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In many applications, the desire to express priority over communication arises. The

traditional approach to this is to give priority to threads (Mueller, 1993). In a shared mem-

ory model, where concurrent access is regulated by locks, this approach works well. The

trivial application of priority to message-passing languages, however, fails when mes-

sages are not just simple primitive values but communication protocols themselves (i.e.

first-class representations of communication primitives and combinators). These first-class

entities allow threads to perform communication protocols on behalf of their communi-

cation partners – a common paradigm in Android applications. For example, consider a

thread receiving a message carrying a protocol from another thread. It is unclear with

which priority the passed protocol should be executed – should it be the priority of the

sending thread, the priority of receiving thread, or a user-specified priority?

In message-passing models such as Concurrent ML (CML), threads communicate syn-

chronously according to the protocols constructed from send and receive primitives and

combinators. In CML, synchronizing on the communication protocol triggers the execu-

tion of the protocol. Importantly, CML provides selective communication, allowing for

computations to pick nondeterministically between a set of available messages or block

until a message arrives. As a result of nondeterministic selection, the programmer is unable

to impose preference over communications. If the programmer wants to encode preference,

more complicated protocols must be introduced, whereas adding priority to selective com-

munication gives the programmer to ability to specify the order in which messages should

be picked.

Adding priority to such a model is challenging. Consider a selective communication,

where multiple potential messages are available, and one must be chosen. If the selective

communication only looks at messages and not their blocked senders, a choosing thread

may inadvertently pick a low priority thread to communicate with when there is a thread

with higher priority waiting to be unblocked. Such a situation would lead to priority inver-

sion. Since these communication primitives must therefore be priority-aware, a need arises

for clear rules about how priorities should compose and be compared. Such rules should not

put an undue burden on the programmer or complicate the expression of already complex

communication protocols.

In this paper, we propose a tiered-priority scheme that defines prioritized messages as

first-class citizens in a CML-like message-passing language. Our scheme introduces the

core computation within a message, an action, as the prioritized entity. We provide a real-

ization of our priority scheme called PrioCML, as a modification to Concurrent ML. To

demonstrate the practicality of PrioCML, we evaluate its performance by extending an

existing web server and X-windowing toolkit. The main contributions of this paper are:

1. We define a meaning for priority in a message-passing model with a tiered-priority

scheme. To our knowledge, this is the first definition of priority in a message-

passing context. Crucially, we allow the ability for threads of differing priorities

to communicate and provide the ability to prioritize first-class communication

protocols.

2. We present a new language PrioCML, which provides this tiered-priority scheme.

PrioCML can express the semantics of polling, which cannot be modeled correctly

in CML due to nondeterministic communication.
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3. We formalize PrioCML using a novel approach to Concurrent ML semantics focus-

ing on communication as the reduction of communication actions. We leverage

this approach to express our tiered-priority scheme and prove several important

properties, most notably, freedom from communication derived priority inversions.

4. We implement the language PrioCML and evaluate its performance on the buyer-

seller protocol, Swerve web server, and the eXene windowing toolkit as well as

microbenchmarks.

This paper extends our previous work of PrioCML (Chuang et al., 2021) by providing

a formal semantics of PrioCML, a case study and discussion of the buyer-seller protocol,

added implementation details, as well as the tiered-priority scheme.

2 Background

We realize our priority scheme in the context of Concurrent ML (CML), a language exten-

sion of Standard ML (Milner et al., 1997). CML enables programmers to express first-class

synchronous message-passing protocols with the primitives shown in Figure 1. The core

building blocks of protocols in CML are events and event combinators. The two commu-

nication base events are sendEvt and recvEvt. Both are defined over a channel, a conduit

through which a message can be passed. Here sendEvt specifies putting a value into the

channel, and recvEvt specifies extracting a value from the channel. It is important to

note both sendEvt and recvEvt are the functions to construct events, and those events

do not perform their specified actions until synchronized on using the sync primitive.

Thus, the meaning of sending or receiving a value is the composition of synchronization,

and an event – sync (sendEvt(c, v)) will place the value v on channel c and, sync

(recvEvt(c)) will remove a value v from channel c. In CML, both sending and receiv-

ing are synchronous, and therefore, the execution of the protocol will block unless there is

a matching action.

The expressive power of CML is derived from the ability to compose events using

event combinators to construct first-class communication protocols. We consider two such

event combinators: wrap and choose. The wrap combinator takes an event e1 and a post-

synchronization function f and creates a new event e2. Note that the function f is a value

of type ’a -> ’b. When the event e2 is synchronized on, the actions specified in the orig-

inal event e1 are executed; then, the function f is applied to the result. Thus, the result of

synchronizing on the event e2 is the result of the function f.

To allow the expression of complex communication protocols, CML supports selec-

tive communication. The event combinator choose takes a list of events and picks an

event from this list to be synchronized on. For example, sync (choose([recvEvt(c1),

sendEvt(c2, v2)])) will pick between recvEvt(c1) and sendEvt(c2, v2) and

based on which event is chosen will execute the action specified by that event. The

semantics of choice depends on whether any of the events in the input event list have a

matching communication partner available. Simply put, choose picks an available event,

if only one is available, or nondeterministically picks an event from the subset of available

events out of the input list. For example, if some other thread in our system performed

sync (sendEvt(c1, v1)), then choose will pick recvEvt(c1). However, if a third
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Fig. 1. Core CML primitives.

thread has executed recvEvt(c2), then choose will pick nondeterministically between

recvEvt(c1) and sendEvt(c2, v2). If no events are available, then choose will block

until one of the events becomes available. The always event (alwaysEvt) creates an event

that is always available and returns the value it stores when synchronized on. Always

events are useful for providing default behaviors within choice. Dually, the never event

(neverEvt) creates an event that is never available. If part of a choice, it can never be

selected, and if synchronized on directly, the synchronization will never complete. This is

useful for providing general definitions of constructs using choice.

A key innovation in the development of CML was support for protocols as first-class

entities. Specifically, this means a protocol, represented by an event, is a value and can

itself be passed over a channel. Once an event has been constructed from base events and

event combinators, it can be communicated to another participant. This is the motivation

for the division of communication into two distinct parts: the creation of an event and

the synchronization on that event. In CML, the first-class nature of events means these

phases may happen a different number of times and on different threads. In CML programs,

first-class events provide an elegant encoding of call-back like behaviors.

3 Motivation

The desire for priority naturally occurs anywhere we wish to encode preference. Consider

the Buyer-Seller protocol, commonly used an example protocol in both distributed sys-

tems (Ezhilchelvan & Morgan, 2001) and session types work (Vallecillo et al., 2006). The

protocol is a model of the interactions between a used book seller and a buyer negotiating

the price for a book. We consider the variant in which there are two buyers submitting

competing bids on a book from the seller. The seller receives the offers one at a time and

solicits another offer if the offer is rejected. The protocol progresses until a buyer places

an offer that the seller accepts. We can implement this protocol in CML by giving each

buyer a channel along which they can submit bids to the seller. The seller selects a bid

using the CML choose primitive to nondeterministically select a pending offer. The syn-

chronous nature of CML send means that a buyer may only submit one bid at a time; they

are blocked from executing until the bid is chosen. The core of this protocol is shown in

Figure 2. We use the CML wrap event combinator to attach a label to the bid indicating

which buyer it was received from.

Observe the choose primitive is entirely responsible for picking which buyer gets a

chance to submit a bid. Although we express no preference in this protocol, the seman-

tics of choose in CML are nondeterministic. Thus, while we would like for both buyers to
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Fig. 2. The two buyer-seller protocol.

have equal opportunity to submit bids, CML provides no guarantee of this. Fundamentally,

what we desire is a notion of fairness in the choice between the buyers. We roughly expect

that the nondeterministic selection grants both buyers equal chance to be chosen. If the

selections each round are statistically independent however, one buyer may, by chance, be

able to place a significantly larger number of offers. This is because the number of bids

placed has no influence on the selection in the next round. If a buyer is unlucky, they may

be passed over several rounds in a row. To combat this CML integrates a heuristic for pre-

venting thread starvation. That heuristic will attempt to prevent one buyer from repeatedly

being selected, but makes no guarantees. We examine the effectiveness of this heuris-

tic in Section 6.2. With priority, we could encode a much stronger fairness property. If we

could express a preference between the buyers based on number of previous bids, we could

enforce a round-robin selection that would guarantee the buyers submit an equal number

of bids. The addition of priority would allow the programmer to control the undesirable

aspects of nondeterminism in the system.

Where to add priority in the language, however, is not immediately clear. In a message-

passing system, we have two entities to consider: computations, as represented by threads,

and communications, as represented by first-class events. In our example, the prioritized

element is communication, not computation. If we directly applied a thread-based model

of priority to the system, the priority of that communication would be tied to the thread

that created it. To prioritize a communication alone, we could isolate a communication

into a dedicated thread to separate its priority. While simple, this approach has a few major

disadvantages. It requires an extra thread to be spawned and scheduled. This approach also

is not easily composed, with a change of priority requiring the spawning of yet another

thread. A bigger issue is that the introduction of the new thread would then pass the com-

munication message to the spawned thread, and the original thread is then unblocked as

the message is sent to the spawned thread. This breaks the guarantee that the sent value

will have been received in the continuation of the send that the synchronous behavior of

CML provides. When communication is the only method to order computations between

threads, this is a major limitation on what can be expressed.

Instead, consider what happens if we attach priority directly to communication. In the

case of CML, since communications are first-class entities, this would mean prioritiz-

ing events. Assume we extend our language with new forms of events, like sendEvtP
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Fig. 3. The prioritized two buyer-seller protocol.

and recvEvtP which take an additional parameter that specifies the priority as shown in

following type signature

sendEvtP: ’a chan * ’a * prio -> unit event
recvEvtP: ’a chan * prio -> ’a event

We can use these new primitives to realize a prioritized variant of the protocol as code

shown in Figure 3. Each receive event is wrapped with a post-synchronization function

that increases the priority of the other buyer. This means that the higher priority will go to

the buyer that has submitted fewer bids. PrioCML choice will always pick the event with

highest priority within a selection.

This need to express a preference when presented with nondeterminism occurs in many

CML programs. Consider as another example a web server written in CML. For such a

server, it is important to handle external events gracefully and without causing errors for

clients. One such external event is a shutdown request. We want the server to terminate,

but only once it has reached a consistent state and without prematurely breaking client con-

nections. Conceptually, each component needs to be notified of the shutdown request and

act accordingly. We can elegantly accomplish this by leveraging the first-class events of

CML. If a server is encoded to accept new work via communication in its main processing

loop, we can add in shutdown behavior by using selective communication. Specifically,

we can pick between a shutdown notification and accepting new work. The component

can either continue or begin the termination process. However, by introducing selective

communication, we also introduce nondeterminism into our system. The consequence is

that we have no guarantee that the server will process the shutdown event if it consis-

tently has the option to accept new work. The solution is to again use priority to constrain

the nondeterministic behavior. By attaching a higher priority to the shutdown event, we

express our desire that given the option between accepting new work and termination, we

would prefer termination.

