Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Developing a Zen Click Fraud Detection Framework that Uses Smart
Contracts

Sean Sanders
University at Buffalo
spsander @buffalo.edu

Abstract

Over 3,739 apps on average are published per
day on the Google Play store [I1]. A handful of the
applications contain advertisement malware referred to
as malvertising. As a result, Android advertisement
malware has been a growing multi-billion-dollar
problem. It constantly assaults many of the major
advertising libraries such as the Google, Facebook,
and Amazon. This paper presents an effective strategy
for countering advertising malware using dynamic
and static analysis techniques and the Soot compiler
framework. Our research aims to detect malvertising
click fraud in Android applications using the Soot
compiler framework and blockchain technology. But
the approach and the framework can be used to counter
mobile malware families.

1. Introduction/Motivation

Over the past several years, Google Play has
released around 100,000 Android apps per month [2].
Mobile malware has been a significant global problem.
According to McAfee, the development of mobile
malware is on the rise [3]. Based on their quarterly
report in 2019, they found that a total of 35 million
mobile malware programs have been produced. In
essence advertising click fraud is a prevalent and
growing threat to mobile advertisers.

Android advertising malware (malvertising)
involves fraudulent behavior related to advertising
libraries. There are two primary strategies employed by
advertising malware. The first involves the displaying
of fake advertising or hiding ads. The other technique
involves generating phony ad impressions. Malvertising
also includes the clicking of and ad without user
interaction. This typically occurs where a malicious
entity inserts malware code into an Android application.
There are numerous related malware families and
malware versions that utilize the primary strategies.
The top ten malware variants equate to 77% of malware

URI: https://hdl.handle.net/10125/80230
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

HYCSS

Lukasz Ziarek
University at Buffalo
Iziarek @buffalo.edu

activity in January 2021 [4].

App publishers need tools to counter the identified
and not-yet-identified malicious developers who are
coding applications that will engage in click fraud,
collect private information, and establish ransomware
beachheads. The toolsets being developed and
demonstrated are cutting-edge automated tools (refer to
the terminology table in the Appendix Terminology for
all definitions of terms used).

There are numerous domains where these tools
and technology can be applied. Specialized malware
forensic analysis tools could be developed for

1. Publishers needing a massive screening tool for a
quick review of any potential threats.

2. Publishers who are suspicious of the Android
code and want to insert auditing code to track app
state behavior.

3. Businesses and educational institutions where
users request app installation.

This research focuses on how to build and develop
an auditing framework to detect malvertising click fraud
found in the Zen malware family. To the best of our
knowledge, using multiple components such as online
malware identification, static and dynamic analysis,
and blockchain is a unique approach for detecting
click fraud. This is a unique approach because it
requires the integrations of several complex components
including the Soot compiler framework, blockchain
smart contracts, and the understanding intricate auditing
infrastructures.

1.1. Research Problem

The Zen Malvertising family is a complex system
of malware that has been known to participate in
advertisement click fraud in Android applications. The
Zen malware is part of the PHA (potentially harmful
application) family and is a relatively new family of
malware.

Page 7402

The Zen malware is dangerous because it uses root
privileges to gain access for inserting a rooting
trojan utilizing command-and-control servers.
Command-and-control servers are engine used by
the Zen family to communicate with the malware
that resides in the infected Android applications. The
command-and-control servers are typically used to tell
the application what actions to perform and when to
install malicious files on the Android device.

The Zen malvertising family’s complex nature and
behavior have led to the development of the forensic
auditing framework described in this paper. The
framework consists of an online component that assists
in quickly identifying the Zen malware associated with
the specific Android applications. The static component
involves detecting the location in the app to inject the
blockchain calls. The dynamic analysis component
helps identify if any click fraud occurred in the Android
application that has been identified as containing Zen
malware.

1.2. Research Question

Based on the prevalent issue of malvertising click fraud,
this leads to the following question.

