

The Zen malware is dangerous because it uses root

privileges to gain access for inserting a rooting

trojan utilizing command-and-control servers.

Command-and-control servers are engine used by

the Zen family to communicate with the malware

that resides in the infected Android applications. The

command-and-control servers are typically used to tell

the application what actions to perform and when to

install malicious files on the Android device.

The Zen malvertising family’s complex nature and

behavior have led to the development of the forensic

auditing framework described in this paper. The

framework consists of an online component that assists

in quickly identifying the Zen malware associated with

the specific Android applications. The static component

involves detecting the location in the app to inject the

blockchain calls. The dynamic analysis component

helps identify if any click fraud occurred in the Android

application that has been identified as containing Zen

malware.

1.2. Research Question

Based on the prevalent issue of malvertising click fraud,

this leads to the following question.

The primary research question is: Is it possible to

model the Zen malware advertising family and create

a blockchain smart contract encoding that will store the

data and help forensic analysts with the detection of the

Zen malware family clicks fraud?

2. Related Work

To our knowledge, using the blockchain as

a mechanism for storing the advertisement fraud

information and helping with the detection of

advertising fraud behavior is a new and unique

approach. While it is unique, there are several other

detection systems that have been developed.

For example, there are four different strategies

for classifying malware using machine learning

approaches [5, 6]. The techniques include using static

or dynamic analysis, using both static and dynamic

analysis, using string analysis, or using classification

techniques. However, most of the machine learning

classification approaches do not deal with mobile

advertising fraud [7–15]. While most of the papers

focus on classifying malware, they do not focus on

mobile ad fraud detection.

Several papers discuss the role of machine

learning to discover and classify malware in Android

applications [5, 6, 16, 17]. Fung et al. created a

tool called RevMatch. The framework uses machine

learning to assist with the detection of malware [16].

RevMatch is a collaborative malware decision tool that

queries the labeled malware detection history from a

database. If limited information is returned from the

query, then the system uses partial matches to make

decisions on what the malware is classified as. The

authors compared multiple machine learning techniques

to compare the false positives and errors that result from

each technique.

The smart contract approach described here could

benefit from RevMatch’s approach for malware

detection by incorporating the RevMatch queries

approach into the Soot analysis framework. Their

approach would allow us to have a mechanism in place

to assist with deciding if a click was legitimate or not

legitimate during the dynamic analysis phase.

Hurrier et al. discuss the Euphony malware

classification tool [17]. Euphony uses malware labels

to classify malware, these labels are then applied to

each application using machine learning classification

taxonomy. The Euphony tool essentially assigns the

Android malware samples to malware families. One

of the benefits of this approach is that it does not

require prior knowledge of malware families for the

classification process. This approach is particularly

useful for our implementation because the Euphony

method can be directly applied to detect click fraud.

Shijo et al. introduce a method that uses static

and dynamic analysis techniques to detect malware in

Windows applications [6]. Their static analysis method

requires the extraction of printable string information

(PSI) and these strings can be used to assist with

detecting a malicious command-and-control servers.

Another nice feature of the Shijo et al. approach

is that they use machine learning vectors to assist

with the detection of malware using test and training

datasets [18]. Vectors in machine learning are tuples of

one or more scalar values. They also reported interesting

empirical results.

Their experimental results show an accuracy of

95.8% using static analysis, 97.1% using dynamic

analysis, and 98.7% using the integrated method to

predict malware threats. The Shijo et al. paper provide

an interesting solution for the application of using string

information and strings to help detect malware. String

analysis involves analyzing all of the stings inside an

Android application for potential threats. It would

be challenging to use this approach in our auditing

framework. However, it might be possible to adapt

this approach to the Soot framework by modifying the

process rules for backwards and forwards flow analysis.

Vecchio et al. developed a machine learning solution

for classifying malware using graph structures of the

Page 7403

strings that were created [5]. Their system uses a

three-step process for detecting malware. The first step

involves using static analysis to extract the strings. In the

next step, they use a feature space generator to extract

the compiler computations. In the final step they use

k-fold cross-validation and multiple machine learning

algorithms to assist with the malware classification.