While event priority allows us to express communication priority, we still desire a way

to express the priority of the computations. In the case of our server, we may want to give a

higher priority to serving clients over background tasks like logging. The issue here is not

driven by communications between threads but rather competing for computation. As such,

we need a system with both event (communication) and thread (computation) priority.
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The introduction of priorities in computation presents several problems when integrated

with synchronous message-passing. Considering the priorities of threads and events in iso-

lation gives rise to priority inversion caused by communication. Priority inversion happens

when communication patterns result in a low priority thread getting scheduled in place of

a high-priority thread due to a communication choosing the low priority thread over the

high-priority one. This arises because we have no guarantee that the communication prior-

ities agree with the thread priorities. To see this effect, consider the CML program shown

in code where we use TP to annotate the thread priority as high, medium, or low priority.

[TH ] sync (sendEvt (c1 , v1))
[TM ] sync (sendEvt (c2 , v2))
[TL] sync (choose [recvEvt (c1), recvEvt (c2)])

The programmer is free to specify event priorities that contradict the priorities of threads.

Therefore, to avoid priority inversion, we must make choose aware of thread priority. A

naive approach is to force the thread priority onto events. That is, an event would have

the priority equal to that of the thread that created it. We can realize this approach in this

example by changing sendEvt and recvEvt to sendEvtP and recvEvtP with thread

priorities as the arguments. At first glance, it seems to solve the problem that shows up in

the example above. The choice in TL now can pick recvEvtP(c1, LOW) as the matching

sendEvtP(c1, v1, HIGH) comes from TH . This approach effectively eliminates event

priorities, reviving all of the above issues with a purely thread-based model.

The desirable solution is to combine the priorities of the thread and the event. In order

to avoid priority inversion, the thread priority must take precedence. This scheme resolves

the problem illustrated. To resolve choices between threads of the same priority, we allow

the programmer to specify an event priority. This priority is considered after the priority

of all threads involved. This allows the message in our shutdown example to properly take

precedence over other messages from high-priority threads.

This scheme is nearly complete but is complicated by CML’s exposure to events as

first-class entities. Specifically, events can be created within one thread and sent over a

channel to another thread for synchronization. When that happens, applying the priority of

the thread that created the event brings back the possibility of priority inversion. To see

why, consider the example in code:

[TH ] sync (sendEvt(c3 , sendEvt(c2 , v2))); sync(sendEvt(c1 , v1))
[TM ] sync (recvEvt(c3))
[TL] sync (choose ([ recvEvt(c1), recvEvt(c2)]))

In this example, TH sends a sendEvt over the channel c3 which will be received and

synchronized on by TM . It is to be noted that this sendEvt will be at the highest priority

(which was inherited from its creator TH ) even though it is synchronized on by TM . TH

then sends out a value v1 on channel c1. TL has to choose between receiving the value

on channel c1 or on channel c2. Since TH and TM are both of higher priority than TL,

they will both execute their communications before TL does. Thus, TL will have to make

a choice between either unblocking TM or TH (by receiving on channel c2 or c1 respec-

tively). Recall that the priority is determined by the thread that created the event and not

by the thread that synchronizes it in the current scenario. Therefore, this choice will be

nondeterministic; both communications are of the same priority as those created by the
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same thread. TL might choose to receive on channel c2 and thus allow the medium priority

thread TM to run while the high-priority thread TH is still blocked – a priority inversion.

The important observation to be made from this example is that priority, when inherited

from a thread, should be from the thread that synchronizes on an event instead of the thread

that creates the event. This matches our intuition about the root of priority inversion, as the

synchronizing thread is the one that blocks, and priority inversion happens when the wrong

threads remain blocked.

We have now reconciled the competing goals of user-defined event priority and

inversion-preventing thread priority. In doing so, we arrive at a tiered-priority scheme. The

priority given to threads takes precedence, as is necessary to prevent priority inversion. A

communication’s thread priority inherits from the thread that synchronizes on the event, as

was shown to be required. When there is a tie between thread priorities, the event priority

is used to break it. We note that high-priority communications tend to come from higher

priority computations. Thus, this approach is flexible enough to allow the expression of

priority in real-world systems.

4 Semantics

We now provide a formal semantics of PrioCML. Prior semantic frameworks for CML

(e.g. Reppy, 2007; Ziarek et al., 2011) maintain per-channel message queues. This closely

mirrors the main implementations of CML. To introduce priorities, we must assert that

prioritization is correct with respect to all other potential communications. These proper-

ties can be expressed more clearly when the full set of possible communications is readily

accessible. We thus model our semantics on actions, which encode the effect to be pro-

duced by an event and represent an in-flight message. These actions are kept in a single

pool called the action collection. In Section 5, we show how these semantics can be realized

as a modification to existing CML implementations with per-channel queues.

4.1 The PrioCML communication lifecycle

Before defining the semantics, we explore the process of PrioCML communication in

the abstract, highlighting several key steps in the lifecycle. To express a communica-

tion, a programmer starts by creating an event. Themselves values, events represent a

series of communication steps to be enacted and are constructed by taking a small set of

base events, and applying event combinators to construct a desired communication. Base

events in PrioCML come in one of four forms: send, receive, always, and never. Send

and receive allow synchronous communication over channels. Always and never represent

single ended communications that can either always succeed immediately or will block

forever. While useful in defining generic event combinators, they will also play a crucial

internal role in the given PrioCML semantics by capturing the state of inactive threads.

Each base event has a matching constructor ( sendEvtP , recvEvtP , alwaysEvt , and

neverEvt ). These can be freely combined using event combinators (e.g. choose, wrap)

and passed along channels as first-class values.

Event values have the form ε [ q ], where q is one of following action-generating prim-

itive: sendAct , recvAct , alwaysAct , neverAct , chooseAct , and wrapAct . The
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event context ε does not contain any event information but represents that no further reduc-

tion of the action-generating primitives is possible until synchronization. This delineation

is important as it means the actions are generated at synchronization time and thus inherit

the thread priority of the synchronizing thread and not the thread which created the event

value.

When it is time for the enclosed communication steps (protocol) to be enacted, the sync

primitive is used to perform event synchronization. The action-generating primitive inside

the event context is reduced to a set of actions. For each base event type, there is a cor-

responding action. These actions represent the effect of a potential communication. In the

case of a choice event, there may be multiple actions generated as there may be multiple

potential (but mutually exclusive) communications. As each synchronization has exactly

one result, we conceptualize any synchronization as being a choice between all of the

generated actions. Nested choices are effectively flattened, and base events interpreted as

choices with one element. Each action carries a choice id, a tag which uniquely identifies

the synchronization that created it. This is used to prevent multiple actions from a single

synchronization from being enacted.

Upon synchronization, the new actions are added to the action collection, a pool of all

actions active in the system. From this pool, communication is chosen by an oracle which

implements the prioritization. If the oracle picks a communication that is an always action,

the enclosed value is given to the corresponding thread to restart execution. A communi-

cation can also be a pair of send and receive actions. In this case, any competing actions

from the same choices are removed, the value is passed to form two always actions (one

with the passed value for the receiving end and one with a unit value for the sending end),

and the always actions thrown back into the pool. The selection process is then repeated

until an always action is chosen, thereby passing a value to a thread and unblocking it.

We note that synchronization serves as the context switching point. A thread stops exe-

cution upon synchronizing, and the thread corresponding to the selected action takes its

place. A fundamental property of our system (4.23) is that the thread executing always has

the highest possible priority. In our system, this property can only be invalidated upon a

communication, which requires synchronization and thus gives the system an opportunity

to context switch.

4.2 Semantic rules

The syntax of our formalism is given in Figure 4. We define a minimal call-by-value

language with communication primitives. We use q to define communication event prim-

itives, which must appear wrapped in an event context ε [ q ]. Such a context prevents the

reduction of the inner event until synchronization, at which point the thread information is

captured. Event contexts are never encoded by the programmer directly but instead gener-

ated by the event primitive expressions. The full set of expressions is represented by e and

values by v.

Our program state is a triple of a currently executing thread (T), a collection of sus-

pended threads
(

T
)

, and a collection of current actions (α). A thread contains a thread

id (t) coupled with a thread priority of HIGH, MED, or LOW, and a current expression in

an evaluation context E [ · ]. We assume thread ids to be opaque values supporting only
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x ∈ Ident

f ∈ Function

c ∈ ChannelID

ω ∈ ChoiceID

ε [ q ] ∈ Event

t ∈ ThreadID

pe ∈ EventPrio := N

pt ∈ ThreadPrio = LOW | MED | HIGH

p = (pt, pe) ∈ ActionPrio = ThreadPrio × EventPrio

αω,f ,p ∈ Action := A
ω,f ,p
v | S

ω,f ,p
c,v | Rω,f ,p

c | Nω,f ,p

α ∈ ActionCollection = 2Action

γ ∈ Comm :=
〈

A
ω,f ,p
v

〉

|
〈

S
ω,f ,p
c,v , Rω′,f ′,p′

c

〉

γ ∈ CommCollection = 2Comm

q ∈ Prim := alwaysAct (v, pe) | neverAct (pe) | sendAct (c, v, pe)

| recvAct (c, pe) | chooseAct (ε [ q1 ] , . . . , ε [ qn ]) | wrapAct (q, e)

v ∈ Val := () | c | p | λx.e | ε [ q ]

e ∈ Exp := v | x | e e | sync e | ch ()

| alwaysEvt (e, e) | neverEvt ()

| sendEvt (e, e, e) | recvEvt (e, e)

| choose (e, . . . , e) | wrap (e, e)

| spawn (e, e)

E := • | E e | v E | sync E

| alwaysEvt (E, e) | alwaysEvt (v, E)

| sendEvt (E, e, e) | sendEvt (c, E, e) | sendEvt (c, v, E)

| recvEvt (E, e) | recvEvt (c, E)

| choose (E, . . . , e) | choose (ε [ q ] , . . . , E)

| wrap (E, e) | wrap (v, E)

| spawn (E, e) | spawn (v, E)

T =
(

tpt , e
)

∈ Thread = ThreadID × ThreadPrio × Exp

T ∈ ThreadCollection = 2Thread

〈T〉 T ,α ∈ State = Thread × ThreadCollection × ActionCollection

Fig. 4. Core syntax.
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equality. A program begins execution with a single thread containing the program as its

expression and an empty thread collection and action collection.

Actions, representing the communication action to be effected by an event, can be one of

four varieties: always
(

A
ω,f ,p
v

)

, send
(

S
ω,f ,p
c,v

)

, receive
(

Rω,f ,p
c

)

, or never
(

Nω,f ,p
)

. Actions

carry a choice id ω, a wrapping function f , a priority (containing both a thread priority

pt and a non-negative integer event priority pe) p, and if appropriate a channel c or value

v. The choice id ω uniquely identifies the choice to which the action belongs and thus the

corresponding thread. We note that channels in our semantics are not a structure that stores

pending actions, but merely a tag used to determine if a send and receive action can be

paired. Actions that are able to be enacted are represented by communications (γ ), which

can consist of either a lone always action
〈

A
ω,f ,p
v

〉

or a matching pair of send and receive

actions
〈

S
ω,f ,p
c,v , Rω′,f ′,p′

c

〉

. We note that the channel must match between the send and receive

actions in a communication. We refer to a set of actions (communications, threads) as an

action collection α (communication collection γ , thread collection T), which is an element

of the power set of actions (communications, threads).