The primary research question is: Is it possible to
model the Zen malware advertising family and create
a blockchain smart contract encoding that will store the
data and help forensic analysts with the detection of the
Zen malware family clicks fraud?

2. Related Work

To our knowledge, using the blockchain as
a mechanism for storing the advertisement fraud
information and helping with the detection of
advertising fraud behavior is a new and unique
approach. While it is unique, there are several other
detection systems that have been developed.

For example, there are four different strategies
for classifying malware using machine learning
approaches [5, 6]. The techniques include using static
or dynamic analysis, using both static and dynamic
analysis, using string analysis, or using classification
techniques. However, most of the machine learning
classification approaches do not deal with mobile
advertising fraud [7-15]. While most of the papers
focus on classifying malware, they do not focus on
mobile ad fraud detection.

Several papers discuss the role of machine
learning to discover and classify malware in Android
applications [5, 6, 16, 17]. Fung et al. created a
tool called RevMatch. The framework uses machine

learning to assist with the detection of malware [16].
RevMatch is a collaborative malware decision tool that
queries the labeled malware detection history from a
database. If limited information is returned from the
query, then the system uses partial matches to make
decisions on what the malware is classified as. The
authors compared multiple machine learning techniques
to compare the false positives and errors that result from
each technique.

The smart contract approach described here could
benefit from RevMatch’s approach for malware
detection by incorporating the RevMatch queries
approach into the Soot analysis framework. Their
approach would allow us to have a mechanism in place
to assist with deciding if a click was legitimate or not
legitimate during the dynamic analysis phase.

Hurrier et al. discuss the Euphony malware
classification tool [17]. Euphony uses malware labels
to classify malware, these labels are then applied to
each application using machine learning classification
taxonomy. The Euphony tool essentially assigns the
Android malware samples to malware families. One
of the benefits of this approach is that it does not
require prior knowledge of malware families for the
classification process. This approach is particularly
useful for our implementation because the Euphony
method can be directly applied to detect click fraud.

Shijo et al. introduce a method that uses static
and dynamic analysis techniques to detect malware in
Windows applications [6]. Their static analysis method
requires the extraction of printable string information
(PSI) and these strings can be used to assist with
detecting a malicious command-and-control servers.
Another nice feature of the Shijo et al. approach
is that they use machine learning vectors to assist
with the detection of malware using test and training
datasets [18]. Vectors in machine learning are tuples of
one or more scalar values. They also reported interesting
empirical results.

Their experimental results show an accuracy of
95.8% using static analysis, 97.1% using dynamic
analysis, and 98.7% using the integrated method to
predict malware threats. The Shijo et al. paper provide
an interesting solution for the application of using string
information and strings to help detect malware. String
analysis involves analyzing all of the stings inside an
Android application for potential threats. It would
be challenging to use this approach in our auditing
framework. However, it might be possible to adapt
this approach to the Soot framework by modifying the
process rules for backwards and forwards flow analysis.

Vecchio et al. developed a machine learning solution
for classifying malware using graph structures of the

Page 7403

strings that were created [5]. Their system uses a
three-step process for detecting malware. The first step
involves using static analysis to extract the strings. In the
next step, they use a feature space generator to extract
the compiler computations. In the final step they use
k-fold cross-validation and multiple machine learning
algorithms to assist with the malware classification.

The novel approach by Vecchio et al. achieves a
recall rate of 97% for classifying when an application
contains malware. It is theoretically possible that
our approach could adapt their approach and use
string analysis and string extraction to detect click
fraud. In summary leveraging the various machine
learning algorithms to assist with the detection of click
fraud in our Soot based smart contract framework has
potential. In particular they could assist with identifying
command-and-control servers.

Data flow analysis for tracking malware is another
common technique employed in the wild west of
malware detection. Fuchs et al. created an analysis tool
that facilitates automatic reasoning about the security
of Android applications [5]. The approach performs
incremental checking of the application and extracts the
Android applications’ manifest file, checks the security
specifications, and ensures compliance based on the data
flows. It is possible that our implementation could
use this approach to assist with detecting advertisement
click fraud through analyzing the data flows and where
to exactly inject the code. Data flow analysis is
particularly useful in detecting command-and-control
Servers.