The novel approach by Vecchio et al. achieves a

recall rate of 97% for classifying when an application

contains malware. It is theoretically possible that

our approach could adapt their approach and use

string analysis and string extraction to detect click

fraud. In summary leveraging the various machine

learning algorithms to assist with the detection of click

fraud in our Soot based smart contract framework has

potential. In particular they could assist with identifying

command-and-control servers.

Data flow analysis for tracking malware is another

common technique employed in the wild west of

malware detection. Fuchs et al. created an analysis tool

that facilitates automatic reasoning about the security

of Android applications [5]. The approach performs

incremental checking of the application and extracts the

Android applications’ manifest file, checks the security

specifications, and ensures compliance based on the data

flows. It is possible that our implementation could

use this approach to assist with detecting advertisement

click fraud through analyzing the data flows and where

to exactly inject the code. Data flow analysis is

particularly useful in detecting command-and-control

servers.

Beaucamps et al. developed an alternative approach

to detecting malware via the abstraction of application

behaviors [19]. The behaviors were abstracted by

dynamically examining the program traces. Suspicious

behaviors were detected by comparing trace abstractions

to reference malicious behaviors. The authors opted

to have the execution traces represented as a trace

automation. The traces were reconstructed, which then

produces a representation, which is independent of the

program flow. Our framework could use this in our

auditing framework to assist with identifying dynamic

abstraction of program traces and behavior.

3. Zen Malware Family Click Fraud

The Zen malware family requires root privileges

on Android devices to work correctly [20]. The root

privileges allow the application to turn on accessibility

service (a service used to allow Android users with

disabilities to use their devices) for itself. This

is accomplished via writing to the Android security

mechanism called enabled accessibility services.

Zen, however, doesn’t check for root privileges; it

assumes it has it. Zen implements three accessibility

services directed at different Android API levels and

uses these accessibility services, chosen by checking

the operating system version, to create new Google

accounts [20]. This is accomplished via opening the

Google account creation process and parsing the current

view. The app will click on the appropriate buttons and

input boxes and sign up and it does not require user

interaction.

The developers of the Android security system

implemented a CAPTCHA process to stop hackers

from creating new accounts. Bypassing the security

mechanism requires that the app use its root privilege

to inject code into the Setup Wizard, then extract the

CAPTCHA image, and then send it to a remote server

to solve the CAPTCHA. Note, the Zen Trojan does not

implement any kind of code obfuscation except for the

use of one string that is linked to a server. The code

obfuscation string uses a Base64 encoding.

The malicious Android app also injects its own

code into the system server process, which requires

root privileges [20]. This is most likely done to hide

from any anti-PHA systems that look for a specific app

process name. Or to hide from the Android app when it

examines memory to identify malicious processes. The

malware typically creates hooks to prevent the phone

from going to sleep, booting, or restarting. These

hooks are created by the Zen malware using the root

access and a custom native code called Lmt INJECT.

The process used by the Zen malware family to infect a

system is demonstated in Figure 1. The first step used

by the Zen family is to turn off SELinux protection.

The SELinux protection is as a security mechanism to

combat malicious applications in Android applications.

In the next step, the app identifies an Android process

ID value to inject with code (this is accomplished via a

series of syscalls). The ”source process” refers to the

Zen trojan running as root, while the ”target process”

refers to the process to which the code is injected and

refers to the target process pid value [20].

4. Creating an Auditing Framework
(Proposed Solution/Methodology)

Creating an auditing framework consists of

integrating multiple components including the Virus

Total, static and dynamic analysis (Figure 2). The

first phase referred to as the online component related

to virus identification. This phase requires utilizing

VirusTotal to help classify the Android application’s

malware family. Classifying malware requires the use

of the original Android application’s hash value. The

Page 7404

from many locations.