Program steps are represented by state transitions →. We define several auxiliary rela-

tions used in defining the program step. Selection � maps an action collection to the

chosen action and an action collection containing all action still valid after that choice. We

note that section is a relation, and any one of multiple valid choices may result from a

given action collection. Action generation →֒ creates an action from an action primitive,

a thread priority, and a choice id. Communication generation ⇒α is a relation between an

action and all possible communications involving that action, parameterized by the set of

available actions. We adopt the convention that when applied to a set of actions, the com-

munication generation relation maps to the union of all sets resulting from the application

of the relation to each element of the input set.

→ ∈ State → State

� ∈ ActionCollection → Comm × ActionCollection

→֒ ∈ Prim × ThreadPrio × ChoiceID → ActionCollection

⇒α ∈ ActionCollection → 2Action ×Comm

� ∈ CommCollection → Comm

≤prio ∈ Comm × Comm

Function application is defined in the rule APP. Channel creation happens when a

channel expression is evaluated (rule CHAN), and a new channel id c is generated.

〈(

tpt , E [ (λx.e) v ]
)〉

T ,α
→

〈(

tpt , E [ e [ v/x ] ]
)〉

T ,α

(APP)

c fresh
〈(

tpt , E [ ch() ]
)〉

T ,α
→

〈(

tpt , E [ c ]
)〉

T ,α

(CHAN)

Threads are created through the spawn primitives with a user-specified priority. Spawn

broken up in two cases, SPAWN-NPREEMPT and SPAWN-PREEMPT. These two rules cover

the cases of spawning a thread with lower or higher priority, respectively. We distinguish
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here because we wish to maintain the invariant that the highest priority thread able to make

progress is the one executing. If the thread we are spawning has lower (or equal) priority,

we can continue executing the current thread. We add the newly spawned thread to the

thread collection by blocking it on an always action
(

A
ω,λx.x,p′

unit

)

and adding that action

to the action collection
(

α′
)

. This preserves the invariant that all threads in the thread

collection are blocked synchronizing on a choice (here, a choice of one action). If it is

the case that the newly created thread has a higher priority than the one executing, we

must switch to it immediately. To switch threads, we block the currently executing thread

by synchronizing on an always action with the event priority equal to zero. We then set

the new thread as the currently executing thread. In both cases, the expression that forms

the body is the composition (represented by the function composition operator, ◦) of the

always synchronization, the function e given to spawn, and a synchronization on a never

event at thread completion. This approach avoids the complication of removing the threads

from the collection and ensures that the thread will cease execution. As its name implies,

a never action cannot be part of communication and thus will not be selected.

t′ fresh ω fresh p′
t ≤ pt p′ =

(

p′
t, 0

)

α′ = α ∪
{

A
ω,λx.x,p′

unit

}

T
′
= T ∪

{(

t′
p′

t
, (λx.sync neverEvt) ◦ e ◦ sync ω

)}

〈(

tpt , E
[

spawn
(

e, p′
t

) ])〉

T ,α
→

〈(

tpt , E [ unit ]
)〉

T
′
,α′

(SPAWN-NPREEMPT)

t′ fresh ω fresh p′
t > pt p = (pt, 0)

α′ = α ∪
{

A
ω,λx.x,p
unit

}

T
′
= T ∪

{(

tpt , E [ sync ω ]
)}

〈(

tpt , E
[

spawn
(

e, p′
t

) ])〉

T ,α
→

〈(

t′
p′

t
, ((λx.sync neverEvt) ◦ e) unit

)〉

T
′
,α′

(SPAWN-PREEMPT)

Following rules form the mechanism by which an event is evaluated. For each base

action, there is a corresponding event primitive. Each event is reduced to an action-

generating function inside an event context ε. Note that the action-generating function only

carries the event priority and not the thread priority. This is because this reduction happens

at event creation time and not event synchronization time. If we were to capture the thread

priority at this point, it would allow for priority inversion as outlined in Section 3.

〈(

tpt , E [ alwaysEvt (v, pe) ]
)〉

T ,α
→

〈(

tpt , E [ ε [ alwaysAct (v, pe) ] ]
)〉

T ,α

(ALWAYSEVT)

〈(

tpt , E [ sendEvt (c, v, pe) ]
)〉

T ,α
→

〈(

tpt , E [ ε [ sendAct (c, v, pe) ] ]
)〉

T ,α

(SENDEVT)

〈(

tpt , E [ recvEvt (c, pe) ]
)〉

T ,α
→

〈(

tpt , E [ ε [ recvAct (c, pe) ] ]
)〉

T ,α

(RECVEVT)

〈(

tpt , E [ neverEvt ]
)〉

T ,α
→

〈(

tpt , E [ ε [ neverAct ] ]
)〉

T ,α

(NEVEREVT)
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Send to me first: Priority in synchronous message-passing 13

The rules CHOICEEVT and WrapEvt expand the event context ε, the new context

will have chooseAct and wrapAct, respectively. Both chooseAct and wrapAct

enclose their inner actions and then unpack it upon the synchronization. We also note that

nested choices retain their nested structure at this stage (rule CHOICEEVT); for example,

a choose event is in the list of another choose event. These are later collapsed in the rule

CHOICEACT.

〈(

tpt , E [ choose (ε [ q1 ] , . . . , ε [ qn ]) ]
)〉

T ,α
→

〈(

tpt , E [ ε [ chooseAct (q1, . . . , qn) ] ]
)〉

T ,α

(CHOICEEVT)

〈(

tpt , E [ wrap (ε [ q ] , f ) ]
)〉

T ,α
→

〈(

tpt , E [ ε [ wrapAct (q, f ) ] ]
)〉

T ,α

(WRAPEVT)

The action semantics deal with the process of synchronizing on an action. They are aided

by an auxiliary relation, the action generation operator →֒. In the simplest case, shown in

the rule ALWAYSACT, a single always action-generating function is transformed into the

corresponding always action. Note that this rule is where the thread priority is incorporated

into the action because this reduction happens at synchronization. Therefore, we capture

the thread priority of the thread that will be blocked by this action, as is necessary for

our desired properties to hold (see Theorem 4.23 and Lemma 4.22). The rules SENDACT

and RECVACT work similarly. In the more complex case of choice, handled by the rule

CHOICEACT, we need to combine all of the actions produced by the events being com-

bined, as a choice can result in multiple actions being produced. In the case of a nested

choice operation, the rule applies recursively, taking the union of all generated actions and

effectively flattening the choice. For rule WRAPACT, the wrap operation also relies on the

action set and maps each action in the set to an action with the function to wrap composed

with the wrapping function f of each action.

p = (pt, pe)

alwaysAct (v, pe) , pt, ω →֒
{

A
ω,λx.x,p
v

} (ALWAYSACT)

p = (pt, pe)

sendAct (c, v, pe), pt, ω →֒
{

S
ω,λx.x,p
c,v

} (SENDACT)

p = (pt, pe)

recvAct (c, pe) , pt, ω →֒
{

R
ω,λx.x,p
c

} (RECVACT)

p = (pt, 0)

neverAct, pt, ω →֒
{

Nω,λx.x,p
} (NEVERACT)

∀i qi, pt, ω →֒ αi α =
⋃

i αi

chooseAct (q1, . . . , qn) , pt, ω →֒ α
(CHOICEACT)

q, pt, ω →֒ α α′ =
{

αω,λx.e ◦f | αω,f ∈ α
}

wrapAct (q, λx.e) , pt, ω →֒ α′
(WRAPACT)
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14 C.-E. Chuang et al.

The actual synchronization is defined by the rule SYNC. It generates a fresh choice id

ω, as each choice id conceptually represents a single synchronization operation and con-

nects the synchronizing thread to the actions in the action collection. The action generation

operator →֒ is then used to create the set of new actions
(

α′
)

to be added to the action col-

lection. This set of new actions is combined with the existing actions (α) to derive the

intermediate action collection α′′. This collection is then fed into the selection relation �

to obtain the chosen communication and the new action collection α′′′. The SYNC rule

requires that this communication be an always. If not, it must be a send-receive pair, and

thus, the rule REDUCEPAIR can be applied repeatedly until an always communication is

selected. The oracle is responsible for selecting a communication as described in ORACLE.

The choice id ω′ from the chosen communication is used to select the correct thread out of

the thread collection. Because the chosen communication may belong to the currently exe-

cuting thread, which is not in the thread collection T , we must search the set of all threads

T
′′
. Upon finding the desired thread, we remove it from the set of all threads to obtain

the new thread collection T
′′
. Lastly, we must continue executing the resumed thread by

applying the wrapping function f to the value stored in the action.

ω fresh q, pt, ω →֒ α′ α′′ = α ∪ α′

α′′
�

〈

A
ω′,f ,p
v

〉

, α′′′ T
′′

= T ∪
{(

tpt , E [ sync ω ]
)}

(

t′
p′

t
, E′

[

sync ω′
]

)

∈ T
′′

T
′
= T

′′
−

{(

t′
p′

t
, E′

[

sync ω′
]

)}

〈(

tpt , E [ sync ε [ q ] ]
)〉

T ,α
→

〈(

t′
p′

t
, E′ [ f v ]

)〉

T
′
,α′′′

(SYNC)

Now com the rules that govern the grouping of actions from the action collection

into communications. A communication γ is either a single always action or a send

and receive pair. The communication generating operator ⇒α is parameterized by α the

action collection it is operating in. We define the operator over a single action in the rules

COMMALWAYS and COMMPAIR, then adopt the convention that application of the oper-

ator to a set produces the image of that set, which is a set of all possible outputs of the

operator from the elements of that input set. We note that in the rule COMMPAIR we only

operate on send actions and ignore receive actions. We do assert, however, that a com-

patible receive action is present in the set and generates one possible output (and thus

communication) for each receive action. This choice is arbitrary, but either the sends or

the receives must be ignored as inputs to prevent duplicate entries in the communication

set. Further, the channel of the send and receive actions must match. Here the channel

ids are treated as a tag which indicates which send and receive actions are allowed to be

paired.

γ =
〈

A
ω,f ,p
v

〉

A
ω,f ,p
v ⇒α γ

(COMMALWAYS)

R
ω′,f ′,p′

c ∈ α γ =
〈

S
ω,f ,p
c,v , R

ω′,f ′,p′

c

〉

S
ω,f ,p
c,v ⇒α γ

(COMMPAIR)

The remaining next rules define the selection relation �. This relation maps an action

collection to a chosen communication and an action collection. This new action collection

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press



Send to me first: Priority in synchronous message-passing 15

contains all of the actions that do not conflict with the chosen communication. This is

critical in the case of choice, as it removes all unused actions generated during the choice.

In the simplest case, there is an always communication that is chosen by the oracle. This

behavior is defined in the rule PICKALWAYS. Here the communication collection γ is

generated from the action collection α, and the oracle � is invoked. The action collection

is then filtered to remove any actions with a choice id ω′ matching the chosen action’s ω.