Beaucamps et al. developed an alternative approach
to detecting malware via the abstraction of application
behaviors [19]. The behaviors were abstracted by
dynamically examining the program traces. Suspicious
behaviors were detected by comparing trace abstractions
to reference malicious behaviors. The authors opted
to have the execution traces represented as a trace
automation. The traces were reconstructed, which then
produces a representation, which is independent of the
program flow. Our framework could use this in our
auditing framework to assist with identifying dynamic
abstraction of program traces and behavior.

3. Zen Malware Family Click Fraud

The Zen malware family requires root privileges
on Android devices to work correctly [20]. The root
privileges allow the application to turn on accessibility
service (a service used to allow Android users with
disabilities to use their devices) for itself. This
is accomplished via writing to the Android security
mechanism called enabled_accessibility_services.

Zen, however, doesn’t check for root privileges; it
assumes it has it. Zen implements three accessibility
services directed at different Android API levels and
uses these accessibility services, chosen by checking
the operating system version, to create new Google
accounts [20]. This is accomplished via opening the
Google account creation process and parsing the current
view. The app will click on the appropriate buttons and
input boxes and sign up and it does not require user
interaction.

The developers of the Android security system
implemented a CAPTCHA process to stop hackers
from creating new accounts. Bypassing the security
mechanism requires that the app use its root privilege
to inject code into the Setup Wizard, then extract the
CAPTCHA image, and then send it to a remote server
to solve the CAPTCHA. Note, the Zen Trojan does not
implement any kind of code obfuscation except for the
use of one string that is linked to a server. The code
obfuscation string uses a Base64 encoding.

The malicious Android app also injects its own
code into the system_server process, which requires
root privileges [20]. This is most likely done to hide
from any anti-PHA systems that look for a specific app
process name. Or to hide from the Android app when it
examines memory to identify malicious processes. The
malware typically creates hooks to prevent the phone
from going to sleep, booting, or restarting. These
hooks are created by the Zen malware using the root
access and a custom native code called Lmt_INJECT.
The process used by the Zen malware family to infect a
system is demonstated in Figure 1. The first step used
by the Zen family is to turn off SELinux protection.
The SELinux protection is as a security mechanism to
combat malicious applications in Android applications.
In the next step, the app identifies an Android process
ID value to inject with code (this is accomplished via a
series of syscalls). The ”source process” refers to the
Zen trojan running as root, while the “’target process”
refers to the process to which the code is injected and
refers to the target process pid value [20].

4. Creating an Auditing Framework
(Proposed Solution/Methodology)

Creating an auditing framework consists of
integrating multiple components including the Virus
Total, static and dynamic analysis (Figure 2). The
first phase referred to as the online component related
to virus identification. This phase requires utilizing
VirusTotal to help classify the Android application’s
malware family. Classifying malware requires the use
of the original Android application’s hash value. The

Page 7404

Source Process

target process

inject_remote_process(target_pid, “inject.so”, “do_stuff”)

source

inject.so

target process

allocate memory

Figure 1. Zen overview Adapted from [20]

hash will then be sent to VirusTotal. VirusTotal will
then reveal the malicious details associated with an
Android application.

Analysis conceptual underpinning

Dynamic

Android Static
. | <—- | <—-
Analysis App

GELAH

Figure 2. Conceptual underpinning of the analysis

The second phase is the static analysis, where the
Android application has to be analyzed and where it is
necessary to determine where to inject the blockchain
calls. This requires that the Soot framework detects
where the ad clicks occur and then injects blockchain
calls. This step requires that there is a scan phase that
looks for the possible command-and-control servers
and the code associated with clicks. We discovered
through manual analysis that both Google and Amazon
Ad’s library has the same performClick function call.

