolfe feasible direction algorithm [41]
to locate the global optimal solution to the formulated non-
convex problem.

C. Evaluation on IU Location Protection

In the evaluation, we randomly generate 500 settings of
locations of a moving IU, 3 ESCs and 240 static SUs.
Each simulation with one setting lasts for 60000 iterations.
Figure 11 zooms in for the 500 iterations of example sequences
of TU-ESC distances and A.s. The average correlation coeffi-
cient between the sequences of IU-ESC distances and A.s is
around 0.07 which can be considered negligible [42], and the
p-value is around 0.31 which is much larger than 0.05 [33].
Hence, we can conclude that the correlation is not statically
significant. Such low correlation indicates that it is difficult
for an attacker to infer IU’s true location from A.s.

X. CONCLUSION

In this paper, we studied the uplink power control prob-
lem in 3.5 GHz DSA systems with the objective of utility
maximization subject to SU’s transmit power limit and SINR
constraints and IU’s interference constraints. Due to security
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considerations, the proposed distributed SU transmit power
control algorithm does not depend on any sensitive information
from IU. IU’s interference requirement is proved to be guar-
anteed by our algorithm in any case. Each SU only requires
locally observable measurements with aggregated insensitive
information provided by ESCs and BSs to adjust its transmit
power distributively. Through the analysis on the algorithm’s
convergence and stability properties, we demonstrate that our
algorithm will converge to a stable optimal point which always
satisfies the IU’s interference constraint. SUs’ SINR require-
ments will also be satisfied whenever the utility maximization
problem is feasible. Finally, the simulation results demonstrate
the effectiveness of our proposed algorithm.

[1]

[2

—

[3

[t}

[4]

[5]

[6]

[7]

[8

[t

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 11,2023 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

G. Locke and L. E. Strickling, “Plan and timetable to make available
500 megahertz of spectrum for wireless broadband,” U.S. Dept. Com-
merce, Washington, DC, USA, President’s Spectrum Plan Rep., 2010.
[Online].  Available:  https://www.ntia.doc.gov/report/2010/ten-year-
plan-and-timetable-make-available-500-megahertz-spectrum-wireless-
broadband-pre

P. Kolodzy and I. Avoidance, “Spectrum policy task force,” Federal
Commun. Commun., Washington, DC, USA, ET Docket Rep. 02-135,
2002, pp. 147-158, vol. 40, no. 4.

Y. Lin, Y. Ye, and Y. Yang, “Preserving incumbent user’s location privacy
against environmental sensing capability,” in Proc. IEEE Int. Symp. Dyn.
Spectr. Access Netw. (DySPAN), Nov. 2019, pp. 1-10.

H.-S.-T. Le and Q. Liang, “An efficient power control scheme for cog-
nitive radios,” in Proc. IEEE Wireless Commun. Netw. Conf., Mar. 2007,
pp. 2559-2563.

W. Wang, T. Peng, and W. Wang, “Optimal power control under
interference temperature constraints in cognitive radio network,” in Proc.
IEEE Wireless Commun. Netw. Conf., Mar. 2007, pp. 116-120.

L. P. Qian, S. Zhang, W. Zhang, and Y. J. Zhang, “System utility
maximization with interference processing for cognitive radio networks,”
IEEE Trans. Commun., vol. 63, no. 5, pp. 1567-1579, May 2015.

X. Li, J. Fang, W. Cheng, H. Duan, Z. Chen, and H. Li, “Intelligent
power control for spectrum sharing in cognitive radios: A deep rein-
forcement learning approach,” IEEE Access, vol. 6, pp. 25463-25473,
2018.

L. Zheng and C. W. Tan, “Cognitive radio network duality and algo-
rithms for utility maximization,” IEEE J. Sel. Areas Commun., vol. 31,
no. 3, pp. 500-513, Mar. 2013.

C. W. Tan, “Optimal power control in Rayleigh-fading heteroge-
neous wireless networks,” IEEE/ACM Trans. Netw., vol. 24, no. 2,
pp. 940-953, Apr. 2016.