The always communication chosen by the oracle is returned, along with the filtered action

collection α′.

In the more complicated case, the oracle picks a send-receive communication. Then the

rule PICKPAIR applies. Similar to PICKALWAYS, we generate the communications, pick

one, and filter out all actions that conflict with either action in the communication. Note that

PICKPAIR results in a send-receive communication as the output of the selection relation

�. However, in order to continue the execution of a thread, the SYNC rule requires that

right side of the relation be an always communication.

α ⇒α γ � (γ ) =
〈

A
ω,f ,p
v

〉

α′ =
{

αω′,f ′
∈ α | ω 
= ω′

}

α �

〈

A
ω,f ,p
v

〉

, α′
(PICKALWAYS)

α ⇒α γ � (γ ) =
〈

S
ω,f ,p
c,v , R

ω′,f ′,p′

c

〉

α′ =
{

αω′′,f ′′,p′′
∈ α | ω′′ 
= ω ∧ ω′′ 
= ω′

}

α �

〈

S
ω,f ,p
c,v , R

ω′,f ′,p′

c

〉

, α′
(PICKPAIR)

In order to output an always communication from the send-receive communication

in rule PICKPAIR, we apply the recursive rule REDUCEPAIR (rule at the bottom). If

the selection over an action collection results in a send-receive pair as communication,

we can reduce the send and receive to a pair of always actions and retry the selection.

Conceptually, the send and receive actions are paired, and the values are passed through

the channel. Each resultant always action carries the value to be returned: unit for the

send and v for the receive. Those are added to the action collection, which is then used in

the recursive usage of the selection relation �

Rule REDUCEPAIR is what makes selection a relation and not a true functional map. This

rule is necessary to create an invariant fundamental to the operation of these semantics: if

there exists a member of the relation α � γ , α′, then there exists a member α � γ ′, α′,

where γ ′ is an always communication. This stems from the ability to apply REDUCEPAIR

if the relation can produce a send-receive pair. Note that ω 
= ω′ assert the two actions

of the pair γ are from different threads since each choice id ω and ω′ is generated upon

synchronization. Once this rule is applied, there is an always action in the collection that

has the priority inherited from the original send-receive communication. We know this

priority to be (at least tied as) the highest. As a consequence, any action collection that can

produce a communication can produce an always communication, as required by SYNC.

α �

〈

S
ω,f ,p
c,v , R

ω′,f ′,p′

c

〉

, α′ α′ ∪
{

A
ω,f ,p
unit, A

ω′,f ′,p′

v

}

� γ , α′′ ω 
= ω′

α � γ , α′′
(REDUCEPAIR)

Conceptually, REDUCEPAIR encodes the act of communication in our system. The pair-

ing of the send and receive and subsequent replacement by always actions is where values
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16 C.-E. Chuang et al.

are passed from the sender to the receiver. We believe this view of communication as

a reduction from a linked send and receive pair to two independent always actions pro-

vides a novel and useful way to conceptualize communication in message-passing systems.

It provides a way to encode a number of properties, proofs of which can be found in

Section 4.3.

The priority of communication is derived from the priority of its constituent actions. For

an always communication, handled by the rule PRIOALWAYS, this is simply the priority

of the action. In the case of a send-receive pair, we need the max to be taken. We must take

the max because this ensures that the priority of communication is always at least that of

any of its actions. This invariant is crucial in our proofs of correctness. The rule PRIOPAIR

implements this behavior.

ψ

(〈

A
ω,f ,p
v

〉)

= p
(PRIOALWAYS)

p = (pt, pe) p′ =
(

p′
t, p′

e

)

p′′
t = max

{

pt, p′
t

}

p′′
e = max

{

pe, p′
e

}

ψ

(〈

S
ω,f ,p
c,v , R

ω′,f ′,p′

c

〉)

=
(

p′′
t , p′′

e

)

(PRIOPAIR)

pt < p′
t

(pt, pe) ≤prio

(

p′
t, p′

e

) (CMPTHREADPRIO)

pt = p′
t pe ≤ p′

e

(pt, pe) ≤prio

(

p′
t, p′

e

) (CMPEVENTPRIO)

Priority is given a lexographic ordering. It is compared first by the thread component, as

shown in the rule CMPTHREADPRIO. This ensures that a lower priority thread’s commu-

nication will never be chosen over a higher priority thread’s communication. If the thread

priorities are the same, the rule CMPEVENTPRIO says we then look at the event priorities.

The selection of a communication γ from the set of all possible communications γ is

done by an oracle �. The oracle looks at all possible communications and (under these

semantics) picks the one with the highest priority. The rule ORACLE defines the oracle’s

selection to have the highest priority of all possible communications. If there is a tie, we

allow the oracle to choose nondeterministically.

γ ∈ γ ∀γ ′∈γ ψ
(

γ ′
)

≤prio ψ (γ )

� (γ ) = γ
(ORACLE)

4.3 Proof of important properties

To provide some intuition about the operation of the above semantics, we now present

proofs of several important properties of our semantic model.

4.3.1 Communication priority inversion

We start by showing that the selection operation fulfills the necessary properties used

later to prove the lack of communication priority inversion and correctness of thread
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scheduling (Theorem 4.4). We say a selection causes a communication priority inver-

sion (Definition 4.2) if the selection makes it impossible for an existing higher priority

communication to be selected in the future. This happens when a selection eliminates

(Definition 4.1) a communication, meaning it is no longer present in the communication

collection derived from the resulting action collection. We note this is a relaxed defini-

tion of communication priority inversion that opens up opportunities for an oracle to make

locally suboptimal decisions as long as they do not preclude making the optimal decision

later. The oracle given in the semantics does not use this flexibility and will always choose

the immediately highest priority communication.

Definition 4.1 (Elimination). A communication γ is eliminated by the selection α � γ ′, α′,

where α ⇒α γ and α′ ⇒α γ ′, if γ ∈ γ but γ /∈ γ ′.

Definition 4.2 (Selection Communication Priority Inversion). A selection α � γ , α′

exhibits Communication Priority Inversion if it eliminates a communication γ ′, (γ ′ 
= γ )

where ψ
(

γ ′
)


≤prio ψ (γ )

Lemma 4.3 (Selection Priority). For a selection α � γ , α′, we have that for all γ ′′ ∈ γ ,

ψ
(

γ ′′
)

≤prio ψ (γ ) where α ⇒α γ .

Proof. By induction over the depth of the recursion. There are three rules by which a

selection can be made: PICKALWAYS, PICKPAIR, and REDUCEPAIR.

In the case that the selection was by rules PICKALWAYS or PICKPAIR, we have that

� (γ ) = γ . By the definition of � in the rule ORACLE, we have that for all γ ′′ ∈ γ ,

ψ
(

γ ′′
)

≤prio ψ (γ ).

If the selection was made by the recursive rule REDUCEPAIR, we have by the induc-

tive hypothesis that our property holds for the antecedents α �

〈

S
ω,f ,p
c,v , Rω′,f ′,p′

c

〉

, α′′

and α′′ ∪
{

A
ω,f ,p
unit, A

ω′,f ′,p′

v

}

� γ , α′. Thus, we know that for all γ ′′ ∈ γ , ψ
(

γ ′′
)

≤prio

ψ

(〈

S
ω,f ,p
c,v , Rω′,f ′,p′

c

〉)

. By the rule PRIOPAIR, we have that the priority of the selection
〈

S
ω,f ,p
c,v , Rω′,f ′,p′

c

〉

was both p ≤prio ψ

(〈

S
ω,f ,p
c,v , Rω′,f ′,p′

c

〉)

and p′ ≤prio ψ

(〈

S
ω,f ,p
c,v , Rω′,f ′,p′

c

〉)

.

This is because the communication priority takes the max of each priority component and

thus can be no less than either action priority. We note that the priorities of the gener-

ated always events are p and p′, and that
〈

A
ω,f ,p
unit

〉

and
〈

A
ω′,f ′,p′

v

〉

are members of γ ′′, where

α′′ ⇒α′′ γ ′′. Assume WLOG, the higher priority, and thus priority of the selection, to be

p. Then again by our inductive hypothesis we obtain for all γ ′′ ∈ γ , ψ
(

γ ′′
)

≤prio p ≤prio

ψ (γ ). By transitivity, our property thus holds. �

Theorem 4.4 (Selection Priority Inversion Freedom). No selection α � γ , α′ exhibits

Communication Priority Inversion under the given oracle �.

Proof. Assume for sake of contradiction a selection α � γ , α′ exhibits Communication

Priority Inversion by eliminating a communication γ ′. Then by the rules PICKALWAYS

and PICKPAIR, we have that � (γ ) = γ , where α ⇒α γ . By the definition of � in the
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rule ORACLE, we have that for all γ ′′ ∈ γ , ψ
(

γ ′′
)

≤prio ψ (γ ). Because γ ′ was elimi-

nated, we know γ ′ ∈ γ . Thus ψ
(

γ ′
)

≤prio ψ (γ ). This contradicts our assumption, as by

our definition of Communication Priority Inversion, ψ
(

γ ′
)


≤prio ψ (γ ). �

4.3.2 Reduction relation

We can now show that any possible program transition does not produce a communication

priority inversion (Theorem 4.8). Here we define our communication priority inversion

over reductions and programs (Definition 4.7) analogously to our previous definition over

selections (Definition 4.2). For the proof, we define an annotation to the reduction relation

that encapsulates the communication used by that reduction (or ∅ in the case that no com-

munication occurs during the reduction). Leveraging this annotation, we can examine if

the selection in the reduction eliminates a higher priority communication. Under the given

oracle (and for any correct oracle), such elimination can never happen. Thus, a reduction,

and by extension, a program trace, cannot exhibit communication priority inversion.

Definition 4.5 (Annotation). If S → S′ by application of rule SYNC where α � γ ′, α′, then

S →γ ′ S′. If S → S′ by any other rule, S →∅ S′.

Definition 4.6 (Reduction Elimination). A communication γ is eliminated by the reduction

〈T〉 T ,α → 〈T〉′
T

′
,α′ , where α ⇒α γ and α′ ⇒α γ ′, if γ ∈ γ but γ /∈ γ ′.

Definition 4.7 (Reduction Communication Priority Inversion). A reduction S →γ S′

exhibits Communication Priority Inversion if it eliminates a communication γ ′, (γ ′ 
= γ )

where ψ
(

γ ′
)


≤prio ψ (γ )

Theorem 4.8 (Priority Inversion Freedom). No reduction S → S′ exhibits Communication

Priority Inversion under the given oracle �.