4.2. Decompiling Android applications and
Code Analysis

The Soot framework is the foundational platform for

analyzing the Zen malware family. The Soot framework

is to identify where the code clicks are occurring

is a powerful technique for preventing or deterring

advertisement click fraud. The Soot framework uses

an intermediate representation of the original Android

Java code (Jimple) and allows for the re-compiling of

the Android application with minimal effort. However,

there is a significant problem. The hard task for our

approach is determining where to inject the Ethereum

blockchain smart contract calls. Determining where to

inject the blockchain calls can be remedied by focusing

on how the Zen malware family behaves. Below is a list

of common Zen malware behaviors.

Zen malware behaviors include:

1. Programming the clicking of advertisements

without user interaction

2. Using a command-and-control server to execute

or perform clicks without user interaction

The first problem of detecting clicks without

any user interaction is difficult because it requires

understanding how the click fraud was coded.

Understanding how clicks are performed is important

because it will assist in understanding app behavior.

When using the Amazon Ad library to click on an

advertisement, the user initiates or performs the click

function. In the case of the Zen malware, this is

accomplished using the performClick function. Then to

ensure the ad is clicked, the setPressed function must

be set to true. Both of the functions mentioned must be

placed in a try catch statement in order to work.

When using the Soot framework, the forensic

analysis tool should pinpoint the location of the

performClick and setPressed function calls. When

performing the analysis, it is necessary that the function

calls only interact with the Amazon adView and not

another library. Note also, that performClick and

setPressed can be performed on buttons that are present

in any Android application. Once both performClick

and setPressed functions are found, the blockchain call

should be placed after the setPressed function call. This

is a critical step in the smart contract injection process.

Now let us focus on the second behavior, using

a command-and-control server to execute or perform

clicks without user interaction. Identifying code in

Android applications command-and-control server that

performs clicks can be very tricky. The primary reason

is that the bad guys can hide the communication and use

several linked libraries. For example, a linked library

could involve a third party library that makes calls to

Amazon’s ad library. The Soot framework is very adept

because the framework can perform many types of static

and dynamic analysis to detect these linkages.

The Soot framework has strong techniques for

conducting forward-flow analysis. Forward flow

analysis provides information about the future code and

paths of execution [21]. In essence, this means that it is

possible to check all the execution paths that exist. In

effect, this would provide insight into the paths leading

from and to the advertising libraries.

The next step in the Soot framework process

involves checking for all strings that contain external IP

addresses. This is a very labor intensive task using the

Soot framework. It was discovered that using the string

analysis approach has lead to insights into how to easily

discover the external IP addresses processes quickly.

The final step using the Soot framework involves

checking all of the saved execution paths and the

external IP addresses that Soot found. All of the

external IP addresses have to be sifted through to find

out exactly whether a command-and-control server was

used inside of the Zen malware. Finally, the VirusTotal

website https://www.virustotal.com/gui/

can be used to help with sifting through malicious IP

addresses that have been identified as being malicious.

4.3. Smart Contract Programming

In our approach, Ethereum Remix was used to create

the smart contract. Remix is a powerful tool that allows

users to program their smart contract through an online

graphical user interface and it enables them to push their

smart contracts to the private blockchain [21]. Remix

also allows users to test their smart contracts in real time.

This is very useful for individuals that are new to smart

contract programming.

4.4. Retrieving Data from The Ethereum
Blockchain

The rest of the discussion in this section will focus

on the smart contract code for retrieving information

from the smart contract struct in the blockchain.

The following code allows the users to retrieve the

information from the variables in the struct.

4.5. Blockchain Injection

Finding the appropriate place to inject smart contract

code into the Android application is the most difficult

task of monitoring and developing smart contract code

Page 7406

blockchain. This is a double-edge sword because

hackers could of course maliciously use this knowledge

to inject malicious code into Android applications

without the consent of the user or Android app

developer.

Future work could also entail using machine learning

approaches along with various analysis techniques to

help with detecting whether click fraud exists in an

Android application. We believe that k-fold cross

validation and gradient boosting have the best potential.

Further options will be explored. There are a variety

of emerging malware research projects that may be

applicable to this research strain. For example, privacy

leakage detection [22], malware execution paths [23],

behavioral-based malware detection [24], automated

detection of botnets [25], and the network analysis of

malvertising [26].