H. H. Kha, H. D. Tuan, and H. H. Nguyen, “Fast global optimal power
allocation in wireless networks by local D.C. programming,” [EEE
Trans. Wireless Commun., vol. 11, no. 2, pp. 510-515, Feb. 2011.

L. Zheng and C. W. Tan, “Maximizing sum rates in cognitive radio
networks: Convex relaxation and global optimization algorithms,” IEEE
J. Sel. Areas Commun., vol. 32, no. 3, pp. 667-680, Mar. 2014.

B. Gedik and L. Liu, “Protecting location privacy with personalized
k-anonymity: Architecture and algorithms,” IEEE Trans. Mobile Com-
put., vol. 7, no. 1, pp. 1-18, Jan. 2008.

B. Bahrak, S. Bhattarai, A. Ullah, J.-M.-J. Park, J. Reed, and D. Gurney,
“Protecting the primary users’ operational privacy in spectrum shar-
ing,” in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DYSPAN),
Apr. 2014, pp. 236-247.

M. Clark and K. Psounis, “Can the privacy of primary networks in shared
spectrum be protected?” in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun. (IEEE INFOCOM), Apr. 2016, pp. 1-9.

Q. Cheng, D. N. Nguyen, E. Dutkiewicz, and M. D. Mueck, “Protecting
operational information of incumbent and secondary users in FCC
spectrum access system,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2018, pp. 1-6.

H. Li, Y. Yang, Y. Dou, J.-M.-J. Park, and K. Ren, “PeDSS: Privacy
enhanced and database-driven dynamic spectrum sharing,” in Proc. IEEE
Conf. Comput. Commun. (IEEE INFOCOM), Apr. 2019, pp. 1477-1485.
H. Li, Y. Dou, C. Lu, D. Zabransky, Y. Yang, and J.-M.-J. Park,
“Preserving the incumbent users’ location privacy in the 3.5 GHz
band,” in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN),
Oct. 2018, pp. 1-10.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

10255

Wireless Telecommunications Bureau and Office of Engineering and
Technology Establish Procedure for Registering Environmental Sensing
Capability Sensors, Federal Commun. Commission, FCC Public Notice,
Washington, DC, USA, 2018.

N. Gulpinar, L. T. H. An, and M. Moeini, “Robust investment strategies
with discrete asset choice constraints using DC programming,” Opti-
mization, vol. 59, no. 1, pp. 45-62, Jan. 2010.

L. T. Hoai An, “An efficient algorithm for globally minimizing a
quadratic function under convex quadratic constraints,” Math. Program.,
vol. 87, no. 3, pp. 401426, May 2000.

O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic
modulation classification techniques: Classical approaches and new
trends,” IET Commun., vol. 1, no. 2, pp. 137-156, Apr. 2007.

T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio modula-
tion recognition networks,” in Proc. Int. Conf. Eng. Appl. Neural Netw.
Aberdeen, U.K.: Springer, 2016, pp. 213-226.

Y. Shi, K. Davaslioglu, Y. E. Sagduyu, W. C. Headley, M. Fowler, and
G. Green, “Deep learning for RF signal classification in unknown and
dynamic spectrum environments,” in Proc. IEEE Int. Symp. Dyn. Spectr.
Access Netw. (DySPAN), Nov. 2019, pp. 1-10.

S. Haile, “Investigation of channel reciprocity for OFDM TDD systems,”
M.S. thesis, Univ. Waterloo, Waterloo, ON, Canada, 2009.

N. W. Anderson, “Uplink resource allocation to control intercell inter-
ference in a wireless communication system,” U.S. Patent 8023955,
Sep. 20, 2011.

R. K. Ganti and M. Haenggi, “Interference and outage in clustered
wireless ad hoc networks,” IEEE Trans. Inf. Theory, vol. 55, no. 9,
pp. 4067-4086, Sep. 2009.