Proof. Assume for sake of contradiction a reduction S → S′ exhibits Communication

Priority Inversion by eliminating a communication γ ′. Note that by Definition 4.7, the

reduction must be of the annotated form S →γ S′ and therefore been an application of the

rule SYNC. Let S = 〈T〉 T ,α and S′ = 〈T〉′
T

′
,α′ , and α ⇒α γ and α′ ⇒α γ ′. By Definition 4.6,

we have that γ ′ ∈ γ but γ ′ /∈ γ ′. Thus, the selection performed, α � γ , α′, eliminates γ ′.

by applying Definition 4.2, we have that the selection exhibits Communication Priority

Inversion. This contradicts the prior result of Theorem 4.4. Hence, no such γ ′ can exist,

and therefore, no reduction exhibits Communication Priority Inversion. �

Corollary 4.9 (Program Priority Inversion Freedom). Any program trace S →∗ S′ does

not contain a Communication Priority Inversion.

4.3.3 Thread scheduling

Building on top of our prior results around communication priority inversion, we can now

make the even stronger statement that under the given oracle, the highest priority thread

that can make progress is the one executing. To do so, we must first define what it means
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for a thread to make progress. We say a thread is capable of making progress if it is ready

(Definition 4.17). This happens when the thread is able to participate in a communication

(see Definitions 4.13, 4.14, 4.15, and 4.16). We also observe that the semantics preserve an

important invariant about the form of the threads waiting in the thread collection. They all

must be synchronizing on a set of actions represented by a choice id (Lemma 4.19). This

is integral to the cooperative threading model specified by the semantics because it implies

that all threads are blocked from communicating. Even in cases where the communication

is not meaningful, blocking can be encoded as synchronizing on an always action and

termination as synchronizing on never.

These definitions provide the groundwork for inductively asserting that in any valid pro-

gram state, the thread executing has higher priority than any ready thread in the collection

(Theorem 4.23). The proof of this breaks down into three cases representing the three rules

that modify the thread and action collections. The spawn cases are the simpler ones. We

need two variants of the spawn rules to capture which thread should be blocked based on

priority: the newly spawned thread or the spawning thread. Correctness stems from the

fact that spawn always injects a synchronization to block the lower priority thread. The

sync case is more complicated. At its core, the proof asserts that the priority of an action

is linked to the thread that created it, and that thread is the one waiting on it. Note again

that an action is generated from an event by the synchronizing thread, as was shown to

be necessary in Section 3. Correctness of communication selection implies the correctness

of action selection because thread and action priorities are linked, and this linkage is pre-

served through selection as well as the replacement of a communication pair with always

actions. This in turn implies the correctness of thread selection. As a result, the thread

currently executing is always the highest priority, showing our cooperative semantics are

equivalent to traditional preemptive semantics that chooses only to preempt a thread for a

higher priority one.

Definition 4.10 (Initial State). The initial state of a program is the state S0 =

〈(0LOW , e0)〉 ∅,∅.

Definition 4.11 (Reachable State). A reachable state S is a state such that S0 →∗ S.

Definition 4.12 (Final State). A final state S is a state such that S =
〈(

tpt , E [ sync ω ]
)〉

T ,α

where α ⇒α ∅.

Definition 4.13 (Choice Participant). A choice id ω is a participant in a communi-

cation γ iff the communication is of the form γ =
〈

A
ω,f ,p
v

〉

, or γ =
〈

S
ω,f ,p
c,v , Rω′,f ′,p′

c

〉

, or

γ =
〈

S
ω′,f ′,p′

c,v , Rω,f ,p
c

〉

.

Definition 4.14 (Waiting). A thread T is waiting on choice id ω iff T =
(

tpt , E [ sync ω ]
)

.

Definition 4.15 (Thread Participant). A thread T is a participant in a communication γ iff

T is waiting on choice id ω and ω is a participant in γ .
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Definition 4.16 (Available). A choice ω is available in α iff there exists a communication

γ ∈ γ such that ω is a participant in γ where α ⇒α γ .

Definition 4.17 (Ready). A thread T ∈ T is ready in the state S =
〈

T ′
〉

T ,α
iff it is waiting

on the choice id ω and ω is available in α.

Definition 4.18 (Blocked). A thread T ∈ T is blocked in the state S =
〈

T ′
〉

T ,α
iff it is waiting

on the choice id ω and ω is not available in α.

Lemma 4.19 (Thread Form). For any reachable state S = 〈T〉 T ,α all threads T ′ in the

thread collection T are of the form T ′ =
(

tpt , E [ sync ω ]
)

.

Proof. By induction over program steps Sn → Sn+1 in S0 →∗ S. At each step, we assume

our desired property holds. By Definitions 4.11 and 4.10, all programs start in the ini-

tial state S0 = 〈(0LOW , e0)〉 ∅,∅. Since the initial thread collection is empty, the property is

vacuously true in the initial state.

Proceed by case analysis over the rule applied in Sn → Sn+1. By our inductive hypothe-

sis, the property holds over the thread collection in state Sn. Thus, we only consider rules

that modify the thread collection.

Case SPAWN-NPREEMPT: Here we have that the new thread collection T
′

is equal

to the old one plus a new thread T ′ =
(

t′
p′

t
, (λx.sync neverEvt) ◦ e ◦ sync ω

)

. The new

thread is indeed of the form T ′ =
(

tpt , E [ sync ω ]
)

. Since all other threads in the collec-

tion are unchanged, by the inductive hypothesis, they too have the desired form. Hence,

our property holds over thread collection T
′
and thus in state Sn+1.

Case SPAWN-PREEMPT: By the same argument as in the previous case, except the new

thread here is T ′ =
(

tpt , E [ sync ω ]
)

.

Case SYNC: Here the new thread collection T
′

is a subset of an intermediate thread

collection T
′′
, and the intermediate thread collection is the union of the current thread col-

lection and the current thread state with the choice id applied. That state is of the form
(

tpt , E [ sync ω ]
)

. Since all other threads in the intermediate collection are unchanged

from the current collection, by the inductive hypothesis, they too have the desired form.

As all threads in the intermediate collection have the desired form, all threads in the new

collection must too as T
′
⊂ T

′′
. Hence, our property holds over thread collection T

′
and

thus in state Sn+1. �

Corollary 4.20 (Thread Status). For any reachable state S = 〈T〉 T ,α, all threads T ′ in the

thread collection T are either ready or blocked.

Lemma 4.21 (Action Thread Priority). For any reachable state S = 〈T〉 T ,α, all threads

T ′ in the thread collection T are waiting on a choice id ω where for all actions with that

choice id αω,f ,p ∈ α, the thread priority of p matches the thread priority of T ′.

Proof. By induction over program steps Sn → Sn+1 in S0 →∗ S. At each step, we assume

our desired property holds. By Definitions 4.11 and 4.10, all programs start in the initial
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state S0 = 〈(0LOW , e0)〉 ∅,∅. Since the initial thread collection is empty, the property is

vacuously true in the initial state.

Since the property holds in Sn, we consider only rules that modify T or α. By

Lemma 4.19, all threads in the action collection are waiting on a choice id. Thus, we

must only show that the priority of all actions matches the thread’s priority.

Case SYNC: New actions can be generated by either the action generation operator →֒

or the communication selection operator �. Rules ALWAYSACT, SENDACT, RECVACT,

NEVERACT, CHOICEACT, and WRAPACT collectively define the action generation oper-

ator →֒. In all cases, the actions generated share both a thread priority and choice id

with the synchronizing thread. Thus by our inductive hypothesis and the definition of

action generation, we have that the property holds over the union α′′. The only way for

the communication selection operator � to introduce a new action is through the rule

REDUCEPAIR. There the generated always actions share both a choice id and priority with

their respective send or receive actions. Thus, the property is preserved.

Case SPAWN-NPREEMPT: Here the only new action generated is the always action asso-

ciated with the new thread. Trivially, we see that this action has thread priority that matches

the new thread being added to the thread collection. Since the choice id is fresh and all other

threads in the collection are unchanged, our property still holds.

Case SPAWN-PREEMPT: Similar to the non-preemption case, the generated action is

an always action associated with the thread being added to the collection. This time that

thread is the preempted thread. Again, we see that this action has matching thread priority.

As all other threads stay the same, again the property holds.

As all other rules do not modify either the thread collection or the action collection, our

property holds in state Sn+1, and by induction in all reachable states. �

Lemma 4.22 (Participant Priority). In any reachable state S = 〈T〉 T ,α , if thread T ′ =
(

tpt , e
)

∈ T, is a participant in a communication γ ∈ γ , where α ⇒α γ , then ψt (γ ) ≥ pt.

Proof. Here we have two cases: γ =
〈

A
ω,f ,p
v

〉

, or γ =
〈

S
ω,f ,p
c,v , Rω′,f ′,p′

c

〉

.

Case γ =
〈

A
ω,f ,p
v

〉

: Here the communication involves only a single always action. Thus

by Lemma 4.21, we have that the priority ψt (p) = pt. Since by rule PRIOALWAYS, the

priority of an always communication matches that of its action, our desired property holds.

Case γ =
〈

S
ω,f ,p
c,v , Rω′,f ′,p′

c

〉

: Here the communication involves two actions and we thus

have two possibilities: one where T ′ shares a choice id with send action and another where

it shares a choice id with the receive action. By Lemma 4.21, the priority of the action

will match that of the thread T ′. Without loss of generality, assume the thread is asso-

ciated with the send action. Now we have two further options, either our send action

has thread priority greater than or equal to the receive action, or it has a thread prior-

ity less than the receive action. If the thread priority is greater than or equal to, by rule

PRIOPAIR, the communication will have a thread priority equal to that of T ′. In the case

that the thread priority is less than the receive action, the thread priority will be that of

the receive action as the rule PRIOPAIR takes the maximum of the thread priorities. In this

case, the thread priority of the communication will be greater than that of T ′. In either case,

ψt (γ ) ≥ pt. �
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Theorem 4.23 (Thread Scheduling). For any reachable state S = 〈T〉 T ,α , T =
(

tpt , e
)

, all

threads T ′ =
(

t′
p′

t
, e′

)

in the thread collection T have priority p′
t ≤prio pt if the thread T ′ is

ready in state S.

Proof. By induction over program steps Sn → Sn+1 in S0 →∗ S. At each step, we assume

our desired property holds. By Definitions 4.11 and 4.10, all programs start in the ini-

tial state S0 = 〈(0LOW , e0)〉 ∅,∅. Since the initial thread collection is empty, the property is

vacuously true in the initial state.

Since the property holds in Sn, we again consider only rules that modify T or α.

Case SYNC: By contradiction. Consider the state Sn+1 = . . . . Assume for sake of con-

tradiction that there exists a thread T ′′ ∈ T
′

such that T ′′ is ready and has priority p′′
t > p′

t.

Then there must exist a communication γ ′ ∈ γ ′, where α′′′ ⇒α′′′ γ ′, that makes T ′′ avail-

able by Definition 4.17. By Lemma 4.22 ψt

(

γ ′
)

≥ p′′
t > p′

t. We have that ψt (γ ) = p′
t by

Lemma 4.22 and the fact that γ is an always communication. By the definition of ≤prio

given in rule CMPTHREADPRIO, it must be the case that ψ
(

γ ′
)


≤prio ψ (γ ), because

ψt

(

γ ′
)

> ψt (γ ).