The function call is associated with the clicking of an
advertisement. This makes it much easier to identify
clicking behavior. The third phase of the forensic
framework is the dynamic analysis. In this phase the
Android application is actually running and sending the
legitimate and illegitimate click fraud information to
the Ethereum smart contract on the blockchain. The last
step of the process monitors users interactions with the
auditing system.

All the coding details for the entire
process can be found at: (https://
github.com/SeanSandersPersonal/
Zen—-Click-Fraud-Detection-Framework).

4.1. Android Application Code Injection

There are two malvertizing fraud approaches used by
the Zen malware family. The first malicious interaction
involves a command-and-control server attacks. In this
approach the Zen server sends commands or program
code to the application to instruct the application to
engage in advertisement click fraud. The second
malicious interaction by the Zen family involves using a
custom advertising library to route the traffic from other
domain locations. This in effect tricks the advertisers
into thinking that the application advertisement came
from one legitimate application, where in reality it came

Page 7405

from many locations.

4.2. Decompiling Android applications and
Code Analysis

The Soot framework is the foundational platform for
analyzing the Zen malware family. The Soot framework
is to identify where the code clicks are occurring
is a powerful technique for preventing or deterring
advertisement click fraud. The Soot framework uses
an intermediate representation of the original Android
Java code (Jimple) and allows for the re-compiling of
the Android application with minimal effort. However,
there is a significant problem. The hard task for our
approach is determining where to inject the Ethereum
blockchain smart contract calls. Determining where to
inject the blockchain calls can be remedied by focusing
on how the Zen malware family behaves. Below is a list
of common Zen malware behaviors.

Zen malware behaviors include:

1. Programming the clicking of advertisements
without user interaction

2. Using a command-and-control server to execute
or perform clicks without user interaction

The first problem of detecting clicks without
any user interaction is difficult because it requires
understanding how the click fraud was coded.
Understanding how clicks are performed is important
because it will assist in understanding app behavior.

When using the Amazon Ad library to click on an
advertisement, the user initiates or performs the click
function. In the case of the Zen malware, this is
accomplished using the performClick function. Then to
ensure the ad is clicked, the setPressed function must
be set to true. Both of the functions mentioned must be
placed in a try catch statement in order to work.

When using the Soot framework, the forensic
analysis tool should pinpoint the location of the
performClick and setPressed function calls. When
performing the analysis, it is necessary that the function
calls only interact with the Amazon adView and not
another library. Note also, that performClick and
setPressed can be performed on buttons that are present
in any Android application. Once both performClick
and setPressed functions are found, the blockchain call
should be placed after the setPressed function call. This
is a critical step in the smart contract injection process.

Now let us focus on the second behavior, using
a command-and-control server to execute or perform
clicks without user interaction. Identifying code in
Android applications command-and-control server that
performs clicks can be very tricky. The primary reason

is that the bad guys can hide the communication and use
several linked libraries. For example, a linked library
could involve a third party library that makes calls to
Amazon’s ad library. The Soot framework is very adept
because the framework can perform many types of static
and dynamic analysis to detect these linkages.

The Soot framework has strong techniques for
conducting forward-flow analysis. Forward flow
analysis provides information about the future code and
paths of execution [21]. In essence, this means that it is
possible to check all the execution paths that exist. In
effect, this would provide insight into the paths leading
from and to the advertising libraries.

The next step in the Soot framework process
involves checking for all strings that contain external IP
addresses. This is a very labor intensive task using the
Soot framework. It was discovered that using the string
analysis approach has lead to insights into how to easily
discover the external IP addresses processes quickly.

The final step using the Soot framework involves
checking all of the saved execution paths and the
external IP addresses that Soot found. All of the
external IP addresses have to be sifted through to find
out exactly whether a command-and-control server was
used inside of the Zen malware. Finally, the VirusTotal
website https://www.virustotal.com/gui/
can be used to help with sifting through malicious IP
addresses that have been identified as being malicious.