M. Afshang and H. S. Dhillon, “Poisson cluster process based analysis
of HetNets with correlated user and base station locations,” IEEE Trans.
Wireless Commun., vol. 17, no. 4, pp. 2417-2431, Apr. 2018.

P. Hale, J. Jargon, P. Jeavons, M. Souryal, A. Wunderlich, and
M. Lofquist, “3.5 GHz radar waveform capture at point LOMA,” Nat.
Inst. Standards Technol., Gaithersburg, MA, USA, Tech. Note NIST
TN 1954, 2017. Accessed: Jun. 26, 2022. [Online]. Available:
https://doi.org/10.6028/NIST.TN.1954

J. K. Patel and C. B. Read, Handbook of the Normal Distribution,
vol. 150. Boca Raton, FL, USA: CRC Press, 1996.

W. C. Headley and C. R. C. M. D. Silva, “Asynchronous classification
of digital amplitude-phase modulated signals in flat-fading channels,”
IEEE Trans. Commun., vol. 59, no. 1, pp. 7-12, Jan. 2011.

M. Zheleva, R. Chandra, A. Chowdhery, A. Kapoor, and P. Garnett,
“TxMiner: Identifying transmitters in real-world spectrum measure-
ments,” in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN),
Sep. 2015, pp. 94-105.

M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter, “End-to-end
learning from spectrum data: A deep learning approach for wireless
signal identification in spectrum monitoring applications,” IEEE Access,
vol. 6, pp. 18484-18501, 2018.

H. J. Hung, R. T. O’Neill, P. Bauer, and K. Kohne, “The behavior of
the P-value when the alternative hypothesis is true,” Biometrics, vol. 53,
no. 1, pp. 11-22, 1997.

T. Pelkonen et al., “Gorilla: A fast, scalable, in-memory time series
database,” Proc. VLDB Endowment, vol. 8, no. 12, pp. 1816-1827, 2015.
J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy, “Potential
benefits of delta encoding and data compression for. [Online]. Available:
http,” in Proc. ACM SIGCOMM’97 Conf. Appl., Technol., architectures,
protocols for Comput. Commun., 1997, pp. 181-194.

Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti,
“Scatter search and local NLP solvers: A multistart framework for global
optimization,” INFORMS J. Comput., vol. 19, no. 3, pp. 328-340, 2007.
U. Tefek and T. J. Lim, “Interference management through exclusion
zones in two-tier cognitive networks,” IEEE Trans. Wireless Commun.,
vol. 15, no. 3, pp. 2292-2302, Mar. 2016.

C. Sun and R. Jiao, “Discrete exclusion zone for dynamic spectrum
access wireless networks,” IEEE Access, vol. 8, pp. 49551-49561, 2020.
D. Nakhale and M. Z. A. Khan, “Fast binary power allocation for uplink
distributed cognitive radio networks,” in Proc. 10th Int. Conf. Commun.
Syst. Netw. (COMSNETS), Jan. 2018, pp. 435-438.

R. Aslani and M. Rasti, “A distributed power control algorithm for
energy efficiency maximization in wireless cellular networks,” IEEE
Wireless Commun. Lett., vol. 9, no. 11, pp. 1975-1979, Nov. 2020.

P. Apkarian and H. D. Tuan, “Robust control via concave minimization
local and global algorithms,” IEEE Trans. Autom. Control, vol. 45, no. 2,
pp- 299-305, Feb. 2000.

D. E. Hinkle, W. Wiersma, and S. G. Jurs, Applied Statistics for the
Behavioral Sciences, vol. 663. Boston, MA, USA: Houghton Mifflin
College Division, 2003.



10256

Yousi Lin received the B.S. degree in commu-
nication engineering from Shandong University,
Shandong, China, in 2016, and the Ph.D. degree
from the Department of Electrical and Computer
Engineering, Virginia Tech, USA, in 2021. Her
current research interests include resource allocation
and scheduling, network optimization, joint design
of communication and control in dynamic spectrum
access systems, and 802.11 MAC protocol design.