An interesting description of the statistics and

the various techniques used in mobile malware

detection in production environments was introduced

by Chandramohan et al. [27]. A good overview of the

various mobile malware detection techniques has been

developed by Amro et al. [28].

It would also be interesting to explore if it is possible

to use dynamic analysis and computer networking to

help with detecting advertisement click fraud that occurs

from command-and-control servers. In particular we

would like to develop a framework that incorporates

networking data to identify click fraud that has occurred

from the command-and-control servers.

References

[1] “Google Play Store Stats and Facts You Should Know in
2021,” July 2019.

[2] “Number of monthly Android app releases worldwide
2021.”

[3] R. Samani, “McAfee Mobile Threat Report,” report,
2020.

[4] “Blog \textbackslashtextbar Top 10 Malware January
2021,” Feb. 2021.

[5] J. D. Vecchio, S. Y. Ko, and L. Ziarek, “Representing
string computations as graphs for classifying malware,”
in MOBILESoft ’20: IEEE/ACM 7th International
Conference on Mobile Software Engineering and
Systems, pp. 120–131, ACM. Type: Conference
Proceedings.

[6] P. V. Shijo and A. Salim, “Integrated Static and Dynamic
Analysis for Malware Detection,” Procedia Computer
Science, vol. 46, pp. 804–811, Jan. 2015.

[7] “Mobile Malware Analysis : Tricks used in Anubis.”

[8] L. Li, J. Gao, M. Hurier, P. Kong, T. F. Bissyandé,
A. Bartel, J. Klein, and Y. L. Traon, “AndroZoo++:
Collecting Millions of Android Apps and Their Metadata
for the Research Community,” arXiv:1709.05281 [cs],
Sept. 2017.

[9] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining
API-Level Features for Robust Malware Detection in
Android,” Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications
Engineering, pp. 86–103, Springer International
Publishing. Type: Conference Proceedings.

[10] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon,
and K. Rieck, “DREBIN: Effective and Explainable
Detection of Android Malware in Your Pocket,” Type:
Conference Proceedings.

[11] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck,
“MAST: triage for market-scale mobile malware
analysis,” WiSec ’13, pp. 13–24, Association for
Computing Machinery. Type: Conference Proceedings.

[12] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant, “Semantics-aware malware detection,”
pp. 32–46. Type: Conference Proceedings.

[13] J. Garcia, M. Hammad, and S. Malek, “Lightweight,
Obfuscation-Resilient Detection and Family
Identification of Android Malware,” ACM Transactions
on Software Engineering and Methodology, vol. 26,
pp. 11:1–11:29, Jan. 2018.

[14] P. Cook and N. Stakhanova, “Android Malware
Classification through Analysis of String Literals,” 2016.

[15] Z. Li, J. Sun, Q. Yan, W. Srisa-an, and Y. Tsutano,
“Obfusifier: Obfuscation-Resistant Android Malware
Detection System,” in Security and Privacy in
Communication Networks (S. Chen, K.-K. R. Choo,
X. Fu, W. Lou, and A. Mohaisen, eds.), pp. 214–234,
Springer International Publishing. Type: Conference
Proceedings.

[16] C. J. Fung, D. Y. Lam, and R. Boutaba, “RevMatch:
An efficient and robust decision model for collaborative
malware detection,” in 2014 IEEE Network Operations
and Management Symposium (NOMS), pp. 1–9, May
2014.

[17] M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F.
Bissyandé, Y. L. Traon, J. Klein, and L. Cavallaro,
“Euphony: Harmonious Unification of Cacophonous
Anti-Virus Vendor Labels for Android Malware,” in
2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), pp. 425–435, May
2017.

[18] J. Brownlee, “A Gentle Introduction to Vectors for
Machine Learning,” Feb. 2018.