4.3. Smart Contract Programming

In our approach, Ethereum Remix was used to create
the smart contract. Remix is a powerful tool that allows
users to program their smart contract through an online
graphical user interface and it enables them to push their
smart contracts to the private blockchain [21]. Remix
also allows users to test their smart contracts in real time.
This is very useful for individuals that are new to smart
contract programming.

4.4. Retrieving Data from The Ethereum
Blockchain

The rest of the discussion in this section will focus
on the smart contract code for retrieving information
from the smart contract struct in the blockchain.
The following code allows the users to retrieve the
information from the variables in the struct.

4.5. Blockchain Injection
Finding the appropriate place to inject smart contract

code into the Android application is the most difficult
task of monitoring and developing smart contract code

Page 7406

for the forensic tool. The question that must be answered
is where to place the appropriate blockchain calls in the
Android application. To answer this question, the jimple
code must be extensively examined and mapped.

Specifically, the process involves looking for Jimple
labels that consistently interact with the Android
framework and have the potential to be threats. Jimple
uses labels for the #ry and catch statements. The
objective is to look for the keyword performClick
function and bookmark the statement as having a
possibly malicious intent (Figure 3).

Dynamic

Static

3 Analyze the Android Application (=¥ Find places to nject the Code: > n

Android Run the ‘[
Application Application
Traverse smart contract

Figure 3. Flow overview

The next step involves identifying the setPressed
function. Knowing the names of the advertisement
clicking actions is helpful because the soot framework
provides the user with the ability to get function names.
The locations where the performClick and setPressed
functions reside can then be logged internally. On the
second pass of the Soot framework it is then possible
to inject the IncrementNonUserClickCount blockchain
function call into the Jimple code.

Initialization of the smart contract struct is necessary.
This is accomplished by injecting the smart contract
function call that initializes the struct inside of the
MainActivity. Inside the function parameter we have to
pass the Android application name as a parameter. The
SetAppName blockchain function call requires that the
Android application name is passed into the function.
In our example we use the following Java code:
Resources appR = ctx.getResources();

CharSequence txt = appR.getText(appR.getldentifier
(Cappname”,” string”, ctz.get PackageName()));

The final step of the injection process invovles
retrieving the app name from the Android application.
This requires that the txt variable to be passed to
the blockchain function call. This code would then
be inserted at the beginning of the OnCreate method
in the MainActivity of the Android application. To
successfully find the MainActivity class, the Soot
framework will have to find the entry points for the
Android application. This requires that the dynamic
entry points are extracted from the Android application
by getting the reachable methods. The reachable
methods are those which Soot can retrieve and have an

active body. An active body in Soot is the method body
that Soot retrieves from the Android application.

4.6. Malware Injection Leads to the Auditing
Process

The first step in the auditing decision process
involves the injection of smart contract blockchain
calls into applications using Soot (Figure 4). This is
necessary to ensure that the data is added to the smart
contract in the Ethereum blockchain. The next step
involves the interaction of the auditing system with the
Ethereum blockchain.

This enables the construction of a multi-layered
auditing reporting system. The auditing system is
constantly communicating with the smart contract. This
ensures that security specialists have the most up-to-date
information when examining the severity report that is
produced by the auditing system. The decision process
involves analyzing the fake advertisement click counts
and the number of external command-and-control IP
server addresses involved. This information is then used
to log the severity level. There are three severity levels,
green, yellow, and red used by the forensic analysis
framework.

The green level occurs when there are zero fake ad
clicks and zero for the number of command-and-control
server external IP addresses. A yellow level is logged
for an application when it has at least one fake ad click
count or one command-and-control server external IP
address count. The yellow alert indicates caution. A
red level alert is logged when there are more than one
fake ad count or more than one command-and-control
server with an external IP address. A red alert can also
be indicated when there is a combination of one fake
ad click and one command-and-control server with an
external IP address.

In our forensic analysis framework, the data can
be retrieved using Java or JavaScript. Java is
more commonly used in production based applications
whereas JavaScript is used in web-based programming.
This means that publishers can implement a web-based
application or a Java application for detecting malicious
intent.