Now either γ ′ ∈ γ or γ ′ /∈ γ , where α′′ ⇒α′′ γ . In the case that γ ′ ∈ γ , our earlier

statement ψ
(

γ ′
)


≤prio ψ (γ ) directly contradicts Lemma 4.3. If γ ′ /∈ γ , then γ ′ was pro-

duced by α′′
� γ , α′′′. Hence, the rule REDUCEPAIR was applied, as only that rule can

introduce new actions and thus communications. In the rule REDUCEPAIR, only always

actions are produced, meaning the new communications (including γ ′) must be always

communications. Since the priority of the generated always actions match that of the

matched send and receive action respectively, it must be the case that there existed a

send-receive communication γ ′′ ∈ γ where the either constituent send or receive action

had the priority p′′ =
(

p′′
t , p′′

e

)

. The priority of a send-receive communication, by defini-

tion in rule PRIOPAIR, is the maximum of the event and thread priorities, and is thus no

less than the priority of either constituent action. Therefore, ψ
(

γ ′
)

≤prio ψ
(

γ ′′
)

and so
(

γ ′′
)


≤prio ψ (γ ), again contradicting Lemma 4.3.

Case SPAWN-NPREEMPT: By the inductive hypothesis, thread T =
(

tpt , E
[

spawn
(

e, p′
t

) ])

must be no lower priority than all ready threads in T . Since

the action added to the action collection is an always action with a fresh choice id, no

blocked threads in the thread collection may become ready. Thus, the only new ready

thread in the thread collection is the one added here. This thread is ready because we add

a corresponding always action to the action collection, but we assert that it has thread

priority no higher than the priority of T . Thus, T must still have priority no lower than any

ready thread in the new thread collection.

Case SPAWN-PREEMPT: By the inductive hypothesis, thread T =
(

tpt , E
[

spawn
(

e, p′
t

) ])

must be no lower priority than all ready threads in T . The

newly spawned thread has priority greater than T and thus higher than all ready threads in

the thread collection T . Since the action added to the action collection is an always action

with a fresh choice id, no blocked threads in the thread collection may become ready.

Thus, again the only new ready thread in the thread collection is the one added here with

priority pt. Therefore, the newly spawned thread must have priority greater (and thus no

less) than any ready thread in the new thread collection T
′
.

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press



Send to me first: Priority in synchronous message-passing 23

Fig. 5. Encoding priority atop CML primitives.

As all other rules (APP, CHAN, *EVT) do not modify either the thread collection or

the action collection, our property holds in state Sn+1, and by induction in all reachable

states. �

5 Implementation

To demonstrate that our priority scheme is practically realizable, we have implemented

it as an extension to the CML implementation in MLton, an open-source compiler for

Standard ML. Our implementation of PrioCML consists of approximately 1400 LOC,

wholly in ML. It implements the tiered-priority scheme outlined in semantics while

preserving the properties.

5.1 Priority atop CML

To understand why priority at the CML language level is needed, we first consider a pri-

oritized communication channel built from existing CML primitives as shown in Figure 5.
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Fig. 6. PrioCML primitives.

Implementing communication using a prioritized channel requires two-step communica-

tion. We need one step to convey the event priority and another to effect the event’s

communication. The prioritized channel itself is encoded as a server that accepts com-

munications and figures out the appropriate pairings of sends and receives (in this case,

based on priority).

The sender blocks, waiting to receive a notification from the server acting as the priority

queue, while it waits for its message to be delivered by the priority queue to a matching

receiver. Once the priority queue successfully sends the value to a receiver, it unblocks the

sender by sending a message. The mechanism is nearly identical for a receiver, but since

we need to return a value, we pass an event generating function to the channel. While

the per-communication overhead is undesirable, this encoding captures the behavior of

event priority for send and receive. On selective communication, however, this encod-

ing becomes significantly more complicated. A two-stage communication pattern makes

encoding the clean-up of events that are not selected during the choice challenging.

We also still lack the ability to extract the priority information from threads. Although

we can send the thread priority from the synchronizing thread together with the event

priority, but now the thread priority becomes the part of message. The consequence is that

pchannel will need to receive the message to know the thread priority. Observe that in the

loop function of pchannel , we synchronize on a choice between either the sendEvtp

or recvEvtp event. Here, the choice is resolved by in the order the clients synchronized

on the channel since CML does not use the thread priority to order the messages.

Recall that preventing priority inversions requires reasoning about the priority of both

threads and events. Therefore, implementing priority requires deep visibility into the inter-

nals of message-passing. As shown above, we could gain this by building an additional

structure on top of CML. However, to encompass the full richness of CML, including

thread priority and arbitrary use of choice, we would need effectively to reimplement all

of it. Instead, we opt to realize our priority mechanism as a series of slight modifications

to the existing CML runtime.

5.2 Extensions to CML

The major changes made to CML are in the thread scheduler and channel structure. These

changes are exposed through a set of new prioritized primitives, shown in Figure 6.

We extend the thread scheduler to be a prioritized round-robin scheduler with three

fixed thread priorities. While other work has explored finer-grained approaches to priority

(Muller et al., 2018), for simplicity, we use a small, fixed number of priority levels. We

opted for three priority levels as that is enough to encode complex protocols such as earliest

deadline first scheduling (Buttazzo, 2011). Our implementation could be extended to more
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priority levels if desired. The new primitive spawnP spawns a new thread with a user-

specified thread priority: LOW, MED, or HIGH. Threads within the highest priority level are

executed in a round-robin fashion until all are either blocked or have completed. A thread

is considered blocked when it is waiting on communication. If all high-priority threads

are blocked, then medium priority threads are run until either (1) a high-priority thread is

unblocked or (2) all medium threads block or have completed. If there are no available

high-priority threads or medium priority threads to execute, then low priority threads will

be scheduled. This scheme guarantees that a thread will never be chosen to run unless there

are no higher priority threads that can make progress.

Event priority is managed by three primitives: sendEvtP, recvEvtP, and changePrio.

The eventPrio is a positive integer where a larger number implies higher priority. The

two base event primitives sendEvt and recvEvt are replaced by their prioritized ver-

sions. These functions take in an event priority and tie that priority to the created events.

The changePrio function allows the priority of an existing event to be changed. All other

CML primitives exist in PrioCML. The primitive spawn creates a thread with LOW prior-

ity. The base event constructors are given default priority levels and reduce calls to the

new prioritized primitives. The combinators continue to work unchanged. In this way, our

system is fully backward compatible with existing CML programs.

5.3 Realizing tiered priority

The main challenges in implementing the semantics given in Section 4 are dealing with the

thread scheduling and action collection. The CML runtime uses preemptive scheduling,

in contrast with our formal semantics where scheduling is cooperative. To avoid priority

inversion, we must preserve the invariant formalized in Theorem 4.23: the currently run-

ning thread must always have a priority equal to or higher than every ready thread. We

achieve this by ensuring in the scheduler that a thread can be preempted only by a thread

of equal or higher priority. This maintains the core thread scheduling property required by

the semantics.

Care is needed to efficiently implement the selection process. The semantics operate

over an action collection, and for every communication must evaluate every possible pair

within the system. Implementing this approach directly would be prohibitively expensive,

as it would require maintaining all available pairs across the whole system in a global

shared set. We thus instead localize the decisions by leveraging a more traditional channel

structure. While channels in the formal semantics are merely tags, in our implementation,

as in CML, they are backed by a queue at runtime.

In our implementation, action values fulfill roughly the same role as base events in

CML. Since the channel of an action can never change, we can store all actions in their

associated channel. In the semantics, the action collection contains all actions on which

threads are currently blocked. We obtain the same behavior more efficiently by instead

keeping the actions segmented by channel. Observe that any communication pair chosen

by the oracle must involve the running thread. Because the action collection starts empty

and each synchronization results in at most one communication, there can be no send-

recv communication pairs waiting in the action collection before a synchronization. Thus,

the oracles selection must be a communication pair involving an action generated by the
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synchronization of the currently running thread if one is available, or a context switch to

another thread (via an always action) if not. As a result, we know any communication pair

must come from within the channels of the actions from the current synchronization. This

allows us to reduce the search for a pair from the entire global action collection to only the

pairs in the channels which are synchronized on by the running thread.

The challenge now is to pick the communication that complies with the decision of the

oracle. When a running thread synchronizes on a set of events, a set of candidate commu-

nication pairs is generated by pairing the corresponding action from the channels of the

synchronized actions. In the case of a single send or receive event being synchronized, the

candidates are all from the same channel. In the more complicated case of synchronizing

on multiple actions with choose, the candidates may come from different channels. Note

that synchronization on an always event is a special case where the candidate commu-

nication is an always communication and not a pair. Similarly, never events result in no

candidate communications. From the observation above, we know that the oracles chosen

communication is one of these candidates, or a context switch to another thread if no can-

didates exist. As a result, the highest priority communication among the candidates must

be the oracle’s chosen communication.

To find this communication when an event is synchronized, we leverage the channel

structure. To see how this is done, first consider the event matching mechanism in unmod-

ified CML (Reppy, 2007). When an event is synchronized, the corresponding action is

placed in a queue over the channel it uses. If there is a match already in the channel queue,

the actions are paired and removed. In the case of choice, all potential actions are enqueued.

Each carries a reference to a shared flag that indicates if the choice is still valid. Once the

first action in a given a choice is paired, the flag is set to invalid. If upon attempting a match,

the action has its flag set to invalid, it is removed, and the following action in the queue is

considered. This lazy cleaning of the channel queues amortizes the cost of removal.

To evaluate the decision of the PrioCML oracle, we must look at the entire set of actions

generated at synchronization. When a running thread synchronizes directly on a send or

receive event, there is only one generated action and thus the candidate communications

are all from the same channel. We consider every possible pairing within this channel and

take the communication with the highest priority. The more general approach is required

when a thread synchronizes on a choice event. Here multiple actions may be generated

and thus multiple channels may need to be examined. As in the semantics, we treat always

actions as generating a communication with the priority of the always action and ignore

never actions. When multiple channels are involved, PrioCML generates a set of candidate

communications for each channel used by a generated action. The highest priority candi-

date from each channel is then compared to find the highest priority of all. We rely on

the associativity of the max priority operation to avoid realizing the entire set of candidate

communications explicitly.

We now give an example to show how the decision is made in the implementation of

PrioCML. Note that we use the subscript on the thread to denote the thread priority.

[T1H ] sync (sendEvtP(c1, v1 , 5))
[T2H ] sync (sendEvtP(c1, v2 , 10))
[T3M ] sync (sendEvtP(c2, v3 , 15))
[T4L] sync (sendEvtP(c2 , v4 , 20))
[T5L] sync (choose ([ recvEvtP(c1 , 0), recvEvtP(c2 , 0)]))
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In this example, we have four pairs of communication pairs. There are two candidate pairs

on the channel c1 and the other two pairs on the channel c2. First we pick best pairs from

c1 and c2 respectively. In channelc1, we pick the candidate pair between thread T2 and T5

as the best pair from channel c1 due to this pair has a higher event priority. On the channel

c2, we pick the candidate pair between thread T3 and T5 since T3 has a higher thread

priority than T4. Then, we move on to pick the final pair from the best candidate pairs of

channel c1 and c2. We compare the best candidate pairs according to the prioritization

scheme from the oracle again to pick the final pair in the selective communication. As a

result, the candidate pair between thread T2 and T5 is the chosen pair of the decision due

to its thread priority is higher than the other candidate pair.