Yaling Yang (Member, IEEE) received the Ph.D.
degree from the University of Illinois Urbana-
Champaign. She was named the Faculty Fellow of
the College of Engineering, Virginia Tech, in 2016,
where she is currently a Full Professor with the
Electrical and Computer Engineering Department.
She has been the Principle Investigator of ten NSF
projects and one National Security Agency project.
She has close to 20 years of experiences on wireless
network protocol design, the IoT platform design,
and network security. She has more than 70 publi-
cations in these areas. For the IoT research, she has developed a novel IoT
hardware platform and its accompanied development environment to support
flexible hardware-software. On security aspect, she is currently leading three
NSF projects studying the location security of dynamic spectrum access
systems and smartphone-based contact tracing systems and has published
in top security journals and conferences six works for her research in this
aspect. Her work about GPS spoofing’s threat towards vehicle navigation
system has been reported world-wide by more than 30 news agencies. She
has also published more than 20 papers regarding QoS guarantees in wireless
networks. She is an NSF Career Award Winner. She won the Best Paper
Award in SECON 2011 for her development of an innovative IoT simulator
that can accurately capture the timing and energy consumptions of various
platforms to hardware cycle level.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 12, DECEMBER 2022

Xiaojiang (James) Du (Fellow, IEEE) received
the B.S. degree from Tsinghua University, Beijing,
China, in 1996, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Mary-
land, College Park, in 2002 and 2003, respectively.
He was a tenured Professor at Temple University
from August 2009 to August 2021. He is currently
the Anson Wood Burchard Endowed-Chair Profes-
sor at the Department of Electrical and Computer
Engineering, Stevens Institute of Technology. His

- research interests are security, wireless networks,
and systems. He has authored over 500 journal and conference papers in these
areas, including the top security conferences IEEE S&P, USENIX Security,
and NDSS. He has been awarded more than eight million U.S. dollars research
grants from the U.S. National Science Foundation (NSF), the Army Research
Office, the Air Force Research Laboratory, the State of Pennsylvania, and
Amazon. He is an ACM Distinguished Member and an ACM Life Member.
He won the Best Paper Award at several conferences, such as IEEE ICC
2020 and IEEE GLOBECOM 2014, and the Best Poster Runner-Up Award
at the ACM MobiHoc 2014. He serves on the editorial boards of three IEEE
journals.

Jie Wu (Fellow, IEEE) has served as the Chair
for the Department of Computer and Information
Sciences from Summer 2009 to Summer 2016 and
an Associate Vice Provost for international affairs
from Fall 2015 to Summer 2017. He is currently
the Director of the Center for Networked Computing
and Laura H. Carnell Professor, Temple University.
He also works as the Director of international affairs
at the College of Science and Technology. Prior
to joining Temple University, he was the Program
Director at the National Science Foundation and a
Distinguished Professor at Florida Atlantic University. He regularly publishes
in scholarly journals, conference proceedings, and books. His current research
interests include mobile computing and wireless networks, routing protocols,
network trust and security, distributed algorithms, applied machine learning,
and cloud computing. He is a fellow of AAAS. He was a recipient of
the 2011 China Computer Federation (CCF) Overseas Outstanding Achieve-
ment Award. He is/was the General Chair/Co-Chair for IEEE IPDPS’08, IEEE
DCOSS’09, IEEE ICDCS’13, ACM MobiHoc’ 14, ICPP’16, IEEE CNS’16,
WiOpt’21, and ICDCN’22, as well as the Program Chair/Co-Chair for IEEE
MASS’04, IEEE INFOCOM’11, CCF CNCC’13, and ICCCN’20. He was
an IEEE Computer Society Distinguished Visitor, an ACM Distinguished
Speaker, and the Chair for the IEEE Technical Committee on Distributed
Processing (TCDP). He serves on several editorial boards, including IEEE
TRANSACTIONS ON MOBILE COMPUTING, IEEE TRANSACTIONS ON SER-
VICES COMPUTING, Journal of Parallel and Distributed Computing, and
Journal of Computer Science and Technology.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 11,2023 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.