The choice of whether to use Java or JavaScript
depends on whether the developers want the system
to be easily accessible, the programming knowledge
of the developers, and their expertise in computer
networking. For example, if the user wants a shareable
web-based application and they have expertise in
web-based programming, networking knowledge, and
smart contract programming knowledge, they might opt
to go the JavaScript web-based route.

Page 7407

Severity Report

Decision Process

Check if Fake Click Count is greater than zero mark the

severity level.

Check if External IP Addresses exist for the command-and-control servers.

Number of
. . Command-And-Contro
App Name Severity Level Fake Click Count cerver External IP
Address
CalcBlast Yellow 1 0
Ethereum Blockchain Star Catch Green 0 0
d Baseball Blitz Red 2 1
Smart Contract
Interacts with
Legitimate Click Count Fake Click Count the Smart O Outputs to the user
Contract L
Auditing System
Severity Level Chart
Command-and-control External IP Addresses
No counts for fake ad clicks or
Green command-and-control server
External IP Addresses

App contains at least 1 count for fake ad clicks

Yellow
or command-and-control server

App contains at least 2 count for fake ad clicks
or command-and-control server.
App contains at least 1 click count for fake
clicks and command-and-control server

00

a8

Log the severity level for each application

Zen Malware Examples

Suppose the Android app has a Fake Click Count of 1.
The severity level would be yellow. If the Click count
was 2 or greater the severity level would be red.

Suppose the Android app has no Fake Click counts,
but there is 1 command-and-control External IP
address, the severity level would be yellow. If the
command-and-control External IP address count was
greater than 1, the severity level would be red.

Figure 4. Zen Auditing Framework Overview

5. Evaluation

Using an Ethereum private blockchain was a better
solution than a public based blockchain because the
public blockchain has a slower transactions rate, and
costs are too high. This led to the conclusion of using
a private based blockchain. If a publisher was to
implement a forensic analysis framework, they would
have to use the geth console. The geth console is
a tool developed by Ethereum to help create private
blockchain environments. Publishers would implement
their infrastructure using a private blockchain because it
provides better control of the blockchain data and still
allows them to connect multiple computers to the same
private blockchain.

6. Conclusion and Future Work

This paper illustrates the development of an auditing
infrastructure that uses advanced compiler technology
and blockchain smart contracts to assist with detecting
click fraud. We believe the tool is a powerful and useful
tool for advertisement library developers who want to

track their applications using a private blockchain.

Injecting a blockchain call into an already packaged
Android application is complex, flexible, and useful
that companies can leverage to track and monitor
applications for security and auditing purposes.
Complexity should not deter our commitment to using
these tools. Decompilers, forward and backwards flow
analysis, code injection, and smart contract technologies
are the future of forensic malware analysis.

The limiting factors are the degree of understanding
the Soot framework, networking knowledge, malware
analysis knowledge, assembly language knowledge, and
programming stack knowledge. The Soot framework
is particularly useful because it has powerful compiling
and decompiling features. It also allows developers and
security analyst to provide dynamic and static analysis
in their implementations.

One interesting aspect of this research project,
is that we have essentially created malware to
inject private blockchain smart contract calls into
Android applications. The application developer could
theoretically create malware to track their Android
applications and to send immutable data to the private

Page 7408

blockchain. This is a double-edge sword because
hackers could of course maliciously use this knowledge
to inject malicious code into Android applications
without the consent of the user or Android app
developer.

Future work could also entail using machine learning
approaches along with various analysis techniques to
help with detecting whether click fraud exists in an
Android application. We believe that k-fold cross
validation and gradient boosting have the best potential.
Further options will be explored. There are a variety
of emerging malware research projects that may be
applicable to this research strain. For example, privacy
leakage detection [22], malware execution paths [23],
behavioral-based malware detection [24], automated
detection of botnets [25], and the network analysis of
malvertising [26].