In our prioritized implementation, we split the channel queue into three queues: one

for each thread priority level. Further, each queue is a priority queue ordered by event

priority. Keeping those three priority queues separate allows us to access the queue for

a given thread priority. We need to do this both for efficient insertion and for a correct

implementation of pairing. We maintain these per-channel queues as highQ, medQ, and

lowQ. We note that while, as in CML, these are kept separately for send and receive, it is

impossible to have both pending send and receive actions over the same channel. We thus

are always referring to the non-empty set of queues in our discussion.

As noted previously, the highest priority communication must always involve the cur-

rent thread. Consider the case where the current thread is communicating on a channel c.

Our system looks first at the thread priority. If there is a thread blocked on channel c of

higher thread priority, we must pair it with the blocked thread of highest priority. If the

current thread has a priority higher than (or equal to) all blocked threads, under our seman-

tics, the possible communications will all have a thread priority equal to the current thread.

Thus, we consider them tied for thread priority and pick by highest event priority among

all possible communications.

We implement this logic with the code given below, which shows how the highest prior-

ity communication is found for a given channel. We are given the thread priority, syncTp,

of the current thread, and the event priority of the current action ep.

fun pickPrio ((p1, q1), (p2 , q2)) =
(* Pick from p1 and p2 by tiered -priority scheme *)

val ls = [((HIGH , case Q.peek highQ of
SOME e => SOME (maxEvtPrio (ep , Q.Elt.key e))

| NONE => NONE), HIGH),
(( maxThreadPrio (syncTp , MED), case Q.peek medQ of

SOME e => SOME (maxEvtPrio (ep , Q.Elt.key e))
| NONE => NONE), MED),

(( maxThreadPrio (syncTP , LOW), case Q.peek lowQ of
SOME e => SOME (maxEvtPrio (ep , Q.Elt.key e))

| NONE => NONE), LOW)]
val ((commTP , commEP), queue) = List.foldl pickPrio (List.hd ls) (List

.tl ls)

For each of the queues, we look at the highest (event) priority action within. The list ls

contains, for each queue, the priority of a communication between the current thread and

the action from that queue, along with a tag marking which queue that communication

came from. Following the semantic rule PRIOPAIR, we compute the priority of those poten-

tial communications by taking the maximum thread and event priorities. We use an option
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type and store NONE if a queue is empty. Note that because the number of thread prior-

ities is fixed, the list ls is of constant length (three in our system). From the possible

communications in ls, we then use the helper function pickPrio to pick the queue with

the highest priority communication. We return both the priority (useful when handling

selective communication) and identify the queue involved.

Choice is handled similarly to how it was handled before priority. Again, lists are cleared

lazily to amortize the costs of removal. The major overhead our scheme introduces is that

inserting an action into a channel now requires additional effort to keep the queues in order.

For a choice, this overhead must be dealt with for each possible communication path. The

impacts of this are measurable but minor, as discussed in Section 6.1.

5.4 Polling

Polling, a common paradigm in concurrent programming, is fundamentally the ability to

do a non-blocking query on an event. The primitives of CML (Figure 1 from Section 2)

do not provide the ability to express non-blocking synchronization. The only available

synchronization operation is sync, which is blocking.

This problem is illustrated by Reppy in Concurrent Programming in ML (Reppy, 2007).

At first glance, the always event primitive could provide a non-blocking construction.

This event is constructed with a value, and when synchronized, it immediately yields the

wrapped value. By selecting between always and recv events, the synchronization is

guaranteed not to block. Although this approach reflects the non-blocking behavior of

polling, it has a flaw, as explained by Reppy, would look as follows:

fun pollCh ch = sync (choose [alwaysEvt NONE , wrap (recvEvt ch , SOME)
])

While it is true that this construction will never block, it may also ignore available com-

munications on the channel. The choose operation in CML is nondeterministic and could

choose the alwaysEvt branch, even if the recvEvt would not block. This problem led

to the introduction of a dedicated polling primitive recvPoll in CML. While its use is

generally discouraged, it is vital in some communications protocols outlined by Reppy.

In our implementation of the semantics, always events can be associated with an event

priority. Thus, we can assign the always event to a lower event priority in PrioCML:

fun pollCh ch = sync (choose [
alwaysEvt (NONE , 0),
wrap (( recvEvtP ch , 1), SOME)
] )

This correctly captures the polling behavior desired. Because of our guarantee that an event

is always picked if one is available, the thread executing the choice will still never block.

Therefore, under our prioritized implementation, the above polling example from Reppy

works with the intended polling behavior.

6 Evaluation

To demonstrate that our implementation is practical, we have conducted a series of

microbenchmarks to measure overheads as well as a case study in an example web server

and GUI framework written wholly in CML.
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Fig. 7. Spawn.

Fig. 8. Send-receive.

We evaluate the feasibility of our implementation in two ways: microbenchmarks to

measure overheads, and a series of case studies see how priority can be applied in prac-

tice. These experiments were run on MLton 20180207 and our implementation (which is

derived from it). The system used for running the microbenchmaks and buyer-seller and

eXene case studies has Intel i7-6820HQ quad-core processor with 16 GB of RAM and ran

macOS 12. We note that MLton is a single-core implementation, so although it supports

multiple threads, these are multiplex over a single OS thread. Due to a limitation on the

number of concurrent sockets available in macOS, the Swerve benchmark was run on a

Linux system with a Intel i7-1185G7 quad-core processor with 32 GB of RAM.

6.1 Microbenchmarks

We present microbenchmarks that exercise spawn, send-receive, and choice. In spawn and

send-receive, we see constant overheads for each communication as shown in Figures 7

and 8. We note that the send-receive benchmark performs n total communications where

n is the number of iterations, so the constant overhead leads to a steeper slope to the

line. To benchmark choice, we build a lattice of selective communication. The threads

are arranged in a n × n cylindrical mesh. Each thread performs a selective communication

between two input channels, one from each thread immediately above it. It then sends the

resulting message on its output channel, connects to the two threads below it in the mesh.

To trigger the chained selective communication, a single message is sent to one cell in

the top row. The message is exchanged nondeterministically through the mesh until it is

received by the bottom cell. To show the growth behavior of this benchmark, we scaled
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Fig. 9. Lattice of choice.

Fig. 10. Imbalance between buyers in Buyer-Seller.

both the height and width, so for a run parameterized by n, there were n2 choice cells, of

which the message would pass through n. From the results shown in Figure 9, we observe

that the runtimes of both CML and PrioCML appear quadratic. Our implementation shows

a cost higher by a constant factor and thus a steeper curve. We manually examined the

Swerve and eXene codebase to confirm that nested choice does not occur in any selective

communication. Thus, while our implementation does exhibit measurable slowdown on

this synthetic benchmark, we do not expect real-world performance to be severely affected.

6.2 Case study: Prioritized buyer-seller

A key issue in some protocols is ensuring fairness between participants. We consider a pro-

tocol modeling the interactions between a bookseller and clients making offers to purchase

a book. Introduced in the session types literature (Vallecillo et al., 2006), this protocol is

typically used to illustrate dyadic interactions that can be modeled with behavioral types.

We explore an extension to this protocol that utilizes priority to enforce that the seller con-

siders two competing buyers fairly. As introduced in Section 3, the buyer who missed a

chance to bid will increase in priority. The higher event priority for this buyer means that

bid will be chosen next by the seller.

We evaluate the performance on both MLton’s default CML implementation and

PrioCML. The results shown in Figure 10 illustrate the difference between the number

of offers placed by Buyer 1 and Buyer 2 as a function of the number of total offers made.

To understand the behavior of the CML implementation, consider a system in which the
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buyer to interact with is determined by tossing a fair coin at each step. The difference

between offers received from the buyers is then a one dimensional random walk process

where the probabilities of a +1 step and a −1 step are both 0.5. Such processes are com-

mon in many application domains and have well-known statistical properties (Weisstein,

n.d.). Specifically, we are interested in the expectation of the absolute difference: the aver-

age size of the imbalance. For large N , this is well approximated by E(|dN |) =

√

2N
π

. Thus,

after 5 million offers, we would expect the system that flips a fair coin to choose a buyer

to exhibit an average imbalance of E(|d5×106 |) =

√

2·5×106

π
≈ 1174 offers. Thus while this

system has a probabilistic idea of fairness, as the coin we flip is fair, the imbalance present

would still be undesirably large. Ideally, we would want the difference to be at most 1

offer.

Turning our attention to the performance of CML, we see that the imbalance observed

after 5 million iterations is in fact 34 offers. While the output of a random walk is, as

implied by the name, random, 34 is quite a bit smaller than the 1,174 expected from a

fair coin flip. We take this as evidence the fairness heuristics in the CML implementation

do perform quite well. Notably, as discussed in Section 7, CML implementations have

traditionally had internal priority that is used heuristically to maintain fairness in nonde-

terministic choice. Such prioritization is considered an implementation detail in CML and

not exposed to the programmer.

By exposing priority, we can allow the programmer to decide and encode what fairness

means in their protocol. Here, we aim for a round-robin behavior, where the buyers take

turns making offers. This has the desirable property that the imbalance in offers is capped

at 1 offer. Looking at the results obtained in Figure 10, we see the imbalance stays very

close to this ideal, but has occasional slight excursions to −1 or 2. We attribute this behav-

ior to preemptive thread scheduling. While our prioritization controls the nondeterminism

present in communication actions, especially choice, we still have some nondeterminism

present in thread preemption. This is because, unlike the cooperative semantics, the thread

scheduling used in MLton’s CML implementation is preemptive. Thus, a buyer can occa-

sionally be preempted before it is able to submit a new offer. If it fails to be scheduled soon

enough, the other buyer may be able to submit two offers in a row because it is the only

communication available. Importantly, our priority mechanism corrects for this behavior

over time. The priority is based not on the last offer, but the total number of offers placed.

Thus when the preempted buyer is able to place another offer it is given preference until

it catches up to the other buyer. This protocol keeps the imbalance very small, even when

presented with additional nondeterminism.

6.3 Case study: Termination in Swerve

To illustrate other uses of priority in message-passing programs, we take a look at a large

CML project: the Swerve web server. Swerve is a modular web server written using CML

with approximately 30,000 lines of code (Shipman, 2002). Written in the early 00s, Swerve

was designed to showcase the utility of Concurrent ML in writing modular networked sys-

tems. We again note that the MLton CML runtime, and thus Swerve, is limited to utilizing

a single CPU core. Even within single-core concurrent systems, the addition of priority
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Fig. 11. Swerve.

Fig. 12. Graceful shutdown in Swerve.

to protocols can facilitate the easy addition of new features with minimal performance

penalty.