[19] P. Beaucamps, I. Gnaedig, and J.-Y. Marion, “Behavior
Abstraction in Malware Analysis,” in Runtime
Verification (H. Barringer, Y. Falcone, B. Finkbeiner,
K. Havelund, I. Lee, G. Pace, G. Roşu, O. Sokolsky, and
N. Tillmann, eds.), Lecture Notes in Computer Science,
pp. 168–182, Springer, 2010.

[20] “PHA Family Highlights: Zen and its cousins.”

[21] S. Sanders and L. Ziarek, “A comparison and contrast
of APKTool and Soot for injecting blockchain calls into
Android applications,” in Proceedings of the 54th Hawaii
International Conference on System Sciences, Jan. 2021.

[22] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S.
Wang, “AppIntent: analyzing sensitive data transmission
in android for privacy leakage detection,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer
& communications security, CCS ’13, pp. 1043–1054,
Association for Computing Machinery, Nov. 2013.

Page 7409

[23] A. Moser, C. Kruegel, and E. Kirda, “Exploring
Multiple Execution Paths for Malware Analysis,” in 2007
IEEE Symposium on Security and Privacy (SP ’07),
pp. 231–245, May 2007.

[24] I. Firdausi, C. lim, A. Erwin, and A. S. Nugroho,
“Analysis of Machine learning Techniques Used in
Behavior-Based Malware Detection,” in 2010 Second
International Conference on Advances in Computing,
Control, and Telecommunication Technologies,
pp. 201–203, Dec. 2010.

[25] J. Tallett, N. Agnese, M. Habiby, C. Soo, and M. LeRoy,
“The Shoe is a Lie: How an Android Botnet Defrauded
Advertisers and Consumers.”

[26] A. Shabtai, L. Tenenboim-Chekina, D. Mimran,
L. Rokach, B. Shapira, and Y. Elovici, “Mobile malware
detection through analysis of deviations in application
network behavior,” Computers & Security, vol. 43,
pp. 1–18, June 2014.

[27] M. Chandramohan and H. Tan, “Detection of Mobile
Malware in the Wild.”

[28] B. Amro, “Malware Detection Techniques for Mobile
Devices,” SSRN Scholarly Paper ID 3430317, Social
Science Research Network, Rochester, NY, 2017.

[29] L. Mearian, “What is blockchain? The complete guide,”
Jan. 2019. Publication Title: Computerworld.

Page 7410

Term Definition
compiler A program that translates statements written in a

source programming language and into machine
language, object code or assembly.

decompiler A program that translates machine language, object
code or assembly into a high level language such
Java.

bytecode A low-level representation of program code that has
been compiled. It can closely resemble assembly
language.

APK The Android Package Kit is used to distribute and for
the subsequent execution of an Android application.
It is similar to the exe format in Microsoft Windows.

code injection The process of injecting statements into an
application at a specific location without disturbing
the flow of the application code.

soot framework A compiler framework that is able to decompile and
compile Java code with the capability of analysing
and instrumenting Java code.

instrumentation Refers to the modification and analysis of a
programming language through the use of compiler
technology.

jimple An intermediate representation of Java code that
Soot generates as output.

blockchain A peer-to-peer network that allows for the sharing of
data among a vast number of peers [29]. All data
stored on the blockchain is immutable.

Ethereum
blockchain

A blockchain environment that allows the use of
smart contracts.

smart contract A contract with written rules and terms allowing for
controlling the storage, sharing, and modification of
data.

Ganache A tool used for creating an Ethereum blockchain
environment.

solidity A smart contract object-oriented programming
language that was developed by Ethereum.

Remix Ethereum’s tool that helps developers program smart
contracts. It enables smart contract developers to
connect and push smart contracts to the Ethereum
blockchain.

DApps This refers to the decentralized, resilient,
transparent, and incentivized applications that
reside on blockchain infrastructures. These
applications are supposedly less prone to errors.

Backward
flow analysis Provides information about the future code along the

path of execution.
Forward
flow analysis Provides information about past code along the path

of execution.
Malvertising Android advertising malware (malvertising)

involves fraudulent behavior related to advertising
libraries.

Table 1. Terminology

Page 7411