An interesting description of the statistics and
the various techniques used in mobile malware
detection in production environments was introduced
by Chandramohan et al. [27]. A good overview of the
various mobile malware detection techniques has been
developed by Amro et al. [28].

It would also be interesting to explore if it is possible
to use dynamic analysis and computer networking to
help with detecting advertisement click fraud that occurs
from command-and-control servers. In particular we
would like to develop a framework that incorporates
networking data to identify click fraud that has occurred
from the command-and-control servers.

References

[1] “Google Play Store Stats and Facts You Should Know in
2021,” July 2019.

[2] “Number of monthly Android app releases worldwide
20217

[3] R. Samani, “McAfee Mobile Threat Report,” report,
2020.

[4] “Blog \textbackslashtextbar Top 10 Malware January
2021,” Feb. 2021.

[5] J. D. Vecchio, S. Y. Ko, and L. Ziarek, “Representing
string computations as graphs for classifying malware,”
in MOBILESoft ’20: IEEE/ACM 7th International
Conference on Mobile Software Engineering and
Systems, pp. 120-131, ACM. Type: Conference
Proceedings.

[6] P. V. Shijo and A. Salim, “Integrated Static and Dynamic
Analysis for Malware Detection,” Procedia Computer
Science, vol. 46, pp. 804-811, Jan. 2015.

[7] “Mobile Malware Analysis : Tricks used in Anubis.”

[8] L. Li, J. Gao, M. Hurier, P. Kong, T. F. Bissyandé,
A. Bartel, J. Klein, and Y. L. Traon, “AndroZoo++:
Collecting Millions of Android Apps and Their Metadata
for the Research Community,” arXiv:1709.05281 [cs],
Sept. 2017.

(9]

(10]

(1]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]
(21]

(22]

Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining
API-Level Features for Robust Malware Detection in
Android,” Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications
Engineering, pp. 86-103, Springer International
Publishing. Type: Conference Proceedings.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon,
and K. Rieck, “DREBIN: Effective and Explainable
Detection of Android Malware in Your Pocket,” Type:
Conference Proceedings.

S. Chakradeo, B. Reaves, P. Traynor, and W. Enck,
“MAST: triage for market-scale mobile malware
analysis,” WiSec 13, pp. 13-24, Association for
Computing Machinery. Type: Conference Proceedings.

M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant, “Semantics-aware malware detection,”
pp. 32-46. Type: Conference Proceedings.

J. Garcia, M. Hammad, and S. Malek, “Lightweight,
Obfuscation-Resilient Detection and Family
Identification of Android Malware,” ACM Transactions
on Software Engineering and Methodology, vol. 26,
pp. 11:1-11:29, Jan. 2018.

P. Cook and N. Stakhanova, “Android Malware
Classification through Analysis of String Literals,” 2016.

Z. Li, J. Sun, Q. Yan, W. Srisa-an, and Y. Tsutano,
“Obfusifier: Obfuscation-Resistant Android Malware
Detection System,” in Security and Privacy in
Communication Networks (S. Chen, K.-K. R. Choo,
X. Fu, W. Lou, and A. Mohaisen, eds.), pp. 214-234,
Springer International Publishing. Type: Conference
Proceedings.

C. J. Fung, D. Y. Lam, and R. Boutaba, “RevMatch:
An efficient and robust decision model for collaborative
malware detection,” in 2014 IEEE Network Operations
and Management Symposium (NOMS), pp. 1-9, May
2014.

M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F
Bissyandé, Y. L. Traon, J. Klein, and L. Cavallaro,
“Euphony: Harmonious Unification of Cacophonous
Anti-Virus Vendor Labels for Android Malware,” in
2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), pp. 425-435, May
2017.

J. Brownlee, “A Gentle Introduction to Vectors for
Machine Learning,” Feb. 2018.

P. Beaucamps, 1. Gnaedig, and J.-Y. Marion, “Behavior
Abstraction in Malware Analysis,” in Runtime
Verification (H. Barringer, Y. Falcone, B. Finkbeiner,
K. Havelund, I. Lee, G. Pace, G. Rosu, O. Sokolsky, and
N. Tillmann, eds.), Lecture Notes in Computer Science,
pp. 168-182, Springer, 2010.