As noted by Shipman, Swerve lacks a graceful shutdown mechanism. Currently, the

shutdown of the web server is accomplished by sending a UNIX signal to terminate the

process. This approach has several drawbacks. As the process is killed immediately, it

does not have the opportunity to flush the asynchronous logging channel. This can lead to

incomplete logs near the server shutdown. Additionally, clients being served at the time of

server shutdown have their connections closed abruptly, without a chance for the server to

finish a reply. This can lead to an error on the client-side or, in the case that the request was

not idempotent, an inconsistent, or partially updated state server-side. Thus to cleanly exit

the server, it is important to allow all currently running tasks to complete, including both

flushing the log and handling connected clients. As Shipman (2002) explains, this can be

handled by rejecting all new clients and waiting for existing ones to finish before flushing

the logs and exiting the process. We implement such a system in Swerve, the core of which

is seen in Figure 12.

Here we select between the three possible actions in the main connection handling loop.

We can accept an incoming connection over the channel acceptChan by invoking the

function new_connect. Alternatively, we can handle a client disconnect event, sent as

a message on the channel lchan via handle_msg. Lastly, we can receive a shutdown

signal via the event shutdownEvt. This event is a receive event on a channel shared

with the signal handler registered to the UNIX interrupt signal. Upon receipt of such

a signal, the handler will send a message on that channel to indicate the server should

begin shutdown. We leverage CML’s first-class events to encapsulate this mechanism and

hide the implementation from the main loop. When the event shutdownEvt is chosen,

we invoke the shutdown function, which stops accepting new connections, waits for all

existing connections to close, flushes the log, then removes a lock file and exits.

While this change successfully resolves the possibility of broken connections and incon-

sistent server states, it still has a notable limitation. We have no guarantee of a timely
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Fig. 13. Prioritized shutdown in Swerve.

shutdown. The original approach of killing the process via a signal is effectively instan-

taneous. However, because we want to complete the currently running server tasks, the

server cannot shutdown immediately. We want to be sure that the server does not accept

additional work after being told to shutdown. Under the existing CML semantics, the

server is free to continue to accept new connections indefinitely after the shutdown event

has become ready, provided a steady stream of new connections is presented. This is

because there is no guarantee as to which event in a choice list is selected, only that it

does not unnecessarily block. Since CML only allows safe interactions between threads

via message-passing, we have no other way for the signal handler to alert the main loop

that it should cease accepting new connections. Thus, under heavy load, the server could

take on arbitrarily more work than needed to ensure a safe shutdown. We note that the

MLton implementation of CML features an anti-starvation heuristic which in our test-

ing was effective at preventing shutdown delays. This approach however is not a semantic

guarantee. By adding priority, as shown in Figure 13, we obtain certainty that our shutdown

will be effected timely.

We verify the operation of this mechanism by measuring the number of clients that

report broken connections at shutdown. With a proper shutdown mechanism, we would

see no broken connections as the server would allow all to complete before termination. As

seen in Figure 11, without the shutdown mechanism in place, clients can experience bro-

ken connections. When there are very few clients, the chances that any client is connected

when the process terminates are low. As the number of clients increases, however, the

odds of a broken connection do as well. By adding our shutdown mechanism, we prevent

these broken connections. We emphasize that the introduction of priority means achieving

a guarantee that the shutdown is correct is simple. The implementing code is short and con-

cise because our mechanism integrates nicely with CML and retains its full composability.

We note that event priorities are crucial to ensuring this timely shutdown. For example,

consider when the signal handler was extended to pass on an additional type of signal,

such as configuration reload. We would still want to ensure that the shutdown event takes

precedence. Thus, we need to assign more granular priorities than those available based

solely on the priority of the communicating thread.

We observe that this protocol can be introduced to Swerve with minimal changes to

the existing system. Importantly, this new functionality is not possible to correctly imple-

ment using existing CML primitives due to their inherent nondeterminism. While existing

heuristics in CML provide an effective implementation of fairness, they make no promises

of timely shutdown. By making the minor changes shown above, we obtain a semantic

guarantee of priority that prevents the indefinite delay of the shutdown.

6.4 Case study: A GUI shutdown protocol

We now present an evaluation of response time measurement with a shutdown protocol in

the context of eXene (Gansner & Reppy, 1993), a GUI toolkit in CML. A typical eXene
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program contains widgets. To realize a graceful shutdown protocol, our eXene program

needs to wait for all widgets to close upon receiving a shutdown request. Busy widgets

tend to slow down the shutdown protocol as the protocol cannot continue while the wid-

get is computing. Worse, the nondeterministic nature of choice can also have a negative

impact on the latency of the shutdown protocol as widgets may overlook a shutdown

request if other events are also available in the choice. We improve the response time,

both shortening and stabilizing it (a reduction in mean and variance), by leveraging prior-

ity in the communication protocol. The priority here provides a clean mechanism to encode

the preference of the shutdown events over regular processing events for widgets.

To fill up the work loads of each widget before triggering the shutdown protocol, we

need to saturated the selective communication network between the GUI widgets. To do so,

we leverage a synthetic network of widgets that computes Fibonacci numbers. Although

the workload is synthetic, it highlights a complex interaction pattern between widgets that

can easily be scaled as it creates a large number of selective communications. The number

of communications needed to compute the n-th Fibonacci number grows exponentially

with n. In order to compute Fibonacci numbers in our eXene widget network, each widget

has a number corresponding to a position in the Fibonacci sequence. Upon a user click, the

widget will calculate the corresponding Fibonacci number. By the definition of Fibonacci

sequence, the widget for fib(n), excepting fib(0) and fib(1), needs to communicate with the

other widgets responsible for computing fib(n − 1) and fib(n − 2). Meanwhile, we need to

encode the shutdown event so that widget has a chance to receive shutdown request. A

widget can be implemented with CML code in Figure 16.

Note that in Figure 16 we omit the case of sendEvt(fib_pre2_req, ()) for brevity.

On the outermost select, the widget is waiting for either a compute request from

out_ch_req or a shutdown request. Once it receives a compute request, it goes into the

middle select. There it picks between the other widgets it needs to communicate with and

the shutdown event. The code given shows the case where the widget for fib(n − 1) is

available. After we compute the result from fib(n − 1), it moves to fib(n − 2). Finally, it

adds the results and sends the sum to the output channel in the innermost select, selecting

another shutdown event. As for the shutdownEvt, every widget propagates the shutdown

request to the widget of fib(n − 1). Hence, the shutdown protocol in the Fibonacci network

is a linear chain from the largest Fibonacci widget.

We encode priority in two places. First, the priority of the shutdown event is higher than

other events. The use of priority in shutdown events ensures that the shutdown request will

be chosen whenever it is available during a selection. Second, we give priority to send and

recv on requesting and receiving the computation of the Fibonacci number. The message

priority is higher when the index in the Fibonacci sequence is larger in the network. As a

result, the widget with a larger number has a higher priority to request or receive compu-

tation. By giving these widgets preference, we boost the priority of shutdown protocol, as

the linear chain is from largest to smallest widget.

The histograms of shutdown latency in CML and PrioCML are shown in Figures 14 and

15, respectively. We run each setting for 100 times and record the time needed to finish the

shutdown protocol. We compute a large Fibonacci number to fill the network computation

requests so that every widget is saturated with Fibonacci computation before requesting the

shutdown protocol. The result shows that the average time spent on shutdown is improved
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Fig. 14. CML.

Fig. 15. PrioCML.

by 26%, from 25.5 to 18.8 seconds. Also, it stabilizes the response time by reducing the

standard deviation from 20.7 to 9.2 seconds.

7 Related work

Priority in Multithreading: Exploration into prioritized computation extends far back

into research on multithreaded systems. Early work at Xerox on the Mesa (Lampson &

Redell, 1980) programming language, and its successor project Cedar (Swinehart et al.,
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Fig. 16. Communication protocol of Fibonacci Widget.

1985), illustrated the utility of multiple priority levels in a multithreaded system. These

systems exposed a fork-join model of concurrency, wherein the programmer would spec-

ify that any procedure shall be called by forking a new process in which to run it. The

join operation then provides a synchronization point between the two threads and allows

the computation to be obtained. This was implemented atop monitors, a form of mutual

exclusion primitive. These systems did not consider communication as a first-class entity

and only allowed it to use monitored objects.

First-Class Communication: Concurrent ML introduced first-class synchronous commu-

nication as a language primitive (Reppy, 1991). Since then, there have been multiple

incarnations of these primitives, both in languages other than ML (including Haskell

Russell, 2001; Chaudhuri, 2009, Scheme Flatt & Findler, 2004, Go Gerrand, 2010, and

MPI Demaine, 1996). Others adopted CML primitives as the base for the parallel pro-

gramming language Manticore (Fluet et al., 2010). Other work has considered extending

Concurrent ML with support for first-class asynchrony (Ziarek et al., 2011). We believe

our approach to priority would be useful in this context. It would, however, raise some

questions regarding the relative priority of synchronous and asynchronous events, analo-

gous to the aforementioned issues with always events. Another extension of interest would

be transactional events (Donnelly & Fluet, 2008; Effinger-Dean et al., 2008). The intro-

duction of priority would be a natural fit as it provides a precise expression of how multiple

concurrently executing transactions should be resolved. Crucially, this relies on an encod-

ing of priority in events as a thread can be a participant in multiple competing transactions.

Thus, the thread priority alone is not always enough to prioritize transactions.

Internal Use of Priority in CML Implementations: As mentioned by Reppy (2007) in

describing the SML/NJ implementation of CML, a concept of prioritization has been pre-

viously considered in selective communication (Reppy, 2007). There, the principal goal

is to maintain fairness and responsiveness. To achieve this goal, Reppy (2007) proposes

internally prioritizing events that have been frequently passed over in previous selective

communications. We note that these priorities are never exposed to the programmer and

exist only as a performance optimization in the runtime. Even if exposed to the user, this

limited notion of priority only encompasses selective communication and ignores any con-

sideration of the pairing communication. Our realization of priority and the associated
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tiered-priority scheme is significantly more powerful. This is both due to the exposure of

priority to the programmer and our realization of priority to encompass information from

both parties in communication when considering the priority of an event.

Priority in ML: Recent work has looked at the introduction of priority to Standard ML

(Muller et al., 2018). To accomplish this, the system (Muller et al., 2018) propose, PriML,

“rejects programs in which a high priority may synchronize with a lower priority one.”

Since all communication in CML is synchronous, in order for a high-priority thread to

communicate with a lower priority thread, they must synchronize. This is exactly the inter-

action that is explicitly disallowed by PriML. A partial remedy to this problem would

be to only allow asynchronous communication. This would then allow communication

between lower and higher priority threads, but would still prevent any form of synchro-

nization between such threads. Our approach makes the decision to allow the programmer

the ability to express cross-priority synchronization.

8 Conclusion

This paper presents the design and implementation of PrioCML, an extension to

Concurrent ML that introduces priority to synchronous messages passing. By leveraging

a tiered-priority scheme that considers both thread priority and event priority, PrioCML

avoids potential priority inversions. Our evaluation shows that this scheme can be realized

to enable the adoption of priority with little effort and minimal performance penalties. We

have formalized PrioCML and shown that PrioCML programs are free of communication

induced priority inversion.
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Appendix

Fig. A1. Derivation of a send and receive communication.
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Fig. A2. Derivation of a send and receive communication (Cont.).
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