“PHA Family Highlights: Zen and its cousins.”

S. Sanders and L. Ziarek, “A comparison and contrast
of APKTool and Soot for injecting blockchain calls into
Android applications,” in Proceedings of the 54th Hawaii
International Conference on System Sciences, Jan. 2021.

Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S.
Wang, “Applntent: analyzing sensitive data transmission
in android for privacy leakage detection,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer
& communications security, CCS *13, pp. 1043-1054,
Association for Computing Machinery, Nov. 2013.

Page 7409

(23]

[24]

[25]

(26]

(27]

(28]

[29]

A. Moser, C. Kruegel, and E. Kirda, “Exploring
Multiple Execution Paths for Malware Analysis,” in 2007
IEEE Symposium on Security and Privacy (SP ’07),
pp. 231-245, May 2007.

I. Firdausi, C. lim, A. Erwin, and A. S. Nugroho,
“Analysis of Machine learning Techniques Used in
Behavior-Based Malware Detection,” in 2010 Second
International Conference on Advances in Computing,
Control, and Telecommunication Technologies,
pp. 201-203, Dec. 2010.

J. Tallett, N. Agnese, M. Habiby, C. Soo, and M. LeRoy,
“The Shoe is a Lie: How an Android Botnet Defrauded
Advertisers and Consumers.”

A. Shabtai, L. Tenenboim-Chekina, D. Mimran,
L. Rokach, B. Shapira, and Y. Elovici, “Mobile malware
detection through analysis of deviations in application
network behavior,” Computers & Security, vol. 43,
pp- 1-18, June 2014.

M. Chandramohan and H. Tan, “Detection of Mobile
Malware in the Wild.”

B. Amro, “Malware Detection Techniques for Mobile
Devices,” SSRN Scholarly Paper ID 3430317, Social
Science Research Network, Rochester, NY, 2017.

L. Mearian, “What is blockchain? The complete guide,”
Jan. 2019. Publication Title: Computerworld.

Page 7410

Term Definition

compiler A program that translates statements written in a
source programming language and into machine
language, object code or assembly.

decompiler A program that translates machine language, object
code or assembly into a high level language such
Java.

bytecode A Tow-level representation of program code that has
been compiled. It can closely resemble assembly
language.

APK The Android Package Kit is used to distribute and for

the subsequent execution of an Android application.
It is similar to the exe format in Microsoft Windows.

code injection

The process of injecting statements into an
application at a specific location without disturbing
the flow of the application code.

soot framework

A compiler framework that is able to decompile and
compile Java code with the capability of analysing
and instrumenting Java code.

instrumentation Refers to the modification and analysis of a
programming language through the use of compiler
technology.

jimple An intermediate representation of Java code that
Soot generates as output.

blockchain A peer-to-peer network that allows for the sharing of
data among a vast number of peers [29]. All data
stored on the blockchain is immutable.

Ethereum A blockchain environment that allows the use of

blockchain smart contracts.

smart contract

A contract with written rules and terms allowing for
controlling the storage, sharing, and modification of
data.

Ganache

A tool used for creating an Ethereum blockchain
environment.

solidity

A smart contract object-oriented programming
language that was developed by Ethereum.

Remix

Ethereum’s tool that helps developers program smart
contracts. It enables smart contract developers to
connect and push smart contracts to the Ethereum
blockchain.

DApps

This refers to the decentralized, resilient,
transparent, and incentivized applications that
reside on blockchain infrastructures. These
applications are supposedly less prone to errors.

Backward
flow analysis

Provides information about the future code along the
path of execution.

Forward
flow analysis

Provides information about past code along the path
of execution.

Malvertising

Android advertising malware (malvertising)
involves fraudulent behavior related to advertising
libraries.

Table 1. Terminology

Page 7411